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Abstract

The Anscombe transforml[1] offers an approximate convarsica Poisson random variable into a Gaussian
one. This transform is important and appealing, as it is ¢agpmpute, and becomes handy in various inverse
problems with Poisson noise contamination. Solution ttgwoblems can be done by first applying the Anscombe
transform, then applying a Gaussian-noise-orientedratstm algorithm of choice, and finally applying an inverse
Anscombe transform. The appeal in this approach is due talthadance of high-performance restoration algo-
rithms designed for white additive Gaussian noise (we weiler to these hereafter as "Gaussian-solvers”). This
process is known to work well for high SNR images, where thecdmbe transform provides a rather accurate ap-
proximation. When the noise level is high, the above patbdasuch of its effectiveness, and the common practice
is to replace it with a direct treatment of the Poisson distion. Naturally, with this we lose the ability to leverage
on vastly available Gaussian-solvers.

In this work we suggest a novel method for coupling Gauss&roising algorithms to Poisson noisy inverse
problems, which is based on a general approach termed "d&dgPlay” [18]. Deploying the Plug-and-Play ap-
proach to such problems leads to an iterative scheme theitepeveral key steps: (i) A convex programming task
of simple form that can be easily treated; (ii) A powerful Gsian denoising algorithm of choice; and (jii) A simple
update step. Such a modular method, just like the Anscorabsftirm, enables other developers to plug their own
Gaussian denoising algorithms to our scheme in an easy whie e proposed method bares some similarity to
the Anscombe operation, it is in fact based on a differenherattical basis, which holds true for all SNR ranges.

1 Introduction

In an inverse problem we are given a degraded imagand want to recover from it a clean image, The math-
ematical relation between the two images is givenyby N (Hz), where H is some linear operator antl is a
noise operator. A popular way to handle this reconstrudda use a Bayesian probabilistic model that contains two
ingredients: (i) the measurement forward model, mathexaldtigiven by P (y|z) ; and (ii) a prior model for clean
images, given byP () .

In our work we concentrate on the case of Poisson InversddPnsh(PIP), Wheré\/ stands for Poisson contami-
nation. In a Poisson model for an image the gray levels ofrttage pixels are viewed as Poisson distributed random
variables. More specifically, given a clean image pixg], the probability of getting a noisy valugi| is given by

[ o s .
P (y[il | [i]) = {( et el >0
5 (y [1)) if [i] = 0

A known property of this distribution is that[:] is both the mean and variancefi]. This model is relevant in
various tasks such as very low light imaging, CT reconsimadil3], fluorescence microscopy [2], astrophysics [16]
and spectral imaging [10]. Common to all these tasks is trekweeasured signal intensity.

An important note about Poisson noise is that the SNR of thessorements is proportional to the original image
intensity, given by,/z[i]. Therefore the peak value of an image is an important chenatit, needed when evaluating
the level of noise in the image. For high peak levels, theist eeveral very effective ways to solve Poisson inverse
problems. Many of these methods rely on the fact that it isibies to perform an approximate transform (known as
Variance Stabilized Transform - VST) of the Poisson distitn into a Gaussian onel[1],/[8]. Since there are highly

(1)
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effective algorithms for Gaussian noise restoration (E.[7], [L1], [19], [5]), such methods can be used, follave
by an inversion of the VST operation after the Gaussian s{h2], [20].

When dealing with lower peaks, such transformations bedesseefficient, and alternative methods are required,
which treat the Poisson noise directly (e.ol [9],1[15]). &Tent years this direct approach has drawn considerable
attention, and it seems to be very successful. In this workivweat studying yet another method for Poisson inverse
problem restoration that belongs to the direct approachiyamhe appeal of the proposed method is the fact that it
offers an elegant bridge between the two families of methasgld is relying too on Gaussian noise removal, applied
iteratively.

This paper is organized in the following way : In sectidn 2 weeaduce the plug and play approach, as presented
in [18]. We also extend this scheme to be able to work with isé\@riors in parallel. In sectionl 3 we present our
algorithm, as derived from the plug and play approach. Tédien explains how to integrate a custom Gaussian
denoising algorithm of choice,and discusses several ingpnents that were added to the algorithm. In sedtlon 4 we
present experiments results, and in sedtion 5 we concludeaper by suggesting further improvements.

2 The Plug-and-Play (PaP) Approach

2.1 Standard Plug-and-Play

The Plug-and-Play framework, proposed by VenkatakrishBamman and Wohlberg [18], allows simple integration
between inversion problems and priors, by applying a Gans$¢noising algorithm, which corresponds to the used
prior. One of the prime benefits in the PaP scheme is the fatthl prior to be used does not have to be explicitly
formulated as a penalty expression. Instead, the idea fditdree prior from the inverse problem, a task that is done
elegantly by the ADMM optimization method|[3], and then thr@pis deployed indirectly by activating a Gaussian
denoising algorithm of choice.

The goal of the PaP framework is to maximize the posteriobglndity in an attempt to implement the MAP
estimator. Mathematically, this translate to the folloguin

mx Paly) = max UL Pyl P (o). @

The above suggests to maximize the posterior probalflity|y) with respect to the ideal image which is of size
n x m pixels. Taking element wiseln (-) of this expression gives an equivalent problem of the form

min —In (P (z|ly)) = min —Iin (P (y|z)) —In(P(x)). (3)

:L-GR"’LX" :L-GR"’LX"

In order to be consistent with [18] we dendter) = —in (P (y|x)) ands (x) = —In (P (z)). Thus our task is to find
x that solves the problem

& =argminl (z) + fBs (x). 4)
TERMX™

Note thaty is constant in this minimization. Also, a parametewas added to achieve more flexibility. By adding a
variable splitting technique to the optimization problera get

& = argmin [ (z) + Bs (v).
!L’,UGR"LX" (5)

st x=v

This problem can be solved using ADMM [3] by constructing agmented Lagrangian which is given by

A A
Ly =1(e) + B (0) + 5 1z — v+ ully = 5 ul}. ©)

ADMM theory [3] states that minimizind {5) is equivalent teriating until convergance over the following three steps:

= argmin L) (:U,vk,uk) ,
xr

v MARCRTLP ()

uk =k j_ (karl o Uk+1) _

$k+1

k41 — argmin Ly (ac



By plugging L) we get
2
2 )

k+1

: )

= argmin! (y|x) + % Hx e G
xT

vkt :argmin% ka“—kuk—vH;—kﬁs (v), (8)
Wbl — gk (cFH1 — oFH1Y

The second step means applying a Gaussian denoising htgakibich assumes a prier(v) on the imager* ! + u*
with variance o2 = § Therefore, as already mentioned above, we do not have te #reformulation of the prior
explicitly, as we can simply use a Gaussian denoising dlgarivhich corresponds to it.

The first step is dependent on the inversion problem we anegtitp solve. In the next section we show how
Poisson inverse problems are connected to this step. Wes&éllthat in this case step 1 is convex and becomes
easy to compute. When handling the Poisson Denoising pmlitds steps becomes even simpler because it is also
separable, thus leading to a scalar formula that resentide&rniscombe transform.

2.2 Plug-and-Play Extension

We now show a simple extension of the Plug-and-Play methatlghables to use several Gaussian denoisers. We
start from the following ADMM formulation, that follows Eation (3)

arg min [(z) + f151(v1) + P2sa(va),
st x =11, =10

(9)

wheres; andss are two priors that we aim to use, andanduv, are two auxiliary variables that will help in simplifying
the solution of this problem. Following the steps taken &dovthe derivation of the PaP, we get

Step 1:
2 2
" = argmin () + A Hx — v+ ulng + A Hx —wof quHQ . (20)
x
As in the original Plug-and-Play, this expression too isveanif [(x) is convex, and also separablée (i) is
separable.
Step 2:
v1® = argmin B1s1 (v1) + A ka“ —v; + ulkH;
k - k+1 k(|2 (11)
v9® = arg min B959 (vg)—{—)\Hx — Vg + Usy H2
v
which are two Gaussian denoising steps, each using a diffprior.
Step 3:
uphH = b Rl gy R 12)
Ut = b 4 gl gkt

Obviously, this scheme can be generalized to use as mang psmeeded. The core idea behind this generalization
is that often times we may encounter different priors thalresks different features of the unknown image, such as
self-similarity, local smoothness or other structureJes@tavariance, and more. By merging two such priors into the
PaP scheme, we may get an overall benefit, as they compleamnbther.

3 PP Algorithm

We now turn to introduce the "Plug-and-Play Prior for Poissaverse Problem” algorithm, P in short, and how

it uses the plug and play framework. We start by invoking theppr log-likelihood functiori(z) into the above-
described formulation, this way enabling the integratiérGaussian denoising algorithms to the Poisson inverse
problems. Then we discuss two applications of our algorithifme denoising and the deblurring scenarios.



3.1 The Proposed Algorithm

We denote an original (clean) image, with dimensiens n, by anm x n column-stacked vectat. Similarly, we
denote a noisy image by Thei’s pixel in z (and respectively) is given byx[i| (respectivelyy[i]). We also denote
by H the linear degradation operator that is applied on the imafé&ch could be a blur operator, down-scaling or
even a tomographic projection. In order to proceed we shiindban expression fa{x). As mentioned before, this
is given by taking—in (-) of P(y|x). When takingH into account we get

Hzx). Y
Pylz) =] %e(m)i. (13)
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Thus,l(x) is given by

l(z) =In(P(ylx)) = Zln (

Me_(H”C)i = —yTIn(Hz) + 1T Hz + constant. (14)
I(yi+1)

Relying on equatiori(8), the first ADMM step in matrix form fetefore
A
argmin Ly = argmin —y” In (Hz) + 17 Hx + 5 |z — v+ ul3. (15)
x x

This expression is convex and can be solved quite efficidmytimodern optimization methods. The final algorithm is
shown in Algorithnil.

Algorithm 1 - PP
Input: Distorted imagey, Gaussiardenois¢-) function
Initialization: setk = 0,u° = 0,v" =some initialization;
while !stopping criteriado
! = argmin —yT In (Hz) + 1THz + 3 Hx —oF 4+ ukH;
xT

v+ = Gaussiardenoise(z"+! + u*) with o? = 2
ukJrl — uk + (karl _ ,UkJrl)
k=k+1

end while

Output: Reconstructed image®

Obviously we could use the Plug-and-Play extension thatl@yapeveral denoising methods, as shown in the
previous section. Such a change requires only slight matiifies to Algorithni L.
3.1.1 Poisson Denoising

For the special case of Poisson denoistihg= I. In this case the first ADMM step is separable, which meansitha
could be solved for each pixel individually. Moreover, thtep can be solved by the closed form solution

(A (0F 1] — i) — 1) + /O (04[] — b)) — 1)° + g
55 !

"] = (16)
wherez*[i] is the i'th pixel of z* (andv*[i], u*[i] andy[i] are the i'th pixels of*, u«* andy respectively). The full
derivation of this step is shown in the appendix A. A closeklat this expression reveals some resemblance to the
Anscombe transform. Indeed, for the initial conditioh = 0,v° = 4 <\/§+ 1), and )\ = 0.25, the variance of

is the same as the one achieved by Anscombe’s transformyseedaey differ only by a constant. We mention here
that we did not find that the initialization of the parametiei@d to noticeable change in the final reconstruction, as
long as it is the same order of magnitude of the noisy imagettaerefore, all the shown results use all zero image as
initialization. Figurél shows the transform done by Equa{fl8) for\ = 0.25, v*[i] — u*[i] = 4 (\/g + 1) + 1 for

i =40,3,6,9}, and the Anscombe transform. While this curve may look lieAnscombe one, PaP is substantially
different in two ways - (i) this curve changes (locally) frane iteration to another due to the change sndv, and

(i) we do not apply the inverse transform after the Gausdmmoising.
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Figure 1: PIP and Anscombe transformations as a function of input npisgl. A = 0.25.

3.1.2 Poisson Deblurring

When dealing with the deblurring problerf, represents a blur matrix. The first ADMM step is no longer saipie
and usually no analytical solution is available. However pinoblem is convex and a common way to solve it is by
using iterative optimization methods, which usually regquhe gradient. Turning back to our problem, the gradient
of Ly(x) is given by

Vely=—-H" (y/(Hz)) + H'14+ Xz — v +u). (7)

Where "/" stands for element-wise division. As can be selis, dradient is easy to compute, as it requires blurring
the temporary solutiom, the constant vectdr and the vectoy/ (Hx) in each such computation.

3.2 Details and Improvements

We chose to focus on two different inverse problems - the dergand deblurring problem scenarios. In both, we
chose BM3D as our Gaussian denoiser, as it provides very gsudts and has an efficient implementation. Both
scenarios required appropriate choice of parameters aidvedues. An important parameterfs the prior weight.
Empirical results show that inappropriate choicesdfads to poor results, sometimes by several dB. Another two
parameters that has big effect on the reconstruction rédatee choice ofA. This parameter is considered to be
proportional to the inverse of the step size. We found therteimsing) at each iteration gives better results then a
constant\. Thus,\ update requires two parameters. The firstgs the initial value ofA, and the secondy,,,, - the
value A is multiplied by at each iteration. Another important paeten is the number of iterations. We chose to use
a fixed number of iterations, but of course this parameteratsmbe learned or even estimated, similarly to what is
done in [14]. For a given noise peak, each parameter was tmedseries of 8 images. Out of each original image
we generated 5 degraded images, noisy for the denoisingrsoeand blurred and noisy for the deblurring scenario.
We tested multiple peak values in the range of 0.2 - 4. We fabatithe optimal\y and3 have strong correlation to
the peak value. On the other hard,., has a weak dependence on the peak, and was thus chosen ohelehenf

it.

Another improvement used, called binning, gives signifigaaprovement in very low SNR cases. Here the image
is down sampled and the algorithm is applied on the smalkedsimage that has a better SNR, since we add up the
photon counts of the merged pixels. Once the final resulteoéthorithm is obtained, we apply up-scaling by a simple
linear interpolation. This technique leads to better tss@nd also reduces runtime as we are operating on smaller
images. All the experiments reported below with binning asel shown-scaling in each axis. Binning can only be
used in the denoising scenario as down sampling doesn'’t edewvith the blur operator.

In the denoising scenario we also tested the multiple prid® Rlgorithm. We call this variation M-fIP. As our
second denoiser we chose to use a simplified versian_of [IMthwis a multi-scale denoising algorithm. Multi-scale
considerations are not used in BM3D, and therefore the tgorithms joint together may form a more powerful
denoising prior.



In the deblurring scenario,L-BFGS was chosen as our opditioiz method. In order to avoid calculatithg(-)
whereH x is negative, we optimized the surrogate function

L)\(x) , T<E

f(x):{axQ—i—bx—i—c, r>e€ (18)

where the coefficienta, b and ¢ were chosen such that this function and it's derivative cdies with L, and it's
derivative atr = €. asz — 0 we get thatHz — 0 andL,(x) — inf, therefore choosing a small enoughalue,
guarantees that the surrogate function will have the samamaim asl, and all entries iz are positive.

Another technique that improves the results in both dengisind debluring states that we can apply several
algorithm runs with slightly different parameters and ager the final results. Of course, this comes at cost of run
time. All results shown here are without this trick.

4 Experiments

4.1 Denoising

We tested our algorithm for peak values 0.1, 0.2, 0.5, 1, 24antb evaluate our algorithm we compared to BM3D
with the refined inverse Anscombe transformi[12]. We alsomamed to[[9], which leads to the best of our knowledge,
to state of the art results. All algorithms were tested wittl without binning. The results are shown in Tdhle 1.

Figures[Z-b show several such results. As can be seen, tip@ggr@approach competes favorably with the
BM3D+Anscombe and state-of-the-art algorithms. Binnisdaund to be beneficial for all algorithms when deal-
ing with low peak values. As for run-times, our algorithmealon roughly 30 sec/image when binning is used. This
should be compared to the BM3D+Anscombe that runs somewaktgrf(0.5 sec/image), and the SPDA method [9]
which is much slower (an average of 15-20 minutes/image).eWemoving the binning, our algorithm runs for
few minutes, BM3D+Anscombe runs for several seconds andA3B0xs for approximately 10 hours. These runtime
evaluations were measured on an i7 with 8GB RAM laptop.

As mentioned before, to check the effectivity M-P&P we chtiseombine BM3D with a simplified version of
[17]. We noticed that it is important to find the right prior igbt parameter. We only tested on a peak=0.2 scenario
and the results are shown in table 3. For the tested peaklgbetihm gained 0.2 dB improvement. We note that it
was harder to find good parameters and therefore we beliavé th possible to improve even more.

Table 1 denoising without binning PSNR values
Method | Peak| Saturn| Flag | Camera] House| Swoosh| Peppers Bridge | Ridges| | Average|

BM3D | 0.1 | 1942 | 13.05| 15.66 | 16.28 | 16.93 15.61 15.68 | 20.06 16.59
SPDA 17.40 | 13.35| 14.36 | 14.84 | 15.12 14.28 14.60 | 19.86 15.48
PP 21.55 | 13.30| 16.88 | 18.30 | 20.93 16.28 16.45 | 19.08 17.85
BM3D | 0.2 | 22.02 | 14.28| 17.35 | 18.37 | 19.95 17.10 17.09 | 21.27 18.43
SPDA 2152 | 16.58| 16.93 | 17.83 | 18.91 16.75 16.80 | 23.25 18.57
PP 23.05 | 14.82| 1782 | 1948 | 23.34 | 17.31 17.54 | 21.28 19.33
BM3D | 0.5 | 23.86 | 15.87| 18.83 | 20.27 | 22.92 18.49 18.24 | 23.37 20.23
SPDA 2550 | 19.67| 1890 | 20.51 | 24.21 18.66 18.46 | 27.76 21.71
PP 25.19 | 16.50| 19.27 | 20.93 | 25.58 18.86 18.47 | 23.57 21.05
BM3D 1 |2589 |1831| 20.37 | 22.35 | 26.07 19.89 19.22 | 26.26 21.73
SPDA 27.02 | 22.54| 20.23 | 22.73 | 26.28 19.99 19.20 | 30.93 23.61
PP 27.05 | 19.07| 20.54 | 22.67 | 27.79 | 20.07 19.31 | 26.56 22.88
BM3D 2 | 2742 | 20.81| 22.13 | 24.18 | 28.09 | 21.97 20.31 | 29.82 23.56
SPDA 29.38 | 24.92| 21.54 | 25.09 | 29.27 | 21.23 20.15 | 33.40 25.62
PP 28.93 | 21.04| 21.87 | 24.65 | 29.65 | 21.33 20.16 | 29.97 24.70
BM3D 4 | 29.40 | 23.04| 23.94 | 26.04 | 30.72 | 24.07 21.50 | 32.39 26.39
SPDA 31.04 | 26.27| 21.90 | 26.09 | 33.20 | 22.09 20.55 | 36.05 27.15
PP 30.82 | 22.49| 23.29 | 26.33 | 31.80 | 23.88 21.11 | 31.98 26.46




Table 2 denoising with binning for peak 0.2 PSNR values

| Method | Peak]| Saturn| Flag | Camera] House| Swoosh| Peppers| Bridge | Ridges| | Average]
BM3Dbin | 0.2 | 23.20 | 16.28| 18.25 19.71 | 24.25 17.44 17.70 | 23.92 20.09

SPDAbin 23.99 | 18.26| 17.95 | 19.62 | 23.53 17.59 17.82 | 27.22 20.75
P*IP bin 23.79 | 17.26| 18.58 | 19.96 | 24.53 17.44 17.54 | 23.94 20.38

Table 3 multiple priors PSNR values

| Method | Peak| Saturn| Flag | Camera] House| Swoosh| Peppers| Bridge | Ridges| | Average]
PP bin 0.2 | 23.79 | 17.26| 18.58 19.96 | 24.53 17.44 1754 | 23.94 20.38
M-P4IP bin 24,10 | 16.77| 18.58 20.02 | 24.58 17.63 17.69 | 25.38 20.59

original noisy, peak=1

Anscome+BM3D, PSNR=18.51 P*IP, PSNR=19.33

Figure 2: The image Flag with peak 1 - Denoising (no binnirgpuits.

\‘



original noisy, peak=2

Anscome+BM3D, PSNR=18.51 P*IP, PSNR=19.33

Figure 3: Peak 2 - Denoising (no binning) results



original (a) noisy, peak=0.2

Anscome+BM3D, PSNR=19.90 (b) M-P*IP, PSNR=20.43

Figure 4: Peak 0.2 denoising (with binning)



original (a) noisy, peak=0.2

Anscome+BM3D, PSNR=20.75 (b) M-P*IP, PSNR=21.66

Figure 5: Peak 0.2 denoising (with binning)

4.2 Deblurring

In this scenario, we tested our algorithm for the peak valyea and 4 of an image that was blurred by one of the
following blur kernels:

(i) a Gaussian kernel of size 25 by 25 with= 1.6.
(”) m f0r$17.7,'2 = —77...,7
(i) 9 x 9 uniform

To evaluate our algorithm we compared to IDD-BM3D [5] witletrefined inverse Anscombe transformli[12]. The
results are shown in Tables[4, 5 dand 6. Figliés 6, Thnd 8 shewifispesults to better assess the visual quality of the
outcome.

Table 4 deblurring PSNR values for blur kernél (i)
| Method | Peak| Saturn| Flag | Camera| House| Swoosh| Peppers| Bridge | Ridges| | Average]

BM3D 1 2432 |16.18| 19.39 | 21.06 | 26.51 18.47 18.34 | 22.06 20.79
PP 25.69 | 17.97| 19.84 | 21.93 | 26.51 19.48 19.03 | 25.56 22.00
BM3D 2 | 26.07 | 17.78| 20.61 | 22.66 | 28.61 19.84 19.28 | 25.71 22.57
PP 2595 | 19.49| 20.78 | 23.33 | 28.67 | 20.47 19.67 | 28.38 23.34
BM3D 4 |28.05 | 20.25| 21.66 | 24.69 | 30.30 | 21.25 20.20 | 29.05 24.43
PP 28.81 | 20.44| 21.37 | 2451 | 30.62 | 21.11 20.13 | 31.42 24.80
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Table 5deblurring PSNR values for blur kernél (i)

| Method | Peak| Saturn| Flag | Camera| House| Swoosh| Peppers| Bridge | Ridges| | Average]

BM3D 1 | 24.36 | 15.53| 18.99 | 20.81 | 25.83 18.24 18.20 | 21.21 20.40
PP 25.14 | 17.07| 19.50 | 21.52 | 25.89 19.05 18.69 | 24.28 21.39
BM3D 2 |26.02 | 16.58| 20.01 | 22.15 | 28.33 19.29 18.98 | 24.38 21.97
PP 26.39 | 18.61| 20.18 | 22.49 | 28.29 19.80 19.25 | 26.63 22.70
BM3D 4 | 27.64 | 19.00| 20.84 | 23.68 | 29.45 | 20.55 19.71 | 27.52 23.55
PP 28.48 | 19.80| 20.76 | 23.58 | 29.70 | 20.56 19.70 | 29.20 23.97

Table 6 deblurring PSNR values for blur kernélXiii)

| Method | Peak| Saturn| Flag | Camera| House| Swoosh| Peppers| Bridge | Ridges| | Average]

BM3D 1 | 2411 |15.46| 18.93 | 20.71 | 26.23 18.12 18.17 | 21.48 20.40
PP 24.36 | 17.12| 19.49 | 21.37 | 26.03 19.04 18.64 | 23.53 21.20
BM3D 2 | 26.06 | 16.54| 19.93 | 22.20 | 28.26 19.29 18.83 | 24.69 21.97
PP 25.62 | 18.61| 20.11 | 22.54 | 28.17 19.81 19.19 | 25.83 22.48
BM3D 4 | 27.41 | 18.83| 20.63 | 23.47 | 29.81 | 20.36 19.63 | 27.56 23.46
PP 2797 | 19.77| 20.66 | 23.39 | 29.93 | 20.47 19.71 | 29.15 23.88

It is clearly shown that in this scenaridIP outperforms the Anscombe-transform framework. Theimeatfor
a single image took about 5 minutes on an i7, 8G RAM laptoputbasice slower then Anscombe, and took 44

iterations.

original noisy, peak=2

————

Anscombe with IDD-BM3D, PP,
PSNR=20.65 PSNR=20.83

Figure 6: The image Peppers with peak 2 and blur kethel (ipholieng results.
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original noisy and blurry, peak=1

Anscombe with IDD-BM3D, PP,
PSNR=24.04 PSNR=26.56

Figure 7: The image Ridges with peak 2 and blur kernkl (ii)bldeing results.
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original noisy and blurry, peak=1

Anscombe with IDD-BM3D, PP,
PSNR=18.97 PSNR=19.40

Figure 8: The image Camera Man with peak 2 and blur kefngl@eblurring results.

5 Conclusion and discussion

This work proposes a new way to integrate Gaussian denadgugithms to Poisson noise inverse problems, by using
the Plug-and-Play framework, this way taking advantagdefexisting Gaussian solvers. The integretion is done by
simply using the Gaussian denoiser as a "black box” as patiebverall algorithm. This work demonstrates this
paradigm on two problems - image denoising and image détdurNumerical results show that our algorithm out-
performs the Anscombe-transform framework in lower peaks, competes favorably with it on other cases. These
results could be further improved by using the proposednsida of Plug-and-Play, which enables to combine mul-
tiple Gaussian denoising algorithms. Further work shoeldidne in order to better tune the algorithm’s parameters,
similar to [6]. Its is also interesting to learn more closétg relation between the Anscombe transform and our
method. We have found that under certain initializationdiions, in the first step ®P does variance stabilization
that is as good as Anscomb’s one. It is possible that moraeldmbkaid about the matter.

Appendix A Derivation of first denoising ADMM step
In the denoising cas# = I and we get thal(x) is given by
1(X)=—y"In(z)+1TIn (T (y+1))+ 17z (19)

The augmented Lagrangian is thus

A A
Ly=—y"In(x) + 170 = Bl (P (v)) + 5 o —v+ull = 5 [Jull3, (20)
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and the first ADMM step becomes

k+1 k

A 2
x ,uk> —argmin —y’ In (z) + 1Tz + = Hx LS ukuz (21)
xT

= argmin Ly <x,v 2
x

The first step £ update) is a convex and separable, implying that each ehtrycan be treated separately. Further-
more, computing the elements ofis easily handled leading to a closed form expression. BemdiftiatingL, by
x [7] and equating to O we get
_yld 1okl k) =
2[i +14+A <x[z] Vi 4+ u [z]) = 0. (22)
Thus, we get that

(23)

x[i] =

(A (0F] — i) — 1) + /O (4] — whli]) — 1)° + 4yl
53 '

As y is non negative, the expression inside the square rootasnais negative and causes the resulted be non
negative also. Another possible solution could have beesdaond root of Equation (22), but this solution is purely
negative and thus uninformative.
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