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Abstract

Abstraction in computer graphics defines a procedure that discriminates the

essential information that is worth keeping. Usually details, that correspond

to higher frequency components, allow to distinguish otherwise similar images.

Vice versa, low frequencies are related to the main information, which are larger

structures. Contours themselves may also be identified by high frequencies and

separate each pictured component. The underlying idea of the proposed algo-

rithm consists in identifying these edges, by a redundant wavelet transform, and

in blurring the inner areas of the components, by an adaptive circular median

filter. In spite of its implementation simplicity, our unsupervised methodology

provides results similar to those obtained by more complex techniques already

described in the literature.
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1. Introduction

Abstraction algorithms return non-realistic scenes, still keeping their main

information content. These techniques are widely used in computer graphics

with applications in the videogame (e.g. “Prince of Persia”, 2008) and in the

film (e.g. “A scanner darkly”, 2006) industries. In the former case, the so-

called cel-shading technique [1] reduces in real time the amount of data that

describe the three-dimensional scene with a high quality level. The graphic tool

used to model the objects let’s the user arrange position, texture and properties

of the virtual environment, including lighting and the camera location. This

allows to quickly simulate a cartoon-like effect without the actual need for a

hard intervention by an artist. In the former case, the interpolated rotoscop-

ing techniques [2] return frames which show a typical effect due to handmade

drawings.

Most abstraction algorithms apply a variety of methods to reduce the amount

of details within the areas that correspond to the objects in the image, while

maintaining the salient information in proximity of their more highlighted con-

tours. Interesting reviews of the main stylization methods can be found in [3, 4].

Segmentation-based techniques are usually avoided due to over segmentation

and require a continuous supervision to mitigate eventual errors [3]. Anyhow,

these segmentation-based approaches are unsuitable on video streams, because

of their excessive computational time. Segmentation techniques based on clus-

tering, like superpixel [5] or normalized cuts [6] were not taken into account be-

cause of their dependency on minimization functions that involve user-defined

parameters (e.g. the cluster size or the affinity function) which depend on the

given image and therefore are unsuitable on video streams.

An iterative technique based on the minimization of the gradient informa-

tion is presented in [7] to globally maintain and possibly enhance the most

prominent set of edges by increasing steepness of transition while not affecting

the overall acutance. An approximate solution is achieved, because finding the

global optimum is a NP-hard problem.
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The bilateral filter [8] is based on blurring through appropriate weighted

Gaussian functions that preserve as much as possible the areas close to the

edges. Again, the main drawback is the computational complexity caused by the

non-separability of the proposed functions [3] although recent implementations

result quite fast [9]. A framework of different methods was described in [10]

where the bilateral filter is applied to further smooth the interior of uniform

regions. The subsequent difference of Gaussians enhances the contours and a

particular quantization technique reduces the color space palette of the final

image.

A pipeline for image abstraction that exploits color quantization, bilateral

filtering and difference of Gaussians was introduced in [3, 11]. The bilateral

filtering was modified conveniently to set the eccentricity of the smoothing win-

dow according to the local gradient. Also, a particular thresholding function

was employed to perform color quantization.

The method developed by Litwinowicz [12] is widely used in the cinemato-

graphic field. It computes the optical flow between two consecutive frames to

determine the main direction to orient a sequence of simple brush strokes. In-

put parameters like thickness, length, hardness and color of the brush require

an accurate control by the artist and they greatly influence the quality of the

abstract representation.

Implementations based on the Kuwahara filter [13, 14] divide the image

into partially overlapped square blocks and assign values to the their central

pixels according to the average brightness of the blocks, weighted by a Gaussian

convolution [15]. These approaches are generally fast but return images that

suffer due to block artifacts. The variant presented in [16] considers circular

sectors instead of square blocks and arranges the eccentricity [13] according to an

anisotropy function calculated through the eigenvalues of the Harris matrix [17].

This increased complexity makes it possible to get better results even with fixed

size windows. A multi-scale approach which uses a pyramid to guide both the

shape and the size of the windows was reported in [18] to reduce details with

different dimensions.
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This paper describes a simple yet effective abstraction methodology made by

a pipeline that can be computed in a fast way (see Fig. 1). The following sections

describe the main steps which are luminance channel extraction, edge detection

by the ‘à trous’ wavelet, distance transform by mathematical morphology and

adaptive smoothing filter. A comparison with state-of-the-art algorithms is

reported together with conclusions and future works.
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Figure 1: Sketch of the main steps of our methodology.

2. Luminance conversion

In order to obtain a valid representation of the luminance information, we

compared various techniques as suggested in [19]. Indeed, we verified experi-

mentally that all these methods are qualitatively equivalent to each other for the

final abstraction (Fig. 8). Therefore, we decided to convert colour to grayscale

images by extracting the standard luminance information. Given the RGB color

representation of a pixel p, its YUV counterpart is obtained by:
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where Y takes into account the non-uniform human perception of primary colors

(Fig. 2).
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Figure 2: Input image and its YUV channels (U and V emphasized for better display purposes).

3. Edges by wavelets

The wavelet analysis is a powerful mathematical tool for representing and

processing data, to enhance or to suppress components with specific frequencies

(i.e. size and shape). We applied the so-called à trous algorithm [20] because

it is very fast and retains the maximum resolution (i.e. the output image does

not undergo decimation unlike the usual multiresolution analysis [21]).

We perform a filterbank (i.e. succession of low-pass and high-pass filters) on

the luminance Y channel:

I0(p) = Y (p), Ii(p) = Ii−1(p)� �i (2)

where the non-zero elements of the low-pass filter �i are given by the isotropic

kernel � [22–24]:
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and the pixel q spans the 3×3 neighborhood centered in p. The high-pass

filter is defined as the difference between two consecutive spatial scales, which

provides the wavelet coefficients:

Wi(p) = Ii−1(p)− Ii(p). (4)

This wavelet algorithm takes a constant time when computing a series of

Wi due to the advantage that the number of non-zero elements in �i is always

equal to nine (Fig. 3) and the convolution can be speeded up by considering the

separability property of �:

� =
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]
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Small objects are enhanced in the first planes W1 and W2. A threshold

is applied to binarize these planes and the set of contours E is obtained by a

subsequent pixel-wise logical disjunction of the binarized images:

E(p) =
∨

i=1,2

{Wi(p) > μi − 1.5×σi} (6)

where μi and σi are respectively the mean and standard deviation of the floating-

point values of the plane Wi. Sometimes, the resulting edge includes very small

components caused by noise or negligible details in the input image. The usual

mathematical morphology opening ϕ with structuring element S defined by the

discrete disk of radius equal to one pixel improves the final result (Fig. 4) [25]:

Eϕ(p) = δ(ε(E(p))) (7)

where
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Figure 3: Bigger and bigger (light-blue) versions of �.

ε(E(p)) = min
q∈S

E(p+ q), δ(E(p)) = max
q∈S

E(p+ q). (8)

4. Distance transform

The median filter we use to smooth the image is quite expensive in terms

of computational time with respect to the remaining part of our abstraction

algorithm. To limit the size of its window we compute the minimum discrete

Euclidean distance between each pixel and the nearest contour just obtained by

the wavelet transform. In particular, we make use of the algorithm due to [26]

and further investigated in [27].

D(p) = min{‖p− q‖ : Eϕ(q) = 1}. (9)

This map gives the size of the smoothing window, for each pixel of the input

image: the closer to the edge, the smaller will be the window in order to keep

details. Vice versa, zones far from the edges are smoothed much more. This

corresponds in some way to the adaptive approaches proposed in [13, 16].
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Figure 4: Image representation of the first two wavelet planes of Fig. 2b and their binary

composition, before and after the opening.

To reduce the size of the median window, we applied various decay formulae

on the distances D. The best results correspond to the rounded cube root of the

distance transform thus to maintain pronounced edges and to keep most details

of the structures, while blurring the overall input image (Fig. 5).

R(p) =
[

3
√

D(p)
]
. (10)

5. Adaptive median

To smooth the images, we realized a median filter which achieves effective

results from an abstraction viewpoint. We preferred to use a circular window

because it is isotropic although it requires more processing time with respect to

particular implementations which rely on square windows [28].

Given the luminance image Y and the distance map R of the edges Eϕ, we

compute the median M(p) among the values within a circular window centered

in p with radius R(p) (Fig. 6):
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D R

Figure 5: Distance transform map D of the binary edges Eϕ of Fig. 4 and its rounded cube

root R which greatly reduces the number of different distances.

M when R = 1 M when R = 2 M when R = 3

M when R = 4 M when R = 5 M when R = 6

Figure 6: The map R of Fig. 5 provides the radii for the circular median filter in the various

zones of the input image. The background color represents “don’t care areas” and the radius.

Fast parallel implementations, based on 3-way quick select algorithms [29]

can be applied: they rely on the fact that it is sufficient to delete and insert

a small amount of values in an already ordered set, to be updated. Instead,

we used a serial approach based on histogram evaluation which resembles a

non-comparative integer sorting algorithm: to compute the median within the
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circular window, it spans the histogram relative to that window while its cumu-

lative sum is less then half of the area of the window itself (Fig. 7). In the worst

case, computing and spanning the histogram require a number of direct memory

accesses equal to the area and to the number of luminance levels, respectively.

An analogous algorithm [28] was proved to have a constant time complexity.

Figure 7: The median value (red) is the bin that halves the neighborhood area in the histogram

cumulative sum (green). Here, it is 129 from 21 values because R=2.

The adaptive median images of Fig. 6 are composed to obtain the final

abstraction image (Fig. 8) while the color abstraction image is obtained by

assembling the grayscale abstraction together with the original chrominance

channels (if any) of Fig. 2.

Lightness abstraction Luma abstraction Luminance abstraction

Figure 8: Abstraction images obtained from different luminance information approaches show

very few differences.

6. Multi-scale adaptive median

This median filter remains the bottleneck of our abstraction methodology,

therefore we developed also a multi-scale approach based on a pyramid built in
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a fine-to-coarse manner by the Lanczos downsampling interpolation [30]. We

verified that more common interpolations like nearest neighborhood and bilinear

introduce artefacts in the resized image (Fig. 9).

Nearest neighborhood Bilinear Lanczos

Figure 9: Composition of the chrominance channels U and V of Fig. 2 with the luminance Y

multi-scale abstraction result, considering three interpolation algorithms.

Just a few pixels require a small radius for the median window (Fig. 5),

thus we limit the multi-scale algorithm in the case of radii greater than 3.

Instead of applying directly on p the circular median filter with radius R(p),

we consider the radius 3 on the image proportionally reduced by the coefficient

(2×3 + 1)/(2×R(p) + 1) (Fig. 10). Moreover, it must be considered that this

downsampling step is performed once and that it lets many adjacent pixels in

the original image share the same circular window in the reduced image: this

speeds the computation because we calculate once their median value.

7. Experimental results

First applications of the Kuwahara filter concerned noise reduction while

preserving the edges of the components in medical images [14]. To measure

the robustness of the considered methods, we studied their outputs in the case

of different amounts of random Gaussian or salt&pepper noise. Fig. 11 shows

the average response with respect to the original clean images of Figs. 13–16,

by using the structural similarity measure SSIM [31, 32] and the standard

pixel-wise PSNR. We experimentally observed that our algorithm together with

‘anisotropic Kuwahara’ and ‘Papari et al.’ is able to eliminate the majority of
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Figure 10: Regardless to the actual radius R > 3, the circular median filter is computed with

radius equal to 3 on properly reduced versions of the image.

the introduced distortion without degrading the image. Both ‘bilateral filter’

and ‘L0 gradient minimization’ return worse results for salt&pepper noise.

We carried out a comparison of the execution times by the same algorithms,

summarized in Fig. 12. For ‘Papari et al.’ [16] and ‘L0 gradient minimiza-

tion’ [7] we used the original software written by the authors in the MatLab

language which is widely used for numerical computations. This language is in-

terpreted, although quite efficient due to just-in-time compilation, vector prim-

itives and parallel extensions (eventually executed by built-in instructions in a

user-trasparent way) for GPUs and multi-core CPUs. Regarding the ‘bilateral

filter’ [8] we compiled the corresponding command of the open source graphic

library OpenCV for digital image processing [33]. Our methodology was coded

in pure C++ language using this library, too. These programs were run five

times per image on an entry-level machine equipped with an Intel i3-2120, 8GB
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Figure 11: Quality measures versus amount of noise.

RAM and Linux. As of the ‘anisotropic Kuwahara’ [18] we report the elapsed

time obtained by the authors through their optimized GPU implementation on

a graphics card equipped with nVidia GTX580 (the rest of the hardware was

not specified).

Approximately 0.20 seconds are required by our methodology to process

a truecolor image with 512× 512 pixels using a single core of the CPU. As

future extensions, optimizations like parallelization through GPUs and multi-

core CPUs to compute both the wavelet planes and the circular median filter

can still be made, thus a significant speed-up can be expected.

8. Conclusions

The proposed algorithm does not require any intervention by the artist thus

facilitating the development of videos. In fact, the wavelet edge detector we

described maintains only the relevant parts of the contours, while reducing the

presence of irrelevant edges which are usually due to noise. Our methodology
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Figure 12: Average elapsed time in milliseconds for 512×512 truecolor images.

operates on the luminance channel of the frames and therefore the appearance

of their colors does not change over time, instead of approaches that modify the

color palette of each single frame [10]. As an optional refinement the user could

overlap on our smoothed image the edges obtained by ad hoc techniques [34, 35].

Our methodology meets the following essential rules for artistic stylization

algorithms, as recommended in [3]: it is not supervised (the artist does not have

to provide any parameter value); it does not belong to any particular artistic

movement (the methodology allows to process images of any kind and it does

not simulate images of a particular school of art like impressionism or cubism);

it is simple and innovative with respect to relevant literature.

In general, the quality of the abstraction methods is rather subjective and

cannot be evaluated via metrics: to compare the proposed technique and the al-

gorithms currently considered as state-of-the-art, we carried out experiments on

the images kindly provided by the authors of those techniques [13] and by using

freely distributed implementations with default values for the input parameters.

Even if the considered approaches produce different outputs, it is anyway desir-

able to develop a set of methods to present the artist a variety of abstraction re-

sults. Figs. 13–16 show some examples available with demo videos processed by

the considered approaches at http://math.unipa.it/cvalenti/adaptiveabstraction.
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Input image Anisotropic Kuwahara Papari et al.

L0 gradient minimization Bilateral filter Proposed methodology

Figure 13: Qualitative comparison among our methodology and other abstraction techniques.

Input image Anisotropic Kuwahara Papari et al.

L0 gradient minimization Bilateral filter Proposed methodology

Figure 14: Qualitative comparison among our methodology and other abstraction techniques.
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Input image Anisotropic Kuwahara Papari et al.

L0 gradient minimization Bilateral filter Proposed methodology

Figure 15: Qualitative comparison among our methodology and other abstraction techniques.

Input image Anisotropic Kuwahara Papari et al.

L0 gradient minimization Bilateral filter Proposed methodology

Figure 16: Qualitative comparison among our methodology and other abstraction techniques.
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