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Abstract

Most of the open challenges in person re-identification arise from the large variations of human poses as

captured by different camera views. To tackle the re-identification challenges state-of-the-art methods

propose to directly match image features or to learn the transformation of features that undergoes between

two cameras. Other methods attack the problem by learning optimal similarity measures. However, the

performance of all these methods are strongly dependent from the person pose and orientation. We focus

on this aspect and introduce three main contributions ot the field: (i) propose a method to extract multiple

frames of the same person with different orientation so as to capture the complete person appearance;

(ii) learn the pairwise feature dissimilarities space (PFDS) formed by the subspace of pairwise feature

dissimilarities computed between images of persons with similar orientation and the subspace of pairwise

feature dissimilarities computed between images of persons with different orientations; (iii) within each

subspace, a classifier is trained to capture the multi-modal inter-camera transformation of pairwise image

dissimilarities and to discriminate between images of the same person (positive pair) and images of different

persons (negative pair). To validate the proposed approach we show the superior performance of our

approach to state-of-the-art methods using two publicly available benchmark datasets.

Keywords: Person Re-Identification, Pose and Orientation Recovery, Appearance Models, Surveillance

Systems, Scene Understanding.

1. Introduction

The person re-identification problem, formally defined as the problem of associating a given person

acquired by a camera to the same person previously acquired by any other camera in the network at any

location and at any time instant, is increasingly gaining attention by the community. This challenging

task is very important for surveillance applications such as inter-camera tracking, multi-camera behavior5

analysis,etc.. Despite the problem can be alleviated by deploying a large number of sensors such as all
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Figure 1: Images of a persons acquired by the same camera. Person appearances look very different among all the images due

to the changes in pose and illumination conditions.

the areas of the monitored environment are covered by camera field-of-views (FoVs), the costs of system

installation, maintenance,etc., lead to a non-feasible solution. Thus, in a real scenario, we have to deal with

partial area coverage that yields to the re-identification problem.

Motivation: Despite much effort has been spent by the community to find the best signature (e.g. [1, 2, 3,10

4]), to learn the feature transformation that undergoes between camera pairs (e.g. [5, 6, 7, 8]) and to find

the optimal similarity measure (e.g. [9, 10, 11, 12]), re-identify a person that moves across disjoint cameras

still remains an open issue. Almost all existing works assume that a uni-modal inter-camera transformation

of features occurs between two camera views. However, the we believe that the deployment and the config-

uration of the cameras (it is a combination of view points, illumination changes, and photometric settings,15

etc.) together with the appearance of a person give rise to multi-modal inter-camera transformations (see

Fig. 1 for an example). In particular, current methods highly suffer the strong pose and orientation changes

that may occur when a person moves between cameras FoVs.

Contribution: Motivated by these, and inspired by the fact that as the transformation between appearance

features is multi-modal, so is the transformation of the distances between them [13], we introduce the20

following contributions:

1. we build upon the idea that the transformation learned for the same person seen from different view-

points may be less reliable than the one learned for the same person seen from the same point of view.

Hence, we introduce a method to recover images of the same person with different orientations so as

we can capture the multi-modal appearance of a person with higher reliability;25

2. the person orientations are used to learn different models for the different transformations that exist

between pairwise feature dissimilarities. We form the pairwise feature dissimilarities space (PFDS)

and divide it into two main regions, the region for which the dissimilarities are computed between pair

of images with similar orientation and the region containing all other different pairwise orientations.
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3. within each region, a classifier is trained to capture all the possible multi-modal transformation of30

feature dissimilarities. Those are used to discriminate between pairwise images of the same person

(positive pair) and pairwise images of two different persons (negative pair). This also allows to pose

the re-identification as a binary classification problem.

The rest of the paper is organized as follows. A brief description of the related work is given in section 2.

In section 3 a system overview and details of the modules that compose our re-identification approach are35

described. The superior performance of our approach over existing state-of-the-art methods is shown in

section 4. Finally, conclusions are drawn in section 5.

2. Related Work

In the recent past, the community has proposed to tackle the problem of person re-identification across

non-overlapping cameras using several approaches that differs from the way the person body is modeled, to40

which features are used (i.e. biometrics or appearance), to how matches between individuals are computed,

etc. [14, 15]. While recent works in the field of person re-identification can be grouped on the basis of any of

such categories, we group them as follows: i) methods that use discriminative appearance-based signatures,

ii) methods that capture the transformation of features across camera pairs, and iii) methods that learn the

optimal distance metric between appearance features.45

Discriminative signature based methods are the most commonly explored approaches for person re-

identification. In [2] particular interest has been focused on finding the best set of features that can be

exploited to match persons across cameras. In [16] the objective was to model the spatial distribution of

the appearance relative to each of the object part. A discriminative signature computed using the Mean

Riemannian Covariance patches was used in [17]. In [1], frames were used to built a collaborative rep-50

resentation that best approximates the query frames. In [3], the distribution of color features projected

in the log-chromaticity space was described using the shape context descriptor. In [18] an unsupervised

framework was proposed to extract distinctive features, then a patch matching method was used together

with adjacency constraints. In [4] a combination of biologically inspired features and covariance descriptors

was proposed. In [19] local feature descriptors were encoded by fisher vectors and pooled to provide a global55

image representation. In [20] an articulated multiple-instance-based compositional template was proposed

to model person appearance. Appearance features and similarities with a reference set of persons were used

in [21]. Human saliency was also explored in [18, 22] to reject body parts that are non-discriminative for

the re-identification task.

Those methods rely only on the discriminative power of appearance features to perform a pure feature60

matching. While no training is required and good results can be achieved when images are similar, this
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is still an unreliable solution as such methods generally assume that features are not transformed between

cameras.

Transformation learning based methods were explored in [5] to capture the transformation across non-

overlapping cameras in a tracking scenario. Similarly, the problem of capturing the non-linear transformation65

between features was addressed in [23]. In [24] pairwise dissimilarity profiles between categories were learned

and exploited in a nearest neighbor classification framework. In [6] the implicit transformation function of

features was learned by concatenating appearance feature vectors of persons viewed by different cameras.

In [7] a Weighted Brightness Transfer Function that assigns unequal weights to observations based on how

close they are to test observations was proposed. In [13], the error on the transformation function was70

modeled by a binary random forest classifier. In [8] a transformation between locally aligned feature spaces

was leatned. These methods assume that there is a unique transformation between features and that it can

be used to project the feature from one camera to the feature space of the other camera.

Distance learning based methods learn the best metric between appearance features of the same person

across camera pairs. In [9, 10, 11] the Largest Margin Nearest Neighbour and a derivation of it were exploited.75

In [25] the re-identification problem was addressed in a transfer learning framework. In [26] a distance metric

based on a statistical inference perspective, is learned from equivalence constraints. In [12] a novel distance

learning method based on sparse pairwise constants was proposed. The approach has been extended in [27],

by introducing a smooth regularizer. The problem of finding the optimal similarity measure was proposed

in [28, 29]. In [30] the re-identification problem was formulated as a local distance comparison problem80

introducing an energy-based loss function that measures the similarity between appearance instances. Such

approaches match features in the same feature space and did not consider cross-view transformations.

These three categories has been also recently exploited by re-ranking methods. In [31] a method based

on nonlinear ranking with difference vectors was proposed. In [32] a multi-task support vector ranking was

proposed to incorporate the training data from source domain with label information. In [33] it was shown85

that user intervention for re-ranking in the deployment stage improved re-identification performance.

3. Proposed Approach

An overview of our approach is shown in Fig. 2. The four underlying modules work as follows.

Given a pair of cameras with non-overlapping FoVs, the first module retrieves different perspectives for each

short-term tracklet corresponding to a person crossing the scene (Section 3.1). Each retrieved perspective is90

characterized by an orientation value and a reliability value. The next module captures the appearance of

the person by extracting different global and local features based on color, texture and shape information

(Section 3.2). The high-dimensional feature vectors extracted from a pair of perspectives of persons acquired

by two different cameras are input to the feature dissimilarities module which computes the pairwise feature

4



dissimilarities vector (PFD) (Section 3.3). The set of all PFD makes up the pairwise feature dissimilarities95

space (PFDS). The PDFS is split in two groups considering the orientation of the pairwise images. The

former is composed of PFDs between images of persons with similar orientation, while the other is formed

of PFDs computed for images that have different orientations. Two binary classifiers, named as similar

orientation classifier (SO-Classifier) and non-similar orientation classifier (NSO-Classifier), are trained to

separate between positives ans negatives PFDs in the two subspaces, respectively. Finally, the last module100

exploits the learned models to classify new PFDs. In particular, only PFDs associated to orientation

distances with high reliability values are used to select among the two classifiers. If a PFD is extracted from

images with low reliability values, the NSO-Classifier (Section 3.4) is used.

3.1. Retrieving People Perspectives

We assume that the people detection and tracking tasks in a single camera have already been achieved as105

in [34]. Then, each camera provides a set of short-term tracklets of persons to carry out the re-identification

process. Some situations may cause direction changes in the trajectory of a person due to static objects which

are located in the scene, crosses with other people or due to his/her own trajectory. We take advantage of

these situations in order to obtain multiple images with different perspectives of the person. An orientation

value is assigned to each perspective according to camera location. Let T = (x y vx vy) be a trajectory110

captured by a camera, where x and y are image position vectors and vx and vy are image velocity vectors

provided by a multi-tracking task. We can define the orientation as the angle between the position vector and

the velocity vector of the trajectory. However, this value does not provide a perspective-camera relationship

that allows to compare perspectives from short-term tracklets computed by other cameras. Therefore, we

need to find a new relationship to relate different perspectives satisfying the previous restriction. Assuming115

a person always walks in a forward direction, the angle between the trajectory vector and camera vector

provides a common inter-camera relationship that can be used to compare against different perspectives.

Notice that the camera vector (optical axis) is projected on the ground floor. We define this angle as the

estimated orientation of the person with respect to the camera.

Let T = [Tx Ty Tz] and R = [σx σy σz] be the extrinsic parameters which denote the coordinate

system transformation from the scene to the camera. Considering that the pan angle is null for each camera

(σy = 0), the projection of the camera vector and axis y of the world coordinate system are parallel. Thus,

we can determine the orientation vector as:

θ = arctan
∆Yw

∆Xw
, (1)

where ∆Yw and ∆Xw are the coordinate difference vectors on the ground floor (Xw = 0). We fixed the

origin of world coordinates below to the camera, so the translation between coordinate systems only depends

on the camera height. The translation vector is defined as T = [0 0 Tz] where Tz is the height of the camera.
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Figure 2: Overview of our approach. Given two tracklets of two persons acquired by disjoint cameras, we first recover the

perspectives of the persons so as we have multiple frames of a same person viewed from different poses/viewpoints. Then,

for each image shape, color and texture features are extracted and the PFD between image pairs is computed. Finally, the

re-identification is performed by sending the PFD to one of the two previously learnt binary classifiers. The classifier is chosen

on the basis of the orientation distance and the reliability value between the persons images used to compute the PFD.
6



Consequently, ∆Yw and ∆Xw can be expressed as a function of coordinate difference vectors in the camera

(∆Yc and ∆Xc). That is:

∆Yw = − sinσz∆Xc +
cosσz
cosσx

∆Yc (2)

∆Xw = cosσz∆Xc +
sinσz
cosσx

∆Yc. (3)

Finally, we apply the image projection model using the intrinsic parameters to obtain an expression depen-120

dent on the image position vectors (x and y).

In some situations, such as the people is turning around slowly, people walking far from the camera,

crowded scenarios, etc., the accuracy of the estimated orientation might be not enough. To mitigate this

problem, we propose a reliability value to model the probability of the orientation error using the linear

and angular velocity vectors. Previous unreliable situations correspond to trajectories where the angular

velocity is higher than zero and/or the linear velocity is low. Given two consecutive steps of the trajectory

T , the linear and angular velocities are defined as v = (∆v2x + ∆v2y)1/2 and ω = ∆θ/Ts, respectively. Ts is

the frame-rate of the camera and ∆ represents the difference between two consecutive steps. The reliability

is modeled as a weighted function of two normal distributions with mean (µv, µω) and variance (σ2
v , σ

2
ω).

ξ = (1− α)N (µv, σ
2
v) + αN (µω, σ

2
ω) (4)

We set µω = 0 and µv as the average person velocity in order to obtain a low weight when the person is not

walking. Finally, α is used to balance the influence between linear and angular velocity.

Let Υ = {Ii|i = 1, ..., N} be a short-term tracklet captured from a camera, where I represents an image

of the person and N is the number of images contained in Υ. The number of retrieved perspectives depends125

on the resolution of direction changes expressed by ∆θ between the last image added and the image under

analysis. Summarizing, we provide to the next module a set of perspectives Ω = {Ij , θj , ξj |j = 1, ...,M}

where M is the number of retrieved perspectives.

3.2. Feature extraction

Numerous features have been used to model the person appearance and to tackle the re-identification130

challenges (see [2]). Following the suggestions in [2], we proposed to build the feature representation of

a given image I by considering color, texture and shape features. While shape features may not be very

discriminative for other methods, that is not the case for our method as the pose is much related to the

orientation of a person.

Color features: We consider that most of the persons wear different colored clothes for the upper and135

lower body part. Accordingly, we divide the body in three salient parts: legs, torso and head, as in [35].

We discard the head region as it generally contains few and not informative pixels. RGB, HSV, YUv
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and Lab color spaces are used to extract the histograms Hcω(I) ∈ Rnc , for each color component c ∈

{R,G,B,H, S, V, Y, U, v, L, a, b} and body part ω ∈ {T, L}, where T denotes the torso and L denotes the

legs.140

Texture features: We consider three filter responses (Gabor, Schmid, Leung-Malik filter banks) and two

texture descriptors (Local Binary Pattern [36] and Local Phase Quantization [37]).

After convolving each image with a single Gabor filter we computed the modulus of the response and

we quantized it in a histogram with g bins. We denote the set of all such histograms as {Gi(I)}Ii=1, where i

indicates the ith Gabor filter. Similarly we get the set of histograms {Sj(I)}Jj=1, each of which has s bins,145

by convolving the 13 standard Schmid filters. We convolve each given image with the Leung-Malik (LM)

filter bank consisting of first and second derivatives of Gaussians at 6 orientations and 3 scales, 8 Laplacian

of Gaussian filters, and 4 Gaussians. The response of each filter was quantized in a histogram with m bins.

{Lk(I)}Kk=1 is the set of all such histograms, where k indicates the kth LM filter.

Local Binary Pattern (LBP) encode the local structure around a pixel using circular neighborhoods with150

radius r on grayscale image. A binary number is obtained by concatenating all binary values in a clockwise

direction to form the label of each region. Then, the descriptor is composed by a histogram of all labels with

p bins. We denoted the histogram as B(I). Finally, Local Phase Quantization (LPQ) is based on computing

the short-term Fourier transform on local region of the grayscale image. The local Fourier coefficients are

computed for 4 frequency points. Then, the signs of the real and imaginary part of each coefficient are155

quantized using a binary scalar quantizer. Results of the 8 bit binary coefficients are represented as integers

using binary coding. The codes are quantized in a histogram with q bins denoted as Q(I).

Shape features: Pyramid Histogram of Oriented Gradients (PHOG) feature is used to capture the shape

of a given person. Let l = 0, · · · , L be the level of the spatial pyramid, and 4l the number of cells in which

the image is divided at each level l. Then, the PHOG feature P(I) is formed by concatenating all the HOG160

features extracted for each cell of the pyramid. This results in a vector of size b
∑L
l=0 4l, where b is the

number of bins used to compute the HOG features.

3.3. Pairwise Feature Dissimilarities

Once all the features have been extracted from a pair of images acquired by two disjoint cameras we com-

pute the PFD as suggested in [13]. Let IA and IB be the two given images, then the pairwise dissimilarities165

are computed as:

• Color: DHc
ω

(Hcω(IA),Hcω(IB)) for all ω and c.

• Gabor: DG(Gi(IA),Gi(IB)), for i = 1, · · · , I.

• Schmid: DS(Sj(IA),Sj(IB)), for j = 1, · · · , J .
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Figure 3: Image representation of the proposed dual-classification. The PFDS is split into two subspaces on the basis of the

orientation of pairwise images. A classifier is trained to discriminate between positive PFDs (green dots) and negative PFDs

(red dots) for each subspace. The decision surface is depicted by a black line.

• LM filters: DL(Lk(IA),Lk(IB)), for k = 1, · · · ,K.170

• LBP: DB(B(IA),B(IB)).

• LPQ: DQ(Q(IA),Q(IB)).

• PHOG: DP(P(IA),P(IB).

Notice that here we do not specify any particular distance measure since the algorithm can be used with

different metrics.175

Then, we form the PFD by concatenating the all computed pairwise distances in a d- dimensional vector,

denoted by ∆ = (x1, ..., xd)
T ∈ Rd. The PFD computed for a positive pair (i.e. for pair of images of the same

person) is denoted as ∆+, while the PFD computed for a negative pair (i.e. for pair of images of different

persons) is denoted as ∆−. The set of all positive and negative PFDs forms the PFDS ∆.

3.4. Dual-Classification180

The proposed dual-classification scheme is shown in Fig. 3. We propose train two classifiers to model the

PFDS. Each classifier is selected depending on the orientation distance and the reliability values of pairwise

images.

Given the PFDS, we first compute the orientation distance and the pairwise reliability for all PFDs as

follows. Let {θ(IA), ξ(IA)} and {θ(IB), ξ(IB)} be the orientations of persons and the reliabilities in images
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IA and IB , the orientation distance is defined as:

Dθ

(
θ(IA), θ(IB)

)
= arccos

(
cos(θ(IA)) cos(θ(IB))+

sin(θ(IA)) sin(θ(IB))
) (5)

and the pairwise reliability is defined as:

ξI
A

IB = min{ξ(IA), ξ(IB)}. (6)

During the training phase, we select only PFDs where ξI
A

IB > Thξ from the PDFS. Thξ is a fixed threshold

used to ensure that the orientation distances of the PFDs have enough accuracy. The resulting subset is185

split into two groups: PFDs with similar orientation, i.e. PFDs for which Dθ(·, ·) < Thθ, where Thθ is a

fixed threshold, and the rest of PFDs. Then, we train two classifiers: the similar orientation classifier (SO-

Classifier) to discriminate between PFDs with similar orientation and the non-similar orientation classifier

(NSO-Classifier).

In our current framework, we used two SVMs as the SO-Classifier and the NSO-Classifier. Each one

learns the parameters of the decision boundary that best separates the PFDs computed for positives pairs

from the ones computed for negative pairs. Given a subset of PFDs denoted as xi, i = 1, ..., N where N is

the number of training samples, the goal is to minimize the error function expressed by

min
w,b,γ

1

2
‖w‖2 + C

N∑
i=1

γi (7)

subject to the constraints yi(w
Tφ(xi) + b) ≥ 1− γi and γi ≥ 0, where w is the vector of coefficients, φ(xi)

is the feature map for xi, γi is the slack variable used to handle the non-separable input data and C is the

regularization parameter. Once the minimization problem is solved, the decision function in the dual form

is given by

f(x) = sgn

(
N∑
i=1

yiwiK(xi,x) + b

)
(8)

where K(xi,x) = φ(xi)
Tφ(x) is the standard radial basis Kernel function (RBF) and yi ∈ {1,−1} is the190

label space.

During the classification phase, different perspectives from the same person are used to build the PFDs.

They are independently processed, i.e. without tracking information, time constraints, etc. Given a test PFD,

x̂, we first compute the pairwise reliability and evaluate the result with the threshold Thξ. If ξI
A

IB < Thξ,

the NSO-Classifier is used to compute the final a decision. In the other case, we compute the orientation195

distance as in eq.(5), then, we input the PFD to the classifier trained for the PFD group in which the test

PFD rely. For both cases, the probability given from the classifier is used to tell whether the images used

to compute the PFD are for the same person f(x̂) ≥ 1 (positive pair) or are for different persons f(x̂) = −1

(negative pair). We average pool the probabilities computed between all the PFDs corresponding to the

same person to compute the final score.200
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4. Experimental Results

In this section, first, we give the implementation details and report the performance of our approach on

two public benchmark datasets, then we compare our results with state-of-the-art methods. All the reported

results are in terms of Cumulative Matching Characteristic (CMC) curves.

4.1. Implementation Details205

We have used the following settings for all the experiments presented in this section. Images from both

datasets have been resized to 64 × 128 pixels. Color histograms have been computed for the RGB, HSV,

YUV and Lab color spaces using nc = {16 16 16, 36 25 20, 18 32 32, 20 32 32} bins, respectively. We used

Gabor filters at 8 orientations and 5 scales, the standard 13 Schmid filters and the LM filters described in

section 3. For each filter response, histograms G(I), S(I) and L(I) have been computed with 16 bins. LBP210

descriptors have been computed using 8 neighbourhood points and r = 1. For compute LPQ descriptors,

the window size has been set to [5, 5]. Both B(I) and Q(I) histograms have been computed with 255 bins.

PHOG features have been extracted using 4 levels and 9 bins. The χ2 distance has been used to compute

all the feature distances (i.e., DHc
ω

, DG ,DS , DL, DB, DQ, DP). The SVM parameters have been separately

estimated for each dataset using 4-fold cross-validation. Finally, for each experiment we select 1 positive215

pair and 1 negative pair for each person in the train set, while for the test we randomly selected 10 positive

and 10 negative pairs per person. To make a fair comparison, for each experiment, we run 10 different trials

using different person IDs and different image pairs (samples).

4.2. Datasets

Several datasets have been proposed to test re-identification algorithms such as VIPeR, CAVIAR4REID,220

ETHZ, WARD, etc. Typically, they provide an image or different images of the person in each camera,

but none of them come with the required information we need to retrieve the people orientation from

each camera. The two dataset we are using have footages acquired by a very high number of cameras

and are representative of real indoor and outdoor surveillance scenarios. They also come with very strong

illumination changes, occlusions, viewpoint variations, etc.225

3DPeS Dataset: The 3D people surveillance dataset1 (3DPeS) has been introduced in [38]. The dataset

is composed by 8 cameras and each one presents different light conditions (clear light/shadow areas) and

calibration parameters. Different sequences of 200 people have been taken from a multi-camera distributed

surveillance system. Persons were detected multiple times with different viewpoints, time instants and on

different days. This results in a challenging dataset with strong variation of light conditions (see Fig.4).230

1Available at http://www.openvisor.org/3dpes.asp
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Figure 4: Image samples from 3DPeS dataset. Each column corresponds to a pair of images of the same person captured by

two different cameras.

Figure 5: Image samples from the SAIVT dataset. Each column corresponds to a pair of images of the same person captured

by two different cameras.

SAIVT Dataset: The SAIVT-SoftBio dataset2 has been introduced in [39]. The dataset was captured

by a real surveillance camera network in an uncontrolled fashion, so it provides a highly unconstrained

environment in which to test person re-identification approaches. The 150 persons were acquired by 8

indoor cameras with non-overlapping field of views. Some example images are shown in Fig. 5.

Fig. 6 shows the orientation distances spectrum for each dataset. We select the camera pair 1-2 on235

3DPeS dataset since this one has the highest number of persons crossing the captured areas. Similarly,

camera pairs 3-8 and 5-8 of the SAIVT dataset have been selected. Camera views 3 and 8 have similar

viewing angles, while camera views 5 and 8 have dissimilar viewing angles. The PFDS corresponding

to the camera pair 1-2 on 3DPeS dataset is uniformly distributed along to the all orientation distances.

However, the PFDS corresponding to camera pairs from SAIVT dataset are concentrated in two regions240

of the orientation distance spectrum. Notice that all camera pairs have a symmetrical shape in 90 degrees

because people normally make round trajectories. Since there are enough image pairs in all orientations,

the 3DPeS is used in the following to analyze the performance of our method using different algorithm

parameters.

4.3. Performance of Our Approach245

An extensive analysis has been carried to show the performance of our approach. We focus on the

performance of the classifiers using different ranges of orientation distances with specific training settings.

In addition, a set of values are considered in order to determine the proposed thresholds. Finally, we

report the performance of our method using single features only, combination of features and different

training/testing set sizes.250

2Available at https://wiki.qut.edu.au/display/saivt/SAIVT-SoftBio+Database
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Figure 6: Orientation distances spectrum for each camera pairs used in the experiments.

Classifiers: The following tests show the performance of the proposed classifiers for different experiments

varying the set used for test. In each experiment PFDs within a determined range of orientation distances

are considered. The pairwise reliability ξI
A

IB is forced to overtake the reliability threshold Thξ for all the

PFDs, which is set to 0.8. In this way, we guarantee that the orientation distance of the PFD corresponds

to the perspectives of the images. In addition, we evaluate the classifiers separately, i.e., all the PFDs are255

used to re-identify in each classifier. We use three training settings corresponding to three different values

for the Thθ parameter, which are maintained throughout the experiments.

Fig. 7(a), (b) and (c) show the performance for some distinctive ranks when the Thθ parameter is set

to 15, 30 and 60 degrees, respectively. The SO-Classifier achieves a greater recognition than NSO-Classifier

when the orientation distance of PFDs is below or near to the Thθ used to train. However, the performance260

of the SO-Classifier remarkably decreases when the orientation distance of PFDs exceeds the Thθ used to

train, while the performance of the NSO-Classifier is more consistent. Thus, the inter-camera transformation

captured by the SO-Classifier is more reliable than the one. Indeed, the SO-Classifier achieves a recognition

rate of 58.5% for rank 1 with Thθ = 15 degrees, 53% with Thθ = 30 and 47.7% with Thθ = 60.

Fig. 8 shows the performance of the classifiers for two specific set of PFDs. We select the training265

set samples by using Thθ = 30 degrees. PFDs with similar orientation distances are used in Fig. 8(a)

where the SO-Classifier achieves a greater recognition than NSO-Classifier. The opposite result is obtained

in Fig. 8(b) since the set is composed of PFDs with non-similar orientation distances. The SO-Classifier

achieves a recognition rate of 58% for rank 1 when PFDS with similar orientation make up the test set,

while the NSO-Classifier achieves a recognition rate 24.5% with PFDs with non-similar orientation.270

Parameter Thθ: Fig. 9(a) shows the performance of the proposed method for some distinctive ranks as

a function of the orientation threshold Thθ. We provide results using three training settings corresponding

to 15, 30 and 60 degrees. In this case, the parameter Thξ is set to 0.7 and the value of the Thθ is used to
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Figure 7: Performance of the classifiers varying the set of PFDs depending on orientation distances. Recognition percentage for

some rank scores using three training settings corresponding to 15, 30 and 60 degrees are shown in (a), (b) and (c) respectively.
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Figure 8: Recognition percentage of the classifiers using two test settings: (a) Set of PFDs with similar orientation and (b) Set

of PDFs with non-similar orientation.
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Figure 9: Performance of the proposed method: (a) varying the parameter Thθ. (b) varying the parameter φθ.
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Figure 10: Performance of the proposed method varying train and test dataset sizes. Recognition performance for camera pair

1-2 on 3DPeS dataset, camera pair 3-8 and camera pair 5-8 on SAIVT dataset are shown in (a), (b) and (c), respectively.

decide which classifier is chosen. Results show that the recognition rate is constant when the value of Thθ

is below the value used for training. The recognition rate decreases when the value of Thθ gets larger.275

Parameter Thξ: Fig. 9(b) shows the performance of the proposed method as a function of the reliability

threshold Thξ. We provide results using three training settings corresponding to Thθ ∈ {15, 30, 60} degrees.

Notice that the recognition rate increases when the value of Thξ also increases. The reason is that low

values of ξI
A

IB provide inaccurate PFDs to the classifiers.

Train/Test Size: Figure 10(a), (b) and (c) show the performance of the proposed method as a function280

of the training/test set size for 3DPeS and SAIVT datasets. The results are obtained using Thθ = 30 degrees

for the training, Thξ = 0.7 and a feature vector composed by PHOG, Lab and LM filter. The recognition

percentage notably improves for all the three camera pairs when the number of persons used for training

increases. We achieve a maximum recognition rate of 54.5% for rank 1 when our method is evaluated using

camera pair 1-2 on 3DPeS dataset, 32% for camera pair 3-8 and 18% for camera 5-8, both on SAIVT dataset.285

Finally, curves on 3DPeS dataset are closer that curves on SAIVT dataset.

Features: All experiments are obtained using the training setting with Thθ = 30 degrees, Thξ = 0.7.
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Figure 11: Performance of the proposed method on the 3DPeS dataset (camera pair 1-2) using different features. Comparison

of color space features, texture features and mixed features are shown in (a), (b) and (c) respectively.
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Figure 12: Performance of the proposed method on the SAIVT dataset (camera pair 3-8) using different features. Comparison

of color space features, texture features and mixed features are shown in (a), (b) and (c) respectively.

In Fig. 11 we report the performance of our method on 3DPeS dataset for camera pair 1-2 using different

features. We show the results for different color spaces in Fig. 11(a), texture features in (b) and combinations

of them in (c). Lab and LM features obtain better performance that the other color and texture features by290

achieving a recognition rate of 51.5% and 35% for the rank 1, respectively. It is worth noticing that color

features are more discriminative that texture features. However, the combination of all features is the one

that achieves the best performance where the proposed method reaches a 57% for the rank 1.

Fig. 12(a), (b) and (c) show the performance of our method on SAIVT dataset for camera 3-8 using

different color space features, texture features and combinations of them, respectively. Lab and LM features295

still obtain the best recognition percentages. A recognition rate of 14% and 19% for the rank 1 is achieved,

respectively. Texture features obtain a recognition rate greater than color features, but the difference

decreases respect to 3DPeS dataset. The combination of all features achieves 33.5% of recognition rate for

rank 1.

Finally, Fig. 13(a), (b) and (c) show the performance of our method on SAIVT dataset for camera 5-8300

using different color space features, texture features and combinations of them, respectively. In this case,
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Figure 13: Performance of the proposed method on the SAIVT dataset (camera pair 5-8) using different features. Comparison

of color space features, texture features and mixed features are shown in (a), (b) and (c) respectively.

Table 1: Top ranked matching rate (%) on 3DPeS dataset

Methods rank:1 rank:5 rank:10 rank:20 rank:50

Proposed 55.2 78.6 79.9 93.8 97.9

LF 33.3 58.2 70.0 81.1 95.1

KISSME 22.9 49.0 62.2 76.0 93.2

LMNN-R 23.0 44.9 55.2 69.0 88.9

HSV and LM features achieve the best recognition percentages, which are of 21.5% and 19% for rank 1,

respectively. The same features are less performing on camera pair 3-8 of the SAIVT dataset where, shape

and texture features are more discriminative. For camera pair 5-8, all the features have similar performance,

but the combination of all features achieves 28.5% of recognition rate for rank 1.305

4.4. Comparisons with state-of-the-art methods

We compare our results with the ones of LF [29], KISSME [26] and LMNN-R [9] on the 3DPeS dataset.

We follow the same experimental protocol of those and split the dataset into a training set and a test set,

where each one is composed of 95 randomly selected persons.

Fig. 14 shows the performance of our method compared to LF, KISSME and LMNN-R. Our method310

outperforms the others especially for low ranks, which are the most representatives. We achieve 55.2%

correct recognition rate at rank 1, while, for the same rank, a recognition percentage of 33.43%, 22.94% and

23.03% is achieved by LF, KISSME and LMNN-R respectively. In Table 1 recognition percentages for ranks

1, 10, 25 and 50 are reported. Our approach is the only one that achieves a recognition percentage higher

than 90% for rank score 15.315

We also compare our results on SAIVT dataset with those reported in [39] (i.e. Texture Model, Height

Model, Culture-Colours Model, Colour-Soft Model and Fused Model) and RWACN proposed in [35]. We

adopt the same protocol used in [39] and report the performance for two camera pairs, denoted as 3-8 and
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Figure 14: Comparisons of the proposed method with state-of-the-art methods on the 3DPeS dataset.

Table 2: Top ranked matching rate (%) on SAIVT dataset (Camera pair 3-8)

Methods rank:1 rank:5 rank:10 rank:20 rank:50

Proposed 29.7 46.9 67.3 83.1 97.0

FM 33.8 61.8 76.5 87.5 97.0

CSM 16.2 39.7 52.2 72.7 95.6

CCM 17.6 51.5 69.8 80.1 94.8

RWACN 13.3 33.1 45.3 60.5 87.7

TM 7.4 27.2 43.4 58.8 94.8

HM 6.6 30.9 44.8 57.3 94.8

5-8. Camera pair 3-8 has 99 persons viewed by similar perspectives while camera pair 5-8 has 103 persons

acquired at very different perspectives.320

In Fig. 15(a) we report our results for camera pair 3-8. For such camera pair where the views are

similar we achieve a performance between the Fused Model and Colour-Soft Model, outperforming all others.

However, the difference with the Fused Model decreases along the rank score axis. Table 2 report recognition

percentages for ranks 1, 10, 25 and 50. We achieve a recognition percentage of 29.7% for rank score 1, while

recognition rate of 33.98% is achieved by the Fused Model.325

In Fig. 15(b) we report our results for camera pair 5-8 where the viewpoint are dissimilars between

cameras. We achieve a recognition rate of 26.5% for the rank 1, outperforming all other methods used for

comparison. Our method achieves a recognition percentage higher than 90% for a rank score of 30. In

Table 3 recognition percentages for ranks 1, 10, 25 and 50 are reported.
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Table 3: Top ranked matching rate (%) on SAIVT dataset (Camera pair 3-8)

Methods rank:1 rank:5 rank:10 rank:20 rank:50

Proposed 26.5 45.1 62.0 79.8 97.8

FM 18.5 33.6 50.0 67.8 93.5

CCM 9.29 26.4 46.4 60.7 95.7

HM 9.28 22.8 37.8 65.0 94.3

RWACN 6.24 18.8 29.8 46.7 81.1

CSM 5.0 15.7 30.7 58.5 90.0

TM 1.4 17.8 29.2 47.1 83.6
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Figure 15: Comparisons of the proposed method with state-of-the-art methods on the SAIVT dataset: (a) Camera pair 3-8

and (b) Camera pair 5-8.
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5. Conclusion330

In this paper we have introduced a novel re-identification approach where different perspectives of the

person are used to learn the transformations of pairwise feature dissimilarities across camera pairs. Towards

this goal we have recovered different perspectives from short-term tracklets and proposed a person orientation

value that allowed us to obtain a inter-relationship between perspectives computed for different cameras. We

have also introduced a reliability value associated to each recovered perspective. This allows to model the335

accuracy of the orientation value. Pairwise feature dissimilarities have been used to learn the multi-modal

inter-camera transformations. In particular the PFDS has been divided into two regions, one formed by

PFDs computed for images with similar orientations, the other composed of PFDs computed for images with

all other possible orientations. Then, for each subspace a binary classifier has been trained to discriminate

between images of the same person and images from different persons. Extensive evaluations, analysis and340

comparisons with state-of-the-art methods have been conducted to show the superior performance of our

method on two publicly available benchmark datasets.
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