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The majority of existing objective Image Quality Assessment (IQA) methods are designed for evaluation of
images corrupted by single distortion types. However, images may be degraded with multiple distortions
during processing stages. In this paper, we propose a reduced-reference IQA algorithm to predict the
quality of multiply-distorted images. An image is first decomposed into predicted and disorderly portions
based on the internal generative mechanism theory. The structural information is captured from the pre-
dicted image by using a shearlet representation and Rényi directional entropy is deployed to measure the
disorderly information changes. Finally, we introduce the application of a framework namely Learning
Using Privileged Information (LUPI) to build a quality model and obtain quality scores. During training,
the LUPI framework utilizes a set of additional privileged data to learn an improved quality model.
Experimental results on multiply-distorted image datasets (MLIVE and MDID2015) confirm the effective-
ness of the proposed IQA model.

� 2018 Elsevier Inc. All rights reserved.
1. Introduction

With the tremendous growth of multimedia technology and
advances in image acquisition devices, digital images have become
more popular and prevalent in our daily life. Despite of this pro-
gress, the quality of digital images may be degraded since they
are subjected to various distortions in end-to-end application
chains. Therefore, it is crucial to evaluate and maintain the visual
quality.

Image Quality Assessment (IQA) is an active research area in
recent years. Subjective IQA has been known as the most reliable
method of quality assessment but it is tedious and cumbersome.
Hence, objective IQA metrics are developed that use computational
models for predicting the visual quality [1–3].

Depending on the accessibility to reference/pristine image, the
objective IQA methods can be categorized into three types: Full-
Reference (FR), Reduced-Reference (RR) and No-Reference (NR).
FR IQA metrics [4,5] often have better performance than the two
other IQA types while they require access to the entire reference
image for quality prediction. RR methods [6,7] use only limited
information of the reference image and NR IQA algorithms [8,9]
predict image quality without using any reference data. Gu et al.
[10] proposed a NR metric for quality assessment of enhanced
images. The method extracts quality-relevant features by analys-
ing different image attributes (such as contrast, brightness, sharp-
ness, and etc.) and the quality score is pooled through a robust
model learned from a massive number of training samples. The
application of NR IQA for evaluation of screen content pictures is
investigated in [11]. Since natural images are often richer in colour
and include more structures as well as higher luminance range
than screen content images, the authors devised specific features
to better represent the characteristics of screen content images.
A blind IQA method is proposed in [12] to address the quality pre-
diction of Depth Image-Based Rendering (DIBR) synthesized
images. To capture the geometric distortion introduced during
DIBR, the algorithm exploits error between the DIBR image and
its autoregressive (AR) predicted image.

FR IQA is impractical in many applications where the undis-
torted reference image is not available. Due to a variety of image
contents and distortion types, it is very challenging to design effec-
tive NR IQA metrics that can perform well without using any refer-
ence data. RR IQA algorithms attain a good trade-off between FR
and NR approaches as they employ limited information from the
reference image while delivering a better performance.

In general, RR IQA models are based on extracting a set of
quality-sensitive features from the reference and distorted images.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2018.10.027&domain=pdf
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Wang et al. [13] developed a natural image statistic model in the
wavelet domain for RR quality evaluation. The distance between
the marginal probability distributions of the wavelet coefficients
is measured between the reference and test images to obtain a
quality score. According to the Orientation Selectivity (OS) mecha-
nism of the primary visual cortex, Wu et al [14] proposed an OS-
based Visual Pattern (OSVP) to acquire visual features for RR IQA.
Soundararajan et al. [7] proposed an RR approach that uses the dif-
ference of the weighted entropies between the reference and dis-
torted images in the wavelet domain. Rehman et al. [15]
developed an RR-IQA algorithm based on the principle of structural
similarity utilizing the statistical properties of the image in the
Divisive Normalization Transform (DNT) domain. Zhang et al. [6]
quantify local sharpness of images to develop an RR IQA index.
The authors classify distorted images into eight families based on
generated sharpness maps and then deploy a regression frame-
work on sharpness features to predict class-specific quality scores.

Most of the existing IQA algorithms are designed for quality
prediction of images suffering from single distortion types. How-
ever, multiple distortions may be introduced to images in various
processing stages. Digital images may pass through acquisition,
compression and transmission steps before reaching end users.
Thus, images may be subjected simultaneously to multiple distor-
tion types hence cluttering final IQA. Chandler et al. [16] men-
tioned some of the possible joint effects and interferences
between different distortion types and pointed out that multiply-
distortion IQA is one of the most important challenges to be solved.
Several multiply-distorted image datasets have been released. The
first broadly-used established datasets are MDID2013 [17] and
MLIVE [18] that consist of images corrupted by three types of
mixed distortions. A new dataset namely MDID2015 (multiply-
distorted image dataset) [19] has been established recently, which
contains images subjected simultaneously to upto 4 types of dis-
tortions. The multiply-distorted image datasets challenge many
state-of-art IQA methods and it is of great importance to design
IQA models suitable for multiply-distorted images. When multiple
distortions influence an image, the joint degradation effect may not
be well interpreted by studying the effect of the contributed single
distortions, because individual distortions can affect each other
and produce different degradation characteristics. One type of dis-
tortion may have a masking effect on the other type or the distor-
tions may combine in a way that complicates the perception and
intensify the visual quality degradation.

Gu et al. [20] proposed an NR IQA metric for multiply-distorted
images which consists of a de-noising step followed by sharpness
and blockiness degree estimation. The final score is obtained by
pooling the blur and blockiness scores. These authors also devel-
oped an improved method [17] by considering the effect of each
emerging single distortion type (noise, JPEG and blur) together
with their joint effects. An NR IQA method is proposed in [21]
based on feature extraction from a gradient weighted histogram
of using Local Binary Patterns (LBP) in which the proposed struc-
tural features can suitably describe the complex degradation pat-
tern introduced by multiple distortions.

In this paper, we propose an RR method based on Shearlets and
Entropy Analysis (RRSEA) for quality assessment of multiply-
distorted images. The approach is inspired by the facts that: (i)
the Human Visual System (HVS) attempts to minimize the free-
energy of the observed scene by predicting the main visual content
and ignoring the residual uncertainty [19,20]. Based on this, an
input image is decomposed into predicted and disorderly (residual
uncertainty) parts [21]. (ii) Multiple types of distortions have a
joint effect on both predicted and disorderly parts (i.e. on primary
visual information and uncertainty data) of an image. Here, shear-
let coefficients and directional entropy are utilized to measure the
effect of distortion on predicted and disorderly parts, respectively.
We have reported an initial version of this work and its preliminary
results at the 2017 QoMEX conference [22]. This paper provides
more elaborated experimental validation in which the proposed
method proved competitive results with respect to several state-
of-the-art metrics. Moreover, to train our model, we introduce
the application of an improved machine learning model namely
Learning Using Privileged Information (LUPI) in the field of image
quality assessment. To the best of our knowledge, no such work
has been reported in the literature. In the following paragraphs,
we further elaborate on the concept of the proposed RRSEA IQA
method.

Recent findings in the field of brain and cognitive sciences
reveal the Internal Generative Mechanism (IGM) [23,24] of the
HVS. Based on the IGM theory, HVS tries to predict the main visual
structures and avoid the residual uncertainty. Wu et al. [25] pro-
posed a model based on IGM that decomposes an image into pre-
dicted and disorderly portions. Because the predicted part contains
the primary visual information and the disorderly part holds the
uncertainty data, the effect of a specific type of distortion is not
similar on both portions and it depends on the inherent character-
istics of that distortion. In [26], an NR IQA framework is developed
that extracts three types of features based on free energy principle,
HVS-inspired structural information, and Natural Scene Statistics
(NSS)-model to predict quality score. A blind sharpness metric is
proposed in [27] upon the AR and energy principle models. The
method quantifies sharpness by percentile pooling of local energy
and contrast differences on AR estimated coefficients. Liu et al. [28]
developed a RR metric based on free energy principle that utilize a
sparse representation to provide a prediction of reference and dis-
torted images. Finally, the discrepancies between two predictions
are quantified to pool a quality score.

The interaction of multiple distortion types brings a more com-
plex problem and complicate the design of an effective metric
[18,29]. There have been advances in quality evaluation of
multiply-distorted images in recent years; however, there still
remains significant room for improvement. The existing
approaches are either limited in the number of measured distor-
tion types [20,17] or they only consider the degradation of the
main structural information with less emphasis on the joint effects
of different distortions [21]. In this work, we suggest to use the
IGM-based decomposition for better analysis of the joint effect of
multiply-distortion types. Particularly, we simultaneously consider
the distinct influence of a multiply-distortion type on main visual/
structural information located in the predicted part and uncer-
tainty information in disorderly part.

The basic idea of RRSEA is to quantify the statistical property
deviations occurred in natural images when a distortion is applied.
First, an input image is decomposed into predicted and disorderly
parts according to the IGM theory. To obtain effective IQA features,
the structural information in the predicted part is extracted by a
shearlet transform [30]. The shearlets can provide accurate repre-
sentation of structural data by analysing input predicted signal at
multiple directions. Therefore, the structural variations introduced
by distortions can be well captured. The Rényi directional entropy
[31] is measured for modeling the uncertainty information in the
disorderly part. Image entropy presents the amount of information
in images. Since the distortions lead to significant information
changes in all directions, we deployed an entropy method with
directional selectivity to effectively capture the disorderly data
changes in natural images. The extracted features from both pre-
dicted and disorderly parts are concatenated as a single feature
vector to capture the joint effect of multiply-distortion on two por-
tions. In the quality prediction stage, we utilized a new Support
Vector Regression [26] (SVR)-based paradigm called LUPI to build
a model and predict the quality score. Vapnik et al. [32] introduced
LUPI to improve the predictive performance of learning algorithms
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using additional information (called privileged measures). Such
privileged data are only accessible during training and not in test-
ing. The SVM-based realization of the LUPI paradigm is called SVM
+ for classification and the regression realization is denoted as e–
SVR+.

The LUPI paradigm has recently gained significant attention in
machine learning community [33,34]. Yang et al. [35] applied the
paradigm in face detection where some additional facial features
such as head poses and gender were utilized only during training.
Sarafianos et al. [28] applied the LUPI for human height estimation
in surveillance systems. The anthropometric measurements that
are relatively difficult to be estimated in surveillance cameras
(e.g., circumferences of human parts) are referred as privileged
information and they are used only during training to learn a better
classifier.

During training, LUPI uses some additional FR information
(privileged measures) together with the RR information (obtained
from our IGM-based method). The goal is to exploit such privileged
measures during training phase to learn an improved quality
model. In testing stage, the privileged measures are not available
and the image quality is predicted using the RR information and
the trained model.

The experimental results show that the constructed model
based on e–SVR+ can improve the IQA performance and the pro-
posed method outperforms several IQA approaches. Summarized,
this paper brings the following contributions: (1) a new RR IQA
is proposed for quality evaluation of multiply-distorted images
(2) the LUPI paradigm is employed to learn an improved quality
prediction model.

The remainder of the paper is organized as follows: The basic
introduction of the IGM theory and the mathematical description
of the image decomposition method are explained in Section 2.
Section 3 presents the feature extraction for quality assessment
from structural and uncertainty information. Section 4 elaborates
on learning the IQA models based on the LUPI paradigm. The
experimental results are presented and discussed in Section 5.
Finally, Section 6 concludes this paper.
2. IGM-based image decomposition

Recent investigations in brain sciences reveal that the brain
provides a probabilistic representation of information and accord-
ingly, mathematical concepts such as Bayesian theory [36] and the
free energy principle [23] are introduced. These concepts indicate
that the Human Visual System (HVS) possesses an Internal Gener-
ative Mechanism (IGM) [37].

According to IGM, the brain behaves as an active predictor
when analyzing a scene. For visual processing, the brain first tries
to generate predictions of the visual stimuli by detecting correla-
tions of nearby contents while ignoring uncertainty data. Then,
the predictions are merged with other subjective attributes, most
notably inherent a priori knowledge, to optimize the active predic-
tion. The HVS depicts a specific functionality when exploring a
scene. The visual system is well-adapted to extract homogeneous
and regular contents (such as structures) to understand the scene.
On the other hand, determining the composition of irregular parts
is not straightforward for the HVS and the disorder information
brings difficulty for visual information prediction and understand-
ing. In other words, the prediction of a visual scene is highly linked
with the similarities among nearby contents [38].

Based on the aforementioned characteristics, IGM-based predic-
tion is simplified by considering the correlation of neighbouring
pixels. A Bayesian prediction-based autoregressive (AR) model is
proposed in [25] to predict a pixel value by computing its correla-
tion with nearby pixels. The AR model imitates the visual content
prediction of IGM and decomposes an image into predicted and
disorderly portions. Using the AR model, the value pcof a central
pixel xc can be predicted as:

pc ¼
X
pi2X

bRi:pi þ e ð1Þ

where pc is the predicted value of xc and pi is the value of neighbor-
hood pixels xi (xi 2 XÞ. The normalized correlation coefficient

between xc and xi is represented by bRi ¼ RiP
k
Rk

and e is a term char-

acterizing the white noise. The correlation coefficient is more likely
to be high for pixels located in parts with regular structures and
homogeneous content while the pixels of disorderly regions have
lower correlation.

The predicted pixels obtained by (1) constitute the predicted
image (IP). Therefore, the image I is decomposed into its predicted
IP and disorderly ID ¼ I � IPð Þ portions. Fig. 1a shows a reference
image with its Blur-JPEG and Blur-Noise multiply-distorted ver-
sions. The images are selected from the MLIVE dataset [18] and
their corresponding decomposed parts are also presented. Fig. 1b
shows the enlarged versions of the regions marked in Fig. 1a. The
main visual content, e.g. edges and structures, is represented in
the predicted image and the disorderly portion conveys the resid-
ual uncertainty information. Distortions on the predicted part
mainly affect the image structure and subsequently the image
understanding while disorderly part distortions mostly modify
the image disorder causing an uncomfortable perception with lim-
ited impact on visual understanding.

The degradation effects of different distortion types are not sim-
ilar for the predicted/disorderly portions and depend on the char-
acteristics of a distortion type. For instance, Gaussian Blur (GB) can
eliminate structures as well as the uncertainty information. The
blur deteriorates visual understanding by modifying the primary
visual information (e.g. edges) and texture (or uncertainty infor-
mation). Oppositely, noise causes uncomfortable perception,
impacting mostly the disorderly portion and it does not have a sig-
nificant effect on image structure. A Blur-Noise distorted image
and its decomposed parts are shown in Fig. 1. It is observed that
the blur mainly damages the predicted portion whereas the noise
affects more the disorderly portion. For Blur-JPEG multiply-
distorted images, blur mostly degrades the structures in the pre-
dicted part and JPEG distortion affects both parts with less effect
on the predicted part. Since each distortion type has a distinct
impact on the predicted and disorderly portions, we proposed to
utilize the image decomposition inspired by IGM for quality pre-
diction of multiply-distorted images.

It is challenging to design an effective IQA model for multiply-
distorted images since the interaction between several distortions
should be taken into account. We advocate that the degradation
effect of multiple distortions can be better interpreted when eval-
uating both the predicted and disorderly images. The structural
degradations emerge on the predicted part while the disorderly
part represents the information changes that disturb the percep-
tion with a slight effect on visual understanding. Using the IGM-
based prediction model, a new RR IQA approach is developed to
quantify the degradation effect of multiply-distortion types on
two decomposed parts and predict the perceived quality.

3. Proposed method

The framework of the proposed method is summarized in Fig. 2.
The method consists of three main stages including: image decom-
position, feature extraction, and quality prediction (feature pool-
ing). The input train/test images are first decomposed into
predicted and disorderly parts. In the next step, some quality-
characterizing features are extracted from each portion. The fea-



Fig. 1. Image decomposition based on IGM (scrimmage.bmp from MLIVE dataset). (a) First row: Input images (Reference image and the Blur-Noise and Blur-JPEG distorted
versions), Second row: predicted part of each image (IP), Third row: disorderly part of each image (ID) [scaled to 0–255]. (b) Zoom-in versions of the regions marked by red box
in (a) and their corresponding predicted and disorderly parts.
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tures of the predicted part are obtained using a shearlet represen-
tation and the directional entropies of the disorderly part are com-
puted yielding a number of disorderly features. The difference
between features of the reference and distorted images are then
computed to obtain RR quality measures. In the training stage,
the obtained measures are fed into a machine learning framework
to build IQA model. The model is developed based on LUPI para-
digm (e–SVR+) which utilizes RR measures and privileged informa-
tion. In testing stage, the RR measures extracted from test images
are mapped to quality scores using the constructed SVR+ model.

Feature extraction is an important step to build an IQA model.
The features should effectively express the degree and type of
distortion independent of the image content. We propose two
different feature extraction methods for the predicted and
disorderly parts seen the different types of information in these
two parts.

The feature extraction module is depicted in Fig. 3. The pre-

dicted parts of the reference and distorted images (IP and I
0
P) are

subjected to a shearlet transform and the mean values of the shear-

let coefficients are yielding the quality features (f P and f
0
P). The dis-

orderly parts of the reference and distorted images (ID and I
0
D)

contain uncertainty information of which the Rényi directional
entropy is computed to obtain the disorderly features (denoted

as f D and f
0
D). Next, the difference values between the features

are computed in each part to obtain the corresponding quality
measures (qp, qD). The feature extraction procedures for the two
decomposed parts are elaborated in the following subsections.



Fig. 2. Overview of the proposed method.

Fig. 3. The feature extraction framework. Inputs: IP and I
0
P are the predicted parts of

the reference and distorted images, respectively. ID and I
0
D denote the disorderly

portions. Outputs: qp, qD are the predicted and disorderly measures.
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3.1. Predicted-part features

Here we demonstrate the shearlet transform utilized to extract
structural features from the predicted parts of images.

Wavelets can provide a sparse representation of the directional
features [39]. To overcome the inherent limitations of wavelets in
dealing with multivariate directional data, more advanced, direc-
tionality sensitive bases such as curvelets [40], contourlets [41]
and shearlets [42] have been developed. Curvelets are introduced
as a pyramid of functions defined at multiple scales, locations
and orientations in which the rotation is used to capture the direc-
tional data. Contourlets are a discrete version of curvelets based on
a tree-structured filter bank implementation and they offer effi-
cient numerical methods like standard wavelets do. Shearlets are
known as a truly multivariate version of the wavelet framework
providing an optimally sparse multi-scale representation of promi-
nent structures such as edges. Compared to curvelets, shearlets
have a single or finite set of generation functions. Curvelets involve
rotations which cannot preserve the digital lattice. However,
shearlets can preserve the structure by parameterization of the
directions based on the slope rather than the angles. The contourlet
transform utilizes directional filtering to exploit directional data
while the shearlet transform takes advantage of the shear matrix,
which gives higher flexibility in choosing the number of directions.

The primary visual information of an image is presented in the
predicted parts. Such structural information is well-presented in
the shearlet domain. The deviations between the shearlet coeffi-

cients of IP and I
0
p represent the structural changes caused by the

introduced distortions and hence, are also indicative for quality
degradation.

Shearlets form an affine system parameterized by three param-
eters: scale, shear, and translation. The shearlet transform of an
image I is defined as:

I ! SHwI b; s; tð Þ ¼ I;wb;s;t

� � ð2Þ
where b > 0 is the scale parameter, s 2 R denotes the shear param-
eter and t 2 R2 is the translation parameter. The shearlet coeffi-
cients (wb;s;t) are given by:

wb;s;t xð Þ ¼ detLb;s
�� ���1

2w L�1
b;s x� tð Þ

� �
where

Lb;s ¼ SsBb ¼ b s
ffiffiffi
b

p

0
ffiffiffi
b

p
" #

Bb ¼
b 0
0

ffiffiffi
b

p
� 	

Ss ¼
1 s
0 1

� 	 ð3Þ

w(.) is the Meyer wavelet function. To achieve optimal sparsity, the
anisotropic dilation matrix Bb enables the multi-scale property and
the shear matrix Ss detects directions.

The predicted part of the reference and distorted images are
transformed into ten high-pass directional subbands and one
low-pass subband by performing a 1-level shearlet transform.
The predicted part mainly contains primary high frequency com-
ponents – such as edges – as well as the low frequency compo-
nents. Since the distortion impact is more dominant on the high
spatial frequency components of an image than on the low fre-
quencies, we used ten directional subbands of the finest – i.e. high-
est frequency – scale to extract features.

Since distortion can change the energy spectrum of images, the
energy of each subband is considered as a feature. The norm-1
energy e1 :ð Þ, which is the mean of shearlet coefficients in one sub-
band, is computed as:

e1 kð Þ ¼ 1
N

XN
j¼1

wk
j

��� ��� ð4Þ

where wk
j denotes the j-th shearlet coefficient of the k-th subband.

Finally, the normalized difference qP between the energy values
of the k-th subband of the distorted and reference images, respec-
tively e1 :ð Þ and e0

1 :ð Þ, is calculated as:

qP kð Þ ¼ e
0
1 kð Þ � e1 kð Þ

e1 kð Þ ð5Þ

Considering a decomposition in 10 subbands, we obtain a sub-
set of 10 measures {qP 1ð Þ; qP 2ð Þ; � � � ; qP 10ð Þ} for the predicted part.

3.2. Disorderly-part features

This section introduces the Rényi directional entropy [31]
employed for feature extraction from the disorderly part. Unlike
the predicted part distortion, which mostly affects the main struc-
tures and image understanding, the distortion of the disorderly
portion incurs uncomfortable perception and it distresses our
attention. The disorderly portion of an image contains residual
uncertainty information and the pixel values in the disorderly



Table 1
Performance of five FR IQA methods on all images of the MDID2015 dataset in terms
of PLCC, SROCC, and RMSE.

PLCC SROCC RMSE

FSIM 0.926 0.933 0.125
VIF 0.936 0.937 0.112
IGM 0.876 0.864 0.158
HDR-VDP 0.872 0.859 0.166
GMSD 0.890 0.879 0.149
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image represent the degree of uncertainty. As discussed in Sec-
tion 2, each distortion has a distinct impact on the amount and
composition of information in the disorderly part. In Blur-Noise
distorted images, the disorderly part mostly represents the effect
of noise by increasing the general entropy in all directions while
the Blur-JPEG distortion with blocking artefacts yields heteroge-
neous changes of information in different directions. Here, the gen-
eralized Rényi entropy has been utilized to capture the amount of
information changes in various directions.

Entropy is an effective measure of the amount of information in
an image and distortion can alter image entropy. Researches have
shown a close relationship between image entropy and perceived
image quality. Sheikh et al. [43] employed entropy to develop an
FR IQA model. Liu et al. [44] extract spatial and spectral entropy
features of images for NR IQA.

Gabarda et al. [31] proposed a generalized Rényi entropy
approach to achieve directional selectivity. The method extracts
the spatial-frequency information of a given 2D image by associat-
ing the pixel-level data with a spatial/spatial-frequency distribu-
tion called 1-D pseudo-Wigner distribution (PWD) [45]. Each
pixel of a 2D image is associated to a vector of a 1-D PWD, which
can be set in any direction over the image. Then, the PWD is
approximated and the Rényi entropy is measured for every pixel.

The general Rényi entropy (RE) is defined as:

REc ¼ 1
1� b

log2

X
n

X
k

Yb n; k½ �
 !

ð6Þ

where Y[n,k] denotes a discrete space-frequency distribution of
image, and n, k are space and frequency variables, respectively.
Here, b � 2 values are utilized for space–frequency distribution
measures. We select b ¼ 3 for the proposed method.

As mentioned earlier, the PWD is selected to model the discrete
space-frequency distribution of the image. A discrete approxima-
tion of the PWD can be expressed as follows:

Wh n; k½ � ¼ 2
XM2�1

c¼�M=2

h nþ c½ �h� n� c½ �e�2i 2pc=Mð Þk ð7Þ

where c is the spatial shift, h[n] denotes a vector of gray values ofM
pixels in a selected direction, and the complex conjugate of h[n] is
indicated as h*[n].

The PWD is computed in a 1-D-oriented window to obtain
entropy in a selected direction. Wh n; k½ � in (7) represents the distri-
bution in a limited PWD window (spatial interval (�M/2,M/2 + 1)).
By moving the directional PWD window over all desired positions
in the image, we compute the overall PWD. The directional infor-
mation can be obtained by rotating the window in various direc-
tions. Finally, Wh n; k½ � is normalized [31] and associated with
Y n; k½ � to compute a pixel-wise Rényi entropy.

We measure the pixel-wise Rényi entropy of the disorderly
parts in six equally-spaced directions (0�, 30�, 60�, 90�, 120�, and
150�). The mean of the entropy values in each direction j is
obtained as disorderly features for the reference and distorted
images. Finally, the normalized difference between the features
of the distorted and reference image are computed to obtain a
quality measure subset qD:

qD jð Þ ¼ l0
D jð Þ � lD jð Þ
lD jð Þ ð8Þ

where l0
D jð Þ and lD jð Þ denote the mean values of pixel entropies in

direction j for the disorderly part of the distorted and reference
images, respectively. The feature differences are computed in all
directions yielding a set of six measures {qD 1ð Þ; qD 2ð Þ; � � � ; qD 6ð Þ}.
4. Quality prediction

We obtained as such ten quality measures from the predicted
part qPand six measures from the disorderly part qD. In total, a sub-
set of 16 measures is provided (qP ; qD), which is called the standard
RR feature set. Since the effects of different distortion types are not
similar in the predicted and the disorderly parts, the performance
of the sixteen measures will differ depending on the nature of the
distortions the image was subjected to. Here, e–SVR+ (LUPI para-
digm) framework [32] is employed to determine an appropriate
feature pooling. For quality prediction, we used LUPI to learn a
regression model from both standard training data and privileged
information. The privileged information is available only at train-
ing time and utilized to reduce the error measure of the prediction.

Given training data xi; yið Þf g; xi 2 X; yi 2 0;1ð Þ, the standard e–
SVR aims to find a hyper-plane f xð Þ ¼ w:xi þ b that has at most e
deviation from the obtained targets yi(MOS) for the training set
and is as flat as possible. This means that as long as the errors
are less than e, they are not taken into consideration. However,
any deviation larger than this will not be accepted [46]. The goal
of LUPI, which is implemented by the e–SVR+ algorithm, is to uti-
lize some additional information (i.e. privileged features) during
the training phase to further constrain the solution in the feature
space X and to build a more sophisticated model. In the situation

with privileged information bx 2 bX , the triplets xi; bxi; yi

 �� 

;1 �
i � m are given, and three sets of functions are considered.

The first function set lies in the standard space w:xi þ bð Þ, which
approximates the decision function. The other two sets are the cor-
rection functions to approximate the slack variable functions

ni bw1;
bb1

� �
¼ bw1:bxi þ bb1 and n�i bw2;

bb2

� �
¼ bw2:bxi þ bb2. Compared

to standard SVR, here the slack variables are the correcting func-
tions restricted by privileged information [32]. The optimization
problem is formulated as:

minimize

w; bw1; bw2; b; bb1;
bb2

1
2

jjwjj2 þ c jj bw1jj2 þ jj bw2jj2
� �� �

þC
Xm

i¼1
bw1:bxi þ bb1

h i
þ C

Xm

i¼1
bw2:bxi þ bb2

h i
ð9Þ
subject to : yi � w; xið Þ � b � eþ bw1:bxi þ bb1

w; xið Þ þ b� yi � eþ bw2:bxi þ bb2bw1:bxi þ bb1 � 0bw2:bxi þ bb2 � 0
i ¼ 1 � � �m

where w represents the weight vector, b is the bias parameter and C
denotes the penalty parameter

As mentioned earlier, additional privileged information bx is pro-
vided in case of SVR+, giving a set of training data xi; bxi; yi


 �� 
.

Here, we utilized FR IQA measures as privileged information. Five
FR IQA metrics (FSIM [4], VIF [43], IGM [25], HDR-VDP [47], and
GMSD [5]) with high correlation to MOS are selected. Table 1 lists
the selected metrics and their correlation behaviour on the MDID
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dataset in terms of Pearson Linear Correlation Coefficients (PLCC),
Spearman Rank Order Correlation Coefficients (SROCC), and Root
Mean Square Error (RMSE). The FR IQA metrics use full information
of the reference image to predict the quality degradation and the
state-of-art FR metrics often show better correlation to subjective
scores when compared to RR and NR IQA methods. Although, full
access to the reference image is not possible in the test stage of
the RR scenario, the FR features can be used as additional informa-
tion during training to build a more sophisticated model. There-
fore, in addition to sixteen RR measures (standard data) obtained
from the extracted features, five FR measures (privileged data)
are also used yielding a 5-D privileged vector (qPr). The privileged
information is only available during the training session and the
testing phase is performed by using the trained model and the
RR standard measures:

Q ¼ P qSð Þtest;M qSð Þtrain; qPr

� �
 � ð10Þ

where M :½ � is the trained model obtained from the standard qSð Þtrain
and privileged data qPr , and P(.) is the prediction function to achieve
the quality score Q.
5. Experimental results

In this section, first we demonstrate the efficacy of the feature
extraction approach to capture the effect of distortion on the pre-
dicted and disorderly portions. Next, the proposed approach is tes-
tified on multiply-distorted image datasets.

The performance of the proposed method highly depends on
the effectiveness of the features extracted from the images. Various
distortion types can change the information in different ways and
such changes should be well-represented by the features.

Each multiply-distortion type originates from several single-
distortion types possibly interacting with each other when applied
to an image, and it is not easy to measure the effect of single dis-
tortions, separately. The image decomposition based on IGM is
used to better capture the impact of each distortion on the struc-
tural and uncertainty information. By using sophisticated feature
Fig. 4. Feature changes under five distortion types (GB, JPEG, AWGN, Blur-JPEG, and Blur-
changes in the predicted part and features 11–16 are extracted from the disorderly por
extraction methods for the two decomposed parts, the multiply-
distortion effect can be interpreted and modeled more efficiently.

In the proposed method, the distortion effects in predicted and
disorderly parts are presented using shearlet- and entropy-based
methods, respectively. Fig. 4 illustrates feature values of the scrim-
mage image from the MLIVE dataset [18] and its five distorted ver-
sions (Gaussian Blur (GB), Blur-JPEG, Blur-Noise, JPEG, and Additive
White Gaussian Noise (AWGN)). To better visualize the feature
changes of distorted images with respect to original-image fea-

tures, the jth normalized feature response bf is computed by divid-
ing each feature value fwith the feature value of the original-image

forg expressed as: bf jð Þ ¼ f jð Þ=f org jð Þ. The feature changes on the pre-
dicted and disorderly parts are presented under various single and
multiply-distortion types. The corresponding 16D feature vector is
displayed in which the first 10 features are extracted from the pre-
dicted part (shearlet subband features) and the 6 remaining fea-
tures are derived from the disorderly part (directional entropy
features).

Comparing the feature changes due to different distortions, it
can be seen that the behaviour of the distortion types differs from
each other. AWGN distortion degrades the quality by producing
unwanted random data in image. The added information cannot
be interpreted by the HVS and causes perceptual quality loss.
Based on IGM, AWGN mostly affects the uncertainty information
in disorderly part. As shown in Fig. 4, this noise has small impact
on the energy of the shearlet information in the predicted part
when compared to the original (reference) image while it clearly
changes the entropy features in disorderly part. On the other hand,
blur distortion removes structural and texture information from
predicted and disorderly parts; therefore, the energy in the shear-
let subbands and the entropy in the disorderly part is decreased.
JPEG distortion mainly causes blocking artifacts in the image with
moderate effect on structural and uncertainty information.

As presented by features, each single distortion has its specific
effect on the decomposed portions. The distinct behaviour of single
distortions is helpful to interpret the multiply-distortion types. For
the Blur-Noise multiply-distortion type, we expect to observe the
effect of both single distortion types of AWGN and GB together
Noise) for the scrimmage image of the MLIVE dataset. Features 1–10 show structural
tion and represent changes in uncertainty information.



132 S. Mahmoudpour, P. Schelkens / J. Vis. Commun. Image R. 57 (2018) 125–137
with some interactions between them. Subsequently, in the Blur-
Noise distorted image of Fig. 4, the blur effect decreases the energy
of the shearlet information; however, due to added energy of noise,
the amount it decreases is smaller than when compared to a single
blur distortion type. On the other hand, in the disorderly portion,
noise increases the Rényi entropy to the same extent as the single
noise distortion. Comparing the effect of noise and blur in this type
of multiply-distortion, the blur effect is more evident in the pre-
dicted part as it decreases the subbands energy while entropy val-
ues in disorderly part are significantly increased due to the effect of
noise distortion. The Blur-JPEG multiply-distortion decreases the
feature values in both portions while the values fall in between
the feature values of single JPEG and GB distortions.

The impact of different distortions on the composition of the
uncertainty information is also well-presented by the extracted
features (number 11 to 16 in Fig. 4). The entropy values of disor-
derly parts are measured in six different directions (0�, 30�, 60�,
90�, 120�, and 150�). Each distortion type has a specific effect on
entropy values when compared to the original image. A distortion
such as JPEG, with a block-wise effect on the disorderly part,
decreases the entropy though the entropy reduction is not equal
in all directions.

As it is described, multiply-distortion type images inherit the
characteristics of the individual distortions. However, they cannot
be classified as one of the single distortion types since they have
specific degradation features due to the interaction of the single
distortions. As indicated in Fig. 4, the proposed feature extraction
method can effectively discriminate between the visual changes
of different multiply-distortion and single distortion types.

The performance of the proposed approach is evaluated on
multiply-distortion image datasets MDID2015 [19] and MLIVE
[18]. The IQA model is trained on MDID2015 dataset, which
includes 20 pristine images corrupted by five distortion types:
AWGN, GB, Contrast Change (CC), JPEG, and JPEG 2000. Four degra-
dation levels – from slight to severe – are considered for each dis-
tortion type. We exclude the images subjected to the CC distortion
type and used a total number of 558 distorted images in the exper-
iment. As subjective quality rating, a Differential Mean Opinion
Scores (DMOS) is reported for each image.

We randomly partitioned the MDID dataset into train and test
subsets; 80% of images is issued for training and the remaining
20% for testing. To ensure the validity of experiment, the train
and test images were separated by content and the random parti-
tioning was performed 500 times. From the training set, the IQA
models were constructed for application onto the test images.
Finally, we report the mean performance indices across 500
experiments.

A mapping function is adopted between objective and subjec-
tive scores. Here, we used a 5-parameter logistic function:

f sð Þ ¼ c1:
1
2
� 1
1þ exp c2: s� c3ð Þð Þ

� �
þ c4:sþ c5 ð11Þ

where f(s) is the mapped score and c1 to c5 are fitting parameters.
Then, several performance evaluation criteria were computed
defined as follows. The evaluation indices are defined as follows:

� Pearson Linear Correlation Coefficients (PLCC) denotes the
strength of relationship between two sets and defined as:

PLCC ¼ �N
i¼1ðQi � lQ ÞðYi � lYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�N
i¼1ðQi � lQ Þ2�N

i¼1ðYi � lYÞ2
q ð12Þ

where Qi and Yi are the objective and subjective quality scores of the
ith image and l denotes average score.
� Root Mean Square Error (RMSE) measures the extent of error
between two sets expressed as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 Qi � Yið Þ2
N

s
ð13Þ

� Spearman Rank Order Correlation Coefficients (SROCC) is a
rank-order based correlation metric:

SROCC ¼ 1� 6
PN

i¼1d
2
i

N N2 � 1
� � ð14Þ

where di is the difference between ranks of ith image
[rank Qið Þ � rank Yið Þ] in objective and subjective score sets.

PLCC and RMSE indicate the accuracy of prediction and SROCC
evaluates the prediction monotonicity. We also report Standard
Deviation (SD) of PLCC values across 500 trails. The smaller SD
means better stability of the model to variations in training data.

The performance of the proposed method is compared with sev-
eral FR, RR and NR IQA metrics. The competing FR metrics are Fea-
ture SIMilarity (FSIM) [4], Visual Information Fidelity (VIF) [43],
High Dynamic Range Visual Difference Predictor (HDR-VDP 2.2)
[47], Internal Generative Mechanism model (IGM) [25], Peak
Signal-to-Noise Ratio (PSNR), and Structural SIMilarity index
(SSIM) [48]. The RR approaches include Reduced Reference Wave-
let Domain based quality (RRWD) [49], Reduced Reference Entro-
pic Differencing (RRED) [7] and Orientation Selectivity Based
Visual Pattern (OSVP) [14]. The competing NR metrics include
two multiply-distortion methods: Five-Step Blind Metric (FISBLIM)
[15] and Six-Step Blind Metric (SISBLIM) [16] and four general-
purpose metrics: NR Free Energy based Robust Metric (NFERM),
High Order Statistics Aggregation (HOSA) [50], Multi-task End-to-
end Optimized deep neural Network (MEON) [51], Distortion
Identification-based Image Verity and INtegrity Evaluation (DII-
VINE) [8], Spatial-Spectral Entropy-based Quality (SSEQ) [44], Nat-
ural Image Quality Evaluator (NIQE) [52], and Blind/Referenceless
Image Spatial QUality Evaluator (BRISQUE) [53]. In addition to
the target models (SVR and SVR+), we also trained our designed
features using Extreme Learning Machine (ELM) framework to bet-
ter validate the effectiveness of the designed features and illustrate
the advantage of LUPI paradigm compared to the conventional
learning methods. ELM is developed as a class of single-hidden
layer feedforward neural network and it offers a good generaliza-
tion ability with high training speed.

Table 2 summarizes the performance of the competing metrics.
The IQA model learned by the LUPI paradigm (SVR+) improves the
performance when compared to the standard SVR and ELM. The
RRSEASVR+ model with a PLCC of 0.843 and SROCC of 0.831 outper-
forms RRSEASVR and RRSEAELM. In contrast, RRSEASVR+ has smaller
RMSE, which means less prediction error. The standard deviation
of the PLCC indices is also decreased by using e–SVR+; implying a
more stable model and less dependency on the training set. Com-
paring SVR- and ELM-based metrics, the SVR model performs
slightly better. As shown in the table, the proposed method signif-
icantly outperforms PSNR and SSIM FR metrics. VIF and FSIM show
the highest performance among all metrics and the performance of
RRSEASVR+ is comparable with the HDR-VDP metric.

The proposed method delivers much better results compared to
all other NR approaches. Our method outperforms the competing
RR IQA approaches. Compared to RRED, as one of the best available
RR metrics, the RRSEASVR+ shows higher correlation and much
lower RMSE. In addition, lower SD values of the proposed method
compared to RRED indicate lower dependency of the proposed
model to the training data.



Table 2
Performance of different IQA metrics on MDID2015. Mean PLCC, SROCC, and RMSE as well as the standard deviation of PLCC values (SD) are computed across 500 train-test trials.

IQA Metrics Type PLCC SROCC RMSE SD

FSIM FR 0.932 0.926 0.160 0.018
VIF FR 0.940 0.937 0.148 0.025
HDR-VDP FR 0.862 0.866 0.190 0.044
IGM FR 0.873 0.884 0.171 0.045
SSIM FR 0.627 0.643 0.326 0.127
PSNR FR 0.644 0.660 0.309 0.144
RRSEAELM RR 0.791 0.794 0.255 0.061
RRSEASVR RR 0.815 0.807 0.209 0.052
RRSEASVR+ RR 0.843 0.831 0.185 0.047
RRWD RR 0.672 0.682 0.344 0.073
RRED RR 0.786 0.834 0.391 0.158
OSVP RR 0.685 0.713 0.293 0.081
FISBLIM NR 0.602 0.618 0.313 0.059
SISBLIM NR 0.661 0.679 0.325 0.057
NFERM NR 0.579 0.541 0.332 0.062
HOSA NR 0.687 0.662 0.323 0.059
MEON NR 0.610 0.554 0.354 0.058
SSEQ NR 0.571 0.558 0.343 0.056
NIQE NR 0.670 0.664 0.357 0.060
DIIVINE NR 0.588 0.585 0.306 0.059
BRISQUE NR 0.590 0.535 0.324 0.061

Fig. 5. Boxplot comparing the PLCC distribution of the competing algorithms over 500 train-test trials on the MDID2015 dataset.
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The distribution of PLCC values for different methods is visual-
ized using boxplots in Fig. 5. Apart from the mean correlation over
500 trials (shown in Table 2), the boxplots show the median (red
lines), the standard error, and the maximum/minimum of 500 PLCC
correlations. The outliers are specified by red ‘+’ symbols. Compar-
ing VIF and FSIM, as the best metrics, VIF has higher median PLCC
while FSIM depicts a lower error and standard deviation. The pro-
posed approach outperforms all NR metrics. The boxplot represen-
tation of RRED metrics implies its larger prediction error compared
to the proposed model.

To provide a clear understanding on the performance compar-
ison and statistical significance of competing approaches, a two-
sample student t-test is conducted [54]. The t-test is computed
based on the SROCC values between predicted scores and subjec-
tive DMOS over 500 train-test trials. The statistical performance
is listed in Table 3 in which value ‘1’ implies that an IQA metric
on the horizontal axis is statistically better than a method on the
vertical axis. The symbol ‘0’ is used when the statistical signifi-
cance is indistinguishable (no statistically significant distance)
and symbol ‘�1’ means an IQA metric on the horizontal axis is
worse than a metric on the vertical axis. We set the confidence
level to 95% for all comparisons.

As it is observed in Table 3, the proposed RRSEASVR+ method is
statistically better than RRED, OSVP and RRWD. The RRSEASVR+

model is also statistically better than all NR approaches. In compar-
ison with FR metrics, the RRSEASVR+ can perform as good as the



Table 3
Comparison of statistical significance using two-sample student t-test. A value ‘1’ means the IQA method in row is statistically better
than the method in column; ‘0’ indicates no significant difference between a row and a column algorithm. ‘�1’ denotes the algorithm in
row is inferior to the column.

Table 4
Performance of the RRED, RRSEASVR, and RRSEASVR+ approaches considering various
train%-test% partitioning strategies. The performance loss compared to 80%-20%
method is also reported.

PLCC Loss % SROCC Loss %

70% - 30%
RRSEASVR 0.804 1.3 0.798 1.1
RRSEASVR+ 0.834 1.1 0.825 0.7
RRED 0.768 2.3 0.809 2.9

60% - 40%
RRSEASVR 0.790 3.0 0.783 2.9
RRSEASVR+ 0.821 2.6 0.811 2.4
RRED 0.740 5.8 0.779 6.5

50% - 50%
RRSEASVR 0.775 4.9 0.772 4.3
RRSEASVR+ 0.814 3.4 0.806 3.0
RRED 0.715 9.0 0.745 10.6

40% - 60%
RRSEASVR 0.765 6.1 0.759 5.9
RRSEASVR+ 0.798 5.3 0.789 5.0
RRED 0.658 16.2 0.692 17.0

30% - 70%
RRSEASVR 0.747 8.3 0.741 8.2
RRSEASVR+ 0.782 7.2 0.781 6.0
RRED 0.641 18.4 0.682 18.2
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state-of-art HDR-VDP metric and outperforms PSNR and SSIM. VIF
is statistically superior to all competing methods. Among NR
approaches, the NIQE is better than other NR IQA algorithms and
it is statistically close to OSVP, RRWD, and PSNR. The RRSEA mod-
els trained by SVR and ELM are comparable and there is no signif-
icant statistical difference between these two model. The results
confirm that by using additional priviledged features in SVR+
framework, we can achieve higher performance than traditional
SVR and ELM learning approaches.

To evaluate the dependency of the proposed model on the num-
ber of training images, other partitioning strategies have also been
taken into account. In addition to the 80–20% train-test split, we
considered 70–30%, 60–40%, 50–50%, 40–60%, and 30–70% splitting
and report on the amount of performance change.

Table 4 reports the PLCC and SROCC values obtained by chang-
ing the train-test portions. It is shown that the performance grad-
ually drops by decreasing the number of training images. We also
compute the amount of performance loss compared to 80–20% cor-
relation for each evaluation index:

Loss% ¼ Corrx%�y% � Corr80%�20%

Corr80%�20%
	 100 ð15Þ

where Corrx%-y% denotes the correlation over 500 train-test by
choosing x% of images for training and y% for testing. From Table 4,
it can be observed that the performance drops much faster for
RRED. Also, the proposed models perform significantly better than
RRED when the number of training images are decreased. Compar-
ing the two RRSEASVR and RRSEASVR+ models for all splitting meth-
ods, it is observed that the proposed model based on SVR+ depicts
a slower performance drop than the standard SVR model. For exam-
ple, in 50%-50% splitting, the amount of performance loss of
RRSEASVR in terms of PLCC and SROCC is respectively, 4.9% and
4.3% while respectively, 3.4% PLCC and 3.0% SROCC loss are reported
for the RRSEASVR+ model. The results illustrate that both models can
still perform reasonably well when the amount of training data is
decreasing. The trained model based on SVR+ is more robust to
training image changes than the standard SVR model.
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IQA models are expected to be dataset-independent. It means
that a model trained on one dataset should not be specific to the
contents of that dataset and it needs to perform well also on other
datasets. To demonstrate that the trained model is generic, the
parameters trained on the MDID dataset were tested on the MLIVE
dataset. The MLIVE consists of 15 reference images subjected to
two multiply-distortion types; Blur-JPEG and Blur-Noise. A total
number 450 images with assigned subjective ratings are provided.
Table 5 reports the performance comparison on MLIVE dataset. The
performance indices of the proposed method dropped slightly due
to some differences in simulated distortions. However, the correla-
tion results confirm that the overall performance is still consis-
Table 5
Performance comparison of IQA methods on the MLIVE dataset.

IQA metric Type PLCC SROCC RMSE

FSIM FR 0.893 0.879 8.59
VIF FR 0.902 0.888 8.43
HDR-VDP FR 0.918 0.899 8.41
IGM FR 0.881 0.853 8.85
SSIM FR 0.733 0.646 12.83
PSNR FR 0.739 0.672 12.75
RRSEASVR RR 0.797 0.788 11.05
RRSEASVR+ RR 0.824 0.811 10.34
RRWD RR 0.740 0.706 12.36
RRED RR 0.819 0.791 10.48
OSVP RR 0.775 0.732 11.53
FISBLIM NR 0.782 0.758 11.50
SISBLIM NR 0.765 0.743 11.98
NFERM NR 0.613 0.598 14.41
HOSA NR 0.812 0.802 10.64
MEON NR 0.768 0.753 11.66
SSEQ NR 0.362 0.258 16.98
NIQE NR 0.747 0.721 12.19
DIIVINE NR 0.709 0.664 13.22
BRISQUE NR 0.552 0.512 15.37

Fig. 6. Scatter plots of (a) HDR-VDP, (b) FSIM, (c) SSIM, (d) PSNR, (e) OSV
tently high. Fig. 6 indicates the scatter plot of the predicted
scores versus the subjective MOS for HDR-VDP, FSIM, SSIM, PSNR,
OSVP, and RRSEASVR+ approaches on the MLIVE dataset.

The quality metrics designed for multi-distorted images should
also perform well on single distortion datasets. As shown earlier in
Fig. 4, the proposed features can represent the characteristics of
various single and multiple distortion types. Table 6 shows the per-
formance results on LIVE [55] image dataset which consists of 779
distorted images with five types of single distortions – JP2K, JPEG,
AWGN, GB, and Fast Fading (FF). The results indicate good perfor-
mance of the RRSEA on images corrupted by single distortion
types.

In communication systems, RR features extracted from refer-
ence images are transmitted from sender side to the receiver side
where the distorted image is available for quality assessment.
Therefore, it is highly desirable to send quantized RR features (with
smaller size) without a significant loss of performance. Here, the
efficacy of the RRSEA metric is tested when the number of bits
per feature (bpf) is changing. An original RR feature is considered
to have a size of 32-bit. Fig. 7 presents the bpf vs. SROCC diagram
where the number of bits assigned to each feature is changing from
32 to 2 bits. As shown in the figure, the RRSEA model can still per-
form well when the number of bits is decreasing and there is no
significant performance drop by using 8 bits instead of 32 bits
per feature. Considering the sixteen 8-bit features extracted from
reference image, the proposed RRSEA model only needs 128 bits
of data from the sender side for quality assessment.

In Table 7, we summarized the feature extraction methods of
different competing RR approaches. In applications such as quality
monitoring of visual communications systems, the RR methods are
more preferred than FR metrics due to much lower data rate of RR
features. The proposed method only needs 16 features from the
reference image (at sender side) to predict the quality which is
quite reasonable compared to other RR methods.
P, and (f) RRSEASVR+ approaches for 450 images of the MLIVE dataset.



Table 6
Performance evaluation on LIVE single distortion image dataset. Mean PLCC and SROCC are computed across 500 train-test trials.

PLCC JP2K JPEG WN BLUR FF ALL

RRED 0.963 0.979 0.985 0.969 0.923 0.949
BRISQUE 0.923 0.973 0.985 0.950 0.903 0.942
MEON 0.926 0.979 0.986 0.951 0.906 0.946
HOSA 0.938 0.976 0.988 0.979 0.921 0.952
NFERM 0.954 0.971 0.985 0.938 0.887 0.944
DIIVINE 0.923 0.934 0.986 0.937 0.891 0.927
SSEQ 0.943 0.972 0.970 0.935 0.916 0.936
NIQE 0.926 0.952 0.976 0.943 0.879 0.905
RRSEA 0.955 0.986 0.983 0.977 0.912 0.951

SROCC JP2K JPEG WN BLUR FF ALL

RRED 0.958 0.976 0.978 0.963 0.916 0.941
BRISQUE 0.916 0.964 0.978 0.941 0.875 0.939
MEON 0.912 0.967 0.983 0.934 0.891 0.943
HOSA 0.933 0.954 0.972 0.952 0.900 0.950
NFERM 0.941 0.964 0.983 0.921 0.862 0.940
DIIVINE 0.912 0.920 0.981 0.937 0.868 0.925
SSEQ 0.941 0.953 0.975 0.920 0.905 0.933
NIQE 0.918 0.942 0.971 0.933 0.863 0.908
RRSEA 0.945 0.981 0.980 0.969 0.901 0.947

Fig. 7. Performance of the proposed method on MDID2015 dataset for different
number of bits (2–32 bits) assigned per feature.
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The required computation time of the proposed method is
reported in Table 8. The Matlab code was executed for input
images of size 512 	 384, 10 repetitions, and the average process-
ing time is reported. The test was performed on a Windows laptop
Table 7
The extracted features of different RR methods.

RRWD 18 features by modeling the distributions of coefficients in 6 wavelet subba
� The parameters of Generalized Gaussian Distribution (GGD) model (2 fe
� The prediction error computed by Kullback–Leibler Divergence (KLD) (1

RRED The entropies of a wavelet subband coefficients are computed as features.
� The number of features is equal to size of a selected subband divided by b

OSVP The visual content is extracted by OSVP analysis and mapped to histogram
� 9 histogram bins are utilized as features

RRSEA 16 quality-relevant features obtained by IGM-based image decomposition
� 10 features from shearlet subbands of predicted part
� 6 directional entropy-based features from disorderly part

Table 8
Comparison of average required computation time (s).

HDR-VDP FSIM OSVP

Time (sec) 1.81 0.33 0.14
with 16 GB RAM and a Core i7-2.7 GHz CPU. Although RRSEA is not
developed under the constraint of real-time application, the com-
putation time is still reasonable and it is faster than DIIVINE and
NFERM metrics. Evidently, the processing time can be improved
by optimizing the implementation.

6. Conclusion

In this paper, a novel RR IQA method is proposed to predict the
quality of multiply-distorted images. Since multiple distortion
types can interact with each other when added to an image, it is
more challenging to interpret the degradation effect on multiply-
distorted images. To better model the effect of distortions, we
decomposed an input image into predicted and disorderly parts
based on an AR procedure. The degradation of primary visual infor-
mation in the predicted part is measured using a shearlet represen-
tation and the disorderly-part information is obtained in several
directions by deploying Rényi entropy. Finally, we proposed the
use of the LUPI paradigm (SVR+) to train the quality prediction
model. The SVR+ framework utilizes FR measures as privileged
information during training. Experimental results indicate good
performance of the proposed algorithm independent from the
trained dataset. The proposed model outperforms several FR and
state-of-the-art RR and NR metrics on MDID and MLIVE
nds. In each subband, the following features are extracted:
atures)
feature)

lock size (3 	 3). (number of features are typically around 1/18 of the image size)
bins.

HOSA DIIVINE NFERM RRSEA

0.65 12.68 26.75 7.38
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multiply-distortion image datasets. The results illustrate that using
privileged information during training of SVR+ model can help to
construct a more sophisticated model and improve the quality pre-
diction accuracy.
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