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Abstract

One of the potential 3D imaging techniques relies on the use of stereoscopic

systems. The great interest in these systems has resulted in huge amount of

data which needs to be compressed for storage and transmission purposes. In

this context, vector lifting scheme has been found to be an efficient approach

for stereo image coding. For instance, the coding performance depends on the

design of the involved lifting operators referred to as prediction and update fil-

ters. For this reason, while a non separable vector lifting structure is retained,

we investigate different techniques for optimizing sparse criteria to design the

filters used with both views. More precisely, an independent full optimization

algorithm as well as a joint algorithm will be developed and studied. Simula-

tions performed on different stereo images demonstrate the effectiveness of the

proposed sparse optimization algorithms in terms of quality of reconstruction

and bitrate saving.
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1. Introduction

Stereoscopic and multiview systems are considered among the recent 3D

imaging techniques. In particular, a stereoscopic system consists in generat-

ing two images by recording the same scene from two slightly different view

positions. The obtained images, referred to as left and right images, are then

merged by the brain to perceive the scene in three dimensions. For this reason,

stereovision has been widely used in various application fields such as 3DTV,

digital 3D cinema, computer vision, remote sensing and medicine [1, 2]. Thus,

the increasing interest in stereo images has resulted in huge amount of data

which will constitute a problem for its practical use. Therefore, it becomes

mandatory to design efficient stereo image coding schemes with high visual in-

formation transmission quality and low storage capacity.

A basic approach for stereo images coding may consist in encoding indepen-

dently the left and right views by employing existing still image encoders. How-

ever, such approach may not appear so efficient since it does not exploit the

main characteristics of these images. Indeed, as the stereo images correspond to

the same 3D scene, they present similar contents and exhibit a high correlation.

Therefore, efficient stereo image coding schemes could be designed by exploit-

ing the inter-view redundancies. In this respect, the conventional scheme can

be described as follows. First, one image, for example the left one, is selected

as a reference image, and the other one (i.e the right image) is considered as a

target image. Then, the target image is predicted from the reference one thanks

to the disparity estimation/compensation (DE/DC) process. The difference be-

tween the original target image and the predicted one leads to the generation

of the residual image. Finally, the reference and residual images as well as the

disparity information are encoded. It is important to note here that this idea is

behind most of the existing stereo image coding methods. However, they differ

in some aspects and could be roughly classified into two categories. The first

category of methods aims to improve the DE/DC process as well as the coding

of the disparity (or depth) maps [3, 4, 5, 6, 7, 8]. For instance, while the stan-
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dard block-matching (BM) technique is often used to perform the DE/DC step,

modified BM [3] and learning dictionary-based techniques have also been devel-

oped [4, 5, 6]. Indeed, in [5], a block dependent dictionary is used by linking

together disparities yielding similar compensation. In [6], directional prediction

model combined with linear predictive scheme is proposed for efficient dispar-

ity compensation. For the same purpose, the authors proposed in [7] to use

the neighborhood of the homologous pixel in the reference image to predict the

pixel of the target image and compute the residual image. This computation

step is optimized by minimizing the ℓ1-norm of the resulting prediction error.

Note that the disparity is generally encoded using DPCM techniques followed

by an entropy coder while the reference and residual images are often encoded

in the transform domain. To this end, the second category of the existing stereo

image compression methods is devoted to the design of efficient decomposition

(i.e transform) for coding the reference and residual images. More precisely,

some methods have been developed based on the Discrete Cosine Transform

(DCT) [9, 10]. However, it has been shown in [11] that residual images contain

very narrow vertical edges and DCT yields a moderate energy packing of such

images. For this reason, it has been proposed to use a directional DCT to better

exploit the specific characteristics of the residual images [10, 12]. Other encod-

ing methods based on wavelet transforms have also been developed in order to

provide high quality scalability and progressive reconstruction of the stereo im-

ages [13, 14, 15]. Indeed, a family of wavelet-based coders is investigated in [13].

In [14], a coding method based on adaptive lifting scheme has been developed.

In this scheme, an adaptive prediction step is performed according to the local

gradient information of the reference image. However, the main drawback of

this adaptive coding strategy is that it depends on the reference image which

has poor quality at low bitrate and results in a significant negative impact on

the performance of the stereo image reconstruction process. In [15], a bandelet

transform [16] is firstly applied to the left and right images to estimate the dis-

parity map and generate the residual image. Then, the disparity map as well

as the bandelet coefficients of the left and residual images are encoded. The
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main limitation of this method is that it requires to transmit a side information

related to the size of each block transform which will affect its performance at

low bitrate. In addition to this kind of methods based on the coding of reference

and residual images, an alternative approach that does not directly generate a

residual image has been proposed in [17] and [18] for grayscale and color stereo

images, respectively. More precisely, the approach consists in using a multi-

scale decomposition based on the concept of vector lifting scheme (VLS). Note

that, unlike conventional lifting scheme, the VLS is a joint wavelet decomposi-

tion that aims at exploiting the inter-view correlations to generate two compact

multi-resolution representations of the left and right images. While a separable

decomposition has been carried out in [17], its extended non separable version

(NS-VLS) has been developed in [19]. Such extension presents two main ad-

vantages. First, it allows to better capture the two dimensional characteristics

of the edges which are neither horizontal nor vertical. Moreover, it offers more

flexibility in the design of an adaptive transform well adapted to the contents

of the input images [20, 21].

In this paper, we propose to retain the previous NS-VLS decomposition and fo-

cus on the built of content-adaptive decomposition through sparse optimization

algorithms. This is achieved using different ℓ1 based minimization techniques.

It is important to note here that sparse optimization algorithms have been

recently employed for still image coding [22]; whereas this work consists in ex-

tending them to the context of stereo image coding. While only a weighted ℓ1

minimization technique has already been investigated for stereo image coding

[19] and hologram compression [23], this work aims at developing and studying

various optimization strategies for the design of all the involved filters used with

the left and right images. More precisely, in addition to the basic ℓ2 and ℓ1 opti-

mization approaches which can be separately applied to each filter of each view,

two optimization algorithms based on the weighted ℓ1 minimization technique

are considered. In the first one, we resort to a full optimization algorithm where

the filters of each view are optimized independently of those used with the other

view. However, in the second one, a joint optimization algorithm, based on a
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hybrid weighted ℓ1 minimization technique, is developed to take into account

the inter-view redundancies.

The remainder of this paper is organized as follows. In Sec. 2, the analysis

structure as well as the resulting wavelet subbands of the NS-VLS decompo-

sition are given. The proposed optimization algorithms for the design of the

lifting operators of both views are described in Sec. 3. Finally, experimental

results are shown in Sec. 4 and some conclusions are drawn in Sec. 5.

2. Non separable vector lifting scheme

A conventional separable lifting scheme (LS) [24] consists in splitting the

input 1D signal into two sets formed by the even and odd samples, respectively.

Then, prediction and update steps are applied to generate the detail and approx-

imation signals. Such structure is referred to as P-U (Predict-Update) LS like

the 5/3 transform retained in the JPEG2000 coding standard [25]. As shown

in [21], a 1D P-U LS has an equivalent 2D non separable structure that can

be obtained by splitting the input image into four polyphase components and

applying three prediction steps followed by the update one (P-P-P-U structure)

to generate three detail subbands and one approximation subband. Based on

this observation, the 2D NS-VLS decomposition has been derived [19] where

intra prediction steps are performed on the reference (i.e left) image and hybrid

prediction steps are employed with the target (i.e right) image to exploit the in-

tra and inter-view redundancies. The main concepts behind this decomposition

will be described in what follows.

2.1. Analysis structure

The analysis structure of the NS-VLS decomposition is illustrated in Fig. 1.

While 2D non separable lifting operators are used, it is worth pointing out

that the main feature of this VLS-based decomposition concerns the prediction

stages. For instance, a conventional P-P-P-U lifting structure is first applied to

the left and right images. Since the left image is selected as a reference image
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and encoded in intra-mode, a hybrid prediction stage is added to the first lifting

steps used with the right view to exploit simultaneously the intra and inter-view

redundancies based on the information coming from the left view (highlighted

with the red color in Fig. 1). In addition to the illustration of the basic concept

of a NS-VLS, we should note that the main notations have also been included

in the above figure to better understand the core mathematical aspects of the

proposed optimization algorithms.
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Figure 1: NS-VLS decomposition structure.

Let us now define the different lifting operators used in this structure to generate

the wavelet coefficients of the left and right images.

2.2. Wavelet representations of the stereo pairs

As a multiscale transform, the decomposition is described for a given reso-

lution level j ∈ N∗. Let us denote by I
(l)
j and I

(r)
j the approximation subbands
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of the left and right images. Note that j = 0 corresponds to the original stereo

images I(l) and I(r). Moreover, for each view v ∈ {l, r}, the image I
(v)
j has four

polyphase components I
(v)
0,j (m,n) = I

(v)
j (2m, 2n), I

(v)
1,j (m,n) = I

(v)
j (2m, 2n+1),

I
(v)
2,j (m,n) = I

(v)
j (2m+ 1, 2n), and I

(v)
3,j (m,n) = I

(v)
j (2m+ 1, 2n+ 1).

As it can be shown in Fig. 1, a non separable lifting stage, composed of three

prediction steps and an update one, is applied to the left image to produce

three detail subband coefficients oriented diagonally I
(HH,l)
j+1 , vertically I

(LH,l)
j+1

and horizontally I
(HL,l)
j+1 as well as the approximation coefficients I

(l)
j+1. These

signals can be computed as follows:

I
(HH,l)
j+1 (m,n) = I

(l)
3,j(m,n)−

(
(P

(HH,l)
0,j )⊤I

(HH,l)
0,j + (P

(HH,l)
1,j )⊤I

(HH,l)
1,j

+ (P
(HH,l)
2,j )⊤I

(HH,l)
2,j

)
, (1)

I
(LH,l)
j+1 (m,n) = I

(l)
2,j(m,n)−

(
(P

(LH,l)
0,j )⊤I

(LH,l)
0,j + (P

(LH,l)
1,j )⊤I

(HH,l)
j+1

)
, (2)

I
(HL,l)
j+1 (m,n) = I

(l)
1,j(m,n)−

(
(P

(HL,l)
0,j )⊤I

(HL,l)
0,j + (P

(HL,l)
1,j )⊤I

(HH,l)

j+1

)
, (3)

I
(l)
j+1(m,n) = I

(l)
0,j(m,n) +

(
(U

(HL,l)
0,j )⊤I

(HL,l)
j+1 + (U

(LH,l)
1,j )⊤I

(LH,l)
j+1

+ (U
(HH,l)
2,j )⊤I

(HH,l)
j+1

)
, (4)

where for each i ∈ {0, 1, 2} and o ∈ {HL,LH,HH},

• P
(o,l)
i,j = (p

(o,l)
i,j (s, t))

(s,t)∈P(o,l)
i,j

is the vector of prediction filter coefficients and

P(o,l)
i,j denotes its support,

• I
(o,l)
i,j = (I

(l)
i,j (m+ s, n+ t))

(s,t)∈P(o,l)
i,j

is a reference vector that allows to com-

pute I
(o,l)
j+1 (m,n),

• I
(HH,l)
j+1 = (I

(HH,l)
j+1 (m+ s, n+ t))

(s,t)∈P(LH,l)
1,j

and I
(HH,l)

j+1 = (I
(HH,l)
j+1 (m+ s, n+

t))
(s,t)∈P(HL,l)

1,j
are used in the second and third prediction steps,

• U
(o,l)
i,j = (u

(o,l)
i,j (s, t))

(s,t)∈U(o,l)
i,j

is an update weighting vector with support

U (o,l)
i,j ,

• I
(o,l)
j+1 = (I

(o,l)
j+1 (m + s, n + t))

(s,t)∈U(o,l)
i,j

is the reference vector containing the

samples used in the update step.

Unlike the conventional lifting scheme applied to the reference image, an im-

proved one is applied to the target one (i.e the right image). Indeed, let us

recall that the key idea behind vector lifting scheme [17] consists in using hy-
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brid (intra and inter) prediction steps. For instance, as it can be seen from

Fig. 1, the prediction steps used with the target image use some samples from

the current view as well as their matching ones in the reference image. In this

respect, for the right image, Eqs. (1)-(4) are firstly applied to produce three

intermediate detail subbands and an approximation one denoted respectively

by Ǐ
(HH,r)
j+1 , Ǐ

(LH,r)
j+1 , Ǐ

(HL,r)
j+1 and I

(r)
j+1. Then, a second hybrid prediction stage,

composed of three steps, is added to exploit at the same time the intra and

inter-view redundancies in the stereo images. This is achieved by using the es-

timated disparity field denoted by uj = (ux,j , uy,j). For the sake of concision,

the disparity compensated left image at a given matching sample (m,n), given

by I
(l)
j (m+ ux,j(m,n), n+ uy,j(m,n)), is simply replaced by I

(c)
j (m,n). Let us

denote its corresponding four polyphase components by I
(c)
0,j (m,n), I

(c)
1,j (m,n),

I
(c)
2,j (m,n) and I

(c)
3,j (m,n). Therefore, the final detail subbands of the right image

are given by:

I
(HH,r)
j+1 (m,n) = Ǐ

(HH,r)
j+1 (m,n)−

(
(Q

(HH,r)
0,j )⊤Ǐ

(HH,r)
0,j+1 + (Q

(HH,r)
1,j )⊤Ǐ

(HH,r)
1,j+1

+ (Q
(HH,r)
2,j )⊤Ǐ

(HH,r)
2,j+1 + (P̃

(HH,r,l)
0,j )⊤I

(HH,c)
0,j + (P̃

(HH,r,l)
1,j )⊤I

(HH,c)
1,j

+ (P̃
(HH,r,l)
2,j )⊤I

(HH,c)
2,j + (P̃

(HH,r,l)
3,j )⊤I

(HH,c)
3,j

)
, (5)

I
(LH,r)
j+1 (m,n) = Ǐ

(LH,r)
j+1 (m,n)−

(
(Q

(LH,r)
0,j )⊤Ǐ

(LH,r)
0,j+1 + (Q

(LH,r)
1,j )⊤I

(HH,r)
j+1

+ (P̃
(LH,r,l)
0,j )⊤I

(LH,c)
0,j + (P̃

(LH,r,l)
1,j )⊤I

(LH,c)
1,j + (P̃

(LH,r,l)
2,j )⊤I

(LH,c)
2,j

+ (P̃
(LH,r,l)
3,j )⊤I

(LH,c)
3,j

)
, (6)

I
(HL,r)
j+1 (m,n) = Ǐ

(HL,r)
j+1 (m,n)−

(
(Q

(HL,r)
0,j )⊤Ǐ

(HL,r)
0,j+1 + (Q

(HL,r)
1,j )⊤I

(HH,r)
j+1
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3,j

)
, (7)

where for every i ∈ {0, 1, 2, 3} and o ∈ {HL,LH,HH},

• Q
(o,r)
i,j = (q

(o,r)
i,j (s, t))

(s,t)∈Q(o,r)
i,j

is an intra prediction weighting vector whose

support is denoted by Q(o,r)
i,j ,

• P̃(o,r,l)
i,j = (p

(o,r,l)
i,j (s, t))

(s,t)∈P̃(o,r,l)
i,j

is an inter prediction weighting vector whose

support is denoted by P̃(o,r,l)
i,j ,
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• Ǐ
(o,r)
0,j+1 = (I

(r)
j+1(m + s, n + t))

(s,t)∈Q(o,r)
0,j

is a reference vector used to compute

I
(o,r)
j+1 (m,n),

• Ǐ
(HH,r)
1,j+1 = (Ǐ

(HL,r)
j+1 (m+s, n+ t))

(s,t)∈Q(HH,r)
1,j

and Ǐ
(HH,r)
2,j+1 = (Ǐ

(LH,r)
j+1 (m+s, n+

t))
(s,t)∈Q(HH,r)

2,j
are two reference vectors used to compute I

(HH,r)
j+1 (m,n),

• I
(HH,r)
j+1 = (I

(HH,r)
j+1 (m+s, n+t))

(s,t)∈Q(LH,r)
1,j

and I
(HH,r)

j+1 = (I
(HH,r)
j+1 (m+s, n+

t))
(s,t)∈Q(HL,r)

1,j
are two intra prediction vectors used to compute I

(LH,r)
j+1 (m,n)

and I
(HL,r)
j+1 (m,n),

• I
(o,c)
i,j = (I

(c)
i,j (m + s, n + t))

(s,t)∈P̃(o,r,l)
i,j

is a reference vector containing the

matching samples used to compute I
(o,r)
j+1 (m,n).

Finally, at the last resolution level j = J , instead of coding the approximation

subband I
(r)
J , a residual subband e

(r)
J is generated by computing the difference

between the right approximation subband and the disparity compensated left

one:

e
(r)
J (m,n) = I

(r)
J (m,n)− I

(c)
J (m,n). (8)

Once the considered NS-VLS has been defined, we investigate in the next section

techniques for optimizing sparse criteria to design the lifting operators used with

the left and right images.

3. Proposed sparse optimization algorithms

Since the coding performance of wavelet-based coding scheme depends on

the choice of the lifting operators, a great attention should be paid to the design

of the prediction and update filters of both views. In this respect, two kinds of

optimization strategies could be adopted and will be described in what follows.

3.1. Independent full optimization of the stereo pairs

A straightforward solution consists in applying classical optimization meth-

ods used in the context of lifting-based still image coding to each view sepa-

rately. Thus, the two lifting structures used with the left and right images can

be firstly optimized in an independent way. To this end, we will resort to ℓ2, ℓ1
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and weighted ℓ1 based minimization techniques.

3.1.1. ℓ1-based minimization technique

While the update filter of each view U
(v)
j , with v ∈ {r, l}, is optimized by

minimizing the error between the approximation subband I
(v)
j+1 and the deci-

mated subband obtained after an ideal low-pass filtering of I
(v)
j [21], we will

focus on the optimization methods for designing the different prediction filters.

To this end, the standard approach consists in minimizing the variance (i.e the

ℓ2-norm) of the output detail subband since the latter can be seen as a predic-

tion error [26, 27]. In a recent work [22], ℓ1-based minimization techniques have

been proposed in the context of one stage lifting structure for still image coding

purpose. It is important to note here that the use of ℓ1 criterion presents two

main advantages. First, minimizing an ℓ1 criterion allows to generate sparse

representation which could achieve good coding performance [28]. Moreover,

from the information theory point of view, it has been shown that, at high bi-

trate, the minimization of the entropy of the detail subbands is closely related to

the minimization of their ℓβ-norm where β is the shape parameter of a general-

ized gaussian distribution (GGD) used for modeling the detail coefficients [29].

Indeed, knowing that the wavelet detail subbands I
(o,v)
j+1 are generally multiplied

by the weights
√
w

(o,v)
j+1 before the entropy encoding, and if we consider β = 1,

the resulting differential entropy can be obtained as follows:

1

MjNjα
(o,v)
j+1 ln(2)

Mj∑
m=1

Nj∑
n=1

∣∣∣I(o,v)j+1 (m,n)
∣∣∣+ log2

(
2α

(o,v)
j+1

√
w

(o,v)
j+1

)
(9)

where (Mj , Nj) represent the dimensions of the subband I
(o,v)
j+1 , α

(o,v)
j+1 is the

scale parameter of the GGD which can be estimated using a classical maximum

likelihood estimate, and the weights w
(o,v)
j+1 are computed based on the wavelet

filters used for the reconstruction process as proposed in [30, 31].

Therefore, instead of minimizing the ℓ2-norm, each prediction filter P
(o,l)
j , P

(o,r)
j

and P
(o,r,l)
j =

(
Q

(o,r)
j , P̃

(o,r,l)
j

)⊤
could be optimized by minimizing the ℓ1-norm
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of their output detail subbands I
(o,l)
j+1 and I

(o,r)
j+1 . Thus, for the intra prediction

filters P
(o,l)
j and P

(o,r)
j , the criterion is expressed as:

∀ v ∈ {r, l},∀ o ∈ {HL,LH,HH},∀ i ∈ {1, 2, 3},

J (v)
ℓ1

(P
(o,v)
j ) =

Mj∑
m=1

Nj∑
n=1

∣∣∣I(o,v)j+1 (m,n)
∣∣∣

=

Mj∑
m=1

Nj∑
n=1

∣∣∣I(v)i,j (m,n)− (P
(o,v)
j )⊤Ĩ

(o,v)
j (m,n)

∣∣∣ (10)

with I
(v)
i,j (m,n) is the (i+1)th polyphase component of the view I

(v)
j to be pre-

dicted, P
(o,v)
j is the prediction operator vector to be optimized, and Ĩ

(o,v)
j (m,n)

is the reference vector containing the samples used in the prediction step. Sim-

ilarly, for the hybrid prediction filters P
(o,r,l)
j used in the second lifting stage

with the right image, the ℓ1 criterion will be rewritten as:

∀ o ∈ {HL,LH,HH},∀ i ∈ {1, 2, 3},

J (r)
ℓ1

(P
(o,r,l)
j ) =

Mj∑
m=1

Nj∑
n=1

∣∣∣Ǐ(r)i,j (m,n)− (P
(o,r,l)
j )⊤Ĩ

(o,r,l)
j (m,n)

∣∣∣ (11)

where Ĩ
(o,r,l)
j (m,n) is a reference vector containing the samples from right and

disparity compensated left images used in the prediction step, and Ǐ
(r)
i,j is the

polyphase component to be predicted in the second lifting stage. According to

Fig. 1, the four polyphase components of the second lifting stage are defined

as: 

Ǐ
(r)
0,j (m,n) = I

(r)
j+1(m,n)

Ǐ
(r)
1,j (m,n) = Ǐ

(HL,r)
j+1 (m,n)

Ǐ
(r)
2,j (m,n) = Ǐ

(LH,r)
j+1 (m,n)

Ǐ
(r)
3,j (m,n) = Ǐ

(HH,r)
j+1 (m,n)

(12)

To minimize this criterion, we propose to use the proximity operators tool [32]

which has been found to be efficient for solving nonsmooth optimization prob-

lem [33, 34]. Based on this tool, the minimization of the above ℓ1 criterion

(for example the criterion given by Eq. (10)) is equivalent to the following

11



minimization problem:

∀ o ∈ {HL,LH,HH},∀ i ∈ {1, 2, 3},

min
z
(o,v)
j ∈V

Mj∑
m=1

Nj∑
n=1

∣∣∣I(v)i,j (m,n)− z
(o,v)
j (m,n)

∣∣∣+ ıV (z
(o,v)
j ), (13)

where ıV is the indicator function and V is the vector space given by:

V = {z(o,v)j =
(
z
(o,v)
j (m,n)

)
1≤m≤Mj

1≤n≤Nj

∈ RMj×Nj | ∃ P
(o,v)
j ,

∀ (m,n) ∈ {1, . . . ,Mj} × {1, . . . , Nj}, z(o,v)j (m,n) = (P
(o,v)
j )⊤Ĩ

(o,v)
j (m,n)}.

After that, the Douglas Rachford (DR) algorithm will be applied to solve our

minimization problem and obtain the optimized prediction filter P
(o,v)
j . For

more details on the proximity operators as well as the DR algorithm, the reader

is referred to [22].

3.1.2. Weighted ℓ1-based minimization technique

In the previous part, each prediction filter P
(o,v)
j has been separately opti-

mized by minimizing the ℓ1-norm of its associated detail subband I
(o,v)
j+1 . How-

ever, if we focus on the lifting structure applied to the left image, it can be seen

in Fig. 1 that the diagonal detail coefficients resulting from the first prediction

step are used in the second and third prediction steps to generate the left de-

tail coefficients oriented vertically I
(LH,l)
j+1 and horizontally I

(HL,l)
j+1 , respectively.

Therefore, instead of minimizing the ℓ1-norm of the diagonal detail coefficients,

it becomes more interesting to optimize the first prediction filter P
(HH,l)
j by

minimizing a weighted sum of the ℓ1-norms of the three detail subbands of

the left image. Concerning the filters P
(LH,l)
j and P

(HL,l)
j , they will be simply

optimized by minimizing the ℓ1-norm of their corresponding detail coefficients

I
(LH,l)
j+1 and I

(HL,l)
j+1 since the second and third predictions are two independent

steps.

Regarding the prediction filters used with the lifting structure applied to the

right image, it can be also seen from Fig. 1 that the first three intermedi-

ate detail coefficients Ǐ
(o,r)
j+1 as well as the final diagonal detail ones I

(HH,r)
j+1 are
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involved in the last two prediction steps to generate the final horizontal and

vertical detail subbands. Therefore, and similarly to the left image, the first

four prediction filters, P
(o,r)
j with o ∈ {HH,LH,HL} and P

(HH,r,l)
j , used with

the right image should be optimized by minimizing the weighted sum of the

ℓ1-norms of the three detail subbands of the right image. Finally, the last pre-

diction filters P
(LH,r,l)
j and P

(HL,r,l)
j are optimized by minimizing the ℓ1-norm

of their corresponding detail coefficients I
(LH,r)
j+1 and I

(HL,r)
j+1 .

Therefore, the weighted ℓ1 criterion used with the left and right images can be

expressed for each view as follows:

∀ v ∈ {r, l},∀ o ∈ {HL,LH,HH},

J (v)
wℓ1

(P
(o,v)
j ) =

∑
o∈{HL,LH,HH}

Mj∑
m=1

Nj∑
n=1

1

α
(o,v)
j+1

∣∣∣I(o,v)j+1 (m,n)
∣∣∣. (14)

To minimize this weighted ℓ1 criterion, we need first to rewrite the weighted

criterion (i.e I
(o,v)
j+1 ) as a function of the filter to be optimized P

(o,v)
j . To this

end, and since the weighted ℓ1 minimization concerns only the first prediction

filter for the left image and the first four prediction filters for the right image,

let us introduce the notation
(
I
(v)
i,j,q

)
i∈{0,1,2,3}

the four polyphase components

obtained from the inputs
(
Î
(v)
i,j,q−1

)
i∈{0,1,2,3}

after the q-th prediction step while

q ∈ {1} (resp. q ∈ {1, 2, 3, 4}) in the case of the left (resp. right) view. To

illustrate these components, the terms
(
I
(v)
i,j,1

)
i∈{0,1,2,3}

(i.e for q = 1) have

been inserted in Fig. 1 after the first prediction step used with both views.

Thus, for each i ∈ {0, 1, 2, 3}, we have:
Î
(v)
i,j,q−1(m,n) = I

(v)
i,j (m,n) for q = 1, ∀ v ∈ {r, l}

Î
(r)
i,j,q−1(m,n) = I

(r)
i,j,q−1(m,n) for q ∈ {2, 3}

Î
(r)
i,j,q−1(m,n) = Ǐ

(r)
i,j (m,n) for q = 4

(15)

Based on these notations, each detail subband I
(o,v)
j+1 can be written as a function

of the filter to be optimized P
(o,v)
j as follows:

∀ o ∈ {HH,LH,HL},

I
(o,v)
j+1 (m,n) = y

(o,v)
j,q (m,n)− (P

(o,v)
j )⊤I

(o,v)
j,q (m,n) (16)
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where the signal to be predicted y
(o,v)
j,q (m,n) as well as the reference vector

I
(o,v)
j,q (m,n) are given by:

y
(o,v)
j,q (m,n) =

∑
i′∈Ii

∑
k,l

h
(o,v)
i′,j,q(k, l)I

(v)
i′,j,q(m− k, n− l)

+
∑
k,l

h
(o,v)
i,j,q (k, l)Î

(v)
i,j,q−1(m− k, n− l), (17)

I
(o,v)
j,q (m,n) =

(∑
k,l

h
(o,v)
i,j,q (k, l)Î

(v)
i′,j,q−1(m− k − r, n− l − s)

)
(r,s)∈P(o,v)

j

i′∈Ii

(18)

with Ii = {0, 1, 2, 3}\{i} and i is the index number of the polyphase component

to be predicted by the current prediction filter under optimization.

Once the different terms involved in the weighted ℓ1 criterion are defined, the

DR algorithm in a three-fold product space could be applied to solve our mini-

mization problem. More details about DR algorithm through a formulation in

three fold product space can be found in [22] and references therein.

3.1.3. Full optimization algorithm

As mentioned before, for the left image, the optimization of the filter P
(HH,l)
j

depends on the optimization of the filters P
(LH,l)
j and P

(HL,l)
j since the weighted

sum of the ℓ1-norms of all the detail subband coefficients is minimized. On the

other hand, the optimization of the filters P
(LH,l)
j and P

(HL,l)
j depends on the

optimization of P
(HH,l)
j since the latter allows to compute the diagonal detail

subband which is used in the second and third prediction steps. Similarly, for

the right image, the optimization of the first four prediction filters depends on

the optimization of the last two ones, and vice-versa. Therefore it becomes in-

teresting to resort to an iterative algorithm which jointly optimizes the different

prediction filters. In this respect, we start by optimizing all the filters used with

the left image independently of the right one. Then, all the filters of the right

image will be optimized. Thus, our first independent full optimization algorithm

can be described as follows:

First algorithm

À Optimization of the left image filters:
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(a) Initialize the iteration number it to 0

• Optimize separately the three prediction filters P(o,l) by minimiz-

ing the ℓ1 criterion J (l)
ℓ1

(P
(o,l)
j ) . The new filters will be designated

respectively by P
(HH,l,0)
j , P

(LH,l,0)
j , and P

(HL,l,0)
j .

• Optimize the update filter [21].

• Compute the constant values 1

α
(o,l,0)
j+1

, the weights w
(o,l,0)
j+1 and the

differential entropy of the three resulting detail subbands.

(b) for it = 1, 2, 3, . . .

• Set P
(LH,l)
j = P

(LH,l,it−1)
j , P

(HL,l)
j = P

(HL,l,it−1)
j , and optimize

P
(HH,l)
j by minimizing the weighted ℓ1 criterion J (l)

wℓ1
(P

(HH,l)
j ). Let

P
(HH,l,it)
j be the new optimal filter.

• Set P
(HH,l)
j = P

(HH,l,it)
j , and optimize P

(LH,l)
j as well as P

(HL,l)
j

by minimizing J (l)
ℓ1

(P
(LH,l)
j ) and J (l)

ℓ1
(P

(HL,l)
j ), respectively. Let

P
(LH,l,it)
j and P

(HL,l,it)
j be the new optimal filters.

• Optimize the update filter.

• Compute the new constant values 1

α
(o,l,it)
j+1

, the weights w
(o,l,it)
j+1 and

the differential entropy of the three resulting detail subbands.

Á Optimization of the right image filters:

(a) Initialize the iteration number it to 0

• Optimize separately the three intra prediction filters P
(o,r)
j by min-

imizing the ℓ1 criterion J (r)
ℓ1

(P
(o,r)
j ).

• Optimize the update filter.

• Optimize separately the three inter prediction filters P
(o,r,l)
j by min-

imizing the ℓ1 criterion J (r)
ℓ1

(P
(o,r,l)
j ).

• Compute the constant values 1

α
(o,r,0)
j+1

, the weights w
(o,r,0)
j+1 and the

differential entropy of the three resulting detail subbands.

(b) for it = 1, 2, 3, . . .

• Optimize P
(HH,r)
j , while setting all the other filters equal to those

obtained in the previous iteration (it−1), by minimizing the weighted

criterion J (r)
wℓ1

(P
(HH,r)
j ). Let P

(HH,r,it)
j be the new optimal filter.
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• Set P
(HH,r)
j = P

(HH,r,it)
j , and optimize P

(LH,r)
j by minimizing the

weighted criterion J (r)
wℓ1

(P
(LH,r)
j ). Let P

(LH,r,it)
j be the new optimal

filter.

• Set P
(LH,r)
j = P

(LH,r,it)
j , and optimize P

(HL,r)
j by minimizing the

weighted criterion J (r)
wℓ1

(P
(HL,r)
j ). Let P

(HL,r,it)
j be the new optimal

filter.

• Optimize the update filter.

• Set P
(HL,r)
j = P

(HL,r,it)
j , and optimize P

(HH,r,l)
j by minimizing the

weighted criterion J (r)
wℓ1

(P
(HH,r,l)
j ). Let P

(HH,r,l,it)
j be the new opti-

mal filter.

• Set P
(HH,r,l)
j = P

(HH,r,l,it)
j , and optimize P

(LH,r,l)
j as well as

P
(HL,r,l)
j by minimizing J (r)

ℓ1
(P

(LH,r,l)
j ) and J (r)

ℓ1
(P

(HL,r,l)
j ), respec-

tively. Let P
(LH,r,l,it)
j and P

(HL,r,l,it)
j be the new optimal filters.

• Compute the new constant values 1

α
(o,r,it)
j+1

, the weights w
(o,r,it)
j+1 and

the differential entropy of the three resulting detail subbands.

3.2. Joint optimization method of the stereo pairs

3.2.1. Motivation

According to Fig. 1, the lifting stage applied to the left image is sim-

ilar to the first stage applied to the right image used to generate the ap-

proximation subband I
(r)
j+1 and three intermediate detail subbands Ǐ

(o,r)
j+1 with

o ∈ {HH,LH,HL}. Moreover, one of the main characteristics of stereo images

is that they present high inter-view correlations since they correspond to the

same 3D scene. Therefore, instead of optimizing each view independently of

the other one, it becomes interesting to design a joint optimization approach to

take into account the previous observations.

3.2.2. Hybrid weighted ℓ1 minimization and optimization algorithm

To exploit the correlation existing between the left and right, we propose

first to assume that the filters of the first lifting stage employed with the right

image (P
(o,r)
j ,U

(r)
j ) are similar to those used with the left image (P

(o,r)
j ,U

(r)
j ).
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Thus, for the sake of concision, the three intra prediction filters as well as the

update one are simply denoted by P
(o)
j and Uj :

P
(HH,r)
j = P

(HH,l)
j = P

(HH)
j ,

P
(LH,r)
j = P

(LH,l)
j = P

(LH)
j ,

P
(HL,r)
j = P

(HL,l)
j = P

(HL)
j ,

U
(r)
j = U

(l)
j = Uj .

(19)

Moreover, since these filters are applied both to the left and right images, we also

propose to design a hybrid weighted ℓ1 criterion defined simultaneously on the

stereo pairs. More precisely, this criterion is the weighted sum of the ℓ1-norm

of the three detail subbands of the left image as well as the three intermediate

detail subbands of the right one. Therefore, the new hybrid weighted ℓ1 criterion

can be expressed as follows:

∀ o ∈ {HL,LH,HH},

J (r,l)
wℓ1

(P
(o)
j ) =

∑
o∈{HL,LH,HH}

Mj∑
m=1

Nj∑
n=1

( 1

α
(o,l)
j+1

∣∣∣I(o,l)j+1 (m,n)
∣∣∣+ 1

α
(o,r)
j+1

∣∣∣Ǐ(o,r)j+1 (m,n)
∣∣∣)

(20)

Similarly to the weighted ℓ1 criterion given by Eq. (14), the new hybrid one

will also be minimized using the DR algorithm in a product space.

Once the prediction filters used in the first lifting stage of both views have

been jointly optimized, the last three inter prediction filters used with the right

image are optimized as performed in the previous optimization algorithm (i.e

by minimizing the weighted sum of the ℓ1-norms of the three detail subbands

of the right image).

Therefore, the second optimization algorithm can be summarized as follows.

Second algorithm

À Optimization of the intra prediction filters used with the left and right

images:

(a) Initialize the iteration number it to 0

• Optimize separately the three prediction filters P
(o)
j by minimizing
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the ℓ1 criterion J (l)
ℓ1

(P
(o)
j ). The new filters will be designated respec-

tively by P
(HH,0)
j , P

(LH,0)
j , and P

(HL,0)
j .

• Optimize the update filter of the left image.

• Set the intra prediction filters and update one equal to those ob-

tained with the left image (Eq. 19).

• Compute the constant values 1

α
(o,l,0)
j+1

and 1

α
(o,r,0)
j+1

, the weights w
(o,l,0)
j+1

and w
(o,r,0)
j+1 , as well as the differential entropy of the six resulting de-

tail subbands.

(b) for it = 1, 2, 3, . . .

• Set P
(LH)
j = P

(LH,it−1)
j , P

(HL)
j = P

(HL,it−1)
j , and optimize P

(HH)
j

by minimizing the hybrid weighted ℓ1 criterion J (r,l)
wℓ1

(P
(HH)
j ). Let

P
(HH,it)
j be the new optimal filter.

• Set P
(HH)
j = P

(HH,it)
j , and optimize P

(LH)
j as well as P

(HL)
j

by minimizing J (r,l)
wℓ1

(P
(LH)
j ) and J (r,l)

wℓ1
(P

(HL)
j ), respectively. Let

P
(LH,it)
j and P

(HL,it)
j be the new optimal filters.

• Optimize the update filter.

• Compute the new constant values 1

α
(o,l,it)
j+1

and 1

α
(o,r,it)
j+1

, the weights

w
(o,l,it)
j+1 and w

(o,r,it)
j+1 , as well as the differential entropy of the six

resulting detail subbands.

Á Optimization of the remaining inter prediction filters used with the right

image:

(a) Initialize the iteration number it to 0

• Apply the first intra lifting stage to the right image using the op-

timal filters obtained with the left image, and optimize separately

the three inter prediction filters P
(o,r,l)
j by minimizing the ℓ1 crite-

rion J (r)
ℓ1

(P
(o,r,l)
j ). The new filters will be denoted respectively by

P
(HH,r,l,0)
j , P

(LH,r,l,0)
j , and P

(HL,r,l,0)
j .

• Compute the constant values 1

α
(o,r,0)
j+1

, the weights w
(o,r,0)
j+1 and the

differential entropy of the three resulting detail subbands.

(b) for it = 1, 2, 3, . . .
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• Set P
(LH,r,l)
j = P

(LH,r,l,it−1)
j , P

(HL,r,l)
j = P

(HL,r,l,it−1)
j , and opti-

mize P
(HH,r,l)
j by minimizing the weighted criterion J (r)

wℓ1
(P

(HH,r,l)
j ).

Let P
(HH,r,l,it)
j be the new optimal filter.

• Set P
(HH,r,l)
j = P

(HH,r,l,it)
j , and optimize P

(LH,r,l)
j as well as

P
(HL,r,l)
j by minimizing J (r)

ℓ1
(P

(LH,r,l)
j ) and J (r)

ℓ1
(P

(HL,r,l)
j ), respec-

tively. Let P
(LH,r,l,it)
j and P

(HL,r,l,it)
j be the new optimal filters.

• Compute the new constant values 1

α
(o,r,it)
j+1

, the weights w
(o,r,it)
j+1 and

the differential entropy of the three resulting detail subbands.

It is important to note here that the convergence of the two proposed opti-

mization algorithms is achieved in few iterations (after about 5 or 6 iterations)

where the weighted ℓ1 minimization technique performed on each prediction

filter takes about 4-5 seconds for an image of size 512 × 512 using a Matlab

implementation and a computer with an Intel Core i7 processor (3.4 GHz). For

instance, compared to the optimization strategy developed in [19], the proposed

joint optimization algorithm increases slightly the execution time (2 seconds

per filter) since a hybrid weighted ℓ1 minimization technique (given by Eq.

(20)) is employed. Moreover, this joint algorithm presents two main advantages

compared to the first independent full one. Indeed, in addition to an efficient

exploitation of the characteristics of the stereo images through the design of a

hybrid criterion, it simplifies the optimization process and reduces the bitrate

of the filter coefficients that should be transmitted to the decoder (thanks to

the assumption given by Eq. (19)).

4. Experimental results

Simulations were conducted on different stereo images taken from various

datasets such as VASC CMU and middlebury ones [35, 36]. In order to illustrate

the proposed sparse optimization of NS-VLS in the context of stereo image

coding, and since our non separable lifting structure is a 2D extension of 1D

P-U LS (as explained at the beginning of Sec. 2), we will consider the P-U

5/3 LS, known also as (2,2) wavelet transform, which has been selected for
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the JPEG2000 coding standard. Note that the spatial prediction and update

supports of its extended 2D non separable structure (used with the left image

and the right one in the first lifting stage) can be found in [21]. For the second

lifting stage used with the right image, the intra prediction filters Q(o,r)
i,j have

the same spatial supports of the other prediction filters used with the left image

as well as the first intra lifting stage employed with the right image, while

the spatial supports of the inter prediction filters P̃
(o,r,l)
i,j are defined by the

set P̃(o,r,l)
i,j = {(s, t), with s ∈ {−1, 0, 1} and t ∈ {−1, 0, 1}} (where, s = t =

0 corresponds to the matching pixel in the disparity compensated left image

I
(c)
j (m,n) of the current sample to be predicted I

(r)
i,j (m,n)).

Thus, to show the performance of the proposed optimization methods, we will

consider the following ones carried out over three resolution levels:

• The first one consists in coding independently the left and right images

by applying the 5/3 transform to each view. In the following, this method

will be denoted by “Independent”.

• The second method represents the state-of-the-art method which consists

in coding the left image and the residual one by using the 5/3 wavelet

transform. Let us recall that this approach, which will be designated by

“Residual”, is behind most of the developed stereo image coding schemes.

• While the residual image is generated in the previous method by comput-

ing the prediction error between each pixel of the target image and its

corresponding one in the reference one, the third method proposed in [7]

aims to use the neighborhood of the homologous pixel to predict the pixel

of the target image. This computation step is optimized by minimizing the

ℓ1-norm of the resulting prediction error. This method will be designated

by “Residual-OPT-L1 [7]”.

• The fourth one corresponds to the NS-VLS where the prediction filters

are optimized separately by minimizing the variance (i.e ℓ2-norm) of the

detail coefficients. This method will be denoted by “NS-VLS-OPT-L2”.
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• The fifth method corresponds to the NS-VLS where the prediction filters

are optimized separately by minimizing the ℓ1-norm of the detail coeffi-

cients. This method will be denoted by “NS-VLS-OPT-L1”.

• The sixth and seventh methods represent the proposed independent full

and joint algorithms used to optimize the NS-VLS. These methods will

be designated by “NS-VLS-OPT-WL1-Full” and “NS-VLS-OPT-WL1-

Joint”, respectively.

All these approaches are firstly compared in terms of rate-distortion perfor-

mance. Figs. 2 and 3 illustrate the variations of the PSNR versus the bitrate

for the “houseof” and “ball” stereo images. Note that the average bitrate as well

as the average reconstruction error have been used to evaluate the performance

of all these methods. It can be observed that residual-based coding scheme

leads to better results compared to the independent coding scheme especially

at low bitrate. The optimized residual scheme [7] outperforms the previous one

by about 0.15-0.5 dB. Moreover, using sparse ℓ1 minimization technique im-

proves the ℓ2 one by achieving a gain of about 0.2-0.4 dB in terms of PSNR.

Further improvements are achieved by resorting to the proposed fully and joint

weighted ℓ1 minimization techniques. The gain is about 0.1-0.2 dB compared to

the standard ℓ1 minimization technique. It should be also noted that the results

obtained by the joint optimization approach are close to those obtained with

the independent fully approach. For instance, one can observe that a very small

improvement is achieved by the independent full optimization strategy. Such

behavior is expected since, in the full optimization approach, all filters of both

views are optimized, whereas in the joint optimization strategy, the intra pre-

diction filters used in the first lifting stage with the right view are assumed to be

equal to those used with the left image. Thus, due to the aforementioned advan-

tages of the joint optimization approach (simplifying the optimization process

and reducing the transmission cost of the filter coefficients), the latter optimiza-

tion algorithm is more appropriate from a practical point of view.

After that, and since the joint and full independent optimization methods have
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similar performances, we will evaluate the relative gain of the proposed joint op-

timization algorithm “NS-VLS-OPT-WL1-Joint” by using the Bjontegaard met-

ric [37]. For instance, the gains of the joint optimization algorithm with respect

to the standard ℓ2 one “NS-VLS-OPT-L2” as well as the ℓ1 one “NS-VLS-OPT-

L1” are provided in Tables 1 and 2 for low, middle and high bitrates, which are

obtained by considering the following four bitrate points {0.15, 0.2, 0.25, 0.3},

{0.6, 0.65, 0.7, 0.75} and {1.25, 1.3, 1.35, 1.4} bpp, respectively. Note that a bi-

trate saving with respect to a given reference method corresponds to a negative

value. Compared to the sparse ℓ1 optimization, the joint optimization algo-

rithm leads to a gain of about 1-3% and 0.1-0.2 dB in terms of bitrate saving

and PSNR, respectively. The gain becomes much more important compared to

the standard ℓ2 optimization algorithm and it reaches 11.6% and 0.85 dB in

terms of bitrate saving and PSNR, respectively.

Finally, we have evaluated the proposed joint optimization algorithm in terms

of visual quality of reconstruction. Figs. 4 and 5 display the reconstructed

(i.e decoded) target images, for the “art” and “dolls” stereo pairs, using joint

optimization algorithm, the standard independent ℓ2 one as well as the state-

of-the-art residual based coding method. Their corresponding PSNR and SSIM

[38] values are also provided. Note that a zoom is applied to the reconstructed

images to better illustrate the differences between them. It can be noticed that

the residual-based coding method may lead to some blocking artifacts. This

problem is reduced by resorting to a NS-VLS decomposition, as it can be seen

from the results obtained with “NS-VLS-OPT-L2”. Moreover, compared to the

latter, the joint optimization method improves again the visual quality while

better preserving the object edges.

5. Conclusion

In this paper, we have investigated different sparse optimization techniques

to design the prediction filters of a non separable vector lifting scheme for stereo

image coding purpose. In this context, an independent full optimization of the

22



left and right image filters as well as a joint optimization method have been

developed. Experimental results carried out on different real stereo images have

shown the efficiency of these methods. In a future work, we plan to extend

this work to the context of multiview coding. Moreover, the use of perceptual

criteria related to the binocular vision could be investigated for the design of

the different lifting operators.

Acknowledgements

This work was made possible by NPRP grant number NPRP8-140-2-065

from the Qatar National Research Fund (a member of Qatar Foundation). The

statements made herein are solely the responsibility of the authors.

References

[1] I. Feldmann, W. Waizenegger, N. Atzpadin, O. Schreer, Real-time depth

estimation for immersive 3D videoconferencing, in: 3DTV-Conference: The

True Vision - Capture, Transmission and Display of 3D Video, Tampere,

2010, pp. 1–4.

[2] B. Sdiri, M. Kaaniche, F. A. Cheikh, A. Beghdadi, O. J. Elle, Efficient

enhancement of stereo endoscopic images based on joint wavelet decompo-

sition and binocular combination, IEEE Transactions on Medical Imaging

(2018) 13 pages.

[3] A. Kadaikar, G. Dauphin, A. Mokraoui, Sequential block-based disparity

map estimation algorithm for stereoscopic image coding, Elsevier Signal

Processing: Image Communication 39 (PA) (2015) 159–172.

[4] D. Palaz, I. Tosic, P. Frossard, Sparse stereo image coding with learned dic-

tionaries, in: IEEE International Conference on Image Processing, Quebec,

Canada, 2011, p. 4 pages.

23



[5] G. Dauphin, M. Kaaniche, A. Mokraoui, Block dependent dictionary based

disparity compensation for stereo image coding, in: IEEE International

Conference on Image Processing, Quebec, Canada, 2015, p. 5 pages.

[6] L. F. Lucas, N. M. Rodrigues, C. L. Pagliari, E. A. Silva, S. M. Faria, Re-

current pattern matching based stereo image coding using linear predictors,

Multidimensional Systems and Signal Processing 28 (4) (2017) 1393–1416.

[7] W. Hachicha, M. Kaaniche, A. Beghdadi, F. A. Cheikh, Optimized residual

image for stereo image coding, in: European Workshop on Visual Informa-

tion Processing, Paris, France, 2014, pp. 1–6.

[8] I. Tabus, Patch-based conditional context coding of stereo disparity images,

IEEE Signal Processing Letters 21 (10) (2014) 1220–1224.

[9] O. Woo, A. Ortega, Stereo image compression based on disparity field

segmentation, in: SPIE Conference on Visual Communications and Image

Processing, Vol. 3024, San Jose, California, 1997, pp. 391–402.

[10] W. Hachicha, A. Beghdadi, F. A. Cheikh, 1D directional DCT-based stereo

residual compression, in: European Signal Processing Conference, Mar-

rakech, Morocco, 2013, p. 5 pages.

[11] M. S. Moellenhoff, M. W. Maier, Characteristics of disparity-compensated

stereo image pair residuals, Signal Processing: Image Communications 14

(1998) 49–55.

[12] M. S. Moellenhoff, M. W. Maier, Transform coding of stereo image residu-

als, IEEE Transactions on Image Processing 7 (6) (1998) 804–812.

[13] N. V. Boulgouris, M. G. Strintzis, A family of wavelet-based stereo image

coders, IEEE Transactions on Circuits and Systems for Video Technology

12 (10) (2002) 898–903.

[14] R. Darazi, A. Gouze, B. Macq, Adaptive lifting scheme-based method for

joint coding 3D-stereo images with luminance correction and optimized

24



prediction, in: IEEE International Conference on Acoustics, Speech and

Signal Processing, Taipei, 2009, pp. 917–920.

[15] A. Maalouf, M.-C. Larabi, Bandelet-based stereo image coding, in: IEEE

International Conference on Acoustics, Speech and Signal Processing, Dal-

las, Texas, United States, 2010, pp. 698–701.

[16] E. L. Pennec, S. Mallat, Sparse geometric image representations with ban-

delets, IEEE Transactions on Image Processing 14 (4) (2005) 423–438.

[17] M. Kaaniche, A. Benazza-Benyahia, B. Pesquet-Popescu, J.-C. Pesquet,

Vector lifting schemes for stereo image coding, IEEE Transactions on Image

Processing 18 (11) (2009) 2463–2475.

[18] O. Dhifallah, M. Kaaniche, A. Benazza-Benyahia, Efficient joint multiscale

decomposition for color stereo image coding, in: European Signal Process-

ing Conference, Lisbon, Portugal, 2014, p. 5 pages.

[19] M. Kaaniche, B. Pesquet-Popescu, J.-C. Pesquet, ℓ1-adapted non separable

vector lifting schemes for stereo image, in: European Signal Processing

Conference, Bucharest, Romania, 2012, p. 5 pages.

[20] V. Chappelier, C. Guillemot, Oriented wavelet transform for image com-

pression and denoising, IEEE Transactions on Image Processing 15 (10)

(2006) 2892–2903.

[21] M. Kaaniche, A. Benazza-Benyahia, B. Pesquet-Popescu, J.-C. Pesquet,

Non separable lifting scheme with adaptive update step for still and stereo

image coding, Elsevier Signal Processing: Special issue on Advances in

Multirate Filter Bank Structures and Multiscale Representations 91 (12)

(2011) 2767–2782.

[22] M. Kaaniche, B. Pesquet-Popescu, A. Benazza-Benyahia, J.-C. Pesquet,

Adaptive lifting scheme with sparse criteria for image coding, EURASIP

Journal on Advances in Signal Processing: Special Issue on New Image and

Video Representations Based on Sparsity 2012, 22 pages.

25



[23] Y. Xing, M. Kaaniche, B. Pesquet-Popescu, F. Dufaux, Sparse based adap-

tive non separable vector lifting scheme for holograms compression, in:

International Conference on 3D Imaging, Liège, Belgium, 2015, p. 8 pages.
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Figure 2: PSNR (in dB) versus the bitrate (bpp) after JPEG2000 encoding for the

“houseof” stereo pair.
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Figure 3: PSNR (in dB) versus the bitrate (bpp) after JPEG2000 encoding for the

“ball” stereo pair.
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Table 1: The average PSNR differences and the bitrate saving at low, medium and high

bitrates. The gain of “NS-VLS-OPT-WL1-Joint” w.r.t NS-VLS-OPT-L1.

bitrate saving (in %) PSNR gain (in dB)

Images low middle high low middle high

Houseof -2.95 -2.30 -1.38 0.10 0.12 0.11

Ball -1.83 -2.81 -1.98 0.05 0.10 0.11

Moebius -0.93 -2.28 -1.14 0.05 0.14 0.10

Art -0.92 -0.66 -0.56 0.05 0.06 0.06

Dolls -2.14 -1.33 -1.03 0.10 0.10 0.11

Playtable -2.15 -3.05 -1.93 0.10 0.18 0.19

Piano -1.90 -1.17 -1.24 0.10 0.09 0.15

Teddy -1.30 -1.11 -0.95 0.07 0.08 0.08

Jadeplant -2.34 -1.14 -1.08 0.11 0.10 0.11

Table 2: The average PSNR differences and the bitrate saving at low, medium and high

bitrates. The gain of “NS-VLS-OPT-WL1-Joint” w.r.t NS-VLS-OPT-L2.

bitrate saving (in %) PSNR gain (in dB)

Images low middle high low middle high

Houseof -8.50 -7.44 -5.54 0.25 0.38 0.39

Ball -7.74 -11.67 -6.67 0.14 0.39 0.36

Moebius -7.35 -8.96 -7.20 0.33 0.55 0.61

Art -7.78 -9.17 -8.26 0.41 0.64 0.86

Dolls -7.78 -6.12 -6.45 0.32 0.41 0.67

Playtable -3.70 -8.29 -7.48 0.17 0.49 0.71

Piano -7.32 -6.92 -6.13 0.32 0.50 0.71

Teddy -4.41 -4.81 -4.85 0.18 0.32 0.41

Jadeplant -6.61 -5.69 -5.06 0.28 0.40 0.50
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(a) (b): PSNR=31.14 dB, SSIM=0.818

(c): PSNR=31.04 dB, SSIM=0.829 (d): PSNR=31.45 dB, SSIM=0.848

Figure 4: (a) Original “art” right image. Zoom applied on the reconstructed image at 0.3 bpp

using: (b) Residual scheme, (c) NS-VLS-OPT-L2, (d) NS-VLS-OPT2-WL1-Joint.
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(a) (b): PSNR=27.62 dB, SSIM=0.720

(c): PSNR=28.17 dB, SSIM=0.766 (d): PSNR=28.43 dB, SSIM=0.780

Figure 5: (a) Original “dolls” right image. Zoom applied on the reconstructed image at 0.3

bpp using: (b) Residual scheme, (c) NS-VLS-OPT-L2, (d) NS-VLS-OPT2-WL1-Joint.
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