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Dynamic 3D Reconstruction Improvement via

Intensity Video Guided 4D Fusion
Jie Zhang, Christos Maniatis, Luis Horna and Robert B. Fisher

Abstract

The availability of high-speed 3D video sensors has greatly facilitated 3D shape acquisition of dynamic and

deformable objects, but high frame rate 3D reconstruction is always degraded by spatial noise and temporal fluctua-

tions. This paper presents a simple yet powerful dynamic 3D reconstruction improvement algorithm based on intensity

video guided multi-frame 4D fusion. Temporal tracking of intensity image points (of moving and deforming objects)

allows registration of the corresponding 3D model points, whose 3D noise and fluctuations are then reduced by

spatio-temporal multi-frame 4D fusion. We conducted simulated noise tests and real experiments on four 3D objects

using a 1000 fps 3D video sensor. The results demonstrate that the proposed algorithm is effective at reducing 3D

noise and is robust against intensity noise. It outperforms existing algorithms with good scalability on both stationary

and dynamic objects.

Index Terms

high-speed 3D video sensor, multi-frame 4D fusion, intensity tracking, dynamic object, noise reduction

I. INTRODUCTION

Three dimensional shape acquisition of highly dynamic and deformable objects is an increasingly active research

topic in computer vision, with the development of high-speed 3D video sensors [1], [2]. It is a fundamental and

critical prerequisite of numerous applications, such as dynamic face recognition [3], action and behavior perception

[4], [5], object deformation analysis, etc. However, the 3D sequences from high-speed 3D video sensors usually suffer

from serious spatial noise and temporal fluctuations, which degrades the performance of 3D reconstruction. The

inaccuracy of the high frame rate 3D sequence is caused by multiple factors, including calibration error, non-uniform

illumination, surface properties, motion of scenes or objects, sensor variations, etc. In passive 3D reconstruction

systems (e.g. stereo vision sensors), uneven illumination or texture reflectance can cause stereo matching errors and

thus poor reconstruction performance, as shown in Fig.1. Additionally, resulting from the sensor technology, there

are a small number of out-of-sync pixels that produce spatial noise and temporal fluctuations in the 3D sequence,

as shown in Fig.2. Therefore, denoising high frame rate 3D/depth sequences and thus improving the performance

of 3D dynamic and deformable shape acquisition is of significant value.
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Fig. 1. Texture-related 3D noise on a static plane: (a) a 3D frame; (b) the region of interest of the 3D frame; (c) region of interest of the

3D frame with intensity texture; (d) the whole 3D frame with texture. The 3D noise in the 3D frame is closely related to the textures in the

intensity image.

Fig. 2. Noise example: (a) an intensity frame of a falling sphere captured by a high-speed stereo video sensor; (b) invalid pixels in the intensity

frames; (c) structural noise in a reconstructed 3D frame of the falling sphere.

In this paper, we present a method to improve the dynamic 3D reconstruction from high-speed 3D stereo video

sensors, where the 3D sequence improvement framework is based on 2D intensity tracking that guides a 4D spatio-

temporal fusion. The core idea is that the 2D intensity data of consecutive images can be aligned by a temporal

“stereo” matching algorithm, and then the corresponding 3D point data can be fused in the spatio-temporal domain

to reduce the 3D spatial noise and temporal fluctuations.

The contributions of the paper are: (1) a simple yet powerful noise reduction pipeline for boosting the 3D

reconstruction of dynamic and deformable objects. (Section IV); (2) a generic 2D intensity tracking guided multi-

frame 4D fusion model that integrates spatial intra-frame filtering and temporal inter-frame fusion. (Section III). In

Section V, we demonstrate the proposed method by denoising 3D sequences of stationary, dynamic and deformable

objects from a 1000 fps 3D stereo video sensor.

II. RELATED WORKS

For 3D/depth noise reduction, 3D/depth noise characterization and models [6], [7], [8], [9], [10] provide an

important basis for boosting the performance of 3D reconstruction. Noise in a 3D/depth image can be generally

characterized into three types including spatial, temporal and interference noise. Each type of noise corresponds
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to specific theoretical or empirical noise models. Most of 3D/depth image improvement methods mainly focus on

reducing spatial axial and lateral noise, smoothing temporal fluctuations and filling non-measured pixels [11].

Existing algorithms are performed either using a single image (such as adaptive Gaussian filter (Ad-GF) [9],

adaptive bilateral filter (Ad-BF) [12]) or multiple registered images (such as KinectFusion [13], imaging burst

[14]). Recently, Guo et al. [15] also proposed to fuse multi-scale depth images using a hierarchical signed distance

field for improved 3D reconstruction. The multi-view 3D registration based methods are helpful in smoothing

3D data and thus improving the 3D reconstruction quality, while the performance of the methods on dynamic or

deformable objects is still limited.

To address this, there are existing algorithms using motion/temporal information for point-based fusion or filtering.

For example, DynamicFusion [16] estimates dense non-rigid warp fields that fuse live frames of a dynamic scene

to get a gradually denoised and complete 3D reconstruction. The dense SLAM system performs better on dynamic

scenes compared with the KinectFusion algorithm. There are also some temporal filtering based algorithms, such

as the velocity-based adaptive threshold filter (Ad-TF) [17], the spatial-temporal divisive normalized bilateral filter

(DNBF) [18], and the constrained temporal averaging filter (TA) [19]). However, some are only based on the

depth information of individual frames. On the other hand, depth-intensity based 3D/depth noise reduction methods

including the adaptive joint bilateral filter (Ad-JBF) [20], the guided filter [21], the non-causal spatio-temporal

median filter (ST-MF) [22], and the multi-sensor system [23] have been used for boosting the quality of 3D

reconstruction. However, due to the limited reconstruction quality of high-speed 3D video sensors, denoising high

frame rate sequences is still an open issue.

III. PROPOSED PIPELINE

The proposed system framework (Fig.3) has 2 main stages: (1) 2D intensity tracking guided 3D motion field

estimation; (2) spatio-temporal multi-frame 4D fusion. The input to the pipeline is a 3D sequence St = {pti ∈ R3}

with pixel-wise registered intensity It = {ati ∈ R} and depth images Dt = {dti ∈ R}, where i is the pixel. In

the first stage, dense tracking is performed on the intensity sequence It using a belief propagation based patch

matching algorithm [24]. Thus, we obtain dense optical flow of It, which is also the continuous intensity motion

field. Based on the projective camera model, the 3D motion fields of the pixel-wise registered 3D sequence P t can

be estimated by leveraging the intensity motion fields.

In the second stage, using the continuous 3D motion fields, piecewise spatio-temporal multi-frame 4D fusion is

performed on the 3D sequence by fusing the registered 3D points. Rejected outliers in the 3D motion fields result

in holes in the fused 3D sequence, so we perform gradient-directed hole filling to repair them. Finally, we can

obtain a higher quality 3D sequence with smoother 3D spatial surface and less temporal fluctuations. More details

on each stage are given in Section IV.

IV. INTENSITY TRACKING GUIDED 4D FUSION

This section details the intensity tracking guided 3D motion field estimation and the spatio-temporal multi-frame

4D fusion model for 3D sequence improvement.
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Fig. 3. The system framework (using 3 consecutive frames as an example).

A. Intensity-guided 3D Motion Field Estimation

For a dynamic 3D object, we assume that each intensity image point in n consecutive frames is trackable in the

temporal domain. To achieve this, dense tracking is performed on the pixel-wise registered intensity sequence It

using a particle belief propagation method [24]. This gives an intensity motion field {st,t+1 ∈ R2} between each

pair of consecutive 2D intensity frames It, It+1.

The intensity correspondence field st,t+1 = {st,t+1
i } is obtained by minimizing an objective function that

combines a unary term evaluating point similarity and a pairwise term for piecewise smoothness as:

ŝt,t+1 = arg min
st,t+1

∑
i

(ψ1(st,t+1
i ) +

∑
n∈NI(i)

ψ2(st,t+1
i , st,t+1

n )) (1)

In Eqn.1, NI(i) are the neighbors of the ith 2D intensity pixel ati in frame It; ψ1(st,t+1
i ) is the unary term that

represents the discrepancy of a pair of corresponding 2D intensity patches centered on the ith pixel in consecutive

frames It, It+1, as

ψ1(st,t+1
i ) =

∑
n∈NI(i)

w1n

∥∥∥It+1(ki + kn + st,t+1
i )− It(ki + kn)

∥∥∥ (2)

where ki is the 2D coordinates of the ith pixel in frame It; {kn} is the 2D coordinates of the intra-frame neighbors

of the pixel ki; w1n is a weight assigned to each neighbor kn, emphasizing closer points to the center.

ψ2(st,t+1
i , st,t+1

n ) = w2n

∥∥∥st,t+1
i − st,t+1

n

∥∥∥ is a smoothness term to regularize the correspondence field, which

can be optimized by minimizing the message (smoothness error) passed by the intra-frame neighboring intensity

patch n to the patch i. w2n is a weight assigned to each neighboring motion vector st,t+1
n .
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The resulting pixel-wise continuous intensity motion fields st,t+1 give pixel-wise correspondences for the regis-

tered depth frames Dt. We iterate the correspondences across time t so each point has a linked position pti in the

depth frame Dt (3D frame St).

Using the projective camera model (assuming that the intensity pixels are distortion-free), the point pti in the 3D

frame St can be expressed as

pti = dti

[
f−1x (xti − u0), f−1y (yti − v0), 1

]
(3)

where fx, fy, u0, v0 are the calibration parameters (focal length and centers) of the camera, dti is the depth value,

and xti, y
t
i are intensity image pixel coordinates.

For an intensity field, the registration from frame It to frame IT is

st,Ti = [st,Tix , s
t,T
iy ] (4)

where st,Tix = xTi −xti and st,Tiy = yTi −yti . The 3D correspondence vector mt,T
i for the point i from the corresponding

frame St to frame ST can be estimated by:

mt,T
i =


f−1x (xti − u0)(dTi − dti) + f−1x dTi s

t,T
ix

f−1y (yti − v0)(dTi − dti) + f−1y dTi s
t,T
iy

(dTi − dti)

 (5)

By tracking from frame to frame, we can link the intensity image point ati to its 3D position pti in all frames.

B. Spatio-temporal Multi-frame 4D Fusion

Given n consecutive 3D frames linked by the n − 1 continuous 3D motion fields, we seek to fuse them into

one frame for piecewise spatio-temporal smoothness. Firstly, the outliers in each 3D motion field are removed by

verifying pairwise forward and backward motion vectors, using a threshold constraint. Specifically, for a pair of

3D motion vectors mt,t+1
i (or expressed as mt,t+1(xi, yi, zi)) and mt+1,t

i between a pair of corresponding points

{pti,p
t+1
i } in the frame St and St+1 respectively, the sum of the vectors should be smaller than a threshold ϑ as:∥∥∥mt,t+1(xi, yi, zi) + mt+1,t(xi + mt,t+1

ix , yi + mt,t+1
iy , zi + mt,t+1

iz )
∥∥∥ < ϑ (6)

The 3D motion vectors that satisfy the threshold constraint are accepted as reasonable motion vectors.

The piecewise spatio-temporal 4D fusion performed on the consecutive 3D frames is expressed as

p̂ti =
1

κi

∑
T∈Nt(t)

νt,Ti f(t, T )


 1

κTi

∑
n∈N(i)

d(pTi ,p
T
n )g(ITi , I

T
n )pTn

−mt,T
i

 (7)

In the internal summation, pTn (n ∈ N(i)) is a set of neighbors of the point i in a 3D frame ST . d(pTi ,p
T
n ) =

e−‖p
T
i −p

T
n‖2/2δ2d and g(ITi , I

T
n ) = e−|I

T
i −I

T
n |2/2δ2g are Gaussian weights assigned according to the spatial distance

and the intensity difference, where the parameter δd and δg are adjustable in experiments. The intensity-guided

weights contribute to the spatial smoothness of the 3D frame, which reduces 3D noise but preserves some geometric

structure information. This internal summation computes a bilaterally smoothed point in the frame ST , which is

then mapped back to frame St using the integrated motion vectors mt,T
i (e.g. mt,t+2

i = mt,t+1
i + mt+1,t+2

i ).
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In the external summation, Nt(t) is a set of neighboring frames ST of the frame St. νt,Ti is a flag for the validity

of the integrated 3D motion vector from frame St to ST . f(t, T ) = e−(t−T )2/2δ2f is a weight assigned according

to the temporal distance. κTi and κi are the cardinalities of the normalization factors for inter-frame fusion and

intra-frame filtering respectively. Specifically, κi is the sum of the weights νt,Ti f(t, T ), and κTi is the sum of the

weights d(pTi ,p
T
n )g(ITi , I

T
n ). Overall, Eqn.7 gives a smoothed 3D point p̂ti in the frame St. Both the spatial and

temporal piecewise smoothness are guided by the 2D intensity information.

C. Hole Filling

Finally, a point pti without spatial or temporal neighbors is filled with an interpolated point by using its spatial

neighboring 3D points as

p̂ti =


4D fusion using Eqn.7 if satisfying Eqn.6

1
κ′
i

∑
pt

n∈NS(pt
i
)

h(pti,p
t
n)
(
ptn +

〈
∇pt

i
pt

n
,pti − ptn

〉)
otherwise

(8)

where NS(pti) is a set of spatial neighbors of pti, n is the index of the neighbor, h(pti,p
t
n) = e−‖p

t
i−p

t
n‖2/2δ2h is

the Gaussian weight assigned according to the spatial distance. κ′i is the cardinality of a normalization factor, which

can be obtained by summing up the weights h(pti,p
t
n). ∇pt

i
pt

n
is the 3D location gradient of the neighboring point

ptn. We can get the 3D gradient by computing the partial derivatives (along the direction x, y, z) of the 3D local

shape fitted using all the spatial neighboring points {ptn}. At last, 〈〉 is the inner (dot) product.

Theoretically, the intensity guidance avoids the impact of 3D noise on the 3D motion field estimation. Accurate

temporal “stereo” correspondences lead inter-frame dense point fusion to reduce temporal fluctuations of the fused

points, while without adding structural noise simultaneously. Additionally, the intra-frame filtering helps degrade

local structural noise in the spatial domain. As a result, we can obtain a fused 3D sequence for every point i with

less spatial noise and temporal fluctuations in the original 3D image sequence.

V. RESULTS AND DISCUSSION

This section presents synthetic tests and real experiments to verify the effectiveness and the robustness of the

proposed method. The synthetic tests focused on noise resistance and preserving shape correctness respectively.

The real experiments investigated practical data improvement using a high frame rate 3D sensor (1000 fps).

A. Synthetic Noise Test

The synthetic measured object is a falling 3D ball with the radius of 140 mm, as shown in Fig.4. The synthetic

3D sequence contains 50 3D frames. The resolutions of the intensity image and depth image are 600× 600 pixels

and 600×600 points respectively. The sphere fell with the speed of 2 pixels/frame. The roughness of the 3D surface

in one frame was measured by averaging (over the central area of the sphere) the local roughness Πi of a 3D point

pti relative to its neighboring patch with the size of n× n points as

Πi =
1

n2

n×n∑
j

(pti − ptj) · ni
|ni|

(9)
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Fig. 4. Example frames of the synthetic falling ball sequence: (a) depth frame; (b) intensity frame; (c) 2D motion field of 2 neighboring frames;

(d) 2D motion field of region of interest in (c).

where ptj is the neighboring point in the n × n window around the central point pti (here we use n = 5), ni is

the normal vector of the fitted plane of the neighboring points. Note that this form of roughness measure does not

have value zero when there is no noise, due to the curvature of the surface. We used this roughness measure to

evaluate the performance because there is no ground truth for the real data experiments and we wanted to be able

to compare the simulated and real results using the same measure.

We added Gaussian random noise with varying noise levels to the intensity and depth images, respectively, and

then calculated the mean roughness of the reconstructed 3D sequence. The depth noise standard deviation varies

from 0.1 mm to 0.5 mm (The range was chosen because it includes the standard deviation (0.15 mm) of the stereo

sensor used in the real experiments). The intensity values are normalized to [0 1] and the intensity noise level

varies from 2% to 10% of the highest intensity value. The results were compared with other existing methods

including Ad-GF [9], Ad-BF [12], Guided filter [21], DNBF [18], TA [19], Ad-JBF [20], and ST-MF [22]. The

mean roughness results (over all frames) w.r.t. different noise levels and algorithms are shown in Fig.5.

Fig. 5. Mean roughness vs. (a) Depth noise level (with intensity noise level of 3%); (b) Intensity noise level (with depth noise level of 0.2 mm).
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The results in Fig.5a demonstrate that the performance of the proposed algorithm is superior to other algorithms

especially at higher depth noise levels. Some intensity-joint or motion-joint algorithms (Ad-JBF, Guided filtering,

DNBF) achieve better results on the synthetic noisy 3D ball than the single image based algorithms such as Ad-BF

and Ad-GF. In Fig.5b, our algorithm has better performance over all the intensity noise levels, followed by the

Guided filtering and Ad-JBF. Specifically, for our algorithm, the increase of the mean roughness at lower intensity

noise levels is smaller than that at higher levels. This is because the 3D motion vectors are quantized to integral

points and some wrong sub-pixel motion vectors are rejected at the stage of 3D motion field estimation, which

increases the robustness of the intensity guided fusion method.

B. Roughness vs. Shape Correctness Test

Roughness and shape correctness are important coupled parameters for describing the quality of 3D reconstructed

data. We seek to reduce the roughness of 3D data without losing the shape correctness by over-smoothing. Using

the falling noisy synthetic sphere (with known ground truth), we investigated the balance between the reduction in

roughness and in shape correctness of different algorithms, as the amount of smoothing is varied. The results are

shown in Fig.6. The shape correctness is defined as

C = 1− |r − r|
r

(10)

where r is the estimated radius of the sphere, computed by the MLESAC algorithm [25] over data from pixels 160

to 440 (as shown in Fig.6a); r is the ground truth radius.

Fig.6a illustrates the balance between the roughness and the shape correctness on the noisy ball from a side view.

Our algorithm’s smoothed depth values (black curve) have both lower roughness and better shape correctness than

the raw values, while the DNBF smoothed depth values (red curve) has worse shape correctness when reaching the

same roughness (Here we only show the performance of DNBF as an qualitative example, while the full quantitative

comparable performance are shown in Fig.6b). That means the roughness improvement is achieved by sacrificing

some shape correctness, which causes unexpected global deformations of the object.

When generating Fig.6b, for each algorithm, we varied the size of the smoothing neighborhood and the number of

smoothing iterations to enable the algorithms to generate different roughnesses and to investigate the corresponding

shape correctness simultaneously. Note that different parameter settings were used to generate (roughness, shape

correctness) pairs, so the tendency curves are not functions. The initial depth noise level is 0.2 mm and the

intensity noise level is 2%. The quantitative results are shown in Fig.6b. Overall, applying different noise reduction

algorithms, the mean roughness decreases from the raw roughness (3.75 mm) in different degrees, with increasing

shape correctness. However, after the best point, over-smoothing causes serious shape correctness loss with almost

the same or even slightly decreasing roughness. Specifically, the curves show that our proposed algorithm achieves

the best performance (nearest upper left corner), which demonstrates that it can denoise the 3D data while preserving

the structural information better.
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Fig. 6. (a) Qualitative illustration of the roughness and the shape correctness on the ball (Here we show the results from only the three most

significant algorithms. The full quantitative comparison can be seen in the following sub-figure); (b) Roughness vs. shape correctness tendency

curves. (The raw data has mean roughness of 3.75 mm and shape correctness of 88.34%, so the common starting point of those curves is on the

lower right corner. Note that different parameter settings were used to generate (correctness, roughness) pairs, so the curves are not functions)

C. Results on High Frame Rate Sensors

We captured 3D sequences of four real 3D objects using a high-speed 3D stereo video sensor and investigated the

performance of the proposed method. The high-speed 3D stereo video sensor is from Dimensional Imaging (DI4D)

Ltd [26] and mainly consists of two intensity video cameras with the frame rate of 1000 fps. Pairwise images can

be captured and then processed offline using a hierarchical dense area matching stereo algorithm proprietary to the

DI4D Ltd, but derived from the research reported in [27].

Fig. 7. Intensity image examples of 4 real measured objects: (a) falling rubber ball; (b) speaking human face; (c) static hand; (d) static texture

plane.

The four real 3D objects are with different states and surface complexities, including a static plane, a static hand,
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a falling rubber ball and a speaking human face (as shown in Fig.7). The measured stationary plane with textures

is ∼ 120× 80 mm. The radius of the ball is ∼ 70 mm. The 3D sequence of the ball is time-varying since the ball

deforms and rotates slightly during the falling. We applied the proposed method with varying numbers of fused

frames to each measured object. For each number of fused frames, we calculated the mean roughness and standard

deviation (std) of the 3D sequence. The results are shown in Fig.8.

Fig. 8. Static Plane (first row): (a) mean roughness; (b) std of roughness vs. number of frames fused. Falling ball (second row): (c) mean

roughness; (d) std of roughness vs. number of frames fused.

One can model the mean roughness presented in Fig.8 as
√
δ2s + (1/n)δ2t , where δs is the std of the structural

noise, δt is the std of the time-varying noise, and n is the number of frames fused. The red line in Fig.8a and

Fig.8c show the above theoretical results fit the experimental results closely. It is obvious that both the mean and

std of roughness decrease with the increasing number of frames fused. Compared with the static object, the std of

roughness of the dynamic object falls more sharply, when the number of fused images varies from 2 to 9. This is

because the number of fused frames mainly influences the temporal dynamic noise, while the dominant noise of

the static object is regular structural noise. Overall, we can conclude that the proposed intensity-guided 4D fusion

algorithm is more effective and suitable for boosting the 3D reconstruction of dynamic objects.
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A qualitative example result of the proposed method when fusing 9 frames is shown in Fig.9, and we also show

example intermediate results of the falling ball and the speaking face in Fig.10, including guiding intensity frames

and their motion field with filtered holes (green motion vectors). Since the sequence uses a 1000 fps frame rate, the

motion field is relatively tough to view, we choose two frames with a 10 frame gap. For quantitative comparison,

results are shown in Table 1.

Fig. 9. From first to third row: falling ball, dynamic human face, static hand. (a) Intensity frame at time t with a ROI marked using a red box;

(b) Raw registered 3D (cosine shaded) frame at time t; (c) Improved 3D frame by our algorithm; (d) Improved 3D image by Ad-JBF [20]; (e)

Raw dynamic human face frames at time t− 100 and t+100 respectively; (f) Motion field: the mouth region of the human face (left) and the

center region of the falling ball (right).

From the qualitative results in Fig.9 we see that the 3D noise is obviously reduced by the proposed algorithm

so that the surfaces of interest of the observed 3D objects are much smoother than those in the raw 3D images,

especially for the falling ball. Correspondingly, the comparative results in Table 1 demonstrate that our method

achieves the best performance with the lowest mean roughness (spatial noise) and the most stable roughness

measure (std: temporal fluctuations).
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Fig. 10. Example intermediate results: (a) & (b) two guided intensity frames; (c) 2D motion field of the two consecutive frames, the red motion

vectors are correct with motion consistence (in Eqn.6), while the green ones are wrong and are thus filtered out (causing holes); (d) the region

of interest in the subfigure (c).

TABLE I

COMPARATIVE RESULTS OF 3D/DEPTH NOISE REDUCTION METHODS

plane (mm) hand (mm) falling ball (mm) dynamic face (mm)

mean std (×10−3) mean std (×10−2) mean std (×10−2) mean std (×10−2)

Raw 0.62 1.91 1.34 1.81 1.48 7.92 1.10 6.76

Ad-GF [9] 0.39 1.12 0.89 1.41 1.11 3.95 0.77 6.08

Ad-BF [12] 0.26 0.82 0.64 1.21 0.89 3.84 0.59 5.45

Guided filter [21] 0.34 0.73 0.61 1.21 0.83 2.43 0.60 5.09

DNBF [18] 0.32 0.71 0.60 1.18 0.84 2.65 0.58 5.24

TA [19] 0.34 0.65 0.71 1.09 0.93 2.41 0.67 4.65

Ad-JBF [20] 0.27 0.61 0.64 1.21 0.89 3.81 0.59 5.45

ST-MF [22] 0.36 1.01 0.83 1.38 1.05 3.62 0.73 5.95

KinectFusion [13] 0.39 0.59 0.78 0.91 - - - -

3D Deformable Scanning [28] - - - - 0.81 1.97 0.52 2.67

Ours (9 frames) 0.22 0.31 0.55 0.83 0.71 1.14 0.40 2.73

D. In Comparison to 6D Motion Field Based Fusion

In contrast to 4D fusion based on intensity motion fields for 3D/depth noise reduction, there is a group of

algorithms that directly generate volumetric 6D motion fields {Ri,Ti} using depth data from Kinect sensors and

reconstruct improved 3D scenes via dense 3D/depth frame registration, such as KinectFusion [13], DynamicFusion

[16], 3D Deformable Scanning [28], etc. In those works, the multi-view partial 2.5D scans from the Kinect sensors

allow for large geometric and pose variations, while our algorithm works on consecutive frames from a fixed 1000
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Fig. 11. From top to bottom row: static plane, static hand, falling ball, speaking human face. (a) Intensity frame at time t; (b) Roughness map

of raw registered 3D frame at time t; (c) Roughness map of an improved 3D frame by our algorithm; (d) Roughness map of an improved 3D

image by 3D motion field based algorithms [13], [28]. (Best viewed online in color).

fps 3D video sensor focusing on dense micro-deformation and fusion. Besides, the 3D noise from the 1000 fps

video sensor is closely related to the textures of the observed 3D objects due to the uneven reflectance of the

textures, as shown in Fig.1. Therefore, we directly use intensity information to generate intensity motion fields,

guiding the spatio-temporal fusion.

We compared the performance of the proposed algorithm on the same four objects with the 6D motion field

based fusion algorithms. For static objects including the static plane and the hand, a 6D transformation between

a pair of consecutive 3D frames was generated using the rigid ICP algorithm, then all the registered 3D points

were integrated into a volumetric representation for fusion. For the dynamic and deformable objects including the

falling ball and the speaking human face, a dense 6D warp field between pairwise 3D frames was generated using

the Embedded Deformable model (ED) based registration method [28]. Then, 9 consecutive frames were fused by

leveraging the 8 dense flow fields between each pair of 3D frames. We calculated the roughnesses of the surface

of each object and mapped them to the object as shown in Fig.11. The mean roughness and standard deviation of

all 3D frames in a sequence were calculated, as listed in Table 1.
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Overall, both the qualitative results in Fig.11 and comparable results in Table 1 show that our algorithm achieves

better results on the datasets. The use of the 2D intensity frames increases the accuracy of dense correspondence

and thus improves the spatio-temporal fusion for 3D noise reduction of high frame rate 3D video sensors, especially

for the objects with less 3D shape characteristics, such as the plane, hand and ball. Also, our algorithm directly

focuses on texture-related 3D noise (Fig.1), yielding a texture correspondence guided dense 3D motion field. It

is more suitable for high frame rate 3D sequences of dynamic and deformable objects even with fewer 3D shape

features.

VI. CONCLUSIONS

This paper presents a simple yet powerful pipeline for improving the 3D reconstruction of dynamic and deformable

objects, using 2D intensity tracking guided multi-frame 4D fusion. Firstly, the continuous motion fields of a 3D

sequence are estimated by leveraging the intensity motion fields that are obtained by dense tracking on a pixel-wise

registered 2D intensity sequence. Then, using a spatial-temporal multi-frame 4D fusion model, consecutive 3D

frame fusions are performed for improving the spatial smoothness and the temporal stability of the 3D sequence.

The experimental results on stationary, dynamic and deforming objects verify that the proposed method achieves

state-of-the-art performance with the lowest mean roughness over the reconstructed 3D surface in one frame and

the best robustness over the whole 3D sequence. In the future, we would like to apply the proposed method as a

part of dynamic 3D shape recognition (e.g. dynamic 3D human face and hand gesture recognition) to improve the

accuracy and robustness of the 3D reconstruction and the recognition of highly dynamic and deformable objects.
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