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Abstract. Many current successful Person Re-Identification(ReID) meth-
ods train a model with the softmax loss function to classify images of
different persons and obtain the feature vectors at the same time. How-
ever, the underlying feature embedding space is ignored. In this paper,
we use a modified softmax function, termed Sphere Softmax, to solve the
classification problem and learn a hypersphere manifold embedding si-
multaneously. A balanced sampling strategy is also introduced. Finally,
we propose a convolutional neural network called SphereReID adopt-
ing Sphere Softmax and training a single model end-to-end with a new
warming-up learning rate schedule on four challenging datasets includ-
ing Market-1501, DukeMTMC-reID, CHHK-03, and CUHK-SYSU. Ex-
perimental results demonstrate that this single model outperforms the
state-of-the-art methods on all four datasets without fine-tuning or re-
ranking. For example, it achieves 94.4% rank-1 accuracy on Market-1501
and 83.9% rank-1 accuracy on DukeMTMC-reID. The code and trained
weights of our model will be released.

Keywords: Person Re-Identification, Classification, Feature Embedding,
CNN, Hypersphere

1 Introduction

Person re-identification is the task of identifying bounding box images of the
same person from non-overlapping camera views. Given a probe image, we need
to retrieve all images of the same person ID in gallery images.

Person re-identification has many practical applications such as video surveil-
lance for public security, and thus attracts much research attention in the com-
puter vision community. With the utilization of deep convolution neural networks
(CNNs) [1] in recent years, ReID performance has made significant progress.
However, some problems remain to be solved owing to the challenges of ReID,
including changes in camera viewpoints, illumination changes, human pose vari-
ation and occlusion.

Most of the current ReID approaches can be categorized into two types:
feature-based or metric-based. Extracting features from input images and seeking
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(a) Softmax Loss (b) Triplet Loss (c) Sphere Loss

Fig. 1. Two-dimensional visualization of sample distribution in the embedding space
supervised by (a)Softmax Loss, (b)Triplet Loss [2], and (c)Sphere Loss. Yellow and red
points represent embedding features from two different classes.

a metric for comparing these features across images are the two main components
of person re-identification. Some hand crafted features such as scale invariant
feature transforms(SIFT) features [3,4] and local maximal occurrence(LOMO)
features [5] have been used to represent the a person’s appearance.

With the success of deep learning, CNN-based methods have been proposed
for ReID to automatically learn the feature representations from the training
data. These methods [6,7,8,9] often model ReID as a classification problem and
consider images from a specific person ID as a class. Then the softmax cross-
entropy loss is applied to supervise the training procedure. Simultaneously, as
a by-product, feature vectors before the last fully connected layer are extracted
as the final image features. It corresponds with intuition that when a feature
vector can be used to classify a person ID correctly, it is a good representation
of that person’s appearance. However, without explicit constraints on the feature
space distribution, the learned feature mapping may not be optimal. As shown
in Fig. 1(a), there is no constraint on the distribution in the embedding space,
which leads to a general spread.

To overcome the aforementioned drawbacks of feature-based works, metric-
based methods [10,11,12,13,14] have been proposed to learn an embedding of
the original images that satisfies some specified conditions. For example, triplet
loss [2] requires the distance of samples from the same class to be less than
that of samples from different classes by a pre-defined threshold, which pulls the
instances of the same person closer and simultaneously pushes the instances be-
longing to different persons away from each other in the embedding space. Then
the learned model is used for feature mapping of test images, and the extracted
features can be compared using the Euclidean distance criterion. However, the
range of each dimension is from minus infinity to plus infinity, and the feature
of each dimension only lies within a small interval, as shown in Fig. 1(b). Con-
sequently, the target embedding space may not be fully utilized.

In this paper, we propose a novel metric-based person re-identification net-
work called SphereReID, which adopts a new function called Sphere Loss to su-
pervise the training process. Softmax cross-entropy is the basic loss function for
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the classification task. Despite the widespread use of softmax, whether it is the
optimal loss function for classification is still uncertain. With the re-examination
of softmax in the face recognition community [15,16,17,18,19], some valuable
insights have been obtained. Motivated by their works, we adopt a modified
softmax loss function called Sphere Loss, which classifies image samples from
different persons and restrains the distribution of sample embeddings on a hy-
persphere manifold at the same time.

To the best of our knowledge, this is the first time a person image has been
mapped onto a hypersphere manifold for person re-identification. To this end,
feature normalization and weight normalization are introduced. After elimina-
tion of different norms, the classification will only rely on the angle between the
embedding vector and the target class weight vector, which has a more clear
geometric interpretation in the embedding space, as shown in Fig. 1(c), where
embedding features lie on a hypersphere manifold. Compared with Euclidean
space embedding, SphereReID maps images on the surface of a hypersphere,
which limits the possible space distribution to a restricted angular space. Thus,
the target embedding space can be fully exploited and we can train a network
to classify images from different persons and simultaneously regulate the tar-
get embedding distribution. Furthermore, the implementation of Sphere Loss is
simple and the code will be released.

One issue with person re-identification is that there are many datasets [20,21,22,23,24,25,26,27,28]
and everay labelled person has an indefinite quantity of images, thus sam-
pling amount bias always exists. Further, some ReID datasets are image-based
[20,23,24,25,27,28] whereas some are video-based [21,22,26] consisting of a lot of
consecutive images frames, which makes the images per person ID even more
diverse. A softmax supervised classification approach suffers from the sample
amount bias and end up with an inferior performance. In this paper, a balanced
sampling strategy is introduced in the training process, and every mini-batch
is generated by sampling a specific number of each person ID with a specific
number of images which alleviates the sample amount bias problem.

With a new warming-up learning rate schedule, we train a single SphereReID
model end-to-end without fine-tuning on four ReID datasets, and this single
model outperforms the state-of-the-art methods on all the four datasets and
achieves rank-1 accuracy 94.4% on Market-1501 [24], 83.9% on DukeMTMC-
reID [27], 93.1% on CUHK03 [23] and 95.4% on CUHK-SYSU [25].

The contribution of our work is three-fold:

- First, we introduce a new classification loss function called Sphere Loss mod-
ified from the softmax loss function, which can supervise the model to classify
images of different persons and learn an embedding on a hypersphere manifold
simultaneously.

- Second, a balanced sampling strategy is adopted to eliminate the sample
amount bias and further facilitate the model performance without additional
computational overhead. During training, a warming-up learning rate schedule
also be used to bootstrap the network, which leads to a better convergence point.
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- Finally, we propose a novel network called SphereReID adopting Sphere
Loss. Extensive experiments on four datasets demonstrate the effectiveness of
our proposed model.

2 Related Works

Feature-Based ReID. Some hand crafted features such as scale invariant fea-
ture transforms(SIFT) features [3,4], Local Binary Patterns(LBP) features [29],
and local maximal occurrence(LOMO) features [5] have been used to represent a
person’s appearance. With the rise of deep learning, automatically learning fea-
ture representations have been used for the ReID task and significant progress
has been made as a result. Features extracted by a pre-trained CNN on a large
annotated dataset, e.g., ImageNet, have been proven to be strong off-the-shelf
descriptors for various recognition tasks, and Matsukawa et al. [30] present CNN
features for person re-identification fine-tuned on a pedestrian attribute dataset.
To extract fine-grained part feature, Varior et al. [10] present a gate structure,
while LSTM [31] is introduced in [11,32,33] to learn horizontal local features.
Additonally, Sun et al. [34] use horizontal stripes and Li et al. [6] use a Spatial
Transform Networks (STN) [35] subnet to localize the refined body parts and
Zhao et al. [8] learn the parts automatically through a mask predictor. Further-
more, Yao et al. [36] represent different body parts by directly clustering feature
maps based on the location of their maximum responses. As the human body
is highly structured with known key points, external skeleton models have also
been used for predicting different body regions in [9,37,38,7].

Metric-Based ReID. Along with feature-based methods, there are some ap-
proaches to ReID that use metric learning, which formulate the person re-
identification as a supervised distance metric learning problem. Traditional met-
ric learning methods like the Keep It Simple and Straightforward Metric(KISSME)
[39] and cross-view quadratic discriminant analysis (XQDA) [5] learn a trans-
formation matrix of features. Nowadays, however, the community pays more
attention to the loss function of a network. Instead of the softmax classifica-
tion loss function, contrastive loss [40] is used to supervise a Siamese network
in [11,10]. Motivated by FaceNet [41], a convolutional neural network used to
learn an embedding for faces, triplet loss [2] is used in [42,12] to optimize in the
embedding space such that embedding features for the same identity are closer
to each other than those of different identities. Cheng et al. [43] propose an
improved triplet loss by introducing another pull term into the loss, penalizing
large distances between positive embeddings. Quadruplet loss proposed in [14],
adds another pull term for the distance between negative pairs, which can lead
to a model with a larger inter-class variation and a smaller intra-class variation.
Generation of samples of triplets or quadruplets will remain a challenge, as easy
samples will lead to a degeneration and too difficult samples may result in gra-
dient explosion. To solve this problem, Hermans et al. [13] propose a batch hard
sampling strategy.
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Other ReID Methods. Xiao et al. [44] propose a domain guided dropout al-
gorithm to improve the feature learning procedure for multiple ReID datasets.
Geng et al. [45] introduce pairwise-consistent dropout for the pairwise verifica-
tion loss layers, that is, each pair of compared training data points share the
same dropout mask. AlignedReID [46] introduces a feature matching method to
align different body parts. And DarkRank [47] shows that a powerful teacher
model can significantly help the training of a smaller and faster student network
for ReID. Re-ranking methods [48,49] can also be used to rearrange the original
ranking list to further improve the accuracy. Generative adversarial nets (GAN)
[50] have also been proven to be effective, and can also be exploited for the ReID
task. PTGAN [51] proposes a Person Transfer Generative Adversarial Network
(PTGAN) to bridge the domain gap between different datasets which relieves
the expensive costs of annotating new training samples. Pose-normalization GAN
(PN-GAN) [52] proposes a deep person image generation model for synthesizing
realistic person images conditional on pose.

Softmax Re-examination in Face Recognition. The face recognition com-
munity has re-examined the meaning of softmax [15,16,17,18,19] and obtained
valuable insights. Large-margin softmax (L-Softmax) loss is introduced in [15],
and it maps the cosine value between feature vectors and the weight vector
to a monotonically decreasing function with a large margin. The angular soft-
max (A-Softmax) loss proposed by [16] enables convolutional neural networks to
learn angularly discriminative features and weight normalization is introduced.
In [17,18,19], feature normalization is also applied, which makes the classification
results only depend on the angle between the feature vector and weight vector.

3 Our Approach

3.1 Softmax Loss

W2

x

W1

θ2

θ1
W1

W2

x

θ2

θ1

(a) (b)

Fig. 2. Geometrical interpretation of (a)Softmax Loss and (b)Sphere Loss. Yellow ar-
rows represent embedding feature vectors and green arrows represent class center weight
vectors of two different classes.
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In this section, we will discuss the meaning of the softmax loss function.
Softmax is commonly used for classification task. Given an input feature vector
xi with its corresponding label yi, it can be formulated as follows:

Lsoftmax = − 1

N

N∑
i=1

log
ezyi∑C
j=1 e

zj
(1)

where N is the number of training samples and C is the number of classes.
zj is activation of the j-th neuron in a fully connected layer with weight vector
Wj and bias bj . There are a total of C neurons, and each neuron outputs the
score zj of the corresponding j-th class. We fix the bias bj = 0 for simplicity,
and as a result we can formulate zj as follows:

zj = WT
j x = ‖Wj‖‖x‖ cos θj (2)

where θj is the angle between Wj and x. As shown in Fig. 2(a), for an
embedding feature vector x, and learnable weights W1 and W2 which serve as
the class center, both the feature vector and weight vector influence the output
scores. For a binary classification, when z1 > z2, the sample is classified into
class 1, and class 2 otherwise. The decision boundary is as follows:

‖W1‖ cos θ1 = ‖W2‖ cos θ2 (3)

Equation 3 shows that both the norm and angle influence the final decision.
As shown in Fig. 3, there is an intersection area of class 1 and class 2, and thus
samples of two classes can not be distinguished only by the angle.

3.2 Sphere Loss

To eliminate the influence of norm and learn angularly discriminative features,
we fix ‖Wj‖ = 1 and ‖x‖ = 1 by L2 normalization as follows:

Wj =
W ∗
j

‖W ∗
j ‖
, x =

x∗

‖x∗‖
(4)

Where W ∗
j and x∗ are the original weight vector and feature vector.

In the original softmax loss function without normalization, when the angle
between the feature vector and weight vector is the same, a sample tends to be
classified into classes with larger norm, which we call weight bias, and a sample
with larger norm tends to output a larger score, which we call feature bias. With
the introduction of weight normalization and feature normalization, weight bias
and feature bias are removed.

As shown in Fig. 2(b), after normalization, the weight vector and feature
vector are all mapped onto a hypersphere manifold, and the classification results
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(a) Softmax Loss (b) Sphere Loss
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Fig. 3. The decision boundary of (a)Softmax Loss and (b)Sphere Loss. Samples lie
within yellow area will be classified into class 2 and class 1 when samples lie within red
area. Blue area means the class is uncertain because both angle and norm contribute
to the decision.

only depend on the angle between the feature vector and weight vector. For a
binary classification, when cos θ1 > cos θ2, the sample is classified into class 1,
and class 2 otherwise. The decision boundary is:

cos θ1 = cos θ2 (5)

As shown in Fig. 3(b), compared with softmax, there is a clear decision
boundary and classification results only depend on the angle.

Combining weight normalization and feature normalization, we also add
a scale factor to control the temperature of the softmax function. Note that
‖Wj‖ = 1 and ‖x‖ = 1 and we then get the Sphere Loss:

Lsphere = − 1

N

N∑
i=1

log
es cos θyi∑C
j=1 e

s cos θj
(6)

where s is the scale factor. In this paper, we use s = 14 for all experiments.
Equation 6 is similar to the normalized version of softmax loss (NSL) proposed in
[18], but in [18], it is only an intermediate result proposed for the face recognition
task and its effects are not fully exploited. Equation 6 also matches the special
case of additive margin softmax loss [17] and additive angular margin loss [19]
when the margin is set to 0.

With the supervision of Sphere Loss, we can learn an embedding on a hyper-
sphere manifold, and different samples are discriminated by angles.

3.3 Balanced Sampling Strategy

A ReID datasets consists of images from different person where every person has
an indefinite number of images. Usually there is no constraint on the proportion
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of different persons in a mini-batch and training data is chosen randomly from
all the training images. However, the training process suffers from an imbalance
of data. The network trains more on a person with more images, while it trains
less on a person with less images. Thus the model tends to fit more on the person
with more images. However, there is an a priori that every person is of the same
importance and should be treated equally.

Therefore, we introduce a balanced sampling strategy. To generate a mini-
batch, we randomly choose P different persons without replacement, and for each
person, we randomly choose K images. Thus there are a total of PK images
in a mini-batch. For people with less than K images, we use sampling with
replacement, and sampling without replacement otherwise. After all persons are
sampled, we say that an epoch is considered done.

This balanced sampling strategy is similar to the strategy proposed in [13] for
hard triplets mining, whereas in this paper, we use it to remove the imbalance
of classes.

In this manner, for persons with more images we just ignore the over abun-
dance of images, while for persons with less images we may use the same images
multiple times. This approach guarantees that every person ID has the same
number of instances.

3.4 SphereReID Network
…
…
…

P

K

SphereReID Network

Embedding
Features

…
…
…

…
…
…

G
A
P

B
N
D
P
F
C
B
N
L
2CNN Sphere Loss

Input Images

Fig. 4. The proposed SphereReID network structure. Inputs are a total of PK images
generated by a balanced sampling strategy. After the last convolutional layer of the
ResNet-50 [53] backbone, a global average pooling (GAP), batch normalization (BN),
dropout (DP), fully connected layer (FC), batch normalization (BN), L2 normalization
(L2) are follows respectively.

Combining Sphere Loss and the balanced sampling strategy, we propose a
deep convolution neural network named SphereReID for the ReID task. As shown
in Fig. 4, we use a ResNet-50 [53] network as the backbone network. After the
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last convolutional layer, a global average pooling follows to aggregate spatial
information. Then we apply a batch normalization layer.

We also add a dropout layer as a regularizer, followed by a fully connected
layer and another batch normalization layer. Now, we can apply weight normal-
ization and feature normalization, and compute the Sphere Loss.

4 Experiments

4.1 Datasets

We conduct extensive experiments on four widely used ReID datasets: Market-
1501 [24], DukeMTMC-reID [27], CUHK03 [23], and CUHK-SYSU [25].

Market-1501 contains 32,668 annotated bounding box images of 1,501 la-
belled persons captured by five high-resolution cameras and one low-resolution
camera. The dataset employes the Deformable Part Model (DPM) [54] as the
pedestrian detector. A total of 751 persons are used for training.

DukeMTMC-reID is a subset of Duke-MTMC [55] for person re-identification.
It contains 36,411 annotated bounding box images of 1,812 different identities
captured by eight high-resolution cameras. A total of 1,404 identities are ob-
served by at least two cameras, and the remaining 408 identities are distractors.
The training set contains 16,522 images of 702 identities and the test set contains
the other 702 identities.

CUHK03 contains 14,096 annotated bounding box images of 1,467 iden-
tities. Each identity is observed by two disjoint camera views. There are two
kinds of bounding boxes available: one is manually cropped and the other is au-
tomatically detected by DPM [54]. In this paper, we use the manually cropped
version.

CUHK-SYSU containing 18,184 full images and 8,432 identities. A total
of 99,809 bounding box images are annotated from full images. The training
set contains 11,206 full images and 5,532 persons, whereas the test set contains
6,978 full images of 2,900 persons.

4.2 Implementation Details

Our SphereReID model is built on the PyTorch framework. The backbone net-
work is ResNet-50 [53] pre-trained on ImageNet and the original fully connected
layer is discarded.

The inputs images are resized to 288× 144 then randomly cropped to 256×
128. The parameters P and K in the balanced sampling strategy are 16 and 4
respectively, as a result, a mini-batch size of 64 is used in our experiments.

We use the Adam optimizer with the default hyper-parameters(ε = 10−8,
β1 = 0.9, β2 = 0.99). We set the initial learning rate to 10−3 and apply the
decay schedule at epoch 80 and reduce the learning rate to 10−4. At epoch 100,
we reduce the learning rate again to 10−5. The total number of training epochs
for all conducted experiments is set to 140.
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We also introduce a warming-up strategy to bootstrap the network, as shown
in Fig. 5. We spend 20 epochs to linearly increase the learning rate from 5×10−5

to 10−3. We think this strategy will help the network to initialize well before
applying a large learning rate to optimize it. The experiment results are shown
in the next section and demonstrate the effectiveness of this strategy.

0
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0.0008

0.001

0.0012
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Le
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Fig. 5. Our learning rate schedules with or without warming-up. Blue one is with
warming-up and the orange one is without warming-up.

4.3 Results of SphereReID

In this section, we go over different experiments settings and compare the rank-
1 accuracies on Market-1501 [24], DukeMTMC-reID [27], CUHK03 [23], and
CUHK-SYSU [25].

Network Structure and Loss. After the last convolutional layer of the ResNet-
50 [53] backbone, we have four different structures as follows: (A) global average
pooling; (B) global average pooling, then a fully connected layer; (C) global av-
erage pooling, then a fully connected layer and a batch normalization; (D) global
average pooling, batch normalization, dropout, fully connected layer and then
a batch normalization again. The embedding feature size is 2048 for network-A
and is 1024 for network-B, network-C and network-D. For network-D, the ratio
of dropout is set to 0.5. Finally, L2 normalization is applied for all the networks.

The results are shown in Table. 1. We can see that network-B is much better
than network-A, which suggests that the additional fully connected layer can fuse
input information and produce better embedding features. Network-C is also
better than network-B, which demonstrates the effect of batch normalization.
Network-D is the best and achieves 93.1% rank-1 accuracy on Market-1501 which
combines the strength of batch normalization and dropout. Table. 1 also shows
that sphere Loss is clearly better than softmax.

The subsequent experiments all use the network-D structure.
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Table 1. Results of different network structures.

Network
Market-1501 DukeMTMC-reID CUHK03 CUHK-SYSU

Sphere Softmx Sphere Softmx Sphere Softmx Sphere Softmx

network-A 59.5 57.9 49.1 46.1 67.3 62.3 77.4 78.1

network-B 86.4 65.6 75.5 53.9 86.8 63.7 90.6 83.1

network-C 92.3 72.7 81.6 59.0 91.5 62.2 94.1 83.1

network-D 93.1 77.3 81.9 61.9 92.8 66.6 94.3 86.2

Balanced Sampling Strategy. The balanced sampling strategy can guarantee
that each training identity has the same number of instances and alleviates the
imbalance of sample size. As shown in Table. 2, when the model is trained with
the balanced sampling strategy, the final performance is significantly boosted
by a large margin, even with the exactly same network structure. This strategy
may be applied to a wider area of tasks, helping to eliminate the class bias in a
imbalanced dataset.

Table 2. The influence of balanced sampling strategy and warming-up strategy.

Market-1501 DukeMTMC-reID CUHK03 CUHK-SYSU

balanced, w/ warming-up 93.1 81.9 92.8 94.3

imbalanced, w/ warming-up 79.3 56.5 79.2 89.9

balanced, w/o warming-up 77.1 64.4 80.6 88.9

Influence of Warming-up. As shown in Table. 2, with a warming-up process
of the learning rate to help the network bootstrap, rather than applying a large
learning rate from the beginning, the network can converge on a much better
point. It is intuitive that when a network is initialized by weights pre-trained
on ImageNet and never be used for the ReID task, a large learning rate may
be inappropriate. The proposed fine-to-coarse then coarse-to-fine learning rate
schedule can help set up a better initialization status and thus result in a better
performance. The proposed warming-up strategy is not limited to the ReID task,
and it may be applied to other areas to obtain a better optimizing result.

Ratio of Dropout. We try three different ratios of dropout, and a network
without dropout. Results are shown in Table. 3. We can see that the networks
with no dropout(when the ratio is 0) or with too much dropout are inferior to
the network with a modest dropout ratio of 0.25. In the following experiments,
we will fix the dropout ratio to 0.25.
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Table 3. The influence of dropout ratio.

ratio Market-1501 DukeMTMC-reID CUHK03 CUHK-SYSU

0 93.1 82.2 92.5 94.6

0.25 92.8 83.5 93.2 94.8

0.5 93.1 81.9 92.8 94.3

0.75 91.3 80.5 1.5 93.5

Influence of the Bias Term. In the last fully connected layer, the bias term
b can be set to 0 or learned automatically. We train two networks with and
without the automatically learned bias term. Results are shown in Table. 4. We
can see that the network with the bias term automatically learned performs
slightly better than the network without the bias term.

From now on, we will refer this best network setting with a bias term as
SphereReID network.

Table 4. The influence of bias term in the last fully connected layer.

Market-1501 DukeMTMC-reID CUHK03 CUHK-SYSU

w/ bias 93.7 83.9 92.6 94.9

w/o bias 92.8 83.5 93.2 94.8

Test Image Size. In the training phase, we resize the image to 288 × 144,
then randomly crop it to 256 × 128. In the testing phase, results of different
image sizes are shown in Table. 5. We can see that with larger input size, the
performance is better on Market-1501, CUHK03, and CUHK-SYSU, and is worse
on DukeMTMC-reID. After examining images from the four datasets, we find
that images from DukeMTMC-reID have a larger border background area. Thus,
we use 256× 128 test size for DukeMTMC-reID and 288× 144 for the others.

Table 5. The influence of test image size. Images are resized to 288 × 144 with and
without center crop of 256× 128.

Market-1501 DukeMTMC-reID CUHK03 CUHK-SYSU

256× 128 93.7 83.9 92.6 94.9

288× 144 94.4 82.7 93.1 95.4
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4.4 Comparison with the State of the Art

We compare SphereReID with the state of the art. As shown in Table. 6, Table. 7,
and Table. 9, our single mode consistently outperforms the state of the art
in terms of both accuracy and mAP, and it achieves 94.4% rank-1 accuracy
on Market-1501. It is necessary to point out that no extra attributes, skeleton
datasets, or models are used in our SphereReID network.

On DukeMTMC-reID, as shown in Table. 8, PCB+RPP [34] obtains compet-
itive results, but it is trained by a three stage process with fine-tuning. However,
the proposed SphereReID is trained end-to-end without fine-tuning and is clearly
better than PCB+RPP on Market-1501. Furthermore, SphereReID achieves all
the results with a feature size of 1,024, while PCB+RPP uses a feature size of
12,288, which proves that our SphereReID features mapped onto a hypersphere
manifold are more discriminative.

Table 6. Comparison with the State of the Art on Market-1501

method rank-1 rank-5 rank-10 mAP

Spindle [7] 76.9 91.5 94.6 -

SVDNet [56] 82.3 92.3 95.2 62.1

PDC [38] 84.1 92.7 94.9 63.4

Mutual [57] 87.7 - - 68.8

PSE [49] 87.7 94.5 96.8 69.0

PartLoss [36] 88.2 - - 69.3

DPFL [58] 88.9 - - 72.6

CamStyle [59] 89.5 - - 71.6

GLAD [9] 89.9 - - 73.9

HA-CNN [60] 91.2 - - 75.7

Deep-Person [33] 92.3 - - 79.6

PCB+RPP [34] 93.8 97.5 98.5 81.6

SphereReID 94.4 98.0 98.7 83.6

Table 7. Comparison with the State of the Art on CUHK-SYSU

method rank-1 rank-5 rank-10 mAP

deep [25] 62.7 - - 55.7

DLDP [61] 76.7 - - 74.0

NPSM [62] 81.2 - - 77.9

SphereReID 95.4 98.6 98.9 93.9
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Table 8. Comparison with the State of the Art on DukeMTMC-reID

method rank-1 rank-5 rank-10 mAP

SVDNet [56] 76.7 86.4 89.9 56.8

HA-CNN [60] 78.3 - - 57.6

DPFL [58] 79.2 - - 60.6

PSE [49] 79.8 89.7 92.2 62.0

HA-CNN [60] 80.5 - - 63.8

Deep-Person [33] 80.9 - - 64.8

PCB+RPP [34] 83.3 90.5 92.5 69.2

SphereReID 83.9 90.6 92.4 68.5

Table 9. Comparison with the State of the Art on CUHK03

method rank-1 rank-5 rank-10

PartLoss [36] 82.8 96.6 98.6

GLAD [9] 85.0 97.9 99.1

DPFL [58] 86.7 - -

Spindle [7] 88.5 97.8 98.6

PDC [38] 88.7 98.6 99.2

Deep-Person [33] 91.5 99.0 99.5

SphereReID 93.1 98.7 99.4

5 Conclusions

In this paper, we introduce a modified softmax loss function called Sphere Loss
with weight normalization and feature normalization. We also propose a CNN
network adopting Sphere Loss called SphereReID which can learn the feature
embedding on a hypersphere manifold. We train the SphereReID end-to-end
with the balanced sampling strategy and warming-up strategy and our single
model outperforms the state of the art on all four datasets without re-ranking
or fine-tuning.

To the best of our knowledge, this is the first network to learn a deep hy-
persphere manifold embedding for person re-identification, and the proposed
SphereReID network demonstrates the effectiveness of this concept. We have
provided a new idea for ReID and there are more further improvements can be
explored by the person re-identification community, for example, the addition of
a margin term to increase inter-class variation and reduce intra-class variation.
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And the proposed warming-up strategy can further boost the performance
of deep neural network without extra computing overhead. It’s very simple to
implement and can be easily introduced into the training process. In this paper,
we focus on SphereReID for person re-identification task, but it can also be used
in other tasks, which remains for the computer vison community to explorer in
the further.
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