

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/116478

Gregori Gregori, V.; Morillas, S.; Roig, B.; Sapena Piera, A. (2018). Fuzzy averaging filter for
impulse noise reduction in colour images with a correction step. Journal of Visual
Communication and Image Representation. 55:518-528. doi:10.1016/j.jvcir.2018.06.025

http://doi.org/10.1016/j.jvcir.2018.06.025

Elsevier

Fuzzy Averaging Filter For Impulse Noise Reduction In

Colour Images With A Correction Step

Valent́ın Gregoria, Samuel Morillasb, Bernardino Roiga, Almanzor Sapenaa

aInstituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat

Politècnica de València, Campus de Gandia, Spain
bInstituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de

València, Campus de Gandia, Spain

Abstract

In this paper we propose a fuzzy detection and reduction method for impulse

noise in colour images. Detection is based on the fuzzyfication of a well-known

statistic called ROD. The noise degrees obtained are used to reduce impulses

by employing a fuzzy averaging between the input colour vector and a robust

estimate of noise-free colour vector within the input neighbourhood. Fuzzy

averaging has some advantages in terms of both noise reduction and detail

preservation in front of detect and replace approaches because of threshold based

decisions of the latter. However, robustness of the former is lower. We solve

this problem by including a correction mechanism that checks the fuzzy noise

degree of the output and replaces it with a robust colour vector either when noise

has not been properly reduced or when a colour artefact has been introduced.

We carry out a thorough study of the method parameter setting and give a

convenient and robust setting. Experimental results show that our approach is

very robust in front of four different types of impulse noise.

Keywords: Color Image Filter, Correction Step, Fuzzy Filter, Impulse Noise

2010 MSC: 68U10, 94A08, 94D05

∗Corresponding author: smorillas@mat.upv.es

Preprint submitted to Journal of Visual Communication and Image RepresentationMay 30, 2018

1. Introduction

Recently, detect and replace approaches, also called switching filters, have

become the most popular techniques to reduce impulse noise in colour images

because of their simplicity, computational efficiency and high performance [1]-

[12]. The most advanced approaches in this family have evolved to a little5

less efficient methods that try to improve performance by adapting the local

region under processing [13, 14]. All these methods use a crisp threshold based

decision and their performance is critically influenced by the threshold setting.

Furthermore, as it is common in crisp methods, even in optimal setting the

decision may be inappropriate near the threshold: either because noise may not10

be detected or because small image details could be smoothed.

The use of a fuzzy approach can solve these drawbacks. Indeed, because

of fuzzy models capability to deal with uncertainty and nonlinearity in color

images, many fuzzy methods have been proposed in the literature either to

find robust filtering methods or in the detection and decision steps of switching15

methods [15, 16, 17]. But no fuzzy restoration step has been introduced for

impulse noise removal in color images. Only a few approaches for gray-scale

images have been published [18, 19, 20, 21, 22, 23] but no one has been properly

extended to colour images. [24] is a variant of the hard threshold method [25]

where the statistic used in the threshold condition is fuzzified and later uses20

two thresholds to replace the pixel, keep it as it is or perform an intermediate

operation. [26] is a component-wise application of a fuzzy median filter to colour

images but it is well known that this is not a good option for filtering colour

images.

Also, other important families of filters are the Total Variation filters [27, 28]25

and, in particular, the machine learning and deep learning approaches [29, 30,

31, 33]. Among the latter, we can find the use of deep convolution neural

networks (CNN) for image restoration in color images [29], the combination of

deep CNN and residual learning for Gaussian noise removal, the application of

semi-supervised learning on big image data for impulse noise removal in gray-30

2

scale images [13, 32], and a new strategy for building adaptive neuro-fuzzy

systems for impulse noise removal [33].

The advantage of the proposed fuzzy soft-switching filtering in front of crisp

switching approaches lies in two points: (i) The sensitivity of parameters setting

is lower than in crisp methods. We will see that for the method that we propose35

is pretty easy to find a general parameter setting able to appropriately process

any image contaminated with a variety of noise types and intensities; (ii) The

intensity of the reduction operation adapts to the pixel under processing char-

acteristics which makes the filter effective for different image noise types and

intensities and able to yield a high performance in many different situations.40

However, fuzzy averaging has a serious disadvantage which regards its ro-

bustness: since it combines different colour vectors which may belong to different

image regions, the result of the fuzzy averaging may be a colour which is dif-

ferent from both regions, generating a colour artefact or a less noisy pixel but

far from a noise-free one. This is the reason why gray-scale soft switching fil-45

ters have not been properly extended to colour. To solve this issue, we apply

a correction mechanism after obtaining the output from the fuzzy averaging: if

the noise degree of the output has not improved significantly with respect to

the input, we consider that it is because of the lack of robustness of the fuzzy

averaging and, consequently, we disregard the result and we replace the input50

with a robust estimate of noise-free colour vector in the neighbourhood of the

input.

The structure of the paper is as follows. In the following section we detail the

proposed filter: in Section 2.1 we describe the fuzzy noise detection based on the

fuzzyfication of ROD statistic [34]; in Section 2.2 we explain the restoration em-55

ploying fuzzy averaging between input and robust estimator of noise-free colour

vector; in Section 2.3 we propose the correction mechanism to solve the lack of

robustness of the averaging; computational complexity is studied in Section 2.4,

and parameter setting in Section 2.5. Section 3 shows the experimental results

and comparisons and Section 4 presents the conclusions.60

3

2. Fuzzy Averaging Filter

Denote by F a colour image to be processed, and let W be a sliding filtering

window, of size n× n (n = 3, 5, . . .), centered at the pixel F0 under processing.

The colour vectors in F are denoted as Fi = (FR
i , FG

i , FB
i), as usual in the

RGB colour space. The details of the proposed method that we call Corrected65

Fuzzy Averaging Filter (CFAF) are given in the following.

2.1. Noisiness of image pixels

First, we are interested in evaluating how noisy is F0. For this, we use

the noise detector in [34]. We assign a certainty degree δ(F0) for the vague

statement “F0 is noisy” as follows.70

We order the pixels Fi in a window W ′ centered at F0 that is also taken,

for simplicity, of size n × n in the way F(0),F(1), . . . ,F(n2−1) according to a

similarity measure ρ, so that ρ(F0,F(0)) ≤ ρ(F0,F(1)) ≤ · · · ≤ ρ(F0,F(n2−1)),

where obviously F(0) = F0. As the similarity measure ρ we use the metric L∞,

defined by

L∞(Fi,Fj) = max{|FR
i −FR

j |, |FG
i −FG

j |, |FB
i −FB

j |}, (1)

because it is specially appropriate to detect noise due to its high sensitivity to

differences between any of the pixels components.

Now, we consider the s+ 1 first pixels F(0),F(1), . . . ,F(s) and compute the

RODs statistic [34] for the pixel F0, as follows:

RODs(F0) =
s
∑

j=0

L∞(F0,F(j)). (2)

Notice that since F0 = F(0) then L∞(F0,F(0)) = 0 and RODs takes integer

values in the interval [0, 255 · s]: a low value of RODs(F0) means that the

selected s + 1 pixels F(j) in W ′ are close to F0 which in turn means that F075

is expected to be noise-free; on the other hand, higher values of RODs(F0)

indicate a higher noise degree for F0, since no close pixels are found.

4

Now, if we put x = RODs(F0) we define the certainty degree δ(F0) for the

vague statement “F0 is noisy” by

δ(F0) = f(x) =































0 x ≤ k1

x− k1
k2 − k1

k1 < x < k2

1 k2 ≤ x

, (3)

where the k1 and k2 parameters settings will be commented in 2.5.

Finally, we assign to each pixel Fi of F a certainty degree of the vague

statement “Fi is not noisy”. Representing the negation by the fuzzy involutive80

operator, it will be given by 1 − δ(Fi). The corresponding fuzzy sets, for both

vague statements f and 1− f , defined on [0, 255 · s], are shown in Figure 1.

Figure 1: Noise degree of a pixel Fi as a function f of ROD(Fi): In black, certainty degree
δ(Fi) of “Fi is noisy”; in red, certainty degree of “Fi is not noisy”.

2.2. Fuzzy averaging for noise reduction

Once the fuzzy noise degree of each pixel is computed, we aim to compute

a fuzzy averaging between F0 and a robust estimator of noise-free colour vector85

for the pixels in W . As robust estimator we use the Robust Vector Median Filter

proposed in [35] that has been found to outperform the classical Vector Median

Filter and whose output we denote by FRVMF.

So, the fuzzy averaging F0 is obtained as

F0 = (1− δ(F0))F0 + δ(F0)FRVMF (4)

5

This soft-switching allows the reduction operation to adapt to the pixel

under processing characteristics so that it can properly process pixels heavily90

corrupted with noise, noise pixels that are similar to the background where they

appear and also noise-like image features that are better preserved.

2.3. Correction step

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 2: Four examples of pixels F0 where correction on F0 is needed. (a),(e),(i),(m) show
the input 3 × 3 window W centered at F0; (b),(f),(j),(n) show the respective original color
(before adding noise) of the processed pixel; The color pixel F0 obtained in each case is shown
(c),(g),(k),(o), respectively, where we can see that it is not the result of a robust processing and
so it needs the correction step; (d),(h),(l),(p) show the corresponding result after applying the
correction step FCFAF. (a)-(d) corresponds to pixel (42,16) in Baboon detail image corrupted
by 30% of impulsive noise of type II, (e)-(h) to pixel (31,91) in Boats detail image corrupted by
20% of impulsive noise of type III, (i)-(l) to pixel (20,59) in Goldhill detail image corrupted by
30% of impulsive noise of type II, and (m)-(p) to pixel (25,34) in Lenna detail image corrupted
by 20% of impulsive noise of type I.

The problem with F0 is that it is obtained by averaging F0, and FRVMF,

which may belong to different image regions. Therefore, F0 may be different95

from both regions, generating a colour artefact, an inapropriate blur, or a less

noisy pixel but far from a noise-free one. That is, F0 is not the result of a robust

enough operation, as it is shown in Figure 2.

We propose to detect when F0 can be considered as the result of an inap-

propriate processing by checking on its noisy degree in comparison with that of

F0, as follows: If

δ(F0) > γδ(F0), (5)

we consider that the averaging operation has performed inappropriately because

6

of its lack of robustness and consequently we disregard F0 and assign as filter100

output FRVMF. The setting of γ is studied in Section 2.5. This constitutes the

last step of the Corrected Fuzzy Averaging Filter (CFAF).

This correction step, despite applied not many times in general, is necessary

given that robustness is a key feature in any denoising method. In Figure 2 we

show a few examples of the application of this correction step that illustrate its105

necessity.

2.4. Computational efficiency

The computation efficiency of vector filters is usually characterized in the

literature in terms of the number of vector distances computations needed to

process each image pixel. This is justified for the computation of vector distances110

being by far the most costly operation of those performed in the filtering process.

Roughly, state-of-the-art impulse noise filters can be classified into two main

classes in terms of the vector distances needed to process each pixel: (i) the

fastest methods are those that decide the filtering operation to be done over each

image pixel by computing just the distances from this pixel to its neighbours,115

such as [4] and some optimizations found in [3] and [5]. Thus, they save a lot of

computations when processing noise-free pixels given that the detection phase

is in general less complex than the correction phase where a robust estimation

of noise-free vector needs to be computed; (ii) on the contrary, the less efficient

methods are those which compute a robust estimation of a noise-free vector120

to decide the operation to apply over each pixel depending on robust vector

statistics, such as the methods in [1], [2], [10], or [27]. Our method lies in

efficiency with this latter group of filters.

In terms of distances computed, the CFAF first needs to compute n2 − 1

distances in Eq. (2). Then, if δ(F0) = 0 there is no further processing to be125

done, given that Eq. (4) would equal the identity operation and there is no need

to perform Eq. (5) since δ(F0) = δ(F0); otherwise, the RVMF output is needed

for Eq. (4) which means to compute n2

2 (n2 − 1) vector distances. But these

distances include the previous distances computed for Eq. (2) that we do not

7

need to compute again. Finally, for the correction step in Eq. (5) we need to130

compute δ(F0) which involves n2 − 1 extra distances. So, the overall number of

distances to be computed per pixel in the worst case is
(

n2

2 + 1
)

(n2−1). That is,

the computational order in terms of number of vector distances is proportional

to the square of the number of pixels in the filtering window O
(

(n2)2
)

.

Furthermore, we can detail the computational complexity of CFAF in terms135

of number of operations needed, in the worst case, to process each image pixel.

First, we have 5 operations per vector distance according to Eq. (1) implying

5
(

n2

2 + 1
)

(n2−1) operations due to vector distances. In addition, we have s−1

operations in Eq. (2) that we compute twice (δ(F0) and δ(F0)), 5 operations for

Eq. (3) in the worst case, 3 for Eq. (4) and 2 for Eq. (5). All this sums up to140

5
(

n2

2 + 1
)

(n2−1)+2s+8. On top of this we need to add all the extra operations

within RVMF (not due to vector distances) that include: additions (n2(n2−1)),

ordering operations (7n2 log2(n
2)), and similarity operations (5). Thus, the

overall number of operations needed in the whole filtering process per image

pixel is 5
(

n2

2 + 1
)

(n2 − 1) + n2(n2 − 1) + 7n2 log2(n
2) + 5, which implies that145

the computational order in terms of number of operations is also proportional

to the square of the number of pixels in the filtering window O
(

(n2)2
)

.

2.5. Adjustment of Parameters

To study the appropriate parameter setting for our method we have made

extensive experiments using the four training images in row 1 of Figure 3 con-150

taminated with different densities of four impulsive noise models [37] defined as

follows:

Let F = {FR, FG, FB} be the original pixel and let F∗ be the corrupted pixel

generated by the noise modelling process with noise appearance probability p.

Then, the different models of impulsive noise are described as follows:155

I. Fixed value impulsive noise.

8

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Set of images used in the experiments: First row are training images and second
are validation images.

All pixels in the colour image are modified following the next scheme:

F∗ =































{d1, FG, FB} with probability p · p1 ,

{FR, d2, FB} with probability p · p2 ,

{FR, FG, d3} with probability p · p3 ,

{d1, d2, d3} with probability p ·
(

1−
∑3

i=1 pi

)

.

(6)

where d1, d2, d3 are independent and take the values 0 or 255 with the

same probability, and pi for i = 1, 2, 3 determines the probability of noise

appearance in the image channels.

II. Correlated random value impulsive noise.160

F∗ = {d1, d2, d3} with probability p, where d1, d2, d3 are random integer

values uniformly distributed in the interval [0, 255].

III. Uncorrelated random value impulsive noise.

All pixels in the colour image are modified following the next scheme:

F∗ = {F ∗
R, F

∗
G, F

∗
B} (7)

9

where

F ∗
R =







dR with probability pR

FR with probability 1− pR

F ∗
G =







dG with probability pG

FG with probability 1− pG

F ∗
B =







dB with probability pB

FB with probability 1− pB

where dR, dG and dB are random integer values in the interval [0, 255] and

pR, pG and pB determine the probability of noise appearance in the red,165

green and blue channel, respectively. For simplicity we assume pR = pG =

pB = p.

IV. α-stable distribution

An α-stable distribution can also be used to model impulsive noise [38]. A

symmetric α-stable (SαS) random variable is only described by its char-

acteristic function

ϕ(t) = e(jθt−γ|t|α)

where j ∈ C is the imaginary unit, θ ∈ R is the location parameter

(centrality), γ ∈ R is the dispersion of the distribution and α ∈ (0, 2],170

which controls the heaviness of the tails, is a parameter that controls the

degree of impulsiveness so that impulsiveness increases as α decreases.

The Gaussian (α=2) and the Cauchy (α=1) distributions are the only

symmetric α-stable distributions that have closed-form probability density

functions.175

We have used these noise models to contaminate the training images in row 1

of Figure 3. Images in row 2 of Figure 3 are used for validation and comparison

with other methods in the next section. We have considered different intensities

of noise in the image. For types I, II and III we have considered noise probability

equal to 0.1, 0.2, and 0.3. For noise type IV we set α equal to 0.7, 0.6 and 0.5.180

We have focused in these low to middle densities of noise for being the range

10

of the most common densities used in the literature. It should be pointed out

that for noise type III the probability p is referred for the noise to appear

independently in each channel, what makes the global noise level being quite

higher. Despite it is also interesting to study higher densities of contaminating185

noise, the technique described in this paper and those used in the experimental

comparison are not specifically designed for such purpose.

For the filtering assessment we have used the objective quality measures

MAE, PSNR, and DISk (defined from CMSSIM [39]) to objectively compare

the performance of a selected group of filters. These measures are defined as190

follows [37]:

• MAE (Mean Absolute Error):

MAE = 1
NMQ

N
∑

i=1

M
∑

j=1

Q
∑

q=1

∣

∣

∣
F q (i, j)− F̂ q(i, j)

∣

∣

∣
(8)

where M and N are the image dimensions, Q is the channel number of

the image (Q = 3 for colour images) and F q(i, j) and F̂ q(i, j) denote the

q-th component of a vector in the original image for the pixel situated in

position (i, j) in the image, respectively.195

• PSNR (Peak Signal to Noise Ratio):

PSNR = 20 log

(

(2k − 1)/

√

N
∑

i=1

M
∑

j=1

Q
∑

q=1

(F q(i,j)−F̂ q(i,j))2

NMQ

)

(9)

where we took k = 8 which corresponds with the 8 bits per channel case.

• CMSSIM (Color Multiscale Structural Similarity index): The images are

divided into different patches of varying size (different scales) and the

global similarity is obtained as

CMSSIM = (Clr(x, y))δ(lM (x, y))αM

M
∏

(Ci(x, y))
βi · (Si(x, y))

γi (10)

where Clr is a colour similarity factor, lM is the luminance factor, contrast

11

Table 1: Mean and standard deviation (as subindex) of performance of proposed method in
its one-step version for different values of s in terms of MAE, PSNR and DISk for the training
images and the four noise types considered.

Noise type I
s p = 10% p = 20% p = 30%

MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

2 1.000.6 34.43.2 1.710.6 2.111.0 29.72.1 4.890.6 3.381.2 26.31.2 1.180.1
3 1.100.8 35.24.2 1.190.7 2.131.2 31.33.2 3.061.0 3.151.4 29.12.5 0.670.1

4 1.261.0 34.74.5 1.040.6 2.331.5 31.23.5 2.851.1 3.361.7 29.32.9 0.550.1

5 1.501.3 34.04.7 1.020.7 2.621.7 30.83.6 2.981.4 3.752.0 28.93.0 0.530.1
6 1.831.6 33.24.7 1.060.7 3.082.1 30.23.6 3.181.5 4.322.3 28.53.1 0.550.2

Noise type II
s p = 10% p = 20% p = 30%

MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

2 1.080.6 34.63.2 0.590.4 2.240.9 30.82.3 2.240.8 3.881.4 27.52.0 0.780.2

3 1.190.8 34.53.9 0.660.6 2.351.1 30.82.7 2.130.9 4.061.6 27.32.1 0.820.2
4 1.361.0 34.04.3 0.720.6 2.581.3 30.62.9 2.491.1 4.442.0 27.02.2 0.930.3
5 1.601.3 33.44.4 0.780.7 2.921.6 30.03.0 3.061.5 4.962.3 26.62.3 1.080.3
6 1.951.6 32.54.4 1.090.8 3.472.0 29.33.1 3.991.8 5.682.6 26.22.4 1.300.4

Noise type III
s p = 10% p = 20% p = 30%

MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

2 2.511.0 29.92.0 5.962.0 5.061.5 25.91.3 20.12.3 8.062.0 23.11.3 3.840.4
3 2.571.2 30.42.7 4.281.9 4.991.8 26.92.1 15.63.1 7.892.4 23.91.7 3.380.6

4 2.751.5 30.43.0 3.751.9 5.192.1 26.92.3 14.63.8 8.112.6 23.91.9 3.330.7

5 3.011.8 30.23.3 3.622.0 5.532.4 26.82.5 15.04.4 8.432.9 23.91.9 3.380.7
6 3.392.1 29.83.5 3.862.4 5.992.7 26.62.5 15.75.0 8.793.0 23.82.0 3.450.8

Noise type IV
s p = 10% p = 20% p = 30%

MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

2 4.250.8 29.11.7 9.551.3 4.991.0 28.01.7 13.42.3 6.051.3 26.51.4 1.970.1
3 4.311.1 29.32.1 8.631.1 5.021.3 28.32.1 11.82.5 5.971.6 27.22.0 1.610.1

4 4.431.2 29.32.4 7.941.0 5.131.5 28.42.3 11.02.5 6.071.8 27.42.3 1.470.1

5 4.611.6 29.22.7 7.651.1 5.311.8 28.32.6 10.62.9 6.252.1 27.32.5 1.420.2
6 4.841.9 29.03.0 7.521.5 5.542.1 28.22.8 10.23.0 6.462.4 27.22.7 1.400.2

and structure similarity of scale i are Ci and Si, respectively, and β1 =

γ1 = 0.04448; β2 = γ2 = 0.2856; β3 = γ3 = 0.3001; β4 = γ4 = 0.2363;

α5 = β5 = γ5 = 0.1333, and δ = 0.7. CMSSIM takes values in the interval

[0, 1]. To better observe the performance differences we will use the value

of DIS defined as

DISk = (1− CMSSIM) · 10k.

First we deal with the adjustment of the parameter s which is the most

important one in terms of influence in performance. To set this parameter we

12

could choose between a fixed setting or an adaptive setting. Fixed setting is

easier to find but adaptive setting should yield better results. However, the200

s parameter can only take integer values so changing its value makes a kind

of crisp switching in the filter behaviour. This makes that it is not easy to

decide when to modify the value of s. Also, the switching would affect the other

parameters in the method that should be adjusted again. Therefore, we think

that it is more practical to find a fixed value for s, which is the strategy followed205

by other filtering methods like [34, 36]. In these works it has been studied that

the setting of s is related to robustness and detail preservation. A lower value is

better for preserving details while a higher value makes the filter more robust.

In Table 1 we show the filter performance for different values of s while

fixing the rest of the parameters to suboptimal values. We can see that the best210

performance results are achieved for s = 3 and s = 4, for noise types I, III and

IV. The former is a little better for low noise and the latter for high noise. For

noise type II a lower value of s works better due to the much lower probability

of clusters of noise appearing for this noise type. Thus, from a numerical value

point of view, both settings s = 3 and s = 4 are reasonable, but we know that215

s = 4 is associated to a more robust performance, therefore, we choose to use

this setting in general.

We also consider for our method a two-step version that according to [10, 9]

can improve significantly the performance of the one-step version when clusters

of noisy pixels appear in the images. In this version, named from now on CFAF2,220

the first step should use a parameter setting to remove only isolated noise pixels

and the second one to remove clusters of noise. We have studied how to set the

filter parameter s for the two steps (s1, s2). In Table 2 we show the performance

for different couples of s1, s2. We can see that there is a higher variability on the

setting achieving the optimum in each case. Again, for noise type II lower values225

of s1, s2 are preferred. In general, the difference in performance is not much.

Following the same reasoning as for setting s in the one-step version, we set

s1, s2 to the most robust case of the options achieving best overall performance,

which now is s1 = 4, s2 = 6 (similar results are obtained for s1 = 3, s2 = 6).

13

Table 2: Mean and standard deviation (as subindex) of performance of proposed method in
its two-steps version for different values of s1, s2 in terms of MAE, PSNR and DISk for the
training images and the four noise types considered.

Noise type I
s1, s2 p = 10% p = 20% p = 30%

MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

2, 4 1.050.7 34.43.4 1.450.5 2.141.0 29.82.1 4.430.6 3.361.2 26.51.2 1.060.1
2, 5 1.070.7 34.33.6 1.400.5 2.161.1 29.82.2 4.290.7 3.371.2 26.51.2 1.030.1
3, 5 1.170.9 34.94.3 1.080.7 2.181.3 31.53.3 2.841.0 3.161.5 29.42.6 0.570.1
3, 6 1.220.9 34.74.3 1.030.7 2.221.3 31.43.4 2.781.1 3.171.5 29.42.7 0.540.1

4, 6 1.391.1 34.34.5 1.040.8 2.391.5 31.43.7 2.641.3 3.371.7 29.83.2 0.470.1

4, 7 1.461.2 33.94.5 1.060.8 2.451.6 31.33.8 2.651.4 3.411.8 29.73.2 0.450.1
Noise type II

s1, s2 p = 10% p = 20% p = 30%
MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

2, 4 1.120.6 34.73.4 0.580.4 2.230.9 31.22.6 1.790.8 3.671.5 28.72.5 0.570.2

2, 5 1.140.7 34.63.6 0.600.4 2.241.0 31.22.6 1.700.8 3.661.5 28.72.5 0.540.2
3, 5 1.260.8 34.43.9 0.650.6 2.381.2 31.12.9 1.791.1 3.841.7 28.62.6 0.570.3
3, 6 1.300.9 34.34.1 0.660.6 2.421.2 31.13.0 1.781.1 3.861.7 28.72.7 0.560.3
4, 6 1.471.1 33.84.3 0.680.7 2.631.4 30.73.1 2.131.2 4.192.0 28.32.8 0.640.3
4, 7 1.551.2 33.54.4 0.710.7 2.691.4 30.63.2 2.121.2 4.222.1 28.32.8 0.620.3

Noise type III
s1, s2 p = 10% p = 20% p = 30%

MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

2, 4 2.521.0 30.22.2 4.831.6 4.931.5 26.51.5 17.12.3 7.512.0 24.21.5 3.270.4
2, 5 2.531.0 30.22.3 4.511.5 4.921.6 26.61.6 16.42.3 7.432.0 24.41.5 3.170.4
3, 5 2.621.3 30.62.8 3.651.8 4.881.8 27.52.3 12.73.1 7.272.3 25.32.0 2.720.6
3, 6 2.661.3 30.62.9 3.481.8 4.891.9 27.62.4 12.23.1 7.232.3 25.42.0 2.660.6

4, 6 2.811.5 30.53.1 3.221.9 5.082.1 27.62.6 11.63.2 7.422.6 25.52.2 2.590.7

4, 7 2.881.6 30.53.2 3.111.9 5.102.2 27.62.6 11.43.2 7.402.6 25.62.3 2.540.7
Noise type IV

s1, s2 p = 10% p = 20% p = 30%
MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

2, 4 4.270.9 29.21.9 9.131.1 4.981.0 28.21.7 12.52.2 6.01.3 26.81.5 1.810.1
2, 5 4.291.0 29.31.9 8.881.0 5.001.1 28.31.8 12.12.0 6.01.4 26.81.6 1.750.1
3, 5 4.361.1 29.42.2 8.181.0 5.051.3 28.52.1 11.22.3 6.01.6 27.42.1 1.500.1
3, 6 4.401.2 29.32.3 8.000.9 5.071.4 28.52.2 10.92.2 6.01.6 27.52.1 1.450.1

4, 6 4.531.4 29.22.5 7.800.9 5.181.6 28.52.4 10.62.4 6.11.9 27.52.4 1.380.1

4, 7 4.601.4 29.22.6 7.690.9 5.221.6 28.42.4 10.42.4 6.101.9 27.52.4 1.350.2

Next, once fixed the setting for s, we deal with the setting of the parameters230

k1, k2, γ. We address this task from two points of view: On the one hand,

through extensive experimentation, we find a robust setting of the parameters

able to provide a good overall performance. On the other hand, we study how to

set the parameters adaptively to the density and type of the noise contaminating

the images in each case.235

In particular, we first compute the terns (k1, k2, γ) that optimize each of

the measures for each type and density of noise and for each of the images in

14

Table 3: Regression lines of the parameters for the training images and the four noise types
considered.

Regression lines for Noise type I: Regression lines for Noise type II:
k1 = (0.1215 + (−0.0938)·p)·255·s k1 = (0.1271 + (0.0208)·p)·255·s
k2 = (0.2333 + (−0.0625)·p)·255·s k2 = (0.2236 + (−0.0000)·p)·255·s
γ = 1.1875 + (−0.3542)·p γ = 1.1472 + (−0.2708)·p
Regression lines for Noise type III: Regression lines for Noise type IV:
k1 = (0.0882 + (−0.0052)·p)·255·s k1 = (0.0531 + (−0.0573)·α)·255·s
k2 = (0.1826 + (0.0729)·p)·255·s k2 = (0.2160 + (−0.0521)·α)·255·s
γ = 1.2431 + (−0.7292)·p γ = 1.2486 + (0.0625)·α

the training set. That is 3 · 3 · 4 · 4 = 144 terns. From them, and giving more

importance to those optimizing the higher densities of noise to obtain a robust

performance, we select the general robust setting

k1 = 0.1 · 255 · s, k2 = 0.2 · 255 · s, γ = 1.2. (11)

For the adaptive setting we also use the 144 terns computed above but now

we find a regression line using the least squares method to relate each parameter

to the density of contaminating noise for each one of the 4 types of noise. Thus,

we obtain the 12 regression lines in Table 3 where p, α are the densities of

contaminating noise. Through them, we can set the appropriate parameters in240

each case. It is interesting to note that the slope of each line is quite small,

meaning that constant setting of the parameter should not be a bad choice.

The comparison between the two alternatives considered for setting k1, k2, γ

is shown in Table 4. Here we can see that there is not a clear upside yielded by

the regression-based setting with respect to the robust setting. In particular,245

despite the robust setting is not picked to perform better for low noise densities

it is in these cases where it works significantly better than the regression-based

setting. Probably this is due to a worse fit of the regression lines for low noise.

For higher noise densities, the regression-based setting does not always perform

better and the improvement when it does is very small. Furthermore, using the250

regression-based setting adds the problem of having to estimate the values of p

and α which are in general unknown. Therefore, we conclude that it is more

15

Table 4: Mean and standard deviation of performance of proposed method using the robust
setting (Rob.) vs the regression-based (Reg.) setting for k1, k2, γ in terms of MAE, PSNR
and DISk for the training images and the four noise types considered.

Noise type I
Param. p = 10% p = 20% p = 30%
setting MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

Reg. 1.691.6 32.74.8 1.260.8 2.21.3 31.33.4 3.051.1 3.361.6 29.32.8 0.560.1
Rob. 1.261.0 34.74.5 1.040.6 2.31.4 31.23.5 2.851.1 3.361.6 29.32.9 0.550.1

Noise type II
Param. p = 10% p = 20% p = 30%
setting MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

Reg. 1.481.2 32.94.5 0.810.7 2.361.0 30.72.6 2.390.9 4.161.6 27.12.0 0.880.2
Rob. 1.361.0 34.04.2 0.720.6 2.581.3 30.52.9 2.491.1 4.441.9 27.02.2 0.930.2

Noise type III
Param. p = 10% p = 20% p = 30%
setting MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

Reg. 3.792.6 29.03.7 3.952.9 5.272.2 27.02.4 14.373.9 8.162.6 23.91.9 3.320.7
Rob. 2.751.5 30.43.0 3.751.9 5.192.1 27.02.3 14.613.8 8.112.6 23.91.8 3.330.7

Noise type IV
Param. p = 10% p = 20% p = 30%
setting MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

Reg. 6.243.2 28.13.4 7.024.0 5.271.9 28.92.8 9.22.9 6.162.2 27.82.7 1.280.2
Rob. 4.431.3 29.32.5 7.941.0 5.131.5 28.42.4 11.02.6 6.071.9 27.42.3 1.470.1

practical to use the robust setting.

3. Experimental Study

In this section we validate and compare the performance of the CFAF. For255

this, we use the validation image set in row 2 of Figure 3. These images are

contaminated with the different noise types and densities considered in Section

2.5 and filtered with the CFAF and a set of recent representative filters from

the different families which are shown in Table 5 [37]. It should be noted that

method in [29] is just a restoration method that needs a crisp previous noise260

detection for which we use the FPGF method in [4]. In all cases we have used

a 3× 3 filtering window since larger filtering windows do not provide significant

relative performance differences among the considered methods. Also, for all

filters we consider the application of one filtering step and two recursive filtering

steps, as for our method. The parameter setting suggested for each method in265

the corresponding work is used for practical reasons. The experimental results

for the comparison are shown in Tables 5-8.

16

Table 5: Filters used in the comparisons.

Filter Name / Reference Short Name

Fast Peer Group Filter [4] FPGF

Sigma Vector Median Filter [2] SVMF

Impulse Noise Reduction [10] INR

Local Self-Adaptive Fuzzy
Magnitude Impulse Vector Filter

[11] LSAFSVF

Iterative Peer Group Switching Vector Filter [9] IPGSVF

Fuzzy ROD Filter [3] FRF

Quaternion Representation Vector Filter [6] QRVF

Simple Fuzzy Rule Filter [16] SFRF

Fuzzy Decision Filter [24] FDF

L0TV: Image Restoration in the Presence of Impulse Noise [27] L0TV

Learning Deep CNN Denoiser [29] LDCNND

For noise type I (Table 5) we can see that the CFAF is among the best

performing methods along with IPGSVF, INR, L0TV, and LDCNND. L0TV

performs specially well in this type of noise given that it is specifically designed270

for salt and pepper noise. However, it shows a much higher standard deviation

of performance, meaning that it is not as robust as the rest. This may be due

to componentwise application of the method in the three color channels, that

can lead to undesired results. The proposed method is specially good in terms

of the DIS measure, where in general it outperforms the rest.275

In the case of noise type II (Table 6) the leading methods are FPGF,

IPGSVF, FRF, LDCNND and CFAF, which is again specially good in terms

of DIS. However, CFAF performs a little worse in comparison to noise type I,

probably because of the parameter setting used that, as commented in Section

2.5, is not optimal for this type of noise. We can see here the performance280

improvement achieved for LDCNND in front of FPGF (notice that they have

the same detection mechanism and different restoration step). FPGF is very

good at detecting this type of noise, as well as FRF and IPGSVF, because this

type of noise is less likely to generate noise clusters. CFAF parameter setting is

set to be robust in front of noise clusters so the detail preservation in this type285

of noise is lower and its performance drops a bit. Moreover, notice that L0TV

and LDCNND show a lack of robustness illustrated by the higher standard de-

17

viation of their performances. For L0TV this can be explained again by the

componentwise application of the method in the color channels. For LDCNND

the high variability in performance may be related to images matching better290

or worse the characteristics of the dataset with which LDCNND was trained.

In the case of noise type III (Table 7) we need to take into account that

noise is introduced independently in the color channels. This is interesting

because this type of noise represents a higher contamination degree for the

probability of noise appearance being applied separately in each channel. Here,295

best performance is achieved by L0TV, which is now taking advantage of its

componentwise application in the color channels. Given that this noise type has

a componentwise nature, L0TV can detect and correct it better by processing

the channels separately. However, it also shows a higher standard deviation than

the rest, meaning that there are cases where the performance drops which may300

be due to generation of color artefacts in the componentwise restoration of the

image. CFAF and INR are the next methods in performance. INR processes the

images taking account correlation between pairs of channels, which is better in

this case because it is very likely that one channel is corrupted and the other two

are not. CFAF yields a performance similar to INR due to its robust parameter305

setting ant its flexible fuzzy processing of the image. This means that CFAF

performance on higher noise density levels is good, as well.

Finally, noise type IV (Table 8) CFAF is the best performing method with

INR. This type of noise is not a pure impulse model but has also some high

frequency contamination component. Thus, crisp switching methods tend to310

perform worse for this noise and soft switching methods as INR and CFAF are

preferred. This means that CFAF is able to yield a good performance in mixed

noise scenarios.

As a consequence, our method provides a very solid performance both nu-

merically and visually, as it is shown in Figures 4-5. CFAF is robust in all noise315

types and densities and it is the only filter that is always in the group of best

performing filters for the four noise types. This is due to the flexibility provided

by the fuzzy design that allows the filter to adapt performance in different noise

18

contexts as well as for the correction step that makes sure the method is always

robust. The bottleneck of the method is that the noise detection accuracy criti-320

cally depends on the parameter s. So, when the setting is not good, as happens

for noise type II, the performance is affected significantly. However, given that

it is a soft switching method this is not as critical as for crisp switching methods

like FPGF, FRF, or IPGSVF. Finally, it must be stressed that CFAF is a pure

vector filtering method so it inherits the strengths and weakness of this family325

of vector filters: vector filters provide a simple an efficient way to process mul-

tichannel images taking into account the correlation among the image channels

but this correlation is modeled in an inflexible, rigid, way, which constitutes the

main limitation of this approach.

Table 6: Mean value and standard deviation (as subindex) of performance over validation
images using noise type I.

Filter p = 10% p = 20% p = 30%
MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

FPGF 1.010.2 31.71.6 1.640.6 2.190.3 28.51.1 5.061.0 3.620.3 26.41.0 0.960.3
SVMF 4.910.4 19.40.4 6.250.2 9.830.4 16.50.1 9.080.3 15.00.6 14.50.2 7.280.3
INR 0.800.3 32.51.7 0.910.1 1.440.3 28.91.0 4.630.1 2.490.2 25.20.5 0.870.1

LSAFSVF 1.200.2 30.81.6 0.930.1 2.150.3 28.61.2 5.510.2 3.280.2 26.40.9 0.900.2
IPGSVF 0.980.2 31.11.5 0.930.2 1.770.3 29.71.5 2.830.2 2.670.3 28.21.6 0.970.2

FRF 1.000.2 31.81.4 0.910.1 2.120.3 28.71.0 3.700.1 3.750.7 25.90.9 0.940.1
QRVF 4.910.4 19.40.4 6.250.2 9.830.4 16.50.1 9.050.3 15.00.6 14.50.2 7.270.3
SFRF 10.31.2 23.91.0 3.570.3 13.00.5 22.20.4 9.730.5 15.90.6 20.80.4 6.920.3
FDF 4.870.4 19.50.4 4.270.2 9.750.4 16.50.1 6.080.3 14.90.5 14.60.2 7.290.3
L0TV 0.910.3 32.62.8 4.411.7 1.350.4 30.92.4 7.021.3 1.800.4 29.82.2 0.930.6

LDCNND 1.500.2 32.81.9 2.341.0 2.290.3 29.71.5 5.121.8 3.660.5 27.31.1 0.730.5

CFAF 1.070.2 32.32.1 0.750.4 2.030.3 30.01.7 2.611.4 3.120.3 27.81.2 0.480.2

FPGF2 1.020.3 31.71.8 1.310.5 2.160.4 28.91.1 3.821.1 3.660.4 26.71.0 0.900.1
SVMF2 4.910.4 19.40.4 3.750.2 9.830.4 16.50.1 6.110.3 15.00.6 14.50.2 7.220.3
INR2 1.340.7 31.12.1 0.800.4 1.760.7 29.71.9 1.641.0 2.210.6 28.81.9 0.260.1

LSAFSVF2 1.320.3 30.41.6 1.650.5 2.220.3 28.61.2 4.241.8 3.250.3 27.00.9 0.690.2
IPGSVF2 0.980.2 31.11.7 1.671.1 1.760.3 29.81.5 2.171.9 2.670.3 28.31.7 0.250.2

FRF2 1.000.2 31.81.5 0.900.1 2.120.3 28.81.1 2.830.9 3.720.7 26.00.9 0.490.1
QRVF2 4.910.4 19.40.4 3.751.6 9.830.4 16.50.1 8.160.3 15.00.6 14.50.1 7.220.3
SFRF2 10.41.9 24.31.3 3.230.5 12.21.2 23.10.7 7.430.6 14.31.4 21.80.5 6.590.3
FDF2 4.870.4 19.50.4 3.730.2 9.750.4 16.50.1 6.170.3 14.90.5 14.60.1 7.210.3
L0TV2 0.970.3 32.32.8 4.291.6 1.420.4 30.72.4 6.622.6 1.800.4 29.92.2 0.890.3

LDCNND2 1.750.3 33.22.2 2.431.1 2.480.4 30.61.7 4.512.5 3.840.5 27.61.1 0.710.5

CFAF2 1.250.3 31.81.9 0.800.5 2.160.4 29.81.5 2.211.3 3.120.3 28.11.3 0.380.2

4. Conclusions330

In this paper we have introduced a fuzzy detection and reduction method

to remove impulse noise from colour images. The method is based on obtaining

fuzzy noise-free degrees of the input colour vectors and use them to reduce

19

Figure 4: From left to right, noisy image, and images filtered by INR2, QRVF, IPGSVF, FRF,
CFAF and CFAF2 for the Baboon image corrupted by 10% of impulsive noise model I in the
first and second row. From left to right, noisy image, and images filtered by INR2, QRVF,
RWVMF, IPGSVF, CFAF and CFAF2 for the Boats image corrupted by 20% of impulsive
noise model III in the third and fourth row.

20

Figure 5: From left to right, noisy image, and images filtered by INR2, SFRF, RWVMF,
QRVF, CFAF and CFAF2 filters for the Goldhill image corrupted by impulsive noise model
IV with α = 0.7 in the first and second row. From left to right, noisy image, and images filtered
by FRF, IPGSVF, QRVF, FPGF, CFAF and CFAF2 filters for the Lenna image corrupted
by 30% of impulsive noise model II in the third and fourth row.

21

Table 7: Mean value and standard deviation (as subindex) of performance over validation
images using noise type II.

Filter p = 10% p = 20% p = 30%
MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

FPGF 1.110.2 31.71.2 0.610.2 2.270.4 29.11.5 1.630.7 4.050.6 26.81.0 0.420.1

SVMF 7.210.4 19.10.6 9.820.4 14.50.3 16.10.3 6.620.5 22.10.8 14.20.5 2.430.4
INR 1.540.4 30.41.3 0.960.1 3.190.6 26.61.2 4.450.3 5.340.3 23.80.2 0.850.2

LSAFSVF 1.330.3 30.61.4 0.990.1 2.470.3 28.11.3 3.810.1 4.100.4 25.50.8 0.940.1
IPGSVF 1.180.1 31.11.1 0.990.1 2.370.3 28.41.6 1.940.1 3.770.3 26.30.6 0.970.1

FRF 1.020.1 32.41.2 0.960.1 2.220.3 28.91.3 1.800.1 3.730.6 26.41.2 0.980.1

QRVF 7.210.4 19.10.6 5.810.5 14.50.3 16.10.3 6.670.5 22.10.8 14.20.5 7.570.4
SFRF 11.31.5 23.61.1 4.210.9 15.60.9 21.10.5 6.490.7 19.71.7 19.40.6 7.490.6
FDF 7.140.4 19.10.6 5.850.4 14.40.3 16.20.3 9.660.5 21.90.8 14.30.5 2.460.4
L0TV 1.830.4 29.52.3 6.780.3 3.290.8 27.12.2 4.340.4 4.760.9 25.51.9 1.900.5

LDCNND 1.460.3 33.52.1 1.000.4 2.220.4 30.92.2 1.630.7 3.790.6 27.31.4 0.280.2

CFAF 1.270.2 31.71.2 0.600.1 2.630.5 28.61.4 2.710.8 4.380.6 25.80.8 0.720.3

FPGF2 1.210.2 31.61.4 0.610.2 2.280.4 29.11.5 1.530.7 4.160.6 26.51.0 0.420.2

SVMF2 7.210.4 19.10.6 5.820.4 14.50.3 16.10.3 6.640.5 22.10.8 14.30.5 2.430.4
INR2 1.990.7 29.71.7 0.920.1 3.240.8 27.51.7 5.760.2 4.630.8 25.81.2 0.950.2

LSAFSVF2 1.420.3 30.41.4 0.930.1 2.460.4 28.41.5 3.820.1 3.850.5 26.21.1 0.970.1
IPGSVF2 1.180.1 31.21.1 0.930.1 2.350.4 28.61.7 1.940.1 3.640.3 26.90.9 0.980.1

FRF2 1.020.1 32.31.1 0.960.1 2.220.3 29.01.3 9.900.1 3.730.7 26.41.2 0.980.1

QRVF2 7.210.5 19.10.6 4.190.4 14.50.3 16.10.3 6.410.5 22.10.8 14.20.5 7.570.4
SFRF2 11.51.8 23.71.1 3.981.1 15.11.9 21.71.0 6.170.8 18.62.3 20.20.8 7.270.7
FDF2 7.140.4 19.20.5 5.850.4 14.40.3 16.10.3 3.680.5 21.90.8 14.30.5 2.460.4
L0TV2 1.880.5 29.52.4 6.490.3 3.330.8 27.12.3 1.360.4 4.700.9 25.72.0 1.780.5

LDCNND2 1.710.4 33.62.1 1.310.6 2.430.5 31.02.3 1.840.9 3.990.7 27.31.4 0.320.2

CFAF2 1.420.3 31.51.1 0.580.1 2.700.5 28.81.4 2.201.0 4.300.7 26.31.0 0.520.2

noise by means of a fuzzy averaging. Later, a correction step is used to solve

a lack of robustness of the averaging. We have thoroughly studied the setting335

of the method parameters and propose a setting that is very convenient to use

in the practice as well as robust. The main advantage of our method in front

of popular detect and replace approaches is that it does not use any threshold

based decision. This makes that it is very flexible and can process properly

different types and densities of impulse noise. Experimental results show that,340

unlike other filters in the state-of-the-art, our approach is always in the group

of best performing filters for different noise types and densities.

References

[1] Lukac, R.: Adaptive vector median filtering. Pattern Recogn. Lett. 24

(12), 1889-1899 (2003)345

[2] Lukac, R., Smolka, B., Plataniotis, K.N., Venetsanopoulos, A.N.: Vector

sigma filters for noise detection and removal in color images. J. Vis. Com-

mun. Image R. 17 (1), 1-26 (2006)

22

Table 8: Mean value and standard deviation (as subindex) of performance over validation
images using noise type III.

Filter p = 10% p = 20% p = 30%
MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

FPGF 2.830.4 28.20.6 5.731.2 5.480.4 24.70.6 19.23.0 9.061.0 22.30.8 3.380.4
SVMF 7.340.1 19.00.3 9.441.4 14.50.2 16.00.3 73.14.8 21.80.3 14.30.3 8.160.4
INR 1.550.3 30.91.2 3.380.5 3.240.4 27.10.9 12.34.4 5.980.6 23.40.8 3.050.4

LSAFSVF 2.910.2 27.30.8 0.890.3 5.470.1 24.30.3 22.12.6 8.780.45 21.40.6 4.100.3
IPGSVF 3.030.2 26.40.6 5.190.8 5.050.3 25.00.5 16.31.6 7.80.71 23.10.8 2.680.5
FRF 2.670.2 27.90.6 9.361.4 5.330.5 24.80.7 12.71.3 9.641.2 21.31.0 2.690.3
QRVF 7.340.1 19.00.3 9.441.4 14.50.2 16.10.3 73.14.8 21.80.3 14.30.3 8.160.4
SFRF 11.21.4 23.70.9 9.071.5 15.61.3 21.30.6 69.86.1 19.71.5 19.40.6 7.860.5
FDF 7.290.1 19.10.3 5.430.4 14.40.2 16.10.3 73.24.8 21.70.3 14.30.3 8.150.4
L0TV 1.900.4 29.42.4 9.282.0 3.120.5 27.51.9 15.26.0 4.820.9 25.41.8 2.440.7

LDCNND 3.240.2 28.60.7 8.381.4 5.160.4 25.80.7 16.63.9 8.040.8 24.10.8 2.240.4

CFAF 2.490.3 29.61.1 3.140.6 4.820.4 26.50.7 12.04.9 7.840.8 23.50.8 2.950.6

FPGF2 2.800.3 28.30.9 5.791.1 5.510.5 25.20.8 15.62.8 9.050.9 22.60.8 3.530.4
SVMF2 7.340.1 19.00.3 9.441.4 14.50.2 16.10.3 73.14.8 21.80.3 14.30.3 8.160.4
INR2 1.970.7 30.31.9 1.950.7 3.230.6 28.21.4 06.02.4 4.960.7 26.11.2 1.460.4

LSAFSVF2 2.910.2 27.60.8 0.710.6 5.110.2 25.20.6 15.93.2 7.770.5 22.90.7 3.010.3
IPGSVF2 3.020.2 26.40.6 3.170.3 4.980.3 25.20.5 14.70.9 7.440.7 23.90.9 2.020.3
FRF2 2.630.2 28.20.6 9.620.3 5.210.6 25.11.0 11.21.8 9.001.2 22.21.2 2.140.2
QRVF2 7.340.1 19.00.3 9.440.4 14.50.2 16.10.3 73.14.8 21.80.3 14.30.3 8.160.4
SFRF2 11.61.7 23.81.1 8.680.7 15.22.1 21.71.0 66.97.5 18.72.4 20.20.9 7.620.6
FDF2 7.290.1 19.10.3 9.430.4 14.40.2 16.10.3 73.24.8 21.70.3 14.30.3 8.150.4
L0TV2 1.950.5 29.42.4 9.003.8 3.110.5 27.62.0 15.15.3 4.731.0 25.62.0 2.300.7

LDCNND2 3.530.3 29.41.0 7.381.7 5.270.5 26.70.9 15.04.6 8.160.8 24.20.9 2.220.5

CFAF2 2.610.4 29.61.1 2.790.7 4.730.4 27.10.7 09.33.9 7.320.7 24.60.8 2.330.6

[3] Camarena, J.G., Gregori, V., Morillas, S., Sapena, A.: Two-step fuzzy

logic-based method for impulse noise detection in colour images. Pattern350

Recogn. Lett. 31 (13), 1842-1849 (2010)

[4] Smolka, B., Chydzinski, A.: Fast detection and impulsive noise removal in

color images. Real-Time Imaging. 11 (5-6), 389-402 (2005)

[5] Camarena, J.G., Gregori, V., Morillas, S., Sapena, A.: Some improvements

for image filtering using peer group techniques. Image Vis. Comput. 28 (1),355

188-201 (2010)

[6] Jin, L., Liu, H., Xu, X., Song E.: Color impulsive noise removal based

on quaternion representation and directional vector order-statistics. Signal

Process. 91, 1249-1261 (2011)

[7] Geng, X. Hu, X., Xiao, J.: Quaternion switching filter for impulse noise360

reduction in color image. Signal Process. 92, 150-162 (2012)

[8] Schulte, S., De Witte, V., Nachtegael, M., Van der Weken, D., Kerre, E.E.:

23

Table 9: Mean value and standard deviation (as subindex) of performance over validation
images using noise type IV.

Filter p = 10% p = 20% p = 30%
MAE PSNR DIS2 MAE PSNR DIS2 MAE PSNR DIS1

FPGF 4.290.1 28.20.4 1.090.2 5.260.2 26.80.3 13.72.0 6.750.5 25.20.7 2.010.2
SVMF 7.760.3 20.30.2 4.610.4 10.50.9 18.40.5 58.94.5 14.90.6 16.30.1 7.140.3
INR 3.420.2 30.31.0 0.580.2 3.930.2 28.90.8 09.53.0 4.780.3 26.80.7 1.580.4

LSAFSVF 4.620.1 27.30.5 1.190.3 5.410.2 26.30.4 15.92.7 6.620.3 24.70.6 2.290.3
IPGSVF 4.720.1 26.50.4 1.500.3 5.170.3 26.50.7 14.44.4 6.010.6 25.91.1 1.490.4
FRF 4.260.1 28.20.3 0.920.2 5.210.2 26.70.6 11.31.3 6.870.9 24.81.2 1.510.3
QRVF 7.760.3 20.30.2 4.610.4 10.50.9 18.40.5 58.94.5 14.90.6 16.30.1 7.140.3
SFRF 10.00.9 24.60.9 4.120.6 11.60.5 23.50.5 52.85.1 13.70.7 22.20.6 6.640.4
FDF 7.700.3 20.30.2 4.580.4 10.40.9 18.50.5 58.84.4 14.80.6 16.30.1 7.120.3
L0TV 3.880.3 28.81.2 1.240.4 4.400.4 27.81.5 14.94.5 5.090.8 26.81.9 2.050.7

LDCNND 4.030.3 29.10.8 1.050.2 4.510.3 28.30.7 11.83.0 6.040.9 26.31.4 1.490.6
CFAF 4.080.1 29.30.5 0.720.3 4.750.2 28.20.6 09.72.8 5.710.3 26.80.8 1.400.4

FPGF2 4.410.2 28.10.4 1.070.2 5.260.2 27.10.4 12.91.8 7.550.5 25.30.7 2.030.2
SVMF2 7.760.3 20.30.2 4.610.4 10.50.9 18.40.5 58.94.5 14.90.6 16.30.1 7.140.3
INR2 3.760.5 29.61.3 0.520.2 4.180.5 28.81.3 06.92.0 4.740.6 27.81.2 0.980.3

LSAFSVF2 4.650.2 27.30.5 1.110.3 5.410.2 26.40.4 14.63.2 6.490.4 25.10.7 2.020.4
IPGSVF2 4.720.2 26.50.4 1.490.3 5.160.3 26.50.7 14.44.6 5.990.6 26.01.1 1.430.4
FRF2 4.290.1 28.10.4 0.900.2 5.190.3 26.80.6 11.11.3 6.820.9 24.91.2 1.430.3
QRVF2 7.760.3 20.30.2 4.610.4 10.51.0 18.40.5 58.94.5 14.90.6 16.30.1 7.140.3
SFRF2 10.71.8 24.31.5 3.830.7 11.01.3 24.11.1 47.94.3 12.71.7 22.91.2 6.160.4
FDF2 7.700.3 20.30.2 4.580.4 10.41.0 18.50.5 58.84.4 14.80.6 16.30.1 7.120.3
L0TV2 3.890.3 28.81.2 1.210.4 4.420.4 27.81.6 15.24.6 4.990.6 27.01.8 1.930.6

LDCNND2 4.000.3 30.11.0 0.890.3 4.450.4 29.30.9 10.53.6 6.040.9 26.61.6 1.410.7
CFAF2 4.180.2 29.20.6 0.690.3 4.850.2 28.10.8 09.22.9 5.710.3 27.00.8 1.310.3

Fuzzy two-step filter for impulse noise reduction from color images. IEEE

Trans. Image Process. 15 (11), 3567-3578 (2006)

[9] Morillas S., Gregori V., Peris-Fajarnes, G.: Isolating impulsive noise pixels365

in color images by peer group techniques, Computer Vision and Image

Understanding 110 (1), 102-116 (2008).

[10] Schulte, S. Morillas, S., Gregori, V., Kerre, E.E.: A New Fuzzy Color

Correlated Impulsive Noise Reduction Method. IEEE Trans. Image Process.

16 (10), 2565-2575 (2007).370

[11] Morillas, S., Gregori, V., Peris-Fajarnés, G., Sapena, A. Local Self-

Adaptive Fuzzy Filter for Impulsive Noise Removal in Color Images. Signal

Process. 88 (2), 390-398 (2008)

[12] Smolka, B., Malik, K., Malik, D. Adaptive rank weighted switching filter

for impulsive noise removal in color images, Journal of Real-Time Image375

Processing 10 (2) pp. 289-311 (2015).

24

[13] Y. Chen, Y. Zhang, H. Shu, J. Yiang, L. Luo, J.L. Coatrieux, Q. Feng,

Structure-Adaptive Fuzzy Estimation for Random-Valued Impulse Noise

Suppression, IEEE Transactions on Circuits and systems for video technol-

ogy 28 (2) 414-427 (2018).380

[14] A. Roy, L. Manam, R.H. Laskar, Region-Adaptive Fuzzy Filter: An Ap-

proach for Removal of Random-Valued Impulse Noise, IEEE Transactions

on Industrial Electronics 65 (9) 7268-7278 (2018).

[15] Meher, S.K.: Recursive and noise-exclusive fuzzy switching median filter

for impulse noise reduction. Eng. Appl. Artif. Intel. 30, 145-154 (2014)385

[16] Camarena, J.G., Gregori, V., Morillas, S., Sapena, A.: A Simple Fuzzy

Method to Remove Mixed Gaussian-Impulsive Noise From Color Images.

IEEE Trans. Fuzzy Syst. 21 (5), 971-978 (2013)

[17] Qin, H., Yang, S.X.: Adaptive neuro-fuzzy inference systems based ap-

proach to nonlinear noise cancellation for images. Fuzzy Set. Syst. 158390

(10), 1036-1063 (2007)

[18] Mukhopadhyay, S., Mandal, J.K.: A fuzzy switching median filter of im-

pulses in digital imagery. Circuits Syst. Signal Process. 33, 2193-2216

(2014)

[19] Pushpavalli, R., Sivarajde, G.: A fuzzy switching median filter for highly395

corrupted images. International Journal of Scientific and Research Publi-

cations 3 (6), 1-6 (2013)

[20] Ramakrisnan, E., Karthik, B., Kiran Kumar T.V.U.: Noise reduction and

removal using fuzzy based median filter and matrix algorithm. International

Journal of Research 2 (4), 841-845 (2015)400

[21] Kuo, Y, Tai, Ch.: A simple and efficient median filter for removing high-

density impulse noise in images. Int. J. Fuzzy. Syst. 17 (1), 67-75 (2015)

25

[22] Aborisade, D.O.: A novel fuzzy logic based impulse noise filtering tech-

nique. International Journal of Advanced Science and Technology 32, 79-87

(2011)405

[23] Thirilogasundari, V., Suresh babu, V., Agatha Janet, S.: Fuzzy based salt

and pepper noise removal using adaptive switching median filter. Procedia

Engineering 38, 2858-2865 (2012)

[24] Wang, G., Zhu, H., Wang, Y.: Fuzzy decision filter for color images denois-

ing. Optik 126, 2428-2432 (2015).410

[25] Lukac, R.: Adaptive vector median filtering. Pattern Recognition Letters

24, 1889-1899 (2003).

[26] Rahman, T., Uddin, M.S.: Removal of high density impulse noise from color

images using an adaptive fuzzy filter. International Conference on Electrical

Engineering and Information & Communication Technology (ICEEICT)415

(2014).

[27] G. Yuan, B. Ghanem, L0TV: A new method for image restoration in the

presence of impulse noise, Computer Vision and Patter Recognition 2015,

5369-5377.

[28] K.H. Jin, J.C. Ye, Sparse and Low-Rank Decomposition of a Hankel Struc-420

tured Matrix for Impulse Noise Removal, IEEE Transactions on Image

Processing 27 (3) 1448-1461 (2018).

[29] Kai Zhang, Wangmeng Zuo, Shuhang Gu, Lei ZhangLearning Deep CNN

Denoiser Prior for Image Restoration. Conference on Computer Vision and

Pattern Recognition, 2017.425

[30] K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a Gaussian

Denoisier: Residual Learning of Deep CNN for Image Denoising, IEEE

Transactions on Image Processing 26 (7) 3142-3155 (2017).

26

[31] B.H. Chen, J.L. Yin, Y. Li, Image Noise Removing Using Semi-Supervised

Learning on Big Image Data, 2017 IEEE Third International Conference430

on Multimedia Big Data 338-345.

[32] B.H. Chen, J.L. Yin, Y. Li, Highly accurate image reconstruction for mul-

timodal noise suppression using semisupervised learning on Big Data, to

appear in IEEE Transactions on Multimedia.

[33] S.D. Nguyen, S.B. Choi, T.I. Seo, Recurrent Mechanism and Impulse Noise435

Filter for Establishing ANFIS, IEEE Transactions on Fuzzy Systems 26 (2)

985-997 (2018).

[34] Peris-Fajarnés, G., Roig, B., Vidal, A.: Rank-Ordered Differences Statistic

Based Switching Vector Filter, Lecture Notes in Computer Science 4141,

74-81 (2006).440

[35] Morillas, S. Gregori, V.: Robustifying Vector Median Filter, Sensors

(Basel) 11 (8), 8115-8126 (2011).

[36] Garnett, R., Huegerich, T., Chui, C., He, W.: A universal noise removal al-

gorithm with an impulse detector, IEEE Transactions on Image Processing

14 (11), 1747-1754 (2005).445

[37] Celebi, M.E., Lecca, M., Smolka, B.: Color Image and Video Enhancement.

Springer, 2015.

[38] Kuruoglu, E.E., Molina, C., Godsill, S.J., Fitzgerald, W.J.: A new analytic

representation for the α-stable probability density function. In: The Fifth

World Meeting of the International Society for Bayesian Analysis (ISBA),450

Istanbul, August (1997)

[39] Hassan, M., Bhagvati, C.: Structural Similarity Measure for Color Images.

International Journal of Computer Applications 43 (14), 7-12 (2012)

27

