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Abstract

The Anscombe transform [1] offers an approximate conversion of a Poisson random variable into a Gaussian
one. This transform is important and appealing, as it is easyto compute, and becomes handy in various inverse
problems with Poisson noise contamination. Solution to such problems can be done by first applying the Anscombe
transform, then applying a Gaussian-noise-oriented restoration algorithm of choice, and finally applying an inverse
Anscombe transform. The appeal in this approach is due to theabundance of high-performance restoration algo-
rithms designed for white additive Gaussian noise (we will refer to these hereafter as ”Gaussian-solvers”). This
process is known to work well for high SNR images, where the Anscombe transform provides a rather accurate ap-
proximation. When the noise level is high, the above path loses much of its effectiveness, and the common practice
is to replace it with a direct treatment of the Poisson distribution. Naturally, with this we lose the ability to leverage
on vastly available Gaussian-solvers.

In this work we suggest a novel method for coupling Gaussian denoising algorithms to Poisson noisy inverse
problems, which is based on a general approach termed ”Plug-and-Play” [18]. Deploying the Plug-and-Play ap-
proach to such problems leads to an iterative scheme that repeats several key steps: (i) A convex programming task
of simple form that can be easily treated; (ii) A powerful Gaussian denoising algorithm of choice; and (iii) A simple
update step. Such a modular method, just like the Anscombe transform, enables other developers to plug their own
Gaussian denoising algorithms to our scheme in an easy way. While the proposed method bares some similarity to
the Anscombe operation, it is in fact based on a different mathematical basis, which holds true for all SNR ranges.

1 Introduction

In an inverse problem we are given a degraded image,y, and want to recover from it a clean image,x. The math-
ematical relation between the two images is given byy = N (Hx), whereH is some linear operator andN is a
noise operator. A popular way to handle this reconstructionis to use a Bayesian probabilistic model that contains two
ingredients: (i) the measurement forward model, mathematically given byP (y|x) ; and (ii) a prior model for clean
images, given byP (x) .

In our work we concentrate on the case of Poisson Inverse Problems (PIP), WhereN stands for Poisson contami-
nation. In a Poisson model for an image the gray levels of the image pixels are viewed as Poisson distributed random
variables. More specifically, given a clean image pixelx[i], the probability of getting a noisy valuey[i] is given by

P (y [i] |x [i]) =

{

(x[i])y[i]

y[i]! e−x[i] if x [i] > 0

δ (y [i]) if x [i] = 0
. (1)

A known property of this distribution is thatx [i] is both the mean and variance ofy [i]. This model is relevant in
various tasks such as very low light imaging, CT reconstruction [13], fluorescence microscopy [2], astrophysics [16]
and spectral imaging [10]. Common to all these tasks is the weak measured signal intensity.

An important note about Poisson noise is that the SNR of the measurements is proportional to the original image
intensity, given by

√

x[i]. Therefore the peak value of an image is an important characteristic, needed when evaluating
the level of noise in the image. For high peak levels, there exist several very effective ways to solve Poisson inverse
problems. Many of these methods rely on the fact that it is possible to perform an approximate transform (known as
Variance Stabilized Transform - VST) of the Poisson distribution into a Gaussian one [1], [8]. Since there are highly

∗This research was supported by the European Research Council under EUs 7th Framework Program, ERC grant agreement 320649, by the
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effective algorithms for Gaussian noise restoration (e.g.[4], [7], [11], [19], [5]), such methods can be used, followed
by an inversion of the VST operation after the Gaussian solver [12], [20].

When dealing with lower peaks, such transformations becomeless efficient, and alternative methods are required,
which treat the Poisson noise directly (e.g. [9], [15]). In recent years this direct approach has drawn considerable
attention, and it seems to be very successful. In this work weaim at studying yet another method for Poisson inverse
problem restoration that belongs to the direct approach family. The appeal of the proposed method is the fact that it
offers an elegant bridge between the two families of methods, as it is relying too on Gaussian noise removal, applied
iteratively.

This paper is organized in the following way : In section 2 we introduce the plug and play approach, as presented
in [18]. We also extend this scheme to be able to work with several priors in parallel. In section 3 we present our
algorithm, as derived from the plug and play approach. This section explains how to integrate a custom Gaussian
denoising algorithm of choice,and discusses several improvements that were added to the algorithm. In section 4 we
present experiments results, and in section 5 we conclude our paper by suggesting further improvements.

2 The Plug-and-Play (PaP) Approach

2.1 Standard Plug-and-Play

The Plug-and-Play framework, proposed by Venkatakrishnan, Bouman and Wohlberg [18], allows simple integration
between inversion problems and priors, by applying a Gaussian denoising algorithm, which corresponds to the used
prior. One of the prime benefits in the PaP scheme is the fact that the prior to be used does not have to be explicitly
formulated as a penalty expression. Instead, the idea is to split the prior from the inverse problem, a task that is done
elegantly by the ADMM optimization method [3], and then the prior is deployed indirectly by activating a Gaussian
denoising algorithm of choice.

The goal of the PaP framework is to maximize the posterior probability in an attempt to implement the MAP
estimator. Mathematically, this translate to the following:

max
x∈Rm×n

P (x|y) = max
x∈Rm×n

P (y|x)P (x)

P (y)
= max

x∈Rm×n
P (y|x)P (x) . (2)

The above suggests to maximize the posterior probabilityP (x|y) with respect to the ideal imagex, which is of size
n×m pixels. Taking element wise−ln (·) of this expression gives an equivalent problem of the form

min
x∈Rm×n

−ln (P (x|y)) = min
x∈Rm×n

−ln (P (y|x))− ln (P (x)) . (3)

In order to be consistent with [18] we denotel (x) = −ln (P (y|x)) ands (x) = −ln (P (x)). Thus our task is to find
x that solves the problem

x̂ = argmin
x∈Rm×n

l (x) + βs (x) . (4)

Note thaty is constant in this minimization. Also, a parameterβ was added to achieve more flexibility. By adding a
variable splitting technique to the optimization problem we get

x̂ = argmin
x,v∈Rm×n

l (x) + βs (v) .

s.t x = v
(5)

This problem can be solved using ADMM [3] by constructing an augmented Lagrangian which is given by

Lλ = l (x) + βs (v) +
λ

2
‖x− v + u‖22 −

λ

2
‖u‖22 . (6)

ADMM theory [3] states that minimizing (5) is equivalent to iterating until convergance over the following three steps:

xk+1 = argmin
x

Lλ

(

x, vk, uk
)

,

vk+1 = argmin
v

Lλ

(

xk+1, v, uk
)

,

uk+1 = uk +
(

xk+1 − vk+1
)

.

(7)

2



By pluggingLλ we get
xk+1 = argmin

x
l (y|x) + λ

2

∥

∥x−
(

vk − uk
)
∥

∥

2

2
,

vk+1 = argmin
v

λ
2

∥

∥xk+1 + uk − v
∥

∥

2

2
+ βs (v) ,

uk+1 = uk +
(

xk+1 − vk+1
)

.

(8)

The second step means applying a Gaussian denoising algorithm which assumes a priors (v) on the imagexk+1+uk

with variance ofσ2 = β
λ

. Therefore, as already mentioned above, we do not have to know the formulation of the prior
explicitly, as we can simply use a Gaussian denoising algorithm which corresponds to it.

The first step is dependent on the inversion problem we are trying to solve. In the next section we show how
Poisson inverse problems are connected to this step. We willsee that in this case step 1 is convex and becomes
easy to compute. When handling the Poisson Denoising problem, this steps becomes even simpler because it is also
separable, thus leading to a scalar formula that resembles the Anscombe transform.

2.2 Plug-and-Play Extension

We now show a simple extension of the Plug-and-Play method that enables to use several Gaussian denoisers. We
start from the following ADMM formulation, that follows Equation (5)

argmin l(x) + β1s1(v1) + β2s2(v2),

s.t x = v1, x = v2
(9)

wheres1 ands2 are two priors that we aim to use, andv1 andv2 are two auxiliary variables that will help in simplifying
the solution of this problem. Following the steps taken above in the derivation of the PaP, we get

Step 1:

xk+1 = argmin
x

l (x) + λ
∥

∥

∥
x− v1

k + u1
k
∥

∥

∥

2

2
+ λ

∥

∥

∥
x− v2

k + u2
k
∥

∥

∥

2

2
. (10)

As in the original Plug-and-Play, this expression too is convex if l(x) is convex, and also separable ifl(x) is
separable.

Step 2:
v1

k = argmin
v

β1s1 (v1) + λ
∥

∥xk+1 − v1 + u1
k
∥

∥

2

2

v2
k = argmin

v
β2s2 (v2) + λ

∥

∥xk+1 − v2 + u2
k
∥

∥

2

2

(11)

which are two Gaussian denoising steps, each using a different prior.

Step 3:
u1

k+1 = uk1 + xk+1 − v1
k+1

u2
k+1 = uk2 + xk+1 − v2

k+1 (12)

Obviously, this scheme can be generalized to use as many priors as needed. The core idea behind this generalization
is that often times we may encounter different priors that address different features of the unknown image, such as
self-similarity, local smoothness or other structure, scale-invariance, and more. By merging two such priors into the
PaP scheme, we may get an overall benefit, as they complement each other.

3 P4IP Algorithm

We now turn to introduce the ”Plug-and-Play Prior for Poisson Inverse Problem” algorithm, P4IP in short, and how
it uses the plug and play framework. We start by invoking the proper log-likelihood functionl(x) into the above-
described formulation, this way enabling the integration of Gaussian denoising algorithms to the Poisson inverse
problems. Then we discuss two applications of our algorithm– the denoising and the deblurring scenarios.
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3.1 The Proposed Algorithm

We denote an original (clean) image, with dimensionsm × n, by anm × n column-stacked vectorx. Similarly, we
denote a noisy image byy. Thei’s pixel in x (and respectivelyy) is given byx[i] (respectivelyy[i]). We also denote
by H the linear degradation operator that is applied on the image, which could be a blur operator, down-scaling or
even a tomographic projection. In order to proceed we shouldfind an expression forl(x). As mentioned before, this
is given by taking−ln (·) of P (y|x). When takingH into account we get

P (y|x) =
∏

i

(Hx)i
yi

Γ (yi + 1)
e−(Hx)i . (13)

Thus,l(x) is given by

l(x) = ln(P (y|x)) =
∑

i

ln

(

(Hx)i
yi

Γ (yi + 1)
e−(Hx)i

)

= −yT ln(Hx) + 1THx+ constant. (14)

Relying on equation (8), the first ADMM step in matrix form is therefore

argmin
x

Lλ = argmin
x

−yT ln (Hx) + 1THx+
λ

2
‖x− v + u‖22 . (15)

This expression is convex and can be solved quite efficientlyby modern optimization methods. The final algorithm is
shown in Algorithm 1.

Algorithm 1 - P4IP

Input : Distorted imagey, Gaussiandenoise(·) function
Initialization: setk = 0,u0 = 0, v0 =some initialization;
while !stopping criteriado

xk+1 = argmin
x

−yT ln (Hx) + 1THx+ λ
2

∥

∥x− vk + uk
∥

∥

2

2

vk+1 = Gaussiandenoise(xk+1 + uk) with σ2 = β
λ

uk+1 = uk +
(

xk+1 − vk+1
)

k = k + 1
end while
Output : Reconstructed imagexk

Obviously we could use the Plug-and-Play extension that employs several denoising methods, as shown in the
previous section. Such a change requires only slight modifications to Algorithm 1.

3.1.1 Poisson Denoising

For the special case of Poisson denoisingH = I. In this case the first ADMM step is separable, which means that it
could be solved for each pixel individually. Moreover, thisstep can be solved by the closed form solution

xk+1[i] =

(

λ
(

vk[i]− uk[i]
)

− 1
)

+

√

(λ (vk[i]− uk[i])− 1)
2
+ 4λy[i]

2λ
, (16)

wherexk[i] is the i’th pixel ofxk (andvk[i], uk[i] andy[i] are the i’th pixels ofvk, uk andy respectively). The full
derivation of this step is shown in the appendix A. A closer look at this expression reveals some resemblance to the

Anscombe transform. Indeed, for the initial conditionu0 = 0, v0 = 4
(
√

3
8 + 1

)

, andλ = 0.25, the variance ofx

is the same as the one achieved by Anscombe’s transform, because they differ only by a constant. We mention here
that we did not find that the initialization of the parameterslead to noticeable change in the final reconstruction, as
long as it is the same order of magnitude of the noisy image, and therefore, all the shown results use all zero image as

initialization. Figure 1 shows the transform done by Equation (16) forλ = 0.25, vk [i]− uk[i] = 4
(
√

3
8 + 1

)

+ i for

i = {0, 3, 6, 9}, and the Anscombe transform. While this curve may look like the Anscombe one, PaP is substantially
different in two ways - (i) this curve changes (locally) fromone iteration to another due to the change inu andv, and
(ii) we do not apply the inverse transform after the Gaussiandenoising.
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P4IP denoising transform,λ*(v−u)=1.6124

P4IP denoising transform,λ*(v−u)=4.6124

P4IP denoising transform,λ*(v−u)=7.6124

P4IP denoising transform,λ*(v−u)=11.6124
Anscombe transform

Figure 1: P4IP and Anscombe transformations as a function of input noisypixel. λ = 0.25.

3.1.2 Poisson Deblurring

When dealing with the deblurring problem,H represents a blur matrix. The first ADMM step is no longer separable
and usually no analytical solution is available. However the problem is convex and a common way to solve it is by
using iterative optimization methods, which usually require the gradient. Turning back to our problem, the gradient
of Lλ(x) is given by

∇xLλ = −HT (y/ (Hx)) +HT 1 + λ (x− v + u) . (17)

Where ”/” stands for element-wise division. As can be seen, this gradient is easy to compute, as it requires blurring
the temporary solutionx, the constant vector1 and the vectory/ (Hx) in each such computation.

3.2 Details and Improvements

We chose to focus on two different inverse problems - the denoising and deblurring problem scenarios. In both, we
chose BM3D as our Gaussian denoiser, as it provides very goodresults and has an efficient implementation. Both
scenarios required appropriate choice of parameters and their values. An important parameter isβ - the prior weight.
Empirical results show that inappropriate choice ofβ leads to poor results, sometimes by several dB. Another two
parameters that has big effect on the reconstruction relateto the choice ofλ. This parameter is considered to be
proportional to the inverse of the step size. We found that increasingλ at each iteration gives better results then a
constantλ. Thus,λ update requires two parameters. The first isλ0 - the initial value ofλ, and the second,λstep - the
valueλ is multiplied by at each iteration. Another important parameter is the number of iterations. We chose to use
a fixed number of iterations, but of course this parameter canalso be learned or even estimated, similarly to what is
done in [14]. For a given noise peak, each parameter was tunedon a series of 8 images. Out of each original image
we generated 5 degraded images, noisy for the denoising scenario, and blurred and noisy for the deblurring scenario.
We tested multiple peak values in the range of 0.2 - 4. We foundthat the optimalλ0 andβ have strong correlation to
the peak value. On the other hand,λstep has a weak dependence on the peak, and was thus chosen independently of
it.

Another improvement used, called binning, gives significant improvement in very low SNR cases. Here the image
is down sampled and the algorithm is applied on the smaller sized image that has a better SNR, since we add up the
photon counts of the merged pixels. Once the final result of the algorithm is obtained, we apply up-scaling by a simple
linear interpolation. This technique leads to better results, and also reduces runtime as we are operating on smaller
images. All the experiments reported below with binning usea 3:1 shown-scaling in each axis. Binning can only be
used in the denoising scenario as down sampling doesn’t commute with the blur operator.

In the denoising scenario we also tested the multiple prior P4IP Algorithm. We call this variation M-P4IP. As our
second denoiser we chose to use a simplified version of [17], which is a multi-scale denoising algorithm. Multi-scale
considerations are not used in BM3D, and therefore the two algorithms joint together may form a more powerful
denoising prior.

5



In the deblurring scenario,L-BFGS was chosen as our optimization method. In order to avoid calculatingln(·)
whereHx is negative, we optimized the surrogate function

f (x) =

{

Lλ (x) , x < ε
ax2 + bx+ c , x ≥ ε

(18)

where the coefficientsa, b andc were chosen such that this function and it’s derivative coincides withLλ and it’s
derivative atx = ǫ. asx → 0 we get thatHx → 0 andLλ(x) → inf, therefore choosing a small enoughǫ value,
guarantees that the surrogate function will have the same minimum asLλ and all entries inHx are positive.

Another technique that improves the results in both denoising and debluring states that we can apply several
algorithm runs with slightly different parameters and average the final results. Of course, this comes at cost of run
time. All results shown here are without this trick.

4 Experiments

4.1 Denoising

We tested our algorithm for peak values 0.1, 0.2, 0.5, 1, 2 and4. To evaluate our algorithm we compared to BM3D
with the refined inverse Anscombe transform [12]. We also compared to [9], which leads to the best of our knowledge,
to state of the art results. All algorithms were tested with and without binning. The results are shown in Table 1.

Figures 2-5 show several such results. As can be seen, the propose approach competes favorably with the
BM3D+Anscombe and state-of-the-art algorithms. Binning is found to be beneficial for all algorithms when deal-
ing with low peak values. As for run-times, our algorithm takes on roughly 30 sec/image when binning is used. This
should be compared to the BM3D+Anscombe that runs somewhat faster (0.5 sec/image), and the SPDA method [9]
which is much slower (an average of 15-20 minutes/image). When removing the binning, our algorithm runs for
few minutes, BM3D+Anscombe runs for several seconds and SPDA runs for approximately 10 hours. These runtime
evaluations were measured on an i7 with 8GB RAM laptop.

As mentioned before, to check the effectivity M-P&P we choseto combine BM3D with a simplified version of
[17]. We noticed that it is important to find the right prior weight parameter. We only tested on a peak=0.2 scenario
and the results are shown in table 3. For the tested peak, the algorithm gained 0.2 dB improvement. We note that it
was harder to find good parameters and therefore we believe that it is possible to improve even more.

Table 1denoising without binning PSNR values

Method Peak Saturn Flag Camera House Swoosh Peppers Bridge Ridges Average

BM3D 0.1 19.42 13.05 15.66 16.28 16.93 15.61 15.68 20.06 16.59
SPDA 17.40 13.35 14.36 14.84 15.12 14.28 14.60 19.86 15.48
P4IP 21.55 13.30 16.88 18.30 20.93 16.28 16.45 19.08 17.85
BM3D 0.2 22.02 14.28 17.35 18.37 19.95 17.10 17.09 21.27 18.43
SPDA 21.52 16.58 16.93 17.83 18.91 16.75 16.80 23.25 18.57
P4IP 23.05 14.82 17.82 19.48 23.34 17.31 17.54 21.28 19.33
BM3D 0.5 23.86 15.87 18.83 20.27 22.92 18.49 18.24 23.37 20.23
SPDA 25.50 19.67 18.90 20.51 24.21 18.66 18.46 27.76 21.71
P4IP 25.19 16.50 19.27 20.93 25.58 18.86 18.47 23.57 21.05
BM3D 1 25.89 18.31 20.37 22.35 26.07 19.89 19.22 26.26 21.73
SPDA 27.02 22.54 20.23 22.73 26.28 19.99 19.20 30.93 23.61
P4IP 27.05 19.07 20.54 22.67 27.79 20.07 19.31 26.56 22.88
BM3D 2 27.42 20.81 22.13 24.18 28.09 21.97 20.31 29.82 23.56
SPDA 29.38 24.92 21.54 25.09 29.27 21.23 20.15 33.40 25.62
P4IP 28.93 21.04 21.87 24.65 29.65 21.33 20.16 29.97 24.70
BM3D 4 29.40 23.04 23.94 26.04 30.72 24.07 21.50 32.39 26.39
SPDA 31.04 26.27 21.90 26.09 33.20 22.09 20.55 36.05 27.15
P4IP 30.82 22.49 23.29 26.33 31.80 23.88 21.11 31.98 26.46
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Table 2denoising with binning for peak 0.2 PSNR values

Method Peak Saturn Flag Camera House Swoosh Peppers Bridge Ridges Average

BM3Dbin 0.2 23.20 16.28 18.25 19.71 24.25 17.44 17.70 23.92 20.09
SPDAbin 23.99 18.26 17.95 19.62 23.53 17.59 17.82 27.22 20.75
P4IP bin 23.79 17.26 18.58 19.96 24.53 17.44 17.54 23.94 20.38

Table 3multiple priors PSNR values

Method Peak Saturn Flag Camera House Swoosh Peppers Bridge Ridges Average

P4IP bin 0.2 23.79 17.26 18.58 19.96 24.53 17.44 17.54 23.94 20.38
M-P4IP bin 24.10 16.77 18.58 20.02 24.58 17.63 17.69 25.38 20.59

original

Anscome+BM3D, PSNR=18.51

noisy, peak=1

P4IP, PSNR=19.33

Figure 2: The image Flag with peak 1 - Denoising (no binning) results.
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original

Anscome+BM3D, PSNR=18.51

noisy, peak=2

P4IP, PSNR=19.33

Figure 3: Peak 2 - Denoising (no binning) results
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original

Anscome+BM3D, PSNR=19.90

(a) noisy, peak=0.2

(b) M-P4IP, PSNR=20.43

Figure 4: Peak 0.2 denoising (with binning)
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original

Anscome+BM3D, PSNR=20.75

(a) noisy, peak=0.2

(b) M-P4IP, PSNR=21.66

Figure 5: Peak 0.2 denoising (with binning)

4.2 Deblurring

In this scenario, we tested our algorithm for the peak values1, 2 and 4 of an image that was blurred by one of the
following blur kernels:

(i) a Gaussian kernel of size 25 by 25 withσ = 1.6.

(ii) 1

(1+x2
1+x2

2)
for x1, x2 = −7, . . . , 7

(iii) 9× 9 uniform

To evaluate our algorithm we compared to IDD-BM3D [5] with the refined inverse Anscombe transform [12]. The
results are shown in Tables 4, 5 and 6. Figures 6, 7 and 8 show specific results to better assess the visual quality of the
outcome.

Table 4deblurring PSNR values for blur kernel (i)

Method Peak Saturn Flag Camera House Swoosh Peppers Bridge Ridges Average

BM3D 1 24.32 16.18 19.39 21.06 26.51 18.47 18.34 22.06 20.79
P4IP 25.69 17.97 19.84 21.93 26.51 19.48 19.03 25.56 22.00
BM3D 2 26.07 17.78 20.61 22.66 28.61 19.84 19.28 25.71 22.57
P4IP 25.95 19.49 20.78 23.33 28.67 20.47 19.67 28.38 23.34
BM3D 4 28.05 20.25 21.66 24.69 30.30 21.25 20.20 29.05 24.43
P4IP 28.81 20.44 21.37 24.51 30.62 21.11 20.13 31.42 24.80
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Table 5deblurring PSNR values for blur kernel (ii)

Method Peak Saturn Flag Camera House Swoosh Peppers Bridge Ridges Average

BM3D 1 24.36 15.53 18.99 20.81 25.83 18.24 18.20 21.21 20.40
P4IP 25.14 17.07 19.50 21.52 25.89 19.05 18.69 24.28 21.39
BM3D 2 26.02 16.58 20.01 22.15 28.33 19.29 18.98 24.38 21.97
P4IP 26.39 18.61 20.18 22.49 28.29 19.80 19.25 26.63 22.70
BM3D 4 27.64 19.00 20.84 23.68 29.45 20.55 19.71 27.52 23.55
P4IP 28.48 19.80 20.76 23.58 29.70 20.56 19.70 29.20 23.97

Table 6deblurring PSNR values for blur kernel (iii)

Method Peak Saturn Flag Camera House Swoosh Peppers Bridge Ridges Average

BM3D 1 24.11 15.46 18.93 20.71 26.23 18.12 18.17 21.48 20.40
P4IP 24.36 17.12 19.49 21.37 26.03 19.04 18.64 23.53 21.20
BM3D 2 26.06 16.54 19.93 22.20 28.26 19.29 18.83 24.69 21.97
P4IP 25.62 18.61 20.11 22.54 28.17 19.81 19.19 25.83 22.48
BM3D 4 27.41 18.83 20.63 23.47 29.81 20.36 19.63 27.56 23.46
P4IP 27.97 19.77 20.66 23.39 29.93 20.47 19.71 29.15 23.88

It is clearly shown that in this scenario P4IP outperforms the Anscombe-transform framework. The runtime for
a single image took about 5 minutes on an i7, 8G RAM laptop, about twice slower then Anscombe, and took 44
iterations.

original

Anscombe with IDD-BM3D,
PSNR=20.65

noisy, peak=2

P4IP,
PSNR=20.83

Figure 6: The image Peppers with peak 2 and blur kernel (i) - deblurring results.
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original

Anscombe with IDD-BM3D,
PSNR=24.04

noisy and blurry, peak=1

P4IP,
PSNR=26.56

Figure 7: The image Ridges with peak 2 and blur kernel (ii) - deblurring results.
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original

Anscombe with IDD-BM3D,
PSNR=18.97

noisy and blurry, peak=1

P4IP,
PSNR=19.40

Figure 8: The image Camera Man with peak 2 and blur kernel (iii) - deblurring results.

5 Conclusion and discussion

This work proposes a new way to integrate Gaussian denoisingalgorithms to Poisson noise inverse problems, by using
the Plug-and-Play framework, this way taking advantage of the existing Gaussian solvers. The integretion is done by
simply using the Gaussian denoiser as a ”black box” as part ofthe overall algorithm. This work demonstrates this
paradigm on two problems - image denoising and image deblurring. Numerical results show that our algorithm out-
performs the Anscombe-transform framework in lower peaks,and competes favorably with it on other cases. These
results could be further improved by using the proposed extension of Plug-and-Play, which enables to combine mul-
tiple Gaussian denoising algorithms. Further work should be done in order to better tune the algorithm’s parameters,
similar to [6]. Its is also interesting to learn more closelythe relation between the Anscombe transform and our
method. We have found that under certain initialization conditions, in the first step P4IP does variance stabilization
that is as good as Anscomb’s one. It is possible that more could be said about the matter.

Appendix A Derivation of first denoising ADMM step

In the denoising caseH = I and we get thatl(x) is given by

l (X) = −yT ln (x) + 1T ln (Γ (y + 1)) + 1Tx. (19)

The augmented Lagrangian is thus

Lλ = −yT ln (x) + 1Tx− β ln (P (v)) +
λ

2
‖x− v + u‖ −

λ

2
‖u‖22 , (20)

13



and the first ADMM step becomes

xk+1 = argmin
x

Lλ

(

x, vk, uk
)

= argmin
x

−yT ln (x) + 1Tx+
λ

2

∥

∥

∥
x− vk + uk

∥

∥

∥

2

2
. (21)

The first step (x update) is a convex and separable, implying that each entry of x can be treated separately. Further-
more, computing the elements ofx is easily handled leading to a closed form expression. By differentiatingLλ by
x [i] and equating to 0 we get

−
y[i]

x[i]
+ 1 + λ

(

x[i]− vk[i] + uk[i]
)

= 0. (22)

Thus, we get that

x[i] =

(

λ
(

vk[i]− uk[i]
)

− 1
)

+

√

(λ (vk[i]− uk[i])− 1)
2
+ 4λy[i]

2λ
. (23)

As y is non negative, the expression inside the square root is also non negative and causes the resultedx to be non
negative also. Another possible solution could have been the second root of Equation (22), but this solution is purely
negative and thus uninformative.
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