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Abstract

Although First Person Vision systems can sense the environment from the user’s perspective, they are
generally unable to predict his intentions and goals. Since human activities can be decomposed in terms
of atomic actions and interactions with objects, intelligent wearable systems would benefit from the ability
to anticipate user-object interactions. Even if this task is not trivial, the First Person Vision paradigm can
provide important cues to address this challenge. We propose to exploit the dynamics of the scene to recognize
next-active-objects before an object interaction begins. We train a classifier to discriminate trajectories leading
to an object activation from all others and forecast next-active-objects by analyzing fixed-length trajectory
segments within a temporal sliding window. The proposed method compares favorably with respect to
several baselines on the Activity of Daily Living (ADL) egocentric dataset comprising 10 hours of videos
acquired by 20 subjects while performing unconstrained interactions with several objects.
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1. Introduction and Motivation

The main advantage of wearable cameras is their
ability to sense the world from the user’s perspec-
tive. This makes them ideal for building egocen-
tric systems able to assist the user and augment
his abilities [1, 2, 3]. Towards this direction, re-
searchers have investigated methods to understand
the user’s environment [3, 4, 5, 6, 7, 8], model his at-
tention [9, 10], categorize his motion [11, 12], sum-
marize the acquired video [13, 14], recognize per-
formed activities [15, 16, 17, 18], and provide assis-
tance [1, 19].

Despite the fact First Person Vision (FPV) sys-
tems are exposed to a huge amount of user-related
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information, they generally are not able to predict
the user’s intent and final goals. This makes user-
assistance and human-machine interaction limited.
As claimed in previous works [20, 21, 22], the abil-
ity to anticipate the future is an essential property
that humans exploit on a daily basis in order to
communicate and interact with each other. For in-
stance, predicting object interactions before they
actually occur can be useful to provide guidance
on object usage [1], issue notifications [19] or assist
the user [20]. Anticipated object interactions can
tell us something more about the user’s long term
goals, as well as the intended activities. Indeed, as
observed in [17, 18, 23], it is advantageous to de-
compose long term egocentric activities in terms of
“atomic actions” and interactions with objects to
improve the final activity recognition task. Previ-
ous works investigated anticipation and early recog-
nition of egocentric activities [19, 24]. However, be-
ing able to anticipate the future at the finer granu-
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larity of object interactions is important especially
for wearable intelligent systems, which need to re-
actively communicate with the user in order to pro-
vide him feedback and assistance.

Taking advantage of the First Person Vision
paradigm, we introduce the novel task of predicting
which objects the user is going to interact with next
from egocentric videos. Following recent literature
which explores the importance of “active objects”
for activity understanding [18, 25], we refer to our
task as “next-active-object prediction”. According
to [18], active objects are those which are being
manipulated by the user at the moment. In con-
trast with the classic idea of active objects, we aim
at detecting active object before the manipulation
actually begins.

Forecasting next-active-objects in unconstrained
settings is hard since humans interact with objects
on the basis of their final goals and the responses
they get from the environment. Traditional ap-
proaches which detect active objects on the basis
of the way their appearance changes during manip-
ulation [18] or the presence of hands [15, 26] are
not directly exploitable in this context where pre-
dictions are to be made before the object actually
becomes active. Moreover, real systems should be
able to deal with an “open world scenario” where
object categories that may appear in the field of
view might not be known in advance.

We argue that the FPV paradigm can provide
important cues related to the dynamics of the user
with respect to the objects present in the scene.
Our main hypothesis is that, when a user is per-
forming a specific task, the way he moves and inter-
acts with the environment is influenced by his goals
and intended interactions with objects. According
to this assumption, in an egocentric scenario, the
relative motion of an object in the frame will vary
depending on whether the user is planning to in-
teract with that object or not. For instance, the
user is expected to move towards an object before
interacting with it. Figure 1 shows three sequences
illustrating next-active-objects (in red) and passive
ones (in cyan) along with their egocentric object
trajectories.1 Our hypothesis is that the shape of
trajectories, as well as the positions in which they
occur in the frame can help to predict next-active-

1The reader is also referred to the demo videos
available at our web page for some examples of
next-active-object prediction: http://iplab.dmi.unict.it/
NextActiveObjectprediction/.

Figure 1: Three sequences illustrating next-active-objects (in
red, indicated by “A”) and passive ones (in cyan, indicated
by “P”) along with their trajectories. In each sequence, the
dynamics of the scene suggest which objects are going to
become active.

objects discriminating them from those that will
remain passive.

We investigate the relevance of egocentric object
trajectories in the task of next-active-object pre-
diction. Provided that an object detector/tracker
is available, we propose to analyze object trajecto-
ries observed in a small temporal window to detect
next-active-objects before the object-interaction is
actually started. We investigate what properties of
object motion are most discriminative and the tem-
poral support with respect to which such motion
should be analyzed. The proposed method com-
pares favorably with respect to different baselines
exploiting other cues such as the distance of objects
from the center of the frame [18], the presence of
hands [15, 16, 17, 26], changes in the object appear-
ance [18] and the predictability of the user’s visual
attention [1].

In short, our work is the first to investigate the
topic of next-active-object prediction from First
Person videos. We analyze the role of egocentric ob-
ject motion in anticipating object interactions and
propose a suitable evaluation protocol.

The remainder of the paper is organized as fol-
lows. Section 2 reviews the related work. Section 3
describes the proposed method. Section 4 presents
the experimental settings, whereas Section 5 dis-
cusses the results. Finally, Section 6 concludes the
paper.

2. Related Work

Our work is related to previous investigations
covering different topics. In the following, we re-
view four main research lines: Activity Recognition
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in First Person Vision (Section 2.1), Future predic-
tion in Third Person Vision (Section 2.2), Future
prediction in First Person Vision (Section 2.3) and
Active Objects (Section 2.4).

2.1. Activity Recognition in First Person Vision

Activity recognition from egocentric videos is an
active area of research. Through the years, many
approaches have been proposed to leverage spe-
cific egocentric cues. Spriggs et al. [27] proposed
to use Inertial Measurement Units (IMU) and a
wearable camera to perform activity classification
and to segment the video into specific actions. Ki-
tani et al. [28] addressed the problem of discover-
ing egocentric action categories from first person
sports videos in an unsupervised scenario. Fathi
et al. [15] proposed to analyze egocentric activi-
ties to jointly infer activities, hands and objects.
Fathi et al. [16] concentrated on activities requir-
ing eye-hand coordination and proposed to predict
graze sequences and action labels jointly. Pirsiavash
and Ramanan [18] investigated an object-centric
representation for recognizing daily activities from
first person camera views. McCandless and Grau-
man [29] proposed to learn the spatio-temporal par-
titions which were most discriminative for a set of
egocentric activities. Ryoo and Matthies [30] con-
sidered videos acquired from a robot-centric per-
spective and proposed to recognize egocentric activ-
ities performed by other subjects while interacting
with the robot. Li et al. [26] proposed a benchmark
of different egocentric cues for action recognition.
The authors of [17, 23] proposed to integrate dif-
ferent egocentric cues to recognize activities using
deep learning. The aforementioned works assume
that the activities can be fully observed before per-
forming the recognition process and do not concen-
trate on future prediction from the observed data.

2.2. Future prediction in Third Person Vision

Previous works have investigated the problem of
early action recognition and future action predic-
tion from a standard third person perspective. The
considered application scenarios range from video
surveillance to human-robot interaction. Ryoo [31]
proposed a method to recognize ongoing activities
from streaming videos. Huang et al. [32] introduced
a system which copes with the ambiguity of partial
observations by sequentially discarding classes until
only one class is identified as the detected one. Hoai
and De La Torre [33] exploited Structured Output

SVM to recognize partial events and enable early
recognition. Kong and Fu [34] designed composi-
tional kernels to hierarchically capture the relation-
ship between partial observations. Ma et al. [35]
investigated a method to improve training of tem-
poral deep models to learn activity progression for
activity detection and “early” recognition tasks.

Beyond early action recognition, other methods
have concentrated on the forecasting of future ac-
tions before they actually occur. In particular, Ki-
tani [36] modeled the effect of the physical envi-
ronment on the choice of human actions in the sce-
nario of trajectory-based activity analysis from vi-
sual input. Koppula et al. [20] studied how to en-
able robots to anticipate human-object interactions
from visual input in order to provide adequate assis-
tance to the user. Lan et al.[21] exploited a hierar-
chical representation of human movements to infer
future actions from a still image or a short video
clip. Vondrick et al. [37] proposed to predict future
image representations in order to forecast human
actions from video.

Unlike our approach, such works do not consider
egocentric scenarios. However, the main motivation
behind them is related to ours: building systems
which are able to recognize ongoing events from par-
tial observations and react in a timely way.

2.3. Future prediction in First Person Vision

Future prediction has been investigated also in
the first person vision domain. The main applica-
tion scenario related to such works concerns user
assistance and aiding human-machine interaction.
Zhou et al. [22] concentrated on the task of inferring
temporal ordering from egocentric videos. Singh et
al. [38] and Park et al. [39] presented methods to
predict future human trajectories from egocentric
images. Soran et al. [19] proposed a system which
analyzes complex activities and notifies the user
when he forgets to perform an important action.
Su and Grauman [40] proposed to predict the next
object detector to run on streaming videos to per-
form activity recognition. Ryoo et al. [24] proposed
a method for early detection of actions performed
by humans on a robot from a first person, robot-
centric perspective. Vondrick et al. [37] proposed to
forecast the presence of objects in egocentric videos
from anticipated visual representations.

Our investigation is related to this line of works
but, rather than considering prediction at the activ-
ity level, we focus on the granularity of user-object
interaction and exploit the information provided
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by object motion dynamics in egocentric videos.
Object-level forecasting is important to develop sys-
tems able to timely respond to the user behavior
and assist him properly.

2.4. Active Objects

Our interest in next-active-object prediction has
also been fostered by the importance of active ob-
jects in tasks such as egocentric activity recogni-
tion. In particular, Pirsiavash and Ramanan [18]
proposed to distinguish active objects from pas-
sive ones. Active objects are objects being ma-
nipulated by the user and provide important in-
formation about the action being performed (e.g.,
using the kettle to boil water). Passive objects are
non-manipulated objects and provide context in-
formation (e.g., a room with a fridge and a stove
is probably a kitchen). The primary assumption
made by Pirsiavash and Ramanan [18] is that ac-
tive and passive objects can be discriminated by
their appearance (e.g., an active fridge is proba-
bly open and looks different from a passive one)
and the position in which they appear in the frame
(i.e., active objects tend to appear near the cen-
ter). Active objects have also been been consid-
ered in recent research on egocentric activity recog-
nition. Fathi et al. [15] suggested to pay special
attention to objects manipulated by hands for ego-
centric activity recognition. Li et al. [26] used Im-
proved Dense Trajectories to extract features from
the objects the user is interacting with. Ma et
al. [17] designed a deep learning framework which
integrates different egocentric cues including optical
flow, hand segmentation and objects of interest for
egocentric activity recognition. Zhou et al. [23] pre-
sented a cascade neural network to collaboratively
infer the hand segmentation maps and manipulated
foreground objects.

The general idea that some objects are more im-
portant than others has been investigated also in
other scenarios related to First Person Vision. Lee
and Grauman [13] designed methods to summa-
rize egocentric video by predicting important ob-
jects the user interacts with during the day. Berta-
sius et al. [25] designed a method for detecting
action-objects (i.e., objects associated with seeing
and touching actions). Damen et al. [1] proposed
an unsupervised approach to detect task-relevant
objects and provide gaze-triggered video guidance
when the user intends to interact with the object.

Differently than the aforementioned works, we in-
vestigate how next-active-objects can be correctly

recognized from egocentric video. The prediction
requirement, i.e., perform recognition of active ob-
jects before the interaction begins, makes less ef-
fective the exploitation of some cues such as object
appearance and the presence of hands, which have
been generally used to address active object recog-
nition in the past.

3. Method

We propose to predict next-active-objects from
egocentric videos by analyzing egocentric object
trajectories. We assume that an object detector
trained on a set of N object categories is available.
A tracker is used to associate detections related to
the same object instance in order to generate object
tracks. At each time step, the system analyzes the
trajectories observed in recent frames in order to
recognize next-active-objects before an interaction
actually takes place.

3.1. Object Tracks

We consider an object track as a sequence of
bounding boxes across subsequent frames of a
video. All bounding boxes are related to the same
object instance. We follow [18], where active ob-
jects are defined as objects undergoing hand manip-
ulations. Therefore, each bounding box is labeled as
“active” if the user manipulates it at that moment
or “passive” otherwise. Bounding boxes b ∈ <4 are
represented by the four coordinates of the top-left
and bottom-right corners. To generalize over dif-
ferent image sizes and aspect ratios, all coordinates
are divided by the frame dimensions in order to be
normalized in the interval [0, 1]. Coordinates are
then centered around the normalized center point
(0.5, 0.5).

We divide object tracks into two categories: pas-
sive and mixed. Tracks composed only by passive
bounding boxes (i.e., passive objects) are denoted
as passive tracks. Tracks containing both passive
and active bounding boxes are denoted as mixed
tracks. In this case, we refer to the point in which
an object changes its status from passive to active
as the “activation point”. Figure 2 illustrates ex-
amples of passive and mixed tracks. Since we are
interested in predicting next-active-objects, i.e., ob-
jects which are going to change their status from
passive to active, we discard all tracks containing
only active bounding boxes.

4



object is passive

passive trajectory
(ℎ frames)

(a) passive track / passive trajectory

object is activeobject is passive

activation point

active trajectory
(ℎ frames)

(b) mixed track / active trajectory

Figure 2: An example of mixed track (a) and passive track
(b). The figure also illustrates how active and passive trajec-
tories are extracted from mixed tracks for training purposes
(Section 3.2).

3.2. Object Trajectories

At test time, the system should be able to recog-
nize next-active-objects before they become active.
Hence it can only rely on egocentric object trajec-
tories preceding the activation point. We extract
object trajectories from the considered object tracks
and propose to train an active versus passive tra-
jectory classifier.

We define an object trajectory as a sequence of
bounding boxes Ti = {b1, b2, . . . , bh} and consider
two classes of trajectories: active and passive. Ac-
tive trajectories are those leading to a change of
status from passive to active. Passive trajectories
are related to passive objects that will not become
active and hence they do not lead to any status
change.

While in principle we would like to predict next-
active-objects arbitrarily in advance, we expect
that the most discriminative part of active trajec-
tories is the one immediately preceding the sta-
tus change. Therefore, in order to train an active
vs passive trajectory classifier, we consider fixed
length trajectories of h-frames. Parameter h has to
be chosen to include enough discriminative infor-
mation while avoiding the noise due to long trajec-
tories including data far away from the activation
point. We discuss specific settings in experimental
details below.

To compose a suitable training set, we extract
passive and active trajectories from the object
tracks obtained as described in Section 3.1. Passive
trajectories are randomly sampled from all passive
tracks (we extract one trajectory per track).

Active trajectories are sampled from mixed
tracks by considering the last h frames preceding
each activation point.

(a) active trajectories

(b) passive trajectories

Figure 3: Examples of (a) active and (b) passive trajectories.
Starting points of trajectories are indicated by a circle. Note
that, while it is not easy to detect next-active-objects using
only appearance, object motion can provide important cues.

Figure 2 illustrates the extraction of active (red)
and passive (cyan) trajectories from object tracks,
whereas Figure 3 illustrates some examples of the
extracted trajectories. In particular, as can be
noted from Figure 3, discriminating next-active-
objects from passive ones on the basis of their ap-
pearance it is not easy. Some objects, indeed, do
not change their appearance when they are about
to become active (e.g., pan, stove and microwave in
subfigure (a)). Others still share similar appearance
in both the passive and next-active scenarios (e.g.,
the fridge at bottom-left of subfigure (a) and top
left of subfigure (b)). On the contrary, object mo-
tion dynamics (i.e., egocentric object trajectories)
can provide meaningful cues for next-active-objects
detection.

3.3. Active vs Passive Trajectory Classifier

The examples reported in Figure 3 show that dis-
criminating active trajectories from passive ones is
not trivial. Nonetheless, the egocentric nature of
the observations provides some useful cues. Specifi-
cally, we expect that egocentric trajectories of next-
active-objects tend to appear at specific scales and
absolute positions. For instance, people tend to
get closer to next-active-objects and bring them to-
wards the center of their field of view before ini-
tiating the interaction. Similarly, people are more
likely to pass by other objects avoiding to get too
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in the last ℎ frames

active/passive trajectory classifier

Figure 4: Temporal sliding window processing of object
tracks. At each time step, the trained binary classifier is
run over the trajectories observed in the last h frames and
a confidence score is computed. Our aim is to predict if an
object is going to become active before it actually does, i.e.,
to fire towards the left of the time plot above.

close and pushing them towards the borders of their
field of view.

Motivated by these observations, we propose to
describe trajectories using 1) the absolute positions
in which bounding boxes appear in the frame, 2)
differential information about positions, 3) scale
and differential information about scale. The main
motivation behind point 1) is that absolute position
can help discriminate active from passive objects, as
observed in [18]. Point 2) is derived from the tra-
jectory shape descriptor used within Dense Trajec-
tories [41]. Such descriptor represents the “shape of
the trajectory” as a sequence of displacement vec-
tors. Point 3) is inspired by [42], where the deriva-
tive of the bounding box area is used to estimate
“time to contact”. Each trajectory Ti is hence de-
scribed as follows:

D(Ti) = (xc1, yc1, . . . , xch, ych, s1, . . . , sh,

∆xc2,∆yc2, . . . ,∆xch,∆ych,∆s2, . . . ,∆sh) (1)

where xcj and ycj are the coordinates of the centers
of the bounding box bj , sj is its area, ∆xcj = (xcj−
xcj−1), ∆ycj = (ycj−ycj−1) and ∆sj = (sj−sj−1)
encode differential information about position and
scale. If the length of Ti is h, the dimension of the
descriptor is |D(Ti)| = 6h− 3.

3.4. Sliding Window prediction

In order to predict which objects are going to
become active and which are not over time, we

use a temporal sliding window approach. At each
time step, the system analyzes the last h frames of
the trajectories of each tracked object and predicts
them as either active or passive by exploiting the
trajectory classifier. If an object has been tracked
for less than h frames, it is discarded. For each
analyzed object, the system draws a bounding box
and assigns a confidence score equal to the proba-
bility given by the classifier. This way, likely next-
active-objects will get a high confidence score, while
passive objects will retain a lower one. Figure 4 il-
lustrates the proposed temporal sliding window ap-
proach.

4. Experimental Settings

In this Section, we discuss the experimental set-
tings of our experiments. These include the dataset
used for the evaluations, how object detection and
tracking are carried out and how trajectory classi-
fiers are trained.

4.1. Dataset

For our experiments, we consider the Activity of
Daily Living (ADL) dataset [18], which contains
egocentric videos acquired using a chest-mounted
camera by 20 subjects performing daily activities.
The dataset contains bounding box annotations for
45 object classes. Annotations related to the same
object instance are grouped into tracks and each
annotation is labeled as passive or active. We
carry out our evaluations on the ADL dataset since
it is the only publicly available dataset featuring
untrimmed egocentric videos of object interactions
“in the wild” (e.g., subjects move through differ-
ent environments and interact with many different
objects), including annotations for both active and
passive objects.

Since objects are annotated every 30 frames, rea-
soning about object trajectories is difficult. To
overcome this limitation, we temporally augment
the original annotations by tracking objects in those
frames which are not annotated. To this aim, we
use the short term tracker CMT (Consensus-based
Matching and Tracking) proposed by Nebehay and
Plugfelder in [43]. The tracker is always initialized
using original ground truth object annotations and
tracking is carried on until the next annotation is
reached. Active/passive flags are interpolated ac-
cordingly.
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4.2. Object Detection and Tracking
At test time, our system analyzes input video

to detect objects, group detections into tracks and
classify object trajectories to predict next-active-
objects. To perform object detection, we consider
the state of the art Faster R-CNN method [44]
based on the VGG-16 network [45]. We start from
the original set of 26 objects proposed in [18].
Since in our work we propose to detect next-active-
objects on the basis of their trajectories and not
their appearance, we do not train our object detec-
tor to distinguish between active and passive ob-
jects as done in [18]. Considering only passive ob-
jects and removing classes represented by few train-
ing samples (i.e., less than 1000), we obtain a set of
19 object classes. As in [18], we train the object de-
tector on images extracted from the first 6 videos,
while the remaining 14 videos are used to train/test
the proposed next-active-object prediction method.
Note that, in order to train the object detector,
we consider only object annotations originally con-
tained in the dataset, while tracked bounding boxes
are discarded at this stage. The Faster R-CNN
model is trained using the “end2end” procedure
proposed in [44]. The trained detector achieves a
mean Average Precision (mAP) of 0.2772 on the
test set of 14 videos, which compares favorably with
respect to the 0.1515 mAP scored by the deformable
part models employed in [18]. Please note that, as
pointed out in [18], even performing object detec-
tion on the ADL dataset is hard due to the presence
of small objects and non-iconic views.

In order to deal with object trajectories, bound-
ing boxes detected across different frames and re-
lated to the same object instance need to be cor-
rectly associated. This can be done using a tracker
based on a data association algorithm such as the
real-time (260 Hz) SORT tracker proposed in [46].
Note that, since we compute detections for each
frame at test time, we only need a mechanism able
to understand when two detections performed in
subsequent frames are related to the same object
instance. Hence, it is not necessary to employ a vi-
sual tracker such as the CMT tracker used at train-
ing time to temporally augment annotated object
tracks. At test time, we run the SORT tracker on
top of the detections obtained using the Fast-RCNN
object detector to obtain object tracks. In our ex-
periments, objects detected with a low confidence
score (less than 0.8) are discarded before employ-
ing the SORT tracker. Please note that the Fast-
RCNN/SORT component is run directly on the in-

put video. Ground truth tracks are used only for
training purposes and are not exploited at test time,
unless otherwise specified.

4.3. Trajectory Classification

We train Random Decision Forests [47]2 to dis-
criminate between passive and active object trajec-
tories. In the considered dataset, the number of
negative trajectories is usually far larger than the
number of active ones. To mitigate such imbalance,
at training time, the number of passive trajectories
is randomly subsampled to match the number of
active ones, in order to obtain a balanced training
set. Testing is always performed on the original
unbalanced data.

We assess the performance of the trained classi-
fiers with respect to different factors, including the
temporal support with respect to which trajecto-
ries are analyzed, the employed trajectory descrip-
tor and the generalization to unseen object classes.
All results are reported in terms of Precision-Recall
curves and related Average Precision (AP) values.

5. Results

We perform all our experiments in a leave-one-
person-out fashion on the set of 14 videos which
have not been used to train object detectors (as
done in [18]). At each leave-one-out iteration, tra-
jectory classifiers are learned on videos acquired by
13 subjects and tested on data acquired by the re-
maining subject. We make sure that training and
testing data are always acquired by different sub-
jects to prevent the system from over-fitting to a
single user, i.e., learning the specific way he moves
and interacts with objects. All reported results are
averaged across the 14 leave-one-out iterations.

In the rest of this section, we first discuss the
performance of the trajectory classifier component
alone in Section 5.1), then analyze the performance
of the overall system and report comparative results
with respect to several baselines in Section 5.2.

5.1. Performance of the Trajectory Classifier

In this section, we analyze the performance of
the trajectory classifier component with respect to
different encoding schemes and parameters.

2We set the number of trees to 25 and do not set any
limit for the maximum height of each tree.
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Figure 5: Precision-recall curves related to different trajec-
tory description schemes. Elements in the legend are sorted
by average precision in descending order.

5.1.1. Trajectory Length and Encoding

In Section 3.3, we assumed that the last part of
an active trajectory is the most discriminative for
our task. Therefore, we proposed a sliding win-
dow approach which analyzes fixed-length trajec-
tories within a temporal window of size h. To
support that analyzing trajectories within a fixed-
length temporal window is optimal, we compared
the proposed method to a different schema which,
at each time step, analyzes the whole trajectory
observed up to that point. In this second schema,
in order to obtain a fixed-length descriptor, trajec-
tories are represented with a multiscale approach.
Using a temporal pyramid with l levels [18], each
trajectory is divided into 2l − 1 segments. Bound-
ing boxes within the same segment are averaged
and the results concatenated. This leads to fixed-
length trajectories which are hence represented us-
ing the descriptor introduced in Eq. (1). Note that
the maximum number of splits operated by the tem-
poral pyramid is equal to 2(l−1), therefore, trajec-
tories shorter than this number are discarded in our
experiments.

As discussed in Section 4.3, training/test tra-
jectories are extracted from object tracks related
videos 7 to 20 of the ADL dataset. Since active
objects are naturally rarer than passive ones, the
resulting dataset is highly unbalanced, which active
trajectories amounting to about 6% of the dataset.
Given this premise, and since our focus is on detec-
tion, rather than classification, we report our results
in terms of precision-recall curves and AP scores.

Figure 5 reports precision-recall curves of the
classifiers learned on trajectories extracted accord-
ing to the two considered schemes. In particu-
lar, our method scores an AP of 0.28 on more

than 2 hours of test video, while the chance level
is 0.09. The proposed fixed-length trajectory ap-
proach has been evaluated considering different
lengths h = {15, 30, 45, 60}. Similarly, the multi-
scale approach has been evaluated considering dif-
ferent number of levels l = {4, 5, 6, 7}. Please note
that the minimum trajectory lengths associated to
the considered numbers of levels are respectively
{8, 16, 32, 64}. The random baseline is obtained
performing classification with a random binary de-
cision. It should also be noted that the choice of
the parameters related to the length of trajectories
depends on the frame-rate at which videos are ac-
quired. In this paper, we assume a standard fram-
erate of 30fps.

As can be observed in Figure 5, classifiers based
on fixed-length trajectories tend to outperform
methods based on multiscale trajectories. This sug-
gests that the last part of active trajectories is
the most discriminative and that motion informa-
tion too far away from the activation point intro-
duces noise in the observations. Among the meth-
ods based on fixed-length trajectories, the best per-
forming scheme is the one analyzing trajectories of
length h = 30. This value will be used in all the
following experiments.

5.1.2. Analysis of Trajectory Descriptors

As discussed in Section 3.3, the proposed trajec-
tory descriptor introduced in Eq. (1) includes in-
formation about absolute positions and scales, as
well as differential information about position and
scale. We analyze the impact of each of these kinds
of information comparing the proposed descriptor
against the following baselines:

• Motion Magnitude: we consider discrimi-
nating active trajectories from passive ones on
the basis of the amount of motion character-
izing the trajectory Ti under analysis. The
amount of motion is measured as the sum of
the magnitudes of the displacement vectors:

M(Ti) =
∑h

j=2

√
∆xc2

j + ∆yc2
j . Classification

is hence performed by thresholding on M . The
optimal threshold is selected at training time
as the one best discriminating active from pas-
sive trajectories in the training set;

• Relative Trajectories: are the descrip-
tors proposed by Wang et al. in their
work on Dense Trajectories [41]: D(Ti) =
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Figure 6: Precision-recall curves related to the proposed
method and compared baselines.

(∆xc2,∆yc2,...,∆xch,∆ych)∑h
j=2

√
∆xc2j+∆yc2j

. These descriptors en-

code only the “shape” of the trajectory and
do not include any information about absolute
positions;

• Absolute Trajectories: described as the
concatenation of the centers of all bounding
boxes: D(Ti) = (xc1, yc1, . . . , xch, ych). Such
descriptors include positional information but
do not encode scale and differential informa-
tion;

• Absolute Trajectories + Differen-
tial Positions: described as the con-
catenation of positions and differential
information about position: D(Ti) =
(xc1, yc1, . . . , xch, ych,∆xc2,∆yc2, . . . ,∆xch,∆ych).
These descriptors encode location and tra-
jectory shape but do not include scale
information;

• Absolute Trajectories + Scale: de-
scribed as the concatenation of po-
sitions and bounding box scales:
D(Ti) = (xc1, yc1, . . . , xch, ych, s1, . . . , s2).
These descriptors encode location and scale
but do not include differential information.

Figure 6 shows precision-recall curves for the pro-
posed method and the compared baselines. As can
be observed, relative trajectories [41] (AP: 0.10) are
less discriminative than absolute trajectories (AP:
0.12). This confirms the observation according to
which position can help discriminate active and pas-
sive objects [18]. Combining absolute and differen-
tial positional information improves performances
marginally (AP: 0.13). Adding scale (AP: 0.20) and
above all, combining with differential information

20 40 60 80 1001
frames before activation point

0.00

0.05

0.10

0.15

0.20
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AP

Proposed
Absolute Trajectories + Scale
Absolute Trajectories + Differential Positions
Motion Magnitude
Absolute Trajectories
Relative Trajectories
Random

Figure 7: Average Precision of the considered methods when
they are evaluated a given number of frames before the ac-
tivation point. Methods retain some predictive power up
to about 30 frames (1 second) before the activation point.
The proposed method generally performs better than others
and significantly better than the random baseline 100 frames
(about 3 seconds) before the activation point.

as we propose allows to obtain the best results (AP:
0.28). Interestingly, the motion magnitude baseline
performs better than some competitors (AP: 0.12).
This reveals that discriminating between moving
and static objects is already a reasonable baseline to
reject some passive objects. However, it should be
noted that reasoning about trajectories, positions
and scales is essential to achieve better results.

5.1.3. Analysis with respect to Time of prediction

The proposed classifier is trained to discriminate
trajectories observed in the last 30 frames before
an object activation from all others. We report ex-
periments to assess up to what extent the learned
classifier is still able to detect next-active-objects
a number of frames in advance with respect to the
activation point. Figure 7 reports AP results when
classifiers are evaluated a given number of frames
before the activation point. As it can be expected,
best results are obtained in proximity to the acti-
vation point. However, all classifiers retain a cer-
tain amount of predictive power up to 30 frames (1
second) before the activation point. Moreover, it
should be noted that the proposed descriptor gen-
erally achieves best results as compared to other de-
scriptors and still performs significantly better than
the random baseline 100 frames (about 3 seconds)
before the activation point.

5.1.4. Generalization to Unseen Object Classes

We have trained a single active versus passive
classifier including data from all considered object
classes. While training object-specific trajectory
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AP
Object w/o with

oven/stove 0.60 0.82
tap 0.47 0.59
door 0.19 0.18
tv remote 0.58 0.73
bottle 0.50 1.00
pan 0.56 0.83
tv 1.00 1.00

AP
Object w/o with

fridge 0.47 0.73
book 1.00 1.00
microwave 0.67 0.40
kettle 0.33 0.75
mug/cup 0.52 0.62
dish 0.51 0.32
laptop 0.63 0.65

Table 1: Average precision results related to the leave-one-
object-out experiment.

classifiers might be advantageous, the limited num-
ber of samples related to a single object class could
pose a challenge. Moreover, ideally, a real system
needs to be able to handle “open-world” situations
in which objects belonging to previously unseen cat-
egories may become active. For example, a camera
wearer ought to be able to enter a new environment
where objects unavailable in training are nonethe-
less important to detect as next-active at test time.
We find that next-active-object trajectory classifi-
cation can generalize to previously unseen object
classes up to a given extent. To assess this prop-
erty, we performed a leave-one-object-out experi-
ment. For each object class, we trained trajectory
classifiers on data related to all other object classes.
Classifiers have been hence tested on data including
only the object class which was removed from the
training set.

Table 1 reports the results for the considered ob-
ject classes. Classes missing from Table 1 are those
which were not represented by any sufficiently long
trajectory (at least h frames) in the dataset. Clas-
sifiers learned from training sets not containing the
target object class (“w/o” column) are compared to
classifiers learned from training sets containing also
instances from the target object class (“with” col-
umn). Similar performances are achieved for many
object classes (e.g., door, tv, book, mug/cup, lap-
top), whereas for others learning from instances of
the same object class is more beneficial. This may
imply that, for some object classes, it is crucial
to learn specific motion/position/scale information.
This is probably the case of “oven/stove” which,
being a fixed object, tends to appear at specific lo-
cations and scales, or “bottle” and “kettle” which
have peculiar aspect ratios and tend to appear at
smaller scales. However, it should be noted that, on
average, removing the object class from the train-
ing set implies a reasonable performance loss of 0.11
AP.

5.2. Performance of the Overall System

In this section, we discuss the performance of the
overall system, comparing it to several baselines.

5.2.1. Comparative Experiments

In order to compare different methods in a
common evaluation scheme, we frame next-active-
object prediction as an object detection task. We
assume that, at each time step, each method pro-
duces a series of bounding boxes around the pre-
dicted next-active-objects and assigns a confidence
score to them.

We define our ground truth starting from the ob-
ject annotations of the ADL dataset augmented by
tracking as described in Section 4.1. Since we wish
to predict next-active-objects as soon as possible,
all annotations which are on the passive segments of
a mixed track (see Figure 2) are considered as valid
detections. All other annotations, namely, the ones
which are on passive tracks and the ones which are
in the active part of mixed tracks are not consid-
ered valid detections. The performance of the inves-
tigated methods is measured computing precision-
recall curves and Average Precision (AP) values. A
prediction is considered correct if there is a signifi-
cant overlap (area of intersection over union (IOU)
≥ 0.5) with an annotation of the same object class.
Note that, since we are first to tackle the problem,
no existing methods are available for direct com-
parison. Therefore, we adapt known techniques to
our problem and propose a series of baselines with
respect to which we compare the proposed method.
Considered baselines are discussed in the following:

• Motion Magnitude: the same baseline dis-
cussed in Section 5.1.2 based on thresholding
over motion magnitude;

• Relative Trajectories: the same baseline
discussed in Section 5.1.2 based on the trajec-
tory descriptors introduced by Wang et al. [41];

• Center Bias: this baseline considers the
assumption made by Pirsiavash and Ra-
manan [18], according to which active objects
tend to appear near the center of the frame.
The baseline analyzes the object detections
produced by the Faster-RCNN detector and
takes into account the confidence score as-
signed to each predicted bounding box so. For
each detected object, we compute a score sc
which is inversely proportional to its distance
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from the center of the frame. The final confi-
dence score is obtained as s = sc · so;

• Hand Bias: the presence of hands is a
cue often considered for detecting active ob-
jects [15, 16, 17, 26]. To leverage this cue, we
detect hands from the input videos by using the
models proposed in [48]. Similarly to the cen-
ter bias baseline, for each object detection we
compute two scores slh and srh which are in-
versely proportional to the distances of the ob-
ject from the left and right hand respectively.
If one of the two hands is missing, a score equal
to zero is assigned. The final confidence score
is obtained by s = so · (slh + srh), where so is
the confidence score assigned to the predicted
bounding box;

• Active/Passive Objects: a method inspired
by the work of [18]. predictions are obtained
using a Faster R-CNN object detector trained
to detect active and passive objects separately.
The detector is hence trained on 38 classes
(19 active objects and the corresponding 19
passive ones). It should be noted that, while
this baseline does not completely fit our task
(the detector is not explicitly trained to detect
next-active-object), it is still useful to ensure
that the problem cannot be trivially tackled
by means of such a well-known technique for
active object recognition;

• Saliency-Based Models: this set of base-
lines is inspired by Damen et al. [1], who pro-
pose to detect task relevant objects using a
gaze tracker, exploiting the anticipatory nature
of eye gaze fixation [49]. Since we do not as-
sume the availability of a gaze tracker, we im-
plement such baselines using saliency predic-
tion models. The baseline works as follows.
Saliency maps are first extracted from each
frame. Starting from the Faster-RCNN detec-
tions, each predicted bounding box is assigned
a score equal to the mean saliency value within
the bounding box. Given the different levels at
which saliency is defined [50], we consider the
model proposed by Vig et al. [51] for eye fixa-
tion prediction, the model proposed by Seo et
al. [52] for dynamic saliency from videos, and
the model proposed by Zhang et al. [53] for
salient object segmentation;

• Random: starting from the Faster-RCNN de-
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Figure 8: Precision-recall curves of the compared methods.
It should be noted that methods based on egocentric motion
analysis perform better than those based on appearance, at-
tention, center or hand bias. The proposed approach is the
best performing among the competitors.

tection, each bounding box is assigned a ran-
dom score in the interval [0, 1].

Figure 8 reports the precision-recall curves scored
by our method and all baselines. To reduce com-
putational burden, the methods indicated by the
“*” symbol have been evaluated on a subset of the
data obtained taking one frame every 30 frames.
The figure also reports results of the proposed ap-
proach when run directly on ground truth object
tracks (method “Proposed[GT]”). All other meth-
ods are run on object tracks detected/tracked as de-
scribed in Section 4.2. Among methods run on de-
tected tracks, the proposed one is the best perform-
ing one (AP: 0.0680), followed by the motion mag-
nitude (AP: 0.0478) and relative trajectory base-
lines [41] (AP: 0.0437). It is worth noting that the
best performing methods are all based on egocentric
object motion. The method based on center bias
outperforms the appearance-based baseline derived
from [18] (0.0412 vs 0.0298 AP values). Our main
insight about this behavior is that object appear-
ance is likely to change while the object is being
manipulated (i.e., active object already observed)
rather than before (i.e., next-active-object predic-
tion). The baseline based on hand bias does not
achieve good performance (AP: 0.0200). This is
probably due to different factors. First, detect-
ing hands in unconstrained egocentric videos is not
trivial [48]. Second, hands are not always visi-
ble until the object manipulation actually begins.
Saliency-based baselines perform worse than oth-
ers. It should be noted that such methods have
been designed to predict current and not future vi-
sual attention mechanisms and that they have not
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Conf. Threshold 0.5 0.56 0.68 0.74 0.8 0.83 0.86 0.90
Frac. Act. Pred. 0.92 0.89 0.79 0.67 0.48 0.32 0.24 0.11

Precision 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04
Recall 0.27 0.26 0.22 0.17 0.10 0.09 0.05 0.02

Table 2: Fraction of active objects classified as next active
(Frac. Act. Pred.) for given confidence thresholds, along
with precision and recall of the overall system.

been specifically designed for the egocentric sce-
nario. Moreover, while we perform our evaluations
on the ADL dataset, which have been acquired us-
ing a chest-worn camera, baselines exploiting at-
tention mechanisms are based on observations gen-
erally applicable to the scenario of head-mounted
cameras [1]. In particular, attention-based meth-
ods might be unable to leverage head-motion cues
as expected.

We would like to note that all presented results
are characterized by low Average Precision. This
is due to the very low number of frames contain-
ing at least one next-active-object, which, from our
analysis, amounts to only the 5% of tested frames.
Under these circumstances, methods are likely to
be affected by the presence of false positives, as it
is suggested by the observation of precision recall
curves in Figure 8, where the maximum precision
value achieved at zero recall is equal to 0.23. More-
over, results highlight how, due to the ambiguity
introduced by human discretion, the prediction of
next-active-objects from egocentric video is a hard
task. Nevertheless, the proposed analysis points
out the importance of egocentric object motion in
the considered task and does not exclude that bet-
ter results could be achieved integrating also other
cues such as the way object and scene appearance
changes through time and the relationship with the
activity performed at the moment of the interac-
tion.

5.2.2. Performance Analysis of the Proposed Ap-
proach

To assess possible limitations introduced by
the object detector/tracker component Figure 8
also reports results obtained running the proposed
method directly on ground truth object trajectories
(method “Proposed [GT]”). As can be expected,
the method performs better when run on ground
truth trajectories. However, the relatively small in-
crement in AP score (0.0888 vs 0.0680), suggests
that overall performance is not substantially lim-
ited by the object detector/tracker component.

As already discussed, the main source of error

is due to the influence of false positive predictions.
Among such cases, the method should not fire in the
presence of objects which are already active. To as-
sess performance in this regard, we report in Table 2
the fraction of predictions mistakenly performed in
the presence of active objects when different confi-
dence thresholds are used to obtain detections from
confidence scores. To put such numbers in context,
we also report precision and recall of the overall
system for the selected confidence threshold. Re-
sults are reported for a single iteration of the leave-
one-out-procedure, where the test is performed on
video 7 and all other videos are used for training.
The proposed method tends to fire in the presence
of active objects. The fraction of wrong predictions
can be lowered by increasing the confidence thresh-
old, but this also decreases the overall performance
of the system. While this remains a limitation of
the proposed system, it should be noted that it has
not been explicitly trained to classify active objects
as not being next-active.

Figure 9 reports some visual examples of suc-
cess/failure sequences related to the proposed
method. In the examples of correct predictions
shown in Figure 9(a), the model correctly assigns
a high score (positive prediction) to next-active-
objects (e.g., the laptop in the first row and the
tap in the second row) and a low score (negative
prediction) to passive ones (e.g., the door in first
row and the tv in second row). It should be noted
that next-active-objects are not always central ob-
jects appearing at a large scale, as it is the case of
the tap in the second row of and the dish in the
fourth row of Figure 9(a). In the failure examples
reported in Figure 9(b), the model fails to predict
next-active-objects. For instance, in the first row of
Figure 9(b), the model predicts oven/stove as the
next-active-object, while the actual target (dish) is
not predicted at all by the object detector/tracker.
Similarly, in the fourth row, the target next-active-
object fridge is correctly detected by the detec-
tor/tracker component, but erroneously classified
as passive by the next-active-object prediction sys-
tem. A possible reason for this failure might be
the proximity of the object to the border. Videos
demonstrating the proposed method are available
at our web page: http://iplab.dmi.unict.it/

NextActiveObjectprediction/.
While implementing a real-time system is out

of the scope of this paper, it should be noted
that, since the SORT tracker is highly real-time
and Random Decision Forests are fast at inference
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(a) correct predictions

(b) failure cases

Figure 9: Some success/failure examples of the proposed method. Red bounding boxes represent ground truth next-active-
objects. Positive model predictions are indicated in green, negative ones in cyan. Confidence scores are reported for each
prediction.
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time, the computational performance of the pro-
posed method is dominated by the Faster-RCNN
object detection component. Using an NVIDIA Ti-
tan X GPU, our method can process video at about
5 frames per second. Such computational perfor-
mance can be improved with the adoption of real-
time object tracking methods such as the one pro-
posed in [54].

6. Conclusion

We introduced and investigated the problem
of next-active-object prediction from egocentric
videos. Experiments highlight that 1) active ob-
ject trajectories can be discriminated from passive
ones using absolute positions, scale and differential
scale and position information, 2) active trajectory
classifiers can be learned independently from ob-
ject classes, 3) egocentric cues based on object mo-
tion outperform baselines based on other cues such
as object appearance and the presence of hands.
In future work, we will extend the analysis also to
data acquired using head-mounted cameras. More-
over, we will investigate the integration of other
cues such as the way the appearance of objects and
scene changes over time. We are also interested in
exploring how next-active-objects could benefit a
system for detecting first-person activities in ego-
centric video.
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[41] H. Wang, A. Kläser, C. Schmid, C. L. Liu, Dense tra-
jectories and motion boundary descriptors for action
recognition, International Journal of Computer Vision
103 (1) (2013) 60–79.

[42] R. Cipolla, A. Blake, Surface orientation and time to
contact from image divergence and deformation, in: Eu-
ropean Conference on Computer Vision, 1992, pp. 187–
202.

[43] G. Nebehay, R. Plugfelder, Clustering of static-adaptive
correspondences for deformable object tracking, in: In-
ternational Conference on Computer Vision and Pat-
tern Recognition, 2015, pp. 2784–2791.

[44] S. Ren, K. He, R. Girshick, Faster R-CNN Towards
Real-Time Object Detection With Region Proposal
Networks, in: Advances In Neural Information Process-
ing Systems, 2015, pp. 91–99.

[45] K. Simonyan, A. Zisserman, Very Deep Convolutional
Networks for Large-Scale Image Recoginition, in: Inter-
national Conference on Learning Representations, 2015,
pp. 1–14.

[46] A. Bewley, Z. Ge, L. Ott, F. Ramos, B. Upcroft, Simple
online and realtime tracking, in: International Confer-
ence on Image Processing, 2016, pp. 3464–3468.

[47] T. K. Ho, The random subspace method for construct-
ing decision forests, IEEE Transactions on Pattern
Analysis and Machine Intelligence 20 (8) (1998) 832–
844.

[48] S. Bambach, S. Lee, D. Crandall, C. Yu, Lending a
hand: Detecting hands and recognizing activities in
complex egocentric interactions, in: International Con-
ference on Computer Vision, 2015, pp. 1949–1957.

[49] M. F. Land, Eye movements and the control of actions
in everyday life, Progress in retinal and eye research
25 (3) (2006) 296–324.

[50] A. Furnari, G. M. Farinella, S. Battiato, An experimen-
tal analysis of saliency detection with respect to three
saliency levels, in: Workshop on Assistive Computer Vi-
sion and Robotics (ACVR) in conjunction with ECCV,
Zurich, Switzerland, September 12, Vol. 8927 of Lec-
ture Notes in Computer Science, Springer, 2014, pp.
806–821.

[51] E. Vig, M. Dorr, D. Cox, Large-scale optimization of
hierarchical features for saliency prediction in natural
images, in: International Conference on Computer Vi-
sion and Pattern Recognition, 2014, pp. 2798–2805.

[52] H. J. Seo, P. Milanfar, Static and space-time visual
saliency detection by self-resemblance, Journal of vision
9 (12) (2009) 15–15.

[53] J. Zhang, S. Sclaroff, Z. Lin, X. Shen, B. Price, R. Mĕch,
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