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Abstract

The emergence of low-cost high-quality personal wearable cameras combined
with the increasing storage capacity of video-sharing websites have evoked a
growing interest in first-person videos, since most videos are composed of long-
running unedited streams which are usually tedious and unpleasant to watch.
State-of-the-art semantic fast-forward methods currently face the challenge of
providing an adequate balance between smoothness in visual flow and the em-
phasis on the relevant parts. In this work, we present the Multi-Importance
Fast-Forward (MIFF), a fully automatic methodology to fast-forward egocen-
tric videos facing these challenges. The dilemma of defining what is the semantic
information of a video is addressed by a learning process based on the prefer-
ences of the user. Results show that the proposed method keeps over 3 times
more semantic content than the state-of-the-art fast-forward. Finally, we discuss
the need of a particular video stabilization technique for fast-forward egocentric
videos1.

Keywords: Semantic information, First-person video, Fast-forward,
Egocentric stabilization

1. Introduction

From the MylifeBits [1] project in the early 2000 until today, the processing
of video data remains as one of the most challenging tasks for life-logging. Tasks
such as acquisition, storage, and the proper use of large amounts of recorded
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data are particularly hard for video processing. Over the last couple of decades,
technological advances in integrated circuits technology made available at low
cost, high performance and low-power sensors and high performance processors
with large capacity memory. As the energy storage capability improves, soon
there will be cameras running all day. Indeed, mobile cameras such as GoPro R©,
Looxcie, Google Glass

TM

along with video sharing websites are boosting the
popularity of the egocentric video in the last couple of years. More video data
is being generated than ever before; daily an increasing number of users are
filming themselves creating and sharing long video streams containing daily
activities, such as walking, driving, cooking, sport activities, and working tasks.

Although egocentric videos have been widely produced and shared, they are
hardly watched in their entirety because they are usually long and monotonous.
Moreover, they contain jerky scene transitions causing visual unpleasantness
and making it difficult to extract information from them [2]. A simple approach
for reducing the length of a video stream is by näıvely sampling the video at
every n-th frame. However, this strategy severely impacts watching because it
tends to amplify the jerkiness of natural body movements and to induce abrupt
scenes transitions. These are just examples that make browsing and watching
long videos a tough problem to solve.

Despite remarkable advances in processing techniques tasks such as video
summarization, very few studies have addressed the problem of creating a pleas-
ant experience to the watchers of egocentric videos. Recently, relevant efforts
have been made to make these videos watchable [3, 4, 2, 5, 6]. Virtually all
the proposed methodologies thus far were inspired by a photographic technique
called Hyperlapse. This technique aims at producing smooth videos from pic-
tures taken of a scene with a selected and fixed point between shots. The works
borrow from Hyperlapse the idea of selecting only a subset of aligned frames in
order to maximize the smoothness of the final video.

The major drawback of the Hyperlapse inspired approaches is the assignment
of a relevance score to each frame. They typically select a frame considering only
the maximization of smoothness of the final video, thus neglecting the semantic
content of each frame. In fact, as far as semantics are concerned, some parts
of the videos may be more relevant than others for the user. For instance, in
a video of a wedding, some specific moments are more charming, such as the
bride’s entrance, the family members close-ups, and the exchanging of vows and
wedding rings. Hence, due to the skipping of stationary frames, characteristic
of Hyperlapse algorithms, relevant parts may be completely obliterated in the
fast-forwarded version.

In this work, we propose a fully automatic multi-importance semantic fast-
forward technique for egocentric videos designed to tackle with the challenging
production of smooth fast-forward video without meaningful semantic loss. Our
approach is composed of an adaptive frame selection and stabilization strategy.
Our goal is to create a pleasant experience for the watchers preserving the
continuity of the video and propitiating emphasis to relevant parts.

Differently from our previous approaches [7, 8], where we treated the se-
mantic information as a binary problem, we manually fine-tuned the hyper-
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parameters and used an ad hoc definition of semantic based on an existing
classifier, in this work, we address these weaknesses by using:

i. a new temporal segmentation approach, where the semantic information is
organized in levels, turning the solution into a Multi-Importance approach;

ii. a fully automatic parameter setting that defines the speed-up and the
weights of the graph via Particle Swarm Optimization;

iii. CoolNet: a Convolutional Neural Network trained to classify the semantic
based on the preferences of the user. Therefore, predefining a specific
semantic is not required;

iv. an in-depth analysis of the usage of different motion estimation techniques.

2. Related work

Video processing has been extensively studied in the past few years, mainly
the video summarization problem. However, it is worth noting that video sum-
marization and hyperlapse have important differences [9]. On the one hand,
Hyperlapse methods, as the one proposed by this work, are focused on creating
a smooth fast-forward version of the input video, i.e., the output video is sped
up entirely and unless they are too similar, no clips of the video are removed.
On the other hand, video summarization methods are focused on creating com-
pact visual summaries capable of presenting the most discriminative parts of
the video as well as the most informative ones.

Video summarization. The goal of summarization techniques [10, 11, 12] is to
generate a shorter version of the video keeping the essential information by
either creating a static storyboard or still-image abstract, where some selected
frames resume the relevant video content [13], or a dynamic video skimming or
moving-image abstract, where selected clips from the original stream are collated
to compose the output video [14, 15]. Molino et al . [9] perform an extensive
study about the summarization of egocentric videos evidencing the importance
of the area in an age of rising life-logging. One main issue is identifying the
relevant information on the video, which could be subject to the recorder or to
the viewer.

As far as egocentric videos are concerned, only a few works have been devel-
oped recently [13, 16, 17, 18, 19, 20]. Lee et al . [13] split the input video into
temporal events based on color distribution and find relevant regions of a frame
to compose a visual storyboard with the most important people and objects. Lu
and Grauman [16] create a story-driven summary by segmenting the video into
sub-shots and detecting the key component of each sub-shot. Lin et al . [17] pro-
pose a context-based highlight detection algorithm based on structured SVM to
generate video highlights. Varini et al . [20] proposed a method to customize the
summarization regarding users preferences and GPS location by performing on-
fly data gathering from online photos services and classifier training. In spite of
the fact that these techniques attain some sort of summarization of the relevant
parts of egocentric videos, they produce, at best, only temporally discontinuous
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video sub-shots [2], since some otherwise relevant parts of the input video are
completely left out.

Hyperlapse. Hyperlapse strategies can be divided into two categories: 3D model
approach, where methods aim at firstly creating the whole environment struc-
ture, and then finding the optimal path through the scene to create videos with
smooth transitions, and; 2D only approach, which comprises methods focused
on finding an optimal frame selection based on some smoothness criterion.

A representative member of the 3D model category is the work by Kopf et
al . [3]. Their method consists of three stages: scene reconstruction via structure-
from-motion and per-frame proxy geometries; path planning by optimizing a 6D
virtual camera path, and; image-based rendering via projection, stitching and
blending of selected input frames. Despite the impressive results reported by
this technique, it requires substantial scene overlap among frames and high
computational cost. Moreover, if the scene parallax is small, it might generate
numerous artifacts.

The 2D only based methods [4, 2, 5, 7, 6] avoid this 3D reconstruction by
sampling the frame of the input video optimally and decreasing the processing.
The Hyperlapse from Instagram [4] combines gyroscope samples and frames into
a stabilizer to obtain the camera orientations which are fed into a video filtering
pipeline to obtain steady frames. Poleg et al . [2] create a graph from the input
video taking the frames as nodes and edges values as a linear combination of
shakiness, speed of motion and appearance between pairs of frames. Their final
video is composed of those frames related to nodes of a shortest path. Recently,
Halperin et al . [6] extended the approach by Poleg et al .’s with an expansion
of the field of view of the output video. They use the mosaicking technique on
the input frames of one or more egocentric videos. The Microsoft Hyperlapse
algorithm [5] optimally selects the set of frames via dynamic-time-warping which
present the smoothest transitions with homography transformations.

Even though the aforementioned techniques have succeed in creating smooth
fast-forward output videos, they do not take into account specific user interests
on watching such videos. Some segments of the videos may have scenes with
different relevance for the recorder.

Recently, Yao et al . [21] proposed learning the relationship between paired
highlights and non-highlights segments to create a summary of the video. Al-
though the work is focused on video summarization, it has a twofold purpose.
The method returns a composition of skims and a video timelapse. The au-
thors use the timelapse to estimate the rate to play the highlight segments in
slow motion. The remaining segments are played in a fast-forwarded manner
to achieve the final length, shorter than the original. It is noteworthy that the
authors assume the number of highlight segments smaller than the number of
non-highlight segments. When compared to Yao et al .’s work, our methodology
is a lighter and presents a more modular approach since we use the confidence
given by classifiers and a threshold to identify the relevance and the boundary
of the segment. Our approach is based on an adaptive frame selection, focusing
on choosing frames that lead to a more stable video, while they use the uni-
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form sampling approach. Also, our segmentation strategy is capable of handling
different configurations for the highlights lengths.

Higuchi et al . [22] proposed a fast-forwarding video interface for users to
browse the important events on first-person videos quickly, confirming the rele-
vance of emphasizing semantic information. The user set egocentric cues (hand,
ego-motion or face), which are used to play at normal speed segments of the
video containing theses cues. The remainder of the video is played faster, using
an uniform sampling, in a speed-up rate selected by the user.

In our previous work [7], we used a semantic threshold to classify the input
frames as semantic or non-semantic. Then, we split the video into segments
of those types and calculate different speed-up rates for each type of segment
such that the semantic segments are emphasized by a lower speed-up. We later
extended this approach by improving the slicing strategy with a new thresh-
olding method and introducing a new egocentric stabilization process [8]. We
also proposed a semantically labeled dataset and defined an instability metric
for egocentric videos.

Unlike our previous works, in this work, we use a multi-importance approach
in our splitting strategy to segment the video temporally. In other words, rather
than labeling the segments as semantic or non-semantic, we define multiple levels
for the semantic segments. Thus, the segments can be emphasized according
to their importance. We also seek the automation of some steps. We use the
Particle Swarm Optimization (PSO) [23] algorithm to better select the weights
for the speed-ups definition and the transition costs of the frames. Furthermore,
we remove the need for an existing classifier to determine the semantic score.

3. Methodology

Our methodology is composed of two main steps: (i) identifying and selecting
frames adaptively, and; (ii) stabilizing the fast-forward video.

3.1. Semantic egocentric fast-forwarding

The adaptive frame sampling of our methodology is composed of five steps.
We first extract the semantic information (e.g ., people, car plates, charming
environments) from each frame of the input video. These data define a semantic
profile of the video which we use to split the stream into relevant and non-
relevant segments. For each type of segment, we calculate different speed-up
rates, assigning lower rates to the relevant segments. We build a graph for each
segment of the video where the frames are the nodes and the temporal relation
between two frames is defined by an edge. The edge weight is related to the
cost of keeping the frames sequentially in the fast-forward video. We then run
a shortest path algorithm to find the selection with the smaller transition costs
and generate the final video.
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Figure 1: Frame Sampling: We extract the semantic information to create a score for each
frame (a) creating a video profile used to split the video into non-semantic and semantic
segments, and then refining the semantic segments, iteratively (b). We calculate speed-up
rates for each type of segment, emphasizing the most relevant by a lower rate (c). We create
a graph for each segment and calculate the shortest path (d). Finally, the selected frames (e)
compose the output video (f). The PSO algorithm is used to optimize steps (c) and (d).

Semantic extraction. The semantic information is encoded by the score function
S : R → R, which is composed of three components: (i) the confidence of the
extracted information, which is given by the classifier (e.g ., a face detector, a
pedestrian detector); (ii) the position with respect to the center of the analyzed
region – as the input is an egocentric video, the central area of the frame should
have a higher relevance to the viewer, and; (iii) the size of the region since,
in general, larger areas means closer objects, therefore it represents a higher
probability of interaction.

In this work, we assume that the classifier is able to return both the classifi-
cation confidence and the Region of Interest (ROI). Thus, let k be the k-th ROI
extracted by a classifier for the frame fx of dimensions W ×H. To quantify the
centrality of the object, we use a Gaussian mask, Gσ(k), centered at the frame
fx with standard deviation σ = min(W/2, H/2). Higher values are assigned to
objects closer to the central point of the frame. The semantic score is given by:

Sx =
∑
k∈fx

ck · ak ·Gσ(k), (1)

where ak is the normalized area size in pixels of the k-th ROI and ck is the
normalized confidence returned by the classifier for the ROI k. It assigns a
relevance proportional to the reliability of the semantic information.

We also classify the semantic contents of a video using a Convolutional Neu-
ral Network (CNN) based on the preference of the user. In this work, we propose
the CoolNet, a network model used to rate the frame “coolness” based on web
video statistics. To achieve our goal, we train a CNN analyzing the frame in its
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entirety, similarly to the scene recognition problem. Therefore, we propose to
use the VGG16 model trained on MIT Places205 dataset [24] fine-tuned in our
domain. When using the CNN, the semantic score Sx of a frame fx is given by
the network output alternatively to the Equation 1.

Temporal segmentation. The sequence of semantic scores computed for each
frame defines the semantic profile of the video as illustrated in Figure 1-b.
We split the video to create temporal segments by thresholding the semantic
profile. We create a histogram with the semantic scores and use the Otsu
thresholding method [25] to define the semantic threshold. Thus, every frame
above this threshold is labeled as a semantic frame. Consecutive frames labeled
as semantic compose the semantic segments and the remaining frames compose
the non-semantic segments.

Speed-up rate estimation. Differently from the works of Ramos et al . [7] and
Silva et al . [8] that estimate two speed-up factors: one for semantic segments and
the other for non-semantic segments, in this work we present a multi-importance
approach. Our approach is capable of working with many levels of semantic con-
tent by estimating unique speed-up rates for each semantic segment according
to the scores of its frames.

Initially, the temporal segmentation step is executed once to compute the
speed-up that will be used in non-semantic parts, and then we iteratively seg-
ment the semantic parts for refining the semantic speed-up, as illustrated in
Figure 1-b. In each iteration, we decrease the speed-up rate for emphasizing
the segments with higher semantic content. Estimating the speed-ups is a non
trivial task, since the total length of the semantic segments may vary a great
deal. Additionally, the final speed-up for the whole video should be closer to
the desired speed-up.

Let Fd be the speed-up rate chosen by the user, Ls the total number of
frames in all semantic segments and Lns the number of frames in non-semantic
segments. We compute the semantic speed-up Fs and the non-semantic speed-
up Fns by minimizing the energy function:

D(Fns, Fs) =

∣∣∣∣Ls + Lns
Fd

−
(
Ls
Fs

+
Lns
Fns

)∣∣∣∣ . (2)

We include the speed-up Fs and the difference between Fns and Fs as regular-
ization terms for helping finding a minimum of Equation 2. Because for every Fs
value there is a Fns leading the result to 0, we have more the one solution which
can minimize Equation 2. Also, to create a finite and discrete search space, we
use a set of constraints R composed of: (r1) Fs 6 Fd, because we want emphasis
in the semantic parts; (r2) Fns > Fd, since we want to achieve desired speed-up
in the fast-forward video; and (r3) Fs > psFd, where ps = Ls/(Ls + Lns), to
avoid an excessive number of frames. Thus, the optimization problem is given
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by:

arg min
Fs, Fns

D (Fns, Fs) + λ1|Fns − Fs|+ λ2|Fs|

subject to ri ∈ R
(3)

where λ1 and λ2 are the regularization parameters used to control the impor-
tance of keeping the speed-up rates close or taking the smaller Fs, respectively.

We applied an iterative multi-relevance approach to refine the values of Ls,
Lns, and Fd in Equation 2. Firstly, we compute Fs and Fns. For each new
iteration, we remove the non-semantic segments and create a new semantic
profile for the video. The Fs value is used as the newly required speed-up,
preserving the overall Fd. The process stops when the new semantic threshold
is lower than the last threshold times t. This stop condition avoids creating a
large number of segments.

Graph building. We build graphs, similar to the work of Halperin et al . [6],
one for each segment with each node connected with τmax subsequent frames
(Figure 1-d). The weight Wi,j of the edge that connects the i-th to j-th nodes
is given by the linear combination of the terms related to the frames transition
instability Ii,j , appearance Ai,j , velocity Vi,j and semantic Si,j multiplied by a
weighting factor, as shown in Equation 4:

Wi,j = (λI · Ii,j + λV · Vi,j + λA ·Ai,j + λS · Si,j) ·
⌈

(j − i)
F

⌉
. (4)

The weighting factor enhances transitions between frames with lower distance
and F is the speed-up rate applied in the graph which the edge belongs. The λ
coefficients are regularization factors for the cost terms.

Smooth transitions are rewarded by the instability cost term, Ii,j , calculated
by the average distance of the Focus of Expansion (FOE) to the center of the
image. The velocity cost term, Vi,j , indicates the speed sensation and it is given
by the difference between the average magnitude of the optical flows (OF) of
the whole video and the OF along the consecutive frames from i to j. The
similarity appearance between the frames i and j, represented by the term Ai,j ,
is calculated using the Earth Mover’s Distance of the color histogram of both
frames.

We penalize the transitions that are not composed of frames with relevant
semantic information trough the Semantic Cost Term, which is computed as
Si,j = 1

Si+Sj+ε , where Si and Sj are the semantic scores for the frames i and j,

respectively, and ε avoids dividing by zero when both scores are null.

Automatic parameter setting. As it can be seen, in Equations 3 and 4 there are
a total of six parameters highly related to the input video. Since their values are
continuous, the search space is very large. Their configuration demands much
user knowledge and effort, moreover there is a high probability that the user
will stop before finding the right parameters. Setting up universal parameters
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as described in Poleg et al . [2] may not be the best approach, which can be
confirmed by analyzing their results (EgoSampling) in Section 4.1. We propose
a parameter setting via PSO to automate the selection of the parameter values.

The PSO algorithm is an iterative method that groups particles arranging
them randomly in the search space. At every iteration, the particles positions
(parameters values) are updated to follow the local and global best particles.
The solution is given by a fitness equation defined according to the problem. In
our case, we define the following fitness equation:

fitness
λ1,λ2

= c ·
∣∣∣∣F̂s − Fd + ps · Fd

2

∣∣∣∣+ |F̂d − Fd|+ pns · |F̂s − F̂ns|, (5)

which estimates λ1 and λ2 of Equation 3. The F̂s and F̂ns are the best values of
Fs and Fns in the finite and discrete search space when replacing λ1 and λ2 with
the particle position. The value ps = Ls/(Ls +Lns) is the semantic percentage
of the video, pns = Lns/(Ls + Lns) is non-semantic percentage, c = 2 is a
constant value to control the importance of selecting a lower semantic speed-up
and F̂d = (Ls + Lns)/(Ls/F̂s + Lns/F̂ns) is the speed-up achieved with the
selected speed-ups.

For the remaining parameters λI , λV , λA and λS in the Equation 4, we use
the fitness equation:

fitness
λI ,λV ,λA,λS

=
J

MaxJ
+

∣∣∣∣∣ L̂− ELEL

∣∣∣∣∣+
Ŝ∗ − Semantics

Ŝ∗
, (6)

where J is the jitter of the generated fast-forward video, MaxJ is the maximum
possible jitter for the video, EL is the expected number of frames, L̂ = L/F̂d is

the final video length, L is the original video length, and Ŝ∗ is the maximum
value for the semantic score of the fast-forward video.

The Semantics value represents the semantic content of the generated fast-
forward video. It is the sum of the semantic score computed by the Equation 1
using all frames. We compute the jitter as the magnitude of the mean deviation
of the FOE locations along the selected frames and the maximum possible jitter
is the jitter of a hypothetical video where for every frame the FOE is as far as
possible from the previous.

Video composition. The last step of our methodology is adding source and sink
nodes for each graph, and connecting them to τb border frames with zero-
weighted edges. We compute the shortest path (Figure 1-d) using the Dijkstra
algorithm. All frames related to the nodes within the shortest path will compose
the final video as depicted in Figure 1-f.

3.2. Egocentric video stabilization

As noted by Kopf et al . [3], traditional video stabilization algorithms do not
perform well on first-person videos. This can be assigned to the difficulty in
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Figure 2: Video Stabilization: The top row depicts the original video in a frame sequence.
The middle row shows the selected and dropped frames (larger blue and smaller red frames,
respectively) in the sampling process. The last row presents an example of the fast-forward
video segmentation, master frames, and terms α, ∆ and δ.

Algorithm 1 Egocentric Fast-Forward Video Stabilizer
Require: Set of frames V in the fast-forward video; Set D of dropped frames in the sampling

process; The crop area and drop area.
Ensure: The set of stabilized frames S.
1: function VideoStabilizer(V, D)
2: S ← {}
3: for all fi ∈ V do
4: w ← (δ · (2 · α) /∆)

5: f̂i ← H1−w
fi,Mpre

·Hw
fi,Mpos

· fi
6: while f̂i ∩ crop area < crop area do

7: if f̂i ∩ drop area = drop area and ExistUnusedFrames(D) then

8: f̂i ← Stiching
(
f̂i, GetUnusedFrame(D)

)
9: else

10: fd ← SelectNewFrame (D, fi)
11: w ← (δ · (2 · α) /∆) . Recalculate distances using fd as fi.
12: f̂i ← H1−w

fi,Mpre
·Hw

fi,Mpos
· fd

13: S ← S + {f̂i ∩ crop area}

tracking the motion between successive frames, which is increased in the fast-
forward version. Therefore, we stabilize our semantic fast-forward version of the
original video in a way similar to the work of Silva et al . [8].

Using the frames from the sampling step of Section 3.1, we first split the video
into segments of size α and select one master frame for each segment (Figure 2).
A master frame Mk is the frame f that maximizes the number of inliers obtained
with RANSAC when computing the homography transformation from the image
f to all images into the k-th segment.

In the second step, we smooth out the frame transitions following the steps
in Algorithm 1. For each frame fi of the fast-forward video, we compute a frame
f̂i of the stabilized video using f̂i = H1−w

fi,Mpre
·Hw

fi,Mpos
·fi (Algorithm 1 - line 5).

The Hfi,Mpre
and Hfi,Mpos

are homography matrices which take the frame fi to
the image plane of the previous master frame Mpre and to the posterior master
frame Mpos, respectively. The δ value is number of frames from fi to Mpre, and
∆ is the number of frames between Mpre and Mpos. Like Hsu et al . [26], we
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weight the homography transformations according to the distance to the master
frames.

Black areas may be created after applying the homographies because of
abrupt motions of the camera and the large elapsed time between consecutive
frames in the fast-forward videos. Thus, we define two areas centered in the
frame to decide when a frame should be reconstructed: the drop area, which is
equal to dp% size of the frame and the crop area equals to cp% size of the frame
(cp > dp). The reconstruction asserts that every f̂i frame covers the crop area.

There are two conditions for reconstructing a frame: (i) f̂i does not create
black regions in the central area; and (ii) there are unused frames in the dropped
set D for stitching. If both these conditions hold, we perform the stitching using
f̂i and a new frame from D. If at least one of the conditions is false, we discard
f̂i and select a new frame fd from D and recalculate the distances and the
homography matrices. Once the crop area is covered, the intersection between
this area and the frame f̂i compose the i-th frame in the stabilized video.

If the f̂i does not yield a good transition in the final video, we select a new
frame fd belonging to the interval [fi−1, fi+1] in the set of dropped frames D
(Algorithm 1 - line 10) and that maximizes the equation:

arg max
fd

( Gσ(p) · ( R(fd, fi−1) +R(fd, fi+1) ) · (η + S(fd)) ), (7)

where Gσ(x) is a Gaussian function with mean µ = 1 and standard deviation σ

in the position x, p is the percentage of the crop area covered by f̂d, R(.) is the
number of inliers obtained with RANSAC and S(.) is the semantic score given
by Equation 1. The term η is used to avoid multiplying by zero.

4. Experiments

In this section, we present an experimental evaluation, which includes de-
scribing the datasets used, the parameters configuration, weights setting, meth-
ods and metrics chosen for quantitative comparison, and the result discussion.
Furthermore, we discuss the meaning of the semantics for general purposes and
how to learn it.

Dataset. We use two datasets to evaluate our methodology. The first one is a
composition of standard sequences used in validating previous egocentric meth-
ods: Bike 1, Bike 2, Bike 3, Walking 1 and Walking 2 from [3]; Running, Driving
and Walking 3 from [2] and; Walking 4 [27]. Hereinafter referred to as Unlabeled
Dataset because there is no annotation of its semantic content.

The second dataset, referred to as Semantic Dataset2, was recently presented
in our previous work [8]. It is composed of 11 sequences of 3 different activities:
Biking; Driving and Walking. The sequences are labeled with the suffix 0p, 25p,
50p, or 75p, for videos with approximately no semantic information, cointaining

2Publicly available at: www.verlab.dcc.ufmg.br/semantic-hyperlapse/epic2016-dataset/
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semantinc content in approximately 25%, 50%, or 75% of frames, respectively.
As mentioned in the Section 2, the work of Yao et al . can not handle videos
in which the semantic portions are longer than the non-semantic ones. Videos
named with the suffix 50p and 75p are examples of cases which the Yao et al .
method fails. The semantic used were faces for Walking videos and pedestrians
for Driving and Biking ones. A frame is labeled as semantic if its score is higher
than the video semantic threshold, as described in Section 3.1.

Implementation details. Since we have added strong space restrictions to the op-
timization function represented in Equation 3, we solve it by exhaustive search.
The same approach is used to solve the maximization problem expressed by
Equation 7, once the numbers of frames is small into the segment [fi−1, fi+1].
We empirically set the parameters of our methodology, following a careful proce-
dure to ensure, as much as possible, the best overall results. For the experiments
on evaluating the semantic content, we used the NPD Face Detector [28] and a
pedestrian detector [29] as the semantic extractors.

For the following parameters, we test in a subset of videos and keep the same
values for all videos of both datasets. Thresholds of ck = 60 and ck = 100 are
used as minimum value for the confidence of an accepted face detection and for
pedestrian detections, respectively. The values were set to prevent false positive
detections. In the temporal segmentation (Section 3.1), we filter the semantic
profile using a Gaussian function with σ = sd/2·fps, where sd and fps stand for
required speed-up and frames per second, respectively. We only consider ranges
greater than 1 second in the accelerated video, since short ranges would result
in a flash in the final video. Likewise, we connected every range distant by 5
seconds or less. For the graph building step, we set the values as recommended
by the authors of the work Poleg et al ., the border frames τb = 30 and the
maximum allowed skip τmax = 100. In the semantic cost term equation we use
ε = 1 to avoid division by zero.

In the video stabilization step, we perform a grid search for setting the values
of α, η, and σ. The values which lead to a better trade-off between the final
video stability and the computation time are α = 4, η = 0.5, and σ = 10

4.1. Quantitative analysis

The main goal of this work is to automatically create visually pleasant fast-
forward videos and to emphasize the segments that are rich in semantic content.
Therefore, we performed experiments analyzing both the amount of semantic
content, the video smoothness, and the overall speed-up rate. We compare our
methodology against the Stabilized Semantic Fast-Forward (SSFF) [8], EgoSam-
pling (ES) [2] and Microsoft Hyperlapse (MSH) [5].

Semantic evaluation. Figure 3-a shows the fraction of the semantic content
retained from the maximum value that can be present in a fast-forward video.
We calculate this maximum by summing over the n top-ranked frames with
relation to the semantic content, where n is the ratio of the accelerated video
length by the speed-up rate required.
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Semantic and Instability Evaluation
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Figure 3: Semantic and Instability evaluation against the state-of-the-art methods.

It can be seen in Figure 3-a that in most cases, our proposed method leads
the performance. The new multi-importance approach is the main reason of
this superiority, once it allows the creation of videos with even more emphasis
in the semantic segments with higher semantic content. In the Driving 25p
case, we manage to keep around 50% of the possible semantic information, while
the state-of-the-art semantic fast-forward method, SSFF, only takes 10%, what
means 5 times more semantic information in the final video. Biking 25p and
Driving 0p are also cases with around 3 times more semantic content compared
to SSFF. For the Walking 75p sequence our multi-importance approach achieves
similar value of SSFF. It creates one semantic clip probably because of the low
variation along the whole semantic segment.

Our methodology manages to keep over 3 times more semantic content than
the SSFF method, which is also a semantic fast-forward method. In comparison
to the MSH, which is the best non-semantic fast-forward technique, the average
semantic information kept is 8 times higher.

Instability evaluation. One side effect of the semantic fast-forward is the increas-
ing of the shakiness in the non-semantic segments. In general, the speed-up rate
in these segments is higher than the desired, once semantic segments are em-
phasized by a low speed-up rate. Moreover, the higher the speed-up rate to a
segment, more difficult is the stabilization, since consecutive frames may contain
a small overlap.

Most of the fast-forward methodologies either used qualitative metrics, which
involve human evaluation on the videos, or the epipole/FOE jitter metric in the
final video as the quantitative instability evaluation. In our previous work [8],
we showed that this metric occasionally assigned better scores for shakier videos,
considering the preference of the users. In this work, we evaluate the smooth-
ness of the final produced video using the metric inspired by the qualitative
comparison between videos made by Joshi et al . [5], which uses side-by-side
comparisons, calculating the mean and the standard deviation frames of con-
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secutive images [8]. The metric is defined as follows:

I = M

 1

N
·
N∑
i=1

√∑
j∈Bi

(fj − f̄i)2

(NB − 1)

 , (8)

where N is the number of frames in the video, Bi is the i-th buffer composed by
NB temporal neighborhood frames, fj is the j-th frame of the video, f̄i is the
average frame of the buffer Bi, M(·) is a function that returns the mean value
for the pixels of a given image and I indicates the instability index of the video.
A smoother video yields a smaller I value.

Figure 3-b depicts the average instability of the videos generated by the
four techniques and two baseline methods. We consider the original and näıve
sampling videos as baselines. The original videos are used as a baseline for the
best smoothness, while the näıve sampling are used as a baseline for a poor
result.

According to the results in Figure 3-b, our method is slightly below the best
result. As expected, the MSH technique has the lowest instability value, since
it aims at optimizing the stability of the fast-forward version. Our method-
ology, for its turn, aims at emphasizing the semantic segments. Therefore, it
prefers dropping frames that result smoother transitions than removing those
with higher semantics. Nevertheless, the videos generated by our methodology
are preferable over the ES and SSFF ones.

Speed-up evaluation. In this experiment we verify whether the output videos
lengths are close to the speed-up chosen by the user. We calculate the speed-up
rate of the output videos of the techniques in both datasets. The speed-up rate
is given by the ratio between the number of frames in the input video and the
number of frames in the output video. The videos created by our methodology
have an average absolute difference to the required speed-up of 0.25 against 0.74
of MSH, 3.00 of SSFF and 10.97 of EgoSampling. It also presents the lowest
standard deviation of the absolute differences which is 0.78 against 0.86 of MSH,
2.46 of SSFF, and 6.98 of ES.

Weights setup. To verify that the parameter setting contribute to the success
of our approach, we also compared the results of our methodology using Par-
ticle Swarm Optimization (Ours+PSO) with using the best Manual Tunning
(Ours+MT). Figure 4 depicts the improvement of the instability and seman-
tic content of Ours+PSO over Ours+MT for the output videos of the Semantic
Dataset. Together, these results show that the use of PSO for the parameter set-
ting is a positive contribution to our methodology, either in the semantic content
or video instability. We credit these results for the power of convergence of the
PSO algorithm along with our fitness equations design (Equations 5 and 6). A
particular case is the result of the Driving 0p video in which the PSO parameter
setting have a negative improvement over the manual tuning. In this experi-
ment, the PSO algorithm selected a higher speed-up rate for the non-semantic
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Stability and semantic improvement: Ours+PSO over Ours+MT
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Figure 4: Stability and semantic improvement using PSO (Ours+PSO) over the best Manual
Tuning (Ours+MT). A 100% of improvement in instability means a video as stable as the
original. The W., D., and B. stand for Walking, Driving and Biking experiments, respectively.
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Figure 5: Average semantic information retained under different parameter settings. We
tested a combination of the Single-Importance (SI) or Multi-Importance approaches (MI)
with the best Manual Tuning (MT) or Particle Swarm Optimization (PSO). The values are
related to the maximum semantic information possible to obtain in the fast-forward video.
The combination PSO+MI leads to the highest amount of semantics in the final video.

segments in comparison to our best manual tuning, leading our method to select
frames with large temporal distance.

Figure 5 shows a more detailed performance assessment, considering both the
parameter setting and frame selection algorithms, namely: Single-Importance
(SI) or Multi-Importance approaches (MI) with the best Manual Tuning (MT)
or Particle Swarm Optimization (PSO). The values are related to the maxi-
mum amount of semantic information possible in a fast-forward video given
the required speed-up. One can clearly see that MI approach contributes for
the methodology to keep more semantic information compared to SI approach.
Further, the results indicate that using the Multi-importance approach jointly
with the PSO parameters setting produces output videos with an average of 9
percentage points with more semantic information than the MT+SI.

Video stabilization. We compared the instability of the videos generated before
and after the semantic fast-forwarding. Our stabilization step achieved the best
results for all videos in the Unlabeled Dataset. Figure 6 depicts the results for
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Figure 6: Stabilization improvement over the semantic fast-forward step. An improvement of
100% indicates that the output video is as stable as the original one. The W., D., and B.
stand for Walking, Driving, and Biking experiments, respectively.

the Semantic Dataset. An improvement of 100% in the instability indicates that
the output video is as stable as the original one.

It can be seen that in most cases, our stabilization step presents an im-
provement over the semantic fast-forwarding step. The Driving experiments are
failure cases of our stabilization approach. The high speed of motion of a car
causes small scene overlaps between the fast-forward video frames. Thus, due
to the features mismatches, the target homography planes are erroneously com-
puted, leading the video to present unstable transitions. The average stability
improvement in the Semantic Dataset is 3.48%, however, excluding the Driving
experiments, the value increases to 9.09%.

A more detailed performance assessment of stabilizing fast-forward egocen-
tric videos was performed by comparing our stabilization method with the work
of Joshi et al . [5] (MSH), which is a smoothed homography frame-to-frame
transformation. We create a video using the frames selected by the MSH frame
sampling step. Then, we execute our stabilization step on this video. To eval-
uate the smoothness, we compare the values of the instability index of this
stabilized video with the MSH video.

The average of the instability values over all experiments of the videos sta-
bilized by our technique was equal to 35.04, facing 34.04 of the ones stabilized
by MSH stabilizer. However, our methodology has not been designed to per-
form well with larger movements, like driving. Then, considering the ‘Driving’
sequences as outliers samples and not including them in the average computa-
tion, our stabilizer presents an average instability of 32.30 against 32.54 of the
MSH stabilizer. Further, in Joshi et al .’s work [5], they stated that their frame
selection is optimal. Therefore, our video stabilizer outperforms theirs in the
best set of frames.

Method comparison for motion estimation. A good motion estimation is crucial
for selecting a set of frames that reduces the shakiness on the fast-forward videos.
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Figure 7: Vertical displacements calculated by different motion estimators in one of our videos.
The circled area indicates a failure case in the Sparse Optical Flow motion estimation that
does not occur in the other estimators. The average Root Mean Squared Error indicates
FlowNetCorr as the best estimator.

Some adaptive frame selection algorithms adopt the Focus of Expansion (FOE)
from the Sparse Optical Flow to make the motion estimation [2, 7, 8, 6]. We
investigated the influence of changing the estimator in our methodology compar-
ing four different estimators: Phase Correlation, FlowNetSimple, FlowNetCorr,
Sparse Optical Flow (SOF). The Phase Correlation is a method that measures
the pixel displacement between two images using the magnitude of the Fourier
Transform [30]. The FlowNetSimple and the FlowNetCorr are two network
architectures designed to estimate optical flow using Convolutional Neural Net-
works (CNN) [31]. The SOF is a cumulative optical flow technique based on
Lukas-Kanade method, it was proposed to long-term temporal segmentation of
Egocentric Vision [27].

To evaluate their estimations, we recorded five videos covering actions such
as walking, going up the stairs, turning from left to right, from up to down, and
vice versa. All videos were recorded using an Inertial Measurement Unit (IMU).
After applying the estimators, we compare their measurements with the IMU
records. Figure 7 shows a vertical displacements plot of one of the videos, and
the average of the Root Mean Squared Error (RMSE) for each method over all
videos. We can see that the Sparse Optical Flow is one of the estimator with the
highest average RMSE, meaning its motion estimation is not accurate. Once
the FlowNetCorr is the motion estimator with the lowest average, we analyze
the effect of using it in our methodology instead of the Sparse Optical Flow.

The methodology has a better performance when using the FlowNetCorr,
since it decreases the frequency of wrong measurements. For example, if the
recorder suddenly turns the camera and the estimated movement is low, it may
lead the methodology to treat the movement as stationary. Table 1 shows that
changing the motion estimator indeed improves our method considering the
Semantic and Speed-up metric, while still being closer to the best result for
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Table 1: Method Comparison between Sparse Optical Flow (SOF) and FlowNetCorr (FNC).

Semantic Information1 Instability2 Speed-up3

SOF FNC SOF FNC SOF FNC

B.0p 20.60% 20.53% 24.84 24.80 12.56 11.47
B.25p 41.64% 39.38% 44.84 46.41 10.01 9.88
B.50p 33.67% 24.52% 31.18 30.36 10.05 10.01
B.50p 2 25.42% 25.83% 27.11 26.92 9.87 10.01
D.0p 31.81% 29.69% 48.31 47.79 13.83 12.37
D.25p 46.38% 45.69% 34.49 38.52 10.07 10.00
D.50p 18.56% 17.78% 40.24 39.50 10.02 9.89
W.0p 15.20% 15.20% 35.18 35.43 10.00 10.00
W.25p 39.55% 51.20% 32.47 31.26 9.84 10.03
W.50p 26.35% 37.11% 34.57 34.11 9.94 9.82
W.75p 47.09% 47.29% 34.38 34.37 8.31 9.23

Mean 31.48% 32.20% 35.23 35.41 10.41 10.25
1Higher is better 2Lower is better 3Better close to 10

instability metric.

4.2. Qualitative analysis

Numerous questions arise when the word “semantic” shows up in a work:
“What is semantic information?”, “How do you define it?” and “Why do you
consider something as semantic?”. Next we clarify what is meant by semantic
in this work.

In Section 4.1, due to the need of establishing a ground truth for comparison
and exhibition purposes, we perform the experiments using a defined semantic:
face detection for videos with slow movements and pedestrian for the others.
Obviously, semantics is much more than faces or pedestrians – it may be con-
sidered as everything that visually attracts the user’s attention. In this Section,
we show how to classify the frames using the proposed approach to classifying
semantic contents based on the user’s preference from web video statistics.

Dataset. To mine the information about the universal interest, we work with
the available statistic data of YouTube videos. Further, the images composing
the selected videos are used in the training process to learn how to identify a
“Cool” frame. We fine-tune and test the CNN on a dataset composed of videos
collected from the YouTube8M [32]. Because our focus is egocentric videos, we
filter the list using the keyword “GoPro”. We rank the videos according to the
score C = views

(dislikes/likes) and select the 150-top ranked videos to compose the

Cool class.
Analyzing the selected videos, we found that most of them were related to

radical sports and pleasant landscapes. Therefore, to compose the “Not Cool”
class, we manually selected 150 videos from the labels with the opposite concept,
such as “Home Video”, “Mobile Home”, “Office”, and “House”. Finally, after
removing the intros, edition effects and blurred frames, the final dataset contains
a total 940,030 labeled images.
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Training. We consider the estimation of the semantic content in a frame similar
to the scene recognition problem, i.e., we analyze the entire frame. Therefore,
we started the training from a VGG16 model trained on MIT Places205 [24]
and fine-tuned it in our dataset. The training step used 80% of the dataset,
and 20% of this data was used for validation purposes. After running a random
search to tune the learning parameters, we set 1×10−6 for base lr and 5×10−4

for weight decay. The final network’s accuracy was 98.03%.
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Figure 8: Semantic Profile curve of the CoolNet for every frame of a sample video. The left
image depicts an inside garden, with its medium score. The central image is a building hall,
that the CoolNet does not consider containing large semantic content. The right image is a
garden with a outdoor view, for which CoolNet gives the highest scores.

Results. Since most of the “Cool” images in our dataset are related to radical
sports and beautiful landscapes, the network classifies with high score frames
with nature-related elements, e.g ., forest and gardens. Uniform scene frames,
like indoor looking images, walls, and offices, yield to a low rating. Figure 8
depicts network scores related to different scenes. In the left image, when the
wearer passes through an inside garden, the network attributes an average rat-
ing. In the center image, the wearer is walking inside a building hall, which the
net considers unattractive. In the right image, the wearer goes to an outside
area composed of many trees and gardens, which are highly rated by the net.

Semantic combination. Although the CoolNet incorporates user’s preferences
to estimate the semantic in each frame, it could be not enough to cover all
considered semantics. We address this issue by combining semantic extractors,
making a linear combination of their output. In this case, the output is a
fast-forward video emphasizing segments which have either faces or beautiful
landscapes, for example. Additionally, since the score for each frame is given by
a linear combination, we can set which extractor has more influence. Then, we
can make it individual, analyzing the user’s browsing behavior, website or social
network profiles, similar to recommendation systems. The reader is referred to
our supplementary video for a visual result of this combination.
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5. Conclusions

In this work, we proposed the Multi-Importance Fast-Forward (MIFF), a
fully automatic technique to produce shorter versions of egocentric videos given
more emphasis to their semantic content. To make it automatic, we use a pa-
rameter setting via Particle Swarm Optimization algorithm. Contrasting with
previous semantic fast-forward that estimate just one speed-up for the semantic
portion, we propose a Multi-Importance approach to emphasize proportionally
to the relevance of the segment. These new contributions enabled our methodol-
ogy to keep over 3 times more semantic content than the state-of-the-art method.

As expected, lending more emphasis to the semantic segments makes the
non-semantic ones run faster and jerkier. To overcome this problem, we applied
and discussed the need of a Video-Stabilizer specific for fast-forward egocentric
video. Regarding the dilemma of semantic definition, we proposed a methodol-
ogy – be it general or customized – to learn the semantics from the user pref-
erences. The customized aspect can be achieved during the semantic definition
by using a set of classifiers covering all user intentions or training the CoolNet
in the data gathered from the user Youtube profile instead of general statistics.
To validate the presented methodology, we ran quantitative experiments, based
on fixed and specific semantics, and qualitative experiments, using the general
semantic approach proposed here. Throughout the discussion, we presented the
drawbacks of video stabilization when camera motion is high, like recording
from the inside of a moving car. Identifying which segments the method is able
to stabilize and how to deal with fast movements will be the focus of future
investigation.
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