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Abstract

Confocal laser endomicroscopy (CLE) is an advanced optical fluorescence

technology undergoing assessment for applications in brain tumor surgery. Many

of the CLE images can be distorted and interpreted as nondiagnostic. However,

just one neat CLE image might suffice for intraoperative diagnosis of the tumor.

While manual examination of thousands of nondiagnostic images during surgery

would be impractical, this creates an opportunity for a model to select diagnostic

images for the pathologists or surgeons review. In this study, we sought to

develop a deep learning model to automatically detect the diagnostic images.

We explored the effect of training regimes and ensemble modeling and localized

histological features from diagnostic CLE images. The developed model could

achieve higher agreement with the ground truth than the other human observers.

With the speed and precision of the proposed method, it has potential to be

integrated into the operative workflow in the brain tumor surgery.
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1. Introduction

Handheld, portable Confocal Laser Endomicroscopy (CLE) is being explored

in neurosurgery because of its ability to image histopathological features of tissue

in real time [1, 2, 3, 4]. CLE provides cellular resolution imaging during brain

tumor surgery and thus may provide the surgeon with precise histopathological

information during tumor resection in order to interrogate regions that may

harbor malignant or spreading tumor, especially at the tumor border.

(a) (b)

(c) (d)

Figure 1: Diagnostic and nondiagnostic CLE images (field of view = 475 × 475 µm). (a,b)

Diagnostic images from glioma cases. (b) Unsupervisd localization of histopathological fea-

tures of gliomas such as pleomorphism and hypercellularity detected by our model. For more

results see Fig. 5. (c,d) Nondiagnostic images from meningioma cases occluded with motion

(c) and blood artifact (d).

Current CLE systems are able to image more than one image per second, and
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thus over the course of examination of the surgical tumor resection or inspection

area, hundreds to thousands of images may be collected. The number of images

may become rapidly overwhelming for the neurosurgeon and neuropathologist

when trying to quickly select a diagnostic or meaningful image or group of

images as the surgical inspection progresses. CLE is designed to be used on

the fly in real time while the surgeon operates the brain. Thus overcoming

the barriers involved in image selection is a key component for making CLE a

practical and advantageous technology for the neurosurgical operating room.

A wide range of fluorophores are able to be used for CLE in gastroenterology,

but fluorophore options are limited for in vivo human brain use due to potential

toxicity [1, 3, 5]. In addition, motion and blood artifacts that are present in

many of the images acquired with CLE using fluorescein sodium (FNa) are a

barrier for revealing underlying meaningful histology. The display of suboptimal

images or nondiagnostic frames interferes with the selection of and focus upon

diagnostic images by the neurosurgeon and pathologist throughout the operation

in order to make a correct intraoperative diagnosis. Previous assessment [6]

of CLE in human brain tumor surgery found that about half of the acquired

images were interpreted as nondiagnostic due to abundance of motion and blood

artifacts or lack of discernible or characteristic histopathological features.

Filtering out the nondiagnostic images before making an intraoperative di-

agnosis is challenging due to the high number of images acquired, the novel

and frequently unfamiliar appearance of tissue features compared to conven-

tional histology, great variability among images from the same tumor type, and

potential similarity between images from other tumor types for the untrained

interpreter (Fig. 1).

Applications of machine learning in medical imaging have greatly increased

in the last ten years, resulting in numerous computer-aided detection(CADe)

and diagnosis(CADx) systems in ultrasound, magnetic resonance imaging (MRI),

and computed tomography (CT) [7]. Applications of machine learning for CLE

imaging in neurosurgery are yet to be performed. In this study, we developed an

ensemble of deep convolutional neural networks that can automatically evaluate
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the diagnostic value of CLE frames within milliseconds.

Due to the limited number of images in our dataset, we sought to transfer

learning benefits by using pretrained models, fine-tuning them in shallow and

deep manner and compare results with the models trained from scratch. Our

results demonstrated that a shallow fine-tuned model, although performs better

than trained from scratch, is not enough for the optimal performance and that

a deep fine-tuned model detects the diagnostic CLE frames better. We also

investigated the effect of ensemble modeling by creating an ensemble of models

which were crafted at the development stage and produced the minimum loss on

validation dataset. Finally, we compared the performance among the ensemble

of models and each single model.

2. Related Works

2.1. Convolutional Neural Networks

Convolutional neural networks (CNNs), a subcategory of deep learning meth-

ods, have proven useful in visual imagery analysis from numerous fields, includ-

ing medical images. This is mainly due to the deep multilayer architecture of

CNNs which enables extracting abstract discriminant features, both local and

global, present in the images.

In the recent years, deep learning has been vastly applied in medical image

or exam classification. According to a survey done by Litjens et al. [8], exam

and object classification together make up the number one task of interest in

medical image analysis followed by object detection and organ segmentation

(exam classification alone is the third task of interest). Most of these studies in

medical imaging field use one of the three following imaging modalities: MRI,

microscopy or CT.

Histopathological microscopic images and brain MRI scans were the first

two areas where deep learning has been explored in medical imaging [8]. In

histopathology, deep learning has been used for mitosis detection [9], classifica-

tion of leukocytes [10] and nuclei detection and classification [11]. In brain MRI,
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several studies have concluded that CNN benefits the diagnosis of Alzheimers

disease [12, 13] as well as brain extraction [14] and lesion detection, classifica-

tion, and tumor grading [15, 16].

No-reference image quality assessment has been formulated as a classification

problem as employed in retinal [17] and echocardiographic[18] images. CNNs

may also be exercised in the detection of key frames from a temporal sequence

of frames in a video. Two studies demonstrated the use of classification scheme

on ultrasound (US) stream video to label the frames [19, 20].

2.2. Transfer Learning vs. Deep Training

One of the major limitations in medical imaging is the small size of datasets.

The number of images employed for deep learning applications in medical imag-

ing is usually much smaller than those in computer vision. Therefore, two forms

of transfer learning have gained great interest: 1. Application of a pretrained

network on large-size natural images (i.e. ImageNet) as a feature extractor.

2. Initializing model parameters (weights and biases) using the data from a

pretrained model [21] instead of random initialization. A previous study by

Tajbaksh et al. [22] showed that a sufficiently fine-tuned AlexNet model could

produce equal or better results than a deeply trained one for colonoscopy image

quality assessment and few other medical applications. Here, we’ll study the

fine tuning effect by extending it to Inception network architectures in single

and ensemble mode.

2.3. Ensemble Modeling

Ensemble modeling is a well established method for increasing the model

performance and reducing its variance in machine learning [23, 24, 25]. Ku-

mar et al. [26] created an ensemble of 5 different models to classify the image

modality from ImageCLEF 2016 medical image dataset. Specifically, 2 classi-

fiers were created by fine-tuning AlexNet and GoogLeNet with softmax and 3

other classifiers by training an SVM on top of the features extracted by AlexNet,

GoogLeNet, and their combination. Their results showed the ensemble could
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improve the top-1 accuracy of the classifier compared to single models, however

it is not clear that how much of the improvement was because of the AlexNet

and GoogLeNet combination or the 5 classifiers ensemble.

Christodoulidis et al. [27] created an ensemble of multi-source transfer

learning using an automatic model selection approach described in [ensemble-

selection]. After creating a pool of pretrained CNNs on several public texture

datasets and fine-tuning them on the lung CT dataset, the top models which

iterative grouping would produce the highest F-scores on the validation dataset

were aggregated, creating an ensemble model. 5 ensemble models were devel-

oped and their output was then averaged to make the final output. Despite its

computational complexity, it enhanced the lung disease pattern classification

accuracy only by 2%.

To generate diversity in our models while using the whole training dataset,

we trained different neural networks on different data using cross-validation.

Although previous studies have tried to create variant deep learning models us-

ing different network architectures, none of them have employed training data

diversification through cross-validation as described in [28]. Our proposed en-

semble employed model diversification both in the network architectures and in

the training and validation datasets following [28].

2.4. Confocal Laser Endomicroscopy in Neurosurgery

Handheld, portable CLE has demonstrated its value for brain tumor surgery

due to its ability to provide rapid intraoperative information regarding histopatho-

logical features of the tumor tissue [6]. Convenience, portability, and speed of

CLE are significant advantages in surgery. A decision support system aiding and

accelerating analysis of CLE images by the neuropathologist or neurosurgeon

would improve the workflow in the neurosurgical operating room [29].

Potentially used at any time during the surgery, CLE interrogation of the

tissue generates images with a speed of 0.8 - 1.2 frames per second. The frames

are considered nondiagnostic when the histological features are obscured by

the red blood cells or motion artifacts, are out of focus, or lack any useful
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histopathological information. Acquired images are then exported from the

instrument as JPEG or TIFF files for review. Currently, the pathologist reviews

all images, including nondiagnostic ones, trying to explore the diagnostic frames

for the diagnosis. Manual selection and review of thousands of images acquired

at some point in surgery by the CLE operator is tedious and impractical for

widespread use. Previously, we have presented [29] the first deeply trained

CNN model for automatic detection of diagnostic CLE frames. In this work, we

extend our previous work with the following contributions and advancements:

1. Dataset. Our dataset contains CLE images which is a novel technology

in contrast to commonly used MRI or CT scans. The dataset used includes

20,734 CLE images from intracranial neoplasms.

2. Deep training, shallow fine-tuning or deep fine-tuning? The CNN

architectures were trained in three regimes: I. deeply trained (train the

network from scratch with model weights randomly initialized) II. shallow

fine-tuned (fine-tune only the fully connected layer(s) of the model which

are responsible for the classification) III. deeply fine-tuned (fine-tune the

whole network using our dataset). In this study we report model accuracy

on the test dataset for the best 5 models from each network architecture

and training regime. Our work is different from [22] since it considers the

fine tuning effect on two different network architectures and its effect on

the ensemble models.

3. Ensemble modeling. Prior to the test phase, we created an ensemble

of the best 5 models from each network and training regime. We explored

the effect of ensemble modeling in all circumstances by comparing the

ensemble performance with the average of single models. Our work is

different from [26] since our ensemble generates diversity in single models

by using different training and validation data achieved from nested-cross

validation. Further, we studied the effect of ensemble modeling on differ-

ent training scenarios rather than one.
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4. Unsupervised localizing of histological features. We visualized the

shallow neurons’ activation to depict the broad histological patterns; vi-

sualization of deep neurons activation could localize specific histopatho-

logical lesions for diagnostic images. The neural response of convolutional

layers to the diagnostic images are visualized and analyzed by a neurosur-

geon. We also extracted the CNN’s deepest neural activation in response

to patches of the diagnostic images using a sliding-window. Qualitative

assessment of the localized regions was performed by a neurosurgeon with

further analysis of the histopathological features.

5. Interobserver study. We compared the interobserver agreement be-

tween physician-physician and ensemble of models-physician to compare

our ensemble model performance with human performance. We also re-

ported the kappa statistic for this observer study.

3. Methods

3.1. Image Acquisition

In the following sections we briefly explain the confocal imaging instrument

instrument specifications and the intraoperative data collection process.

3.1.1. Instrument specifications

The CLE image acquisition system (Optiscan 5.1, Optiscan Pty, Ltd.) in-

cluded a rigid pen-sized optical laser scanner with a 6.3 mm outer diameter and

a working length of 150 mm. A 488 nm diode laser provided excitation light

and the fluorescent emission signal was detected with a 505-585 nm band-pass

filter. A single optical fiber acted as both the excitation pinhole and the detec-

tion pinhole for confocal isolation of the image plane. The detector signal was

digitized synchronously with the scanning to construct images parallel to the

tissue surface (en face optical sections).
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Laser power was typically set to 550-900 µW and maximum power was lim-

ited to 1000 µW when applied to the brain tissue. A field of view of 475 × 475

µm was scanned at 1024 × 1024 pixels (1.2/second frame rate), with a lateral

resolution of 0.7 µm and an axial resolution (i.e., effective optical slice thickness)

of approximately 4.5 µm.

3.1.2. Intraoperative CLE imaging

Seventy-four adult patients (31 male and 43 female) were enrolled in the

study (mean age 47.5 years). Intraoperative CLE images were acquired both in

vivo and ex vivo by 4 neurosurgeons. For in vivo imaging, multiple locations of

the tissue around the lesion were imaged and excised from the patient. For ex

vivo imaging, tissue samples suspicious for tumor were excised, placed on gauze

and imaged on a separate work station in the operating room. Multiple images

were obtained from each biopsy location.

Co-registration of the CLE probe with the image guided surgical system

allowed precise intraoperative mapping of CLE images with regard to the site

of the biopsy. The only fluorophore administered was FNa (5mL, 10%) that

was injected intravenously during the surgery.

Precise location of the areas imaged with the CLE was marked with tissue

ink. Imaged tissue was sent to the pathology laboratory for formalin fixation,

paraffin embedding and histological sections preparation. Final histopatholog-

ical assessment was performed by standard light microscopic evaluation of 10-

µm-thick hematoxylin and eosin (H & E)-stained sections.

3.2. Image annotation

The image annotation process was done in two distinct stages: initial review

and .

3.2.1. Initial review

Initially all images were reviewed. A neuropathologist and 2 neurosurgeons

who were not involved in the surgeries reviewed the CLE images. For each

patient, the histopathological features of corresponding CLE images and H
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& E-stained frozen and permanent sections were reviewed and the diagnostic

value of each image was examined. When CLE image revealed clear identifiable

histopathological feature, it was labeled as diagnostic; otherwise it was labeled

as nondiagnostic.

3.2.2. Validation review

The database of images was divided into development and test datasets

(explained in dataset preparation 4.1). Test dataset composed of 4171 CLE im-

ages randomly chosen from various patients. The validation review (val review)

dataset consists of 540 images randomly chosen from the test dataset. Following

this separation, two neurosurgeons reviewed val-review dataset without having

access to the corresponding H & E-stained slides and labeled them as diagnostic

or nondiagnostic .

3.3. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are multilayer learning frameworks

and may consist of an input layer, a few convolutional layers, pooling layers, fully

connected layers and the output. The goal of a CNN is to learn the hierarchy

of underlying feature representations. We explain the fundamental elements of

a CNN below.

3.3.1. Convolutional layer

Convolutional layers, first introduced in [30] are the substitute of previous

hand-crafted feature extractors. At each convolutional layer three dimensional

matrices (kernels) are slid over the input and set the dot product of kernel

weights with the receptive field of the input as the corresponding local out-

put. This helps to retain the relative position of features to each other. The

multi-kernel characteristic of convolutional layers enables them to prospectively

extract several distinct feature maps from the same input image.
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3.3.2. Activation layer

The convolutional layer output then goes through an activation function to

adjust the negative values. We employed the rectified linear unit (ReLU) which

is usually the preferred choice because of its simplicity, higher speed, reduced

likelihood of vanishing gradients (especially in deep networks) and tendency

to add sparsity over other nonlinear functions such as sigmoid function. The

output of jth ReLU layer (aoutj ), given its input (ainj ), was calculated in-place

(to consume less memory) by following:

aoutj = max (ainj , 0) (1)

3.3.3. Normalization layer

Following the ReLU layer, a local response normalization (LRN) map is

applied after the initial convolutional layers. This layer inhibits the local ReLU

neurons’ activations since there’s no bound to limit them (Eq. 1). By using the

Caffe implemented [31] LRN, the local regions are expanded across neighbor

feature maps at each spatial location. The output of jth LRN layer (aoutj ),

given its input (ainj ), is calculated as:

aoutj =
ainj

(1 + α
L

∑L
n=1 a

in
j (n)

2
)β

(2)

where ainj (n) is the nth element of the ainj and L is the length of ainj vector

(number of neighbor maps employed in the normalization). α, β and L are

the layer’s hyperparameters and are set to their default values obtained from

[32](α = 1, β = 0.75 and L = 5).

3.3.4. Pooling layer

After rectification and normalization of convolutional layer output, it’s fur-

ther down-sampled by pooling operations. Pooling operations accumulate values

in a smaller region by subsampling operations such as max, min, and average

sampling. Here, max pooling was applied.
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3.3.5. Fully connected Layer

Following several convolutional and pooling layers, the network lateral layers

are fully connected. Each neuron of the layer’s output is greedily connected to

all the layer’s input neurons. It can be thought of as a convolutional layer

with kernel size of the layer input. The layer output is also passed through a

ReLU layer. The fully connected layers are generally thought of as the classifier

of a CNN model because they intake the most abstract features extracted in

convolutional layers and make the output, which is the model prediction.

3.3.6. Dropout Layer

Fully connected layers are usually followed by a dropout layer, except the last

fully connected layer that produces the class-specific probabilities. In dropout

layers, a subset of input neurons as well as all their connections are temporarily

removed from the network. Srivastava et al.[33] have demonstrated this method

efficiency at improving the CNN performance in numerous computer vision tasks

through reducing the overfitting.

3.3.7. Learning

The learning of a CNN is through Stochastic Gradient Descent (SGD) which

stands on two major menhirs: Forward and Back Propagation. In forward

propagation, the model makes predictions using the images in the training batch

and the current model parameters. Once the prediction for all training images

is made, the loss is calculated using the truth label provided by the experts in

the initial review (explained in 3.2.1). In this work we adopt the softmax loss

function given by:

L(t, y) = − 1

N

N∑
n=1

C∑
k=1

tnk log(
ey

n
k∑C

m=1 e
ynm

) (3)

where tnk is the nth training image’s kth ground truth output, and ynk is the

value of the kth output layer unit in response to the nth input training image.

N is the number of training images in the minibatch, and since we consider 2

diagnostic value categories, C = 2.
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Through the back propagation, the loss gradient with respect to all model

weights aids upgrading the weights as follows:

W (j, i+ 1) = W (j, i) + µ∆W (j, i) − α(j, i)
∂L

∂W (j)
(4)

where W (j, i), W (j, i + 1) and ∆W (j, i) are the weights of jth convolutional

layer at iteration i and i + 1 and the weight update of iteration i, µ is the

momentum and α(j, i) is the learning rate and is dynamically lowered as the

training progresses.

3.4. Evaluation Metrics

In model performance estimation (explained in 4.3) we calculated the loss,

accuracy, sensitivity, specificity and area under receiver operating characteristics

(ROC) curve (AUC). Here, we assumed the state of being a diagnostic image as

positive and being nondiagnostic as negative. This way, sensitivity determines

the model ability to detect diagnostic images and specificity determines its abil-

ity to detect nondiagnostic images. Accuracy determines general capability of

a model to detect diagnostic and nondiagnostic images correctly [34].

4. Experimental Setup

4.1. Dataset Preparation

Our dataset included 20,734 CLE images from 74 brain tumor cases. For

each CLE image, the diagnostic quality was determined by the experts in the

initial review. The dataset was divided into two main subsets on patient level:

development (dev) and test. Our pilot study revealed that when the division

is on image level (mixing the images from all the patients and dividing them

randomly) the model would produce poor results on images from new patients.

The total number of patients and images used at each stage are presented in

Table 1. Each subset contains images from various tumor types (mainly from

gliomas and meningiomas). The dev set will be available online. The test set

was isolated all through the model development and was accessed only in the

test phase.

13



4.2. Model Development

After the initial data split, we employed a patient-based k-fold cross vali-

dation for model development. Fifty nine cases that were allocated for model

development were divided into 5 groups. Since CNNs require a large set of

hyperparameters to be defined optimally (i.e. initial value of the learning rate

and its lowering policy, momentum, batch size, etc.), we used different values

with grid searching throughout the model development process. For every set

of feasible parameters, we trained the model on 4 folds and validated on the

fifth left-out group of patients. The set of hyperparameters which produced the

minimum average loss was employed for each set of experiments.

The small dataset size was a main limitation of our study for using CNNs, es-

pecially with the patient-level data preparation. Therefore, we counterbalanced

this limitation by fine-tuning the pretrained publicly available CNN architec-

tures trained on large computer vision datasets (i.e. ImageNet).

Though the question about how deep should we fine-tune the pretrained mod-

els for optimal results still remains unanswered, one study tried to answer this

question using endoscopy and ultrasound images[22]. Due to the substantial in-

trinsic dissimilarities between the images in the 2 studies, we performed a similar

Table 1: Dataset preparation: Patient-based allocation of diagnostic and nondiagnostic images

from various neoplasms to model development and testing. Number of patients for each tumor

type is also provided.

Development Test

No. of Patients (total) 59 15

Gliomas 16 5

Meningiomas 24 6

Other neoplasms 19 4

No. of Images (total) 16,366 4,171

Diagnostic 8,023 2,071

Nondiagnostic 8,343 2,100
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Figure 2: Ensemble effect on network 1 (top) and network 2 (bottom) while using diverse

training regimes. For both networks, the improvement was more noticeable with DT and

DFT regimes. The arithmetic and geometric ensemble performed similarly. Neither of the

two ensembles could improve network 2 trained with SFT.

investigation. Our confocal images have a much higher spatial resolution and

are fluorescent images from the brain.

In total, we developed 42 models (30 single models and 12 ensemble models)

using two network architectures and three training regimes (deep training, shal-

low fine-tuning and deep fine-tuning). The experiments are designed in order

to practically find the optimal model development pathway that produces the

highest performance in the considered clinical application.

4.2.1. Network architectures

Two CNN architectures were applied in this study. Network 1 had 5 convo-

lutional layers. The first two convolutional layers had 96 and 256 filters of size

11 × 11 and 5 × 5 with maximum pooling. The third, fourth and fifth convolu-
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tional layers were connected back to back without any pooling in between. The

third convolutional layer had 384 filters of size 3× 3× 256, the fourth layer had

384 filters of size 3×3×192 and the fifth layer had 256 filters of size 3×3×192

with maximum pooling. For more details please refer to [32].

Network 2 had 22 layers with parameters and 9 inception modules. Each

inception module was a combination of filters of size 1×1, 3×3, 5×5 and a 3×3

max pooling, put together in parallel and the output filter banks concatenated

into an input single vector for the next stage. For more details please refer to

[35].

The pretrained model for network 1, exploited in fine-tuning experiments,

was the iteration 360,000 snapshot of training the model on ImageNet classi-

fication with 1000 classes. The pretrained model for network 2 was iteration

2,400,000 of training on ImageNet classification dataset. Both models are pub-

licly available in Caffe libraries [31].

4.2.2. Training regimes

We exercised various training regimes to see how deep fine-tuning should be

done in CLE image classification for optimal results. Depending on which layers

of the network are being learned through training, we had three regimes.

In regime 1, deep training (DT), the whole model weights were initialized

randomly (training from scratch) and got modified all through the training with

nonzero learning rates.

In regime 2, shallow fine-tuning (SFT), the whole model weights, except

the last fully connected layer, were initialized with the corresponding values

from the pretrained model and their values were fixed for the period of training.

The last fully connected layer was initialized randomly and got tuned during

training.

In regime 3, deep fine-tuning (DFT), all model weights, except for the

last fully connected layer, were initialized with the corresponding values from

the pretrained model and last fully connected layer was initialized randomly.

Throughout the training, all the CNN layers, including the last fully connected
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layer, were tuned with nonzero learning rates. Our hyperparameter optimization

showed that the SFT and DFT experiments required 10 times smaller initial

learning rates (0.001) compared to the DT regime (0.01). To avoid overfitting,

the training process was stopped after 3 epochs of consistent loss increment

on the validation dataset. We also used dropout layer (ratio = 0.5) and L2

regularization (λ = 0.005).

4.2.3. Ensemble Modeling

Let’s assume ynk (j) is the the value of the kth output layer unit of the jth

CNN model in response to the nth input test image. The linear and log-linear

ensemble classifier output for the same input would be:

Ensnlinear = arg max
k

l∑
j=1

ynk (j) (5)

Ensnlog−linear = arg max
k

l∏
j=1

ynk (j) (6)

where l is the number of CNN models combined to generate the ensemble

models.

Model selection was done in two forms: single models and ensemble of mod-

els. We selected the top model (with minimum loss on the validation dataset)

from each fold of the 5-fold cross validation (Model 1-5 in Table 2). In each

network architecture and training regime, we combined the top-5 developed

single models to produce two ensembles of models using the arithmetic (5)

and geometric mean (6) of their outputs. We created 12 ensemble models

(2network architectures × 3training regimes × 2ensemble types) in total and compared

their performance with single models.

4.3. Interobserver Study

Each solo and ensemble model developed was tested on the test dataset.

The ensemble of network 2 models trained with DFT was also tested on the
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val review images (3.2.2) to compare human-human and model-human interob-

server agreements. The resulting agreement rate (val-rater 1 and 2) was further

compared with the initial image review results. The agreement of the model

prediction with the initial review was also calculated. The general agreements

are compared and discussed in section 5.4. Kappa analysis was also done for

further validation.

Gold standard ground truth for the val review images was defined by ma-

jority voting (see Fig. 3). The agreements of the third rater with the gold

standard and the proposed ensemble model with the gold standard is calculated

and compared as well in Table 3.

4.4. Unsupervised Histological Feature Localization

For localization of the histological features, we examined the neural activa-

tion at two sites. First, the activation of neurons in the first convolutional layer

of the network 1 were visualized and the 96 feature planes were saved for review

by a neurosurgeon. Neurons that presented high activation to the location of

cellular structures in the input image were selected and seemed to be consistent

with diverse diagnostic images. Secondly, we applied a sliding window of size

227× 227 pixels (size of network 1 input after input cropping) with stride of 79

pixels over the diagnostic CLE images (1024 × 1024 pixels). The result was a

10 × 10 matrix that provided the diagnostic value of different locations of the

input image (diagnostic map). The locations of input images corresponding to

the highest activations of the diagnostic map were detected and marked with a

bounding box. The detected features using each of these two ways were further

reviewed by a neurosurgeon.

5. Results and Discussion

We developed 42 models and tested them on 4,171 test images; accuracy

rates (agreement with the initial review) are presented in Table 2. We found that

network 2 resulted in more precise predictions about the diagnostic quality of
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Figure 3: Interobserver study using gold standard ground truth. Gold standard was defined

using the initial review and one of the val-raters (here val-rater 1). Then, the agreement of the

ensemble model and the other val-rater (here val-rater 2) with the gold standard is calculated

to compare the human-human with model-human agreement. *If the initial review and the

val-rater 1 agreed on an image, it is added to the gold standard, otherwise it is disregarded.

images than network 1 when DT and DFT training regimes were used, while SFT

training regime resulted in slightly better accuracy of network 1, compared to

network 2. Therefore, network 2 architecture is a better feature extraction tool

for CLE images, since it concatenates multi-scale features inside its inception

modules.

5.1. Ensemble or solo model?

We did an ROC analysis for each of the two networks and three training

regimes to see how the ensemble of models performed compared to the single
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Table 2: The accuracy of different models on the test dataset. The top-5 models crafted

from each training regime, as well as their arithmetic and geometric ensembles, were exerted.

For each network, the ensemble of DFT models makes the most accurate predictions. The

difference between arithmetic and geometric ensemble AUC was negligible.

Network Network 1 Network 2

Training

Regime
DT SFT DFT DT SFT DFT

Model 1 0.685 0.760 0.760 0.731 0.746 0.746

Model 2 0.658 0.749 0.755 0.750 0.746 0.805

Model 3 0.677 0.751 0.765 0.715 0.747 0.797

Model 4 0.681 0.754 0.771 0.739 0.743 0.811

Model 5 0.699 0.753 0.775 0.721 0.747 0.777

Mean 0.680 0.753 0.765 0.731 0.746 0.787

Arithmatic

Ensemble
0.704 0.755 0.788 0.754 0.750 0.816

Geometric

Ensemble
0.703 0.758 0.786 0.755 0.751 0.818

models. Fig. 2 presents the ROC curves and corresponding AUC values for each

ensemble model and the mean of single models. The AUC value increased by

2% for both networks with DT and DFT when the ensemble is applied instead

of the single model. This effect gets smaller with network 1 SFT and becomes

negligible with network 2 SFT. The two arithmetic and geometric ensemble

models produced roughly similar results (paired t-test: P value < 0.05 ).

SFT models display less sensitivity to the ensemble effect compared to DT

and DFT. This is not surprising since they represent identical models except in

the softmax classifier layer which has been adjusted through training.

5.2. Which training regime: DT, SFT and DFT?

Fig. 4 displays the results of ROC analysis when comparing the three train-

ing regimes in each network architecture and single/ensemble states. In all
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Figure 4: Training regime effect on network 1 (left) and network 2 (right) while using single

(top) or ensemble of models (bottom). In all circumstances the AUC for DFT regime was

greater than the SFT and SFT is greater than DT, although the effect size varied.

paired comparisons, DFT outperformed SFT and SFT outperformed the DT

regime (paired t-test: P value < 0.05 ).

We traced the AUC elevation from DT to DFT regime to see how much of it

corresponded to the transformation of DT to SFT and SFT to DFT. For network

1, 70-80 % of the improvement occurred in the DT to SFT transformation,

depending on whether it’s a single or ensemble model. For network 2 ensemble

model (right bottom of Fig. 4), however, the AUC improvement caused by

transforming the training regime from DT to SFT (2%) is only 25% of the

total improvement from DT to DFT. For network 2 single model the AUC

improvement was evenly divided between the two transformations.

Our results from this experiment indicated that for our dataset, network 1

mainly required fine-tuning the classification layer and fine-tuning other layers
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5: Unsupervised localization of the histopathological features from shallow and deep

neurons inside the network. First column (a, e, i) shows the input CLE images from human

glioblastoma obtained intraoperatively. Second column (b, f, j) displays activation of neurons

from the first layer (conv1, neuron 24) (shallow features); it highlights some of the cellular areas

present in the image. Third column (c, g, k) illustrates diagnostic regions of interest identified

with sliding window approach. The boxed regions represent high activation of the deepest

network neuron. Fourth column (d, h, l) contains images extracted from conv1 activation

(neuron 22), representative of the high fluorescence signal, a diagnostic sign of blood-brain

barrier disruption and leakage of fluorescent agent from the vessels into the extracellular space.
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(feature extractors) had a smaller contribution. However, for network 2, fine-

tuning the feature extractors was more important than modifying the classifier

layer. Though, further experiments on more datasets are necessary to generalize

this observation.

5.3. Histological features localization

8 out of total 384 reviewed colored neuron activation maps from the first

layer were selected for 4 diagnostic CLE images representative for glioma. Se-

lected activation maps highlighted diagnostic tissue architecture patterns in

warm colors. Particularly, several maps emphasized regions of optimal image

contrast, where hypercellular and abnormal nuclear features could be identified,

and would serve as diagnostic features for image classification (Fig. 5, columns 2

and 4). Additionally, sliding window method was able to identify diagnostic ag-

gregates of abnormally large malignant glioma cells and atypically hypercellular

areas (Fig. 5, third column).

Activation of the neurons in the first convolutional layer (conv1) were found

to highlight areas with increased fluorescein signal, a sign specific to brain tumor

regions. Increased fluorescent signal on CLE images represent areas with blood

brain barrier disruption which correspond to the tumor areas visible on a con-

trast enhanced MR imaging. Interestingly, sliding window method and selected

colored activation maps were not distracted or deceived by the red blood cells

contamination, as they mostly highlighted tumor and brain cells rather then

hypercellular areas due to bleeding. The proposed feature localization approach

may be useful in the future to aid in the identification of not only the diagnostic

frames, but also directing the surgeon’s attention to the image parts containing

major histopathological features.

5.4. Inter-rater agreement

Table 3 demonstrates the agreement between each of the val-raters and the

initial review on the whole val review dataset and the gold standard subset

(explained in Fig. 3). The model agreement with the initial review is larger
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Table 3: Interobserver study results. The model-human agreement was higher than the

human-human agreement both on whole val review dataset and the gold standard subset.

Dataset
Whole Val

Review
Gold-Standard

Rater
General

Agreement

Cohen’s

Kappa

General

Agreement

Val-Rater 1 66 %
0.32,

Fair
67%

Val-Rater 2 73 %
0.47,

Moderate
75 %

Model 76 %
0.47,

Moderate
85 %

than each val-rater’s agreement with the initial review. This suggests that the

model has successfully learned the histological features of the CLE images that

are more probable to be noticed by the neurosurgeons when the corresponding

H & E-stained histological slides were also provided for reference.

To consider images from the val review set that the majority of raters agreed

on, that is one of the val-raters agreed on with the initial review, we used the

gold standard subset. The gap between the model-human and human-human

agreements became even more evident (19% for val-rater 1 and 9% for val-rater

2) with the gold standard subset (Table 3, column 4).

6. Conclusion and future work

This paper presents a deep CNN based approach that can automatically

detect the diagnostic CLE images from brain tumor surgery. We used a man-

ually annotated in-house dataset to train and test this approach. Our results

showed that both deep fine-tuning and creating an ensemble of models could

enhance the performance; but only their combination could reach the maximum

accuracy. The ensemble effect was stronger in DT and DFT than SFT devel-
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oped models. The proposed method was also able to localize some histological

features of diagnostic images. Ultimately, Table 3 indicates that the proposed

ensemble of deeply fine-tuned models could detect the diagnostic images with

a higher agreement than the trained human observers. Other confocal imaging

techniques may be aided by such deep learning models. Confocal reflectance

microscopy (CRM) has been studied [36] for rapid, fluorophore-free evaluation

of pitutary adenoma biopsy specimens ex vivo. CRM allows preserving the

biopsy tissue for future permanent analysis, immunohistochemical studies, and

molecular studies. Continued use of unsupervised image segmentation methods

to detect meaningful histological features from confocal brain tumor images will

likely allow for more rapid and detailed diagnosis.
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