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Abstract

Recently, part-based and support vector machines (SVM) based trackers have
shown favorable performance. Nonetheless, the time-consuming online training
and updating process limit their real-time applications. In order to better deal
with the partial occlusion issue and improve their efficiency, we propose a novel
part-based structural support correlation filter tracking method, which absorbs the
strong discriminative ability from SVM and the excellent property of part-based
tracking methods which is less sensitive to partial occlusion. Then, our proposed
model can learn the support correlation filter of each part jointly by a star structure
model, which preserves the spatial layout structure among parts and tolerates out-
liers of parts. In addition, to mitigate the issue of drift away from object further,
we introduce inter-frame consistencies of local parts into our model. Finally, in
our model, we accurately estimate the scale changes of object by the relative dis-
tance change among reliable parts. The extensive empirical evaluations on three
benchmark datasets: OTB2015, TempleColor128 and VOT2015 demonstrate that
the proposed method performs superiorly against several state-of-the-art trackers
in terms of tracking accuracy, speed and robustness.

Keywords: Object tracking, Support vector machines, Correlation filter,
Structural learning, Temporal consistency, Scale estimation

1. Introduction

Visual object tracking has been an important research topic in the computer
vision field and has a wide range of practical applications, e.g., intelligent surveil-
lance, autonomous navigation of vehicles, human computer interaction, action
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recognition. Although great progress has been made in the past decades, it is
still a challenging problem to design a robust visual tracking algorithm for real
scenes, due to some complex situations, e.g., partial occlusion, illumination vari-
ation, pose changes, background clutter, complex motion and object blur. Here,
we mainly investigate the key problem of learning a robust tracking model under
these conditions mentioned above.

As is known, the discriminative models [, 2,3, 4} 5] have better performance
than the generative models [6} 7, 18,19,|10] in visual tracking. They seek to design a
robust classifier to detect the target, and establish an optimal mechanism to update
the model at each frame. For example, in order to realize the visual tracking, Avi-
dan [3] adopted the SVM as an off-line binary classifier to detect target at each
frame. Hare et al. [2] applied the SVM with structured output to tracking the
target because of its success in object detection. Although these two methods ob-
tain the good results in visual tracking, the complex optimization still brings them
the high computational complexity, which would make them not meet real-time
applications, especially when considering the scale change of target and increas-
ing feature dimensions of target representation. Recently, correlation filter (CF)
utilizing the circulant property of dense sampling of base sample has attracted ex-
tensive attention in visual tracking due to its significant computational efficiency
and robustness. Nevertheless, how to exploit the circulant property to acceler-
ate SVM-based trackers remains unaddressed. Later, in view of the success of
the max-margin CF (MMCEF) [11] in the localization and classification of image,
Zuo et al. [12] developed the novel discriminative tracking algorithms based on
support correlation filters that perform efficiently and accurately. Although ob-
tained competitive results both in accuracy and robustness, all these methods are
sensitive to the occlusion or partial occlusion.

To deal with the above issues, deformable part-based tracking methods [13,
14,115,116, [17] become more popular partially because of their favorable property
of robustness against partial occlusion. Yao et al. [17] employed an online struc-
tured output learning with latent variables to learn the weight parameters for an
object and its parts, and distinguish the target object from the background using
the weight parameters consequently. But their method fails to resolve the high
computational complexity of the SVM. The researchers in [[14} [15] brought the
correlation filter into the part-based tracking methods which improves the tracking
efficiency and robustness. However, their approaches ignore the spatial relations
among object parts. More recently, Liu et al. [[16] improved the performance of
their tracker by introducing structural constraints among parts into correlation fil-
ter. But they also don’t consider the temporal consistency of motion model which
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would help to alleviate the problem of drift away from object.

Considering the existing problems of the methods mentioned above, in this
paper, we build an efficient part-based support vector correlation filter tracking
algorithm which is able to deal with partial occlusion and deformation effectively.
Our method adopts the support vector correlation filer as the classifier of each part
which absorbs strong discriminative ablility from SVM and speedups the SVM by
the FFT in the Fourier domain. Then, our proposed model can learn the support
correlation filter of each part jointly by a star structure model, which preserves
the spatial layout structure among parts and tolerates outliers of parts. To further
enhance the robustness of our model, we take into consideration the temporal
consistency of each part, and incorporate it into our model to mitigate the issue of
drift away from object. In addition, in order to adapt our tracker to scale changes
of tracked target, we estimate the scale changes of object by the relative distance
changes of the reliable part pairs. Finally, different from other multi-part trackers,
we only estimate the position of the whole object by the tracking results of all
visible parts, where each part is distinguished whether to be occluded by the PSR
and appearance similarity.

2. Related Work

In this section, we only introduce the methods closely related to this work:
SVM-based trackers, correlation filter trackers and part-based trackers in detail.
For a survey of more tracking methods, we refer the reader to [[18,[19].

SVM-based tracker: Babenko ef al. [1] employed an online Multiple In-
stance Learning based appearance model to resolve the sample ambiguity prob-
lem. Hare et al. [2] used the structure SVM with kernels to track the whole target.
In [20], an explicit feature mapping function is used to approximate nonlinear
kernels. However, the complex optimization of SVM still brings them the high
computational complexity, which prevents them from using the higher dimen-
sional features. In 2013, Henriques et al. [21] first applied the circulant property
for training of support vector regression efficiently to detect pedestrians. Inspired
by this work, Zuo et al. [12] adopted the circulant property to design the support
correlation filter tracker that perform efficiently and accurately, which lower the
computational complexity O(n?) of SVM based trackers to O(n?log(n)) for an
n X n image patch. Wang et al. [22] proposed a novel structured SVM based
tracking method which takes dense circular samples into account in both training
and detection processes.



Correlation filter trackers: Bolme e al. [4] first introduced the correlation
filter into the visual tracking field because it can achieve the appealing results in
terms of accuracy, robustness and speed. Afterwards, Henriques et al. [23]] in-
corporated multi-channel features into their kernelized correlation filters (KCF)
framework to improve the accuracy and robustness of the tracker. However, they
are only limited to estimate the target translation and signify poor performance
when the targets of sequences involve significant scale variations. Thus, in order
to adapt to the scale changes of the tracked target, Montero et al. [24] use a sim-
ilar approach (scale ratios between matched relevant keypoints) as in TLD [25]]
and [26] to estimate the size of tracked target. Danelljan et al. [27] proposed a
separable scale filter based on a scale pyramid representation to estimate the scale
variation of target. And Li et al. [28] adopted a multiple scales searching strategy
to surmount the limitation that the conventional correlation filter (CF) trackers
can not handle the scale variation of tracked target. Although the traditional cor-
relation filter has obtained great success, unwanted boundary effects produced by
the Fast Fourier Transform (FFT) result in an inaccurate description of the image,
which will severely degrade the discriminative power of the learned model. To
resolve this issue, Galoogahi et al. [29] chose a larger searching size and then
cropped the central patch of the signal that is same as the size of the filter by the
binary matrix P in each Alternating Direction Method of Multipliers (ADMM)
iteration. Danelljan et al. [30] utilized a spatially regularized component to deal
with the boundary effect caused by the FFT, which achieves better tracking accu-
racy.

part-based tracker: To deal with the occlusion, many part-based trackers
divided the entire target into separate parts [31, [14, [15, [13} [16, 32]]. Liu et al.
[15] adapted the correlation filter as part classifiers. Akin et al. [32] proposed a
deformable part-based correlation filter tracking approach which depends on cou-
pled interactions between a global filter and several part filters. LukeZiC et al.
[33] presented a new class of layered part-based trackers that apply a geometri-
cally constrained constellation of local correlation filters for object localization.

3. Structural Support Correlation Filter Tracker

In this section, we present an efficient part-based support vector correlation
filter tracking algorithm. Since the proposed approach works in the framework of
support correlation filter, we first briefly review the theory of support correlation
filter in subsection Then, in subsection[3.2] we deduce the support correlation
filter model in nonlinear space. Subsequently, in subsection[3.3] we give a detailed
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description of our proposed part-based structural support correlation filter tracker.
Next the detailed solving procedures of our tracking approach are deduced in sub-
section [3.4] Finally, in subsection[3.5] we introduce a valid method that estimates
the scale changes of object. Meanwhile, we also present a model update strategy
by using the feedback from tracking results to avoid the model corruption.

In order to make our paper more readable, we first define some generic no-
tations that will be useful before deriving our model, which is shown in Table [I]

Table 1: Define some generic notations which will be used in our work.

Notation Explanation
M, N defined two given positive integers
R The set of real numbers
a The Fourier coefficients of u, V u € RMY
u’ The complex conjugate of the Fourier coefficients of u
F(e) The Fourier transform
F (o) The inverse of F
F The base vectors of the discrete Fourier transform
FH The Hermitian transpose of F

Indicated the element-wise multiplication of
any two vectors
Calculated the maximum value between

max{e, 0} each elementof any vector and the zero
o defined an M N x 1 vector,
each element of which is 1
E defined an M N x M N matrix,

each element of which is 1

3.1. Review of Support Correlation Filter
Given a vectorized image patch x € RMY, Zuo er al. [12] learn a support
correlation filter w and a bias b to classify any circular shift image x,, ,, of X by

Ymmn = Sgn(wTXm,n + b)7 (1)
Note that m € {0,1,--- ,M — 1} andn € {0,1,--- ;N — 1}. ¥y, denotes

corresponding class label of one possible observation x,, ,, of a target object and
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all circular shift image X,,,, forms a circulant matrix X. In general, X can be

expressed as
X = Fdiag(X)F, (2)

Then, classify all the samples of X by
y = sgn(F HX o w) + be), 3)

Given the training sample set X that consists of all circular shift image x,,, ,,
and its corresponding class label y = [yo0,** , Ymm, =+ »Ym—1.8-1)" » they use
the squared hinge loss to define the SVM model [34] as follows:

min [[w[|* + C[€][?
b “4)
st. yo (Xw! +be) >e—¢,

where € =[50, Emmy -+, Emr—1.n—1] is the vector of slack variables, C'is a
trade-off parameter.

Based on the circulant property of X, the SVM model can be equivalently
formulated as:

min |w|[* + C/[€|[*
o )
st.yo (F H(X ow)+be) >e—&,

In the SVM discriminative model, Zuo et al. [12] assign binary class label by
the confidence map of object position [35], where the confidence map is defined
as:

S(I’m,nv p*> - Fel‘p(_anm,n - p*||>\>a (6)

where p* denotes the centre position of the interested object x*, p,,, ,, represents
the centre position of the circular shift image X, ,,, I' is a normalization constant,
1 and )\ are the scale and shape parameters respectively. With the confidence map,
the class label y can be obtained by

L if 8(PpnP*) > 04
Ynn =14 —1 if (P P*) <0, (7
0 otherwise

where 6, and 6,, are lower and upper thresholds respectively.



In order to exploit the property of the circulant matrix to learn the model (3),
leté =v+e—yo(F '(Wox")+ be), and then it can be rewritten as:

rngn||w||2 +Cllyo (FHX ow) + be) — e — v||?
oy (8)
st. v 0,

where v is an auxiliary variable and = denotes that each element of v is greater
than or equal to zero.

3.2. Support Correlation Filter in Nonlinear Space

To make the support correlation filter (SCF) model to be extended to learn the
nonlinear decision function, we now derive a “dual version” for the SCF model.
In this derivation we partially follow Vapnik [36]. We start with re-expressing the
SVM model in @) as:

min ||w||* +a’ (e +v —yo (Xw! + be) — &)

w,b,v,a

+C|€])? ®)
st. v=0,

Here a is the Lagrange multiplier (it also represents the solution of SCF in the
dual space). We let ¢ =y + y o v, where v > 0, and then the model (9) can be
rewritten as:

min_||w|]* + a”(q — (Xw" + be) —y o &)
w,b,q,0,& (10)
+ €|

Solving the model || with respect to w, we can obtain w = %aTX. Then
Substituting this into ((10]), we obtain

. | — T T
min ——o XX' o + o —be) — o o
Jnin —7 (q — be) (yo&) an

+ClI€l”".

Calculating with respect to &, we obtain § = %yTa. Then Substituting this
into (1)), we get

1 1
?211(111 —ZaTXXTa +a’(q — be) — EaTa, (12)



Thus, the closed form solution to our sub-problem on « can be formulated as

1 1
= —(XX" 4+ —=E)"'(q — be). 13
o = (XX"+ ZE)}(q —te) (13

Given a non-linear mapping function o(x), we define K(x,x ) = ((x), ¢(x)),
which can be used by some kernel function (e.g., Gaussian RBF and polynomial)
with permutation invariant. Based on the circulant property of X, XX’ can be

represented as
XX" = Ffdiag(x o X*)F, (14)

Then, introducing non-linear feature mapping (x) into the formula , it can
be revised as -
FHdiag(p(X) o o(x)F = FFk F =K, (15)

where kK is the Fourier transform of K (x,x) and K is a circulant kernel matrix.
Thus, the solution to the sub-problem of the kernelized support correlation
filter on a¢ can be formulated as

Lk Lpyg -
a—4(K+CE) (q — be). (16)

3.3. Formulation of Structural Support Correlation Filter

The support correlation filter model mentioned above is only to learn a holistic
appearance model, which is not robust for partial occlusion. In order to tackle
this issue, we introduce part-based tracking strategy to the support correlation
filter model. Given a target object, it is divided into L non-overlapping parts with
M x N pixels. Then, we can learn the dual optimization variable o; of support
correlation filter w; of each part via (17)

L
min — ZlalTXleTal + o (q, — bre)
e (17)
1
et

Here q; = y + y o v;, where v; is an auxiliary variable corresponding to the Ith
part. The b; corresponds to the bias of the /th part in the model and the X consists
of all circular shift image X, ,, of the [th part, where [ = 1,--- | L.

Intuitively, the motion model of each local part should be close to each other
to cover the entire target. In order to characterize the similar motion among lo-
cal parts and tolerate slight discrepancy among them, we introduce a customized
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Laplacian regularization term in the model (17), that is

mln Z al IX X! o, + af (q; — bre)

»qlral

1 (18)
gt 53 o~ oy,

9.]

Vi, j€L and 1 # j,

where ¢ is the weight parameter of the Laplacian regularization term. w; ; denotes
a penalty parameter whether two parts ¢ and j have similar motion. If w; ; is larger,
the motion of two parts is more consistent, vice versa.

However, this fully connected structure makes it intractable to solve the model
in (I8). Thus, under the situation of hardly lowering the performance of the model
in (18)), we simplify the connected structure of the model in (18] by a star model.
In the star model, each local part is connected by an edge with a dummy part x,
which can be represented by the mean image of all the local parts, i.e. there are
no direct relation between any two parts. Thus, this requires a minor adaptation
of the model in (18), that is

mln Z lTXleTal + af (q, — be)

b,q;,

. (19)

1
— Oy Oq+ ZHal ar“ Wi,r,

- 4C

Here a, denotes dual optimization variable of support correlation filter w,. of the
dummy part x,.. Because the target moves smoothly between consecutive two
frames, we can use the motion consistency among parts in (¢ — 1)th frame to
describe the motion relation among parts at the current frame. So, we define w;,
to decrease exponentially with the hyper-distance of support correlation filters w;
and w,. of the [th part x; and the dummy part x,. in (¢ — 1)th frame, i.e.,

Llwi = we

2 K2

); (20)

iy = exp(—
where k is a smooth factor.

In practice, according to the observation, we found that the appearance of
tracked object changes smoothly over time. Thus the selected training samples
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should be similar in consecutive frames. That is to say, the corresponding o~ !

of each local part in (¢ — 1)th frame should be close to that in ¢th frame, Wthh
is called temporal consistency. Therefore, we may introduce temporal constrain
term into the model (19) and revise it as follows

L
rflun Z ——al X XTay + af (q; — bre)
A Ty
1
- al o) Z o — | [Pwr (21)

L
s _
+ 23 llat—af P,
=1

where (3 is the controlling factor of the temporal constrain term.

Given non-linear mapping function ¢(x) and the derivation of formulas
and , our model in can be extended to learn a kernelized structured sup-
port correlation filter model, i.e.

L

. 1 T
min ——o; Ko + o — be
bz,qz,az;( Vhat il 1 (q €)
1 L
40041 o) + = Z o — | [Pwi, (22)

=1
L
+ 03 o — o
=1

where K is a circulant kernel matrix corresponding to the [th part.

According to the above points, our models in and can learn the sup-
port correlation filter parameters of all local parts jointly and distinguish the parts
from the background. Our model is also resistant to partial occlusion. Besides, it
has high efficiency and robustness.

3.4. Optimization

In this subsection, we utilize the Alternating Direction Method of Multipliers
(ADMM) method [37] to solve the optimization problem in (2I)). When keeping
other variables fixed, the ADMM method can iteratively update one of the vari-
ables by, q;, oy, o, by minimizing (21)), which can guarantee the convergence of
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our proposed model. Consequently, updating steps corresponding to all the vari-
ables are as follows

Step 1: update a, (with others fixed): o, can be updated by solving the follow-
ing optimization problem

L
6 )
o, = argrglrn§Z||al — o, || wir, (23)
=1
and its solution is
1 L
Q= —5—— Wy 0. 24)
Zl:l Wi r =1

Step 2: update q, (with others fixed): before computing q;, we firstly need to
calculate the variable v;. Combining the models (8) and (9)), the subproblem on v;
becomes

v, = arg r%in [[vi — (y o (X;wi + be) — 1)
1

(25)
st.vi>=0
Then, v; has the following closed form solution:
v; = max{y o (X;w; + be) — e, 0}. (26)
In view of w; = %aTTX, the formula can be modified as
v; = max{y o (%XleTal + be) —e,0}, (27)

When x; is mapped to the kernel feature space, the amended version of the formula
is as follows

__ 1
v; = max{y o (§Klal + be) —e, 0}, (28)
Known v; from the aforementioned formulas or (28)), we can calculate q; by

qQ=ytyov. (29)

Step 3: update b; (with others fixed): we exploit the method of solving the pa-
rameter b in [|12] to calculate the b;, i.e

bi=aq. (30)

11



where ¢; is the mean of q;.

Step 4: update «; (with others fixed): The minimization problem (21)) with re-
spect to {a;}, can be decomposed into L mutually independent subproblems.
The [th subproblem to update «; can be equivalently re-expressed as

1
o = arg min _ZlazTXleTal + o (q; — be)
oy

1 5
— Ea?al + §||al — ar||2wlvr (31)
+ D)ot — a1,

2
Then, for each a, the closed form solution of the formula (31)) is shown as follows

1 1
(6%} :(§X1XIT + %E — 50.)[7TE — ﬁE)il((ql — ble)

— dwy 0t — Baf‘l).

(32)

The detailed ADMM algorithm that solves our model (21)) is given in Algo-
rithm[I] where the convergence is reached when the change of solution ¢ is below
a pre-defined threshold (e.g. 7 = 1073 in our work) or the number of iteration is
greater than the maximum iterations /ter.

Algorithm 1 Solving the optimization problem defined by the model
Input: Training data: X; and y. Initialization of parameters ¢, 3, C'
Output: {oy, bi}/,

1 _ X/'y t(0) _ P = ~
= XX IE a; " = 0,b, =y, where ¥y is the

1: Initialize num + 1, of
mean of y.
while num < Iter or |a!” — " V| > 7 do
Update «,. via
for/=1to Ldo
Update q; via and (29)
Update b; via
calculate o via
end for
num < num + 1
end while

R A o

_
e

As shown in algorithm I} its major computing cost is that we need to calculate
the matrix inverse and multiplication in spatial domain when updating o] via (32)).
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However, in view of the circulant structure property of X;, a} can be calculated
very efficiently in the Fourier domain. Thus, the formula (32)) can be rewritten as
the version (33)) in the Fourier domain.

~ - A At—1
q, — bie — dw; &, — By

1
2

(33)

al =
Pl o %) + ke — dwpe — B
where 2 denotes the element-wise division.
When the sample x; is mapped to the kernel feature space, the updating step
with respect to «; needs a minor modification, that is
(1K + ) SwiE — BE) ' ((q; — bre)
o =(= —E — E — —
S wy, q, !
- &Ul,rar - Ba}f—l)a

(34)

Meanwhile, the corresponding version of the formula (34) in the Fourier domain

is as follows

- A A At—1
~t q — ble - 5wl,7‘ar _ ﬁal
o = — . 35)
l 1{XX 1 A A ~
§k + @e — (5wl77«e — 56

where ; denotes the element-wise division.
To solve the optimization problem defined by (22), we only need to use the
formulas and to replace the formulas and in the updating steps.
Finally, known ¢, the «; can be obtained by o = F~!(&;). Moreover, to
speed up the algorithm [I] it can be implemented in matrix form without the “for”
loop.

3.5. Tracking

At the tracking stage of nonlinear feature space, when obtaining the coefficient
vector df_l and bias b; of each local part in the previous frame, we can estimate
the response map of each local patch z; at the current frame by the following
formula

_1 /X2 ~t—
fi = F 'k, oa) ')+ e, (36)

where lA(Z(Z denotes the Fourier transform of K (x,z) for the /th part. The position
p! of the Ith part can be determined by the maximum value of f, e.g. the position
p; of each part can be expressed as

p,=p ' +A] (37)

Here A denotes the translation of the [th part at time .
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Then we can estimate the final position ptg of object by the translation A} of
all the parts, that is

L
p,=p," +> mA] (38)
=1

where 7; is the weight parameter of corresponding part.

Because different parts of the target may suffer different appearance changes,
illumination variation or occlusion in different frames, intuitively, if we assign the
same weight to each part, the falsely tracker part may be overemphasized which
will lead to drift problem. In order to handle this issue, we should adaptively give
each part a different weight according to its reliability. In our work, we exploit the
peak-to-sidelobe ratio (PSR) to define the weight of each part because the higher
PSR usually means more reliable part, where the PSR is defined as

max(f;) —

b1 = (39)

where 1; and o; are the mean and the standard deviation of f; respectively.

In addition, for tracking problem, the appearance similarity between two con-
secutive frames is helpful for distinguishing whether the part is reliable or not.
Taking this observation into consideration, we define the appearance similarity d
to determine whether the part is reliable, i.e.

0y

I — x|

~2
where 7 is a hyperparameter, and X is the vector representation of object appear-
ance features, where the appearance features use the color histogram features.
Combining two indicators above, we distinguish whether the /th part is occluded
or has a large pose change. If ¢; and d; are less than the pre-defined threshold,
this part is unreliable. As shown in Fig[I{a), when the part that denoted by the
yellow bounding box is occluded, its PSR and appearance similarity both become
smaller. According to our two criteria, this part is unreliable. But in the Fig[I(b),
the target occurs the deformation. If using our two criteria, this part is reliable and
if only using the PSR, then this part is unreliable. In fact, for the deformed part,
we need to update its model to avoid drift.

To avoid erroneous estimations further, we use the PSR value and the appear-
ance similarity d; from the reliable parts to calculate the corresponding weight 7,
ie.

9, o4
S o i 2L d;

14

dy = exp(— ), (40)

(41)

= (1-w)



Figure 1: Visualization of the PSR and appearance similarity of the part denoted by the yellow
bounding box in the frame #83 and #141. (a) The target is occluded in the frame #83. The
PSR = 5.01191 and the appearance similarity d = 0.11002 of the part denoted by the yellow
bounding box. (b) he target is occluded in the frame #141. The PSR = 5.1559 and the appearance
similarity d = 0.27286 of the part denoted by the yellow bounding box.

where J denotes the number of all reliable parts, w is a fusion parameter. In our
work, w is set as 0.4. By now, the formula (38) can be modified as

J
Py =P+ A (“42)
7j=1

Here if J = 0, this means that all parts are unreliable. At this time, we use
the translation of target in the previous frame to approximate that of target in the
current frame because the motion of target hardly keep steady between two con-
secutive frames in most cases.

Update scheme: During tracking, the object appearance may change because of
a number of challenging factors such as illumination change and pose change.
Hence it is necessary to update part classifiers over time. Our tracking model is
made up of the learned target appearance x; and the transformed classifier coeffi-
cients a;. For each patch, our model parameters are updated by

x; = (1= p)x; "+ pix,

_ (43)
af = (1—p)aj ' + pay,

where p; is a learning rate parameter. The «; is calculated by simple linear inter-
polation. The x; is updated by taking the current appearance into account.
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However, if using a fixed learning rate p in the updating process, the whole
model will be contaminated in the remaining frames once the tracker loses the ob-
ject. Thus, to avoid producing errors, It is apparent that the model of the occluded
part should not be updated and other parts should adaptively adjust their learning
rate based on the corresponding reliable weight. Therefore the learning rate of
each part is updated by the following scheme

{ mo if ¢y >€ or dp>¢
l:

0 otherwise

) (44)

where g is a fixed learning rate, € and ¢ are two predefined thresholds.

Thus, contrary to traditional correlation filter based trackers, due to exploiting
the adaptive updating strategy, our method can still maintain the tracking accuracy
by using the results of the previous frame even when all part are occluded at one
frame.

Scaling: To adapt the scale change of object, most of correlation filter based
trackers [38, 27, 28] utilize a discriminative filter or a search pool that is based
on pyramidal structure to estimate the object size. Despite obtaining outstanding
results, these methods do not accurately estimate the current object size. So, to
tackle this issue, we adopt the ration of the relative distance among local parts as
in [32] to estimate the object size accurately because it’s positively correlated with
the scale of the target. In addition, to improve the accuracy of estimating object
size further, in our work, we only use the change rate of relative distance among
reliable local parts to estimate the object size. Therefore, the object scale S? is
calculated by

¢

St-1 —pi|?

St =

|
<
=
=
N
= |
I

where p! represents the position of part i in the ¢th frame. Because at least two
reliable parts can make the formula (5] feasible, we keep the scale size of the
preview frame unchange when only one part is available. In addition, the scale of
the target does not change dramatically between two consecutive frames. To esti-
mate the scale of target more robustly, we utilize the moving average to calculate
the scale of target at the current frame.

So far, the theoretical part of the algorithm has been completely introduced
above. For better comprehending our proposed method, it is summarized in Al-
gorithm
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Algorithm 2 Scale structural support kernel correlation filter tracking algorithm
(ScaleSSKCF)

Input: Image frames {/;}], initial object position p

Output: Target position of each frame {pZ}g

1: repeat
2: Calculate the position pf‘l of each part based on the last target position pz_l.

3: Crop an image patch x; from I; at the patch position p; ' of the ¢ — 1 time
and extract the corresponding feature representation.
4: Calculate the filter coefficient «y; and bias b; of each patch by the algorithm

Detection the position p! of each patch via .

Distinguish whether the /th part is reliable by ¢; and d;.

Compute the target position pg at the current time via .

Estimate the scale of the target via (45)).

Update learned target appearance x; and and the transformed classifier coeffi-
cients «; with the formulas and (44).

10: until end of video sequence.

A e

4. Experiments

In the experimental part, we use the several benchmark datasets: Temple-
Color128[], OTBZOISEI and VOT20lf] and their related evaluation protocols [39,
40, 41] to evaluate the proposed ScaleSSKCF algorithms. First, we introduce the
experimental setup. Next, we evaluate two variants of our proposed method, i.e.,
OWSC (our algorithm without structural constraint) and OWTC (our algorithm
without temporal consistent), to analyze the effect of structural constrain term and
temporal constrain term in our proposed method. Finally, our proposed algorithm
is compared with some the most related state-of-the-art methods.

'The sequences together with the ground-truth and matlab evaluation toolkit is available
at: http://www.dabi.temple.edu/~hbling/data/TColor—-128/TColor—-128.
html

“The sequences together with the ground-truth and matlab code is available at: http://
cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html

Jhttp://www.votchallenge.net/vot2015/dataset .html
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Table 2: Parameters setting of our proposed method (ScaleSSKCF).

parameters padding n (0,,6,) C X 6 Bk € & o Dbinsof HOG cell size orientations

Value 1.8 0.1%+vMN (0.4,0.9) 10* 2 0.05 5 3 5.50.20.015 31 4 x4 9

Figure 2: Visualization of the target’s partition based on the target’s aspect ratio

4.1. Experimental Setup

Our proposed approach is implemented in native MATLAB 2014a on a 3.6GHZ
Intel i7 Core4 PC with 4G RAM. The average running speed is around 40 frames
per second. The optimization takes 5 iterations in the first frame and 2 or 3 itera-
tions for each online update. In our method, the feature extraction takes up 48%
of the total consuming time. But the optimization is only 3%.

Parameters: Our tracker involves a few model parameters, i.e., trade-off param-
eter C, scale parameter 7 and shape parameter A of confidence maps, the weight
parameter ¢ of the Laplacian regulation term, the controlling factor 5 of the tem-
poral constrain term, and lower and upper thresholds (6;,6,) in . In addition,
other parameters include the smooth factor « in (20) and hyperparameter in (40).
For online tracking, the model is updated by linear interpolation with the adap-
tion rate ¢ in (44). In our experiments, the detailed parameters setting is shown
in Table 2] where padding means the magnification of the image region samples
relative to the target bounding box. The number of local parts L is adaptively de-
termined by the aspect ratio of object , where Oy and O, separately denote

the width and height of object. If 0.6 < (O)Afj < 1.6, the target is divided into 2 x 2
local parts, i.e., L = 4;if 3 ON < 0.6, the target is partitioned into 3 X 1 local parts,

ie, L = 3;if ON > 1.6, we sample 1 x 3 local parts on the target. The detailed
partitioning method is shown in Fig[2] Note that, any other part sampling methods
can also be adopted.

Datasets and Evaluation Metrics: To assess the performance of the proposed
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tracker, extensive experiments are carried on several public benchmark datasets
such as TempleColor128 [41], OTB-2015 [42]] and VOT2015 [40]. In the Tem-
pleColor128 and OTB-2015 datasets, we adopt two metrics used in [41] including
distance precision (DP) and overlap precision (OP). The DP is the relative number
of frames in the sequence where the center location error is smaller than a certain
threshold. As in [39], the DP values at a threshold of 20 pixels are reported in
our work. The OP is defined as the percentage of frames where the bounding box
overlap surpasses a certain threshold. We report the results at a threshold of 0.5,
which correspond to the PASCAL evaluation criterion [43]. Except for the DP
and OP metrics, the precision and success plots [39]] have also been adopted to
measure the overall tracking performance. For the precision and success plots,
we respectively use the DP value of each tracker and the area under curve (AUC)
score of each success plot to rank the tracking algorithms. In VOT2015 sequences,
we utilize evaluation criterion proposed in [40].

4.2. Key Component Validation

Here, on the TempleColor128 dataset [41], we discuss the impact of struc-
tural constraint term and temporal consistent term in our algorithm. Based on
the algorithm analysis in Section [3| the performance of our algorithm should de-
crease to some extent without structural constraint term and temporal consistent
term, which is shown in Table 3 The OWSC and OWTC respectively denote the
absence of structural constraint term and temporal consistent term in our model.
Overall, the performance of the proposed algorithm is best among these three
methods (e.g. OWSC, OWTC and ScaleSSKCF (ours)). Seen from the compari-
son, the performance of OWSC is worst, which means that the structural constraint
term of our tracking model plays the most important role in the performance of
our algorithm.

Table 3: Comparing the results of OWSC, OWTC and ScaleSSKCF based on mean distance pre-
cision (DP) and mean overlap precision (OP). The entries in red denote the best results.

Metrics OWSC OWTC ScaleSSKCF (Ours)
mean OP (%) 45.3 47.1 47.7
mean DP (%) 60.9 62.9 64.1
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Table 4: Comparison with state-of-the-art trackers on the 100 sequences of OTB2015. The top
two results are highlighted by bold and different colors: red and blue color.

Metrics RPT SKSCF DPCF SRDCF samf Ict2 Staple ScaleSSKCF (Ours)

mean OP (%) 63.2 67.0 689 71.6 67.963.3 70.5 72.0
mean DP (%) 76.0 78.1 77.8 78.8 77.077.0 78.5 77.6
mean FPS (s) 1.8 23 20 2 9 6 12 41

4.3. Evaluation on OTB2015 dataset

Here, we provide a comparison of our method with 7 state-of-the-art and the
most related methods from the literature: SRDCF [30], RPT [14]], SKSCF [12]],
samf [28]], Staple [44], Ict2 [45] and DPCF [32] on the OTB2015 dataset. But a
few most related methods (e.g., SCF [16] and RPAC [15]) are not included in our
comparative experiments because their source codes are not open to the public
and they didn’t do the corresponding experiments on this dataset in their paper.

4.3.1. State-of-the-art Comparison

The quantitative comparison among these selected methods is reported in Ta-
ble 4} using mean overlap precision (OP) and mean distance precision (DP) over
all 100 video sequences of OTB2015. Seen from the Table[d], our method achieves
the best result by 72% on the mean OP metric. However, the SRDCF obtains the
best result on the mean DP. The main reason is that the SRDCF introduces the
spatial regulation term to deal with the boundary effect caused by the FFT, which
makes it learn a more discriminative model. The performance of our method is
almost the same as its but our speed is about 20 times faster (For a more fair
comparison of speed, please refer to the results in VOT2015). Although the per-
formance of DPCEF is slightly superior to our method on the mean DP, the score
of its OP is obviously lower than the one of our method, that’s because the DPCF
limits the scale changing range of the target between 0.75 and 1.25 and can’t esti-
mate it accurately when the target occurs the large-scale change.

Fig. [3] gives precision and success plots over all 100 sequences in OTB2015.
The success plot shows the ratios of successful frames at the thresholds varied
from O to 1. While the precision plot describes the ratios of frames in which the
center location error (CLE) is smaller than a arbitrary threshold ranging from O to
50 pixels. The trackers of each sub-figure in Fig. 3| are ranked by their area under
the curve (AUC) scores, displayed in the legend. In the success plots of OPE, our
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Figure 3: Precision and success plots over all 100 sequences in OTB2015. The area under the
curve (AUC) scores of each tracker are reported in the legends.

method shows comparable results as the SRDCF and significantly outperforms
other several correlation filter trackers. For the precision plots, our method is
slightly inferior to the DPCF by 0.2%, that may be because the DPCF combines
the tracking results of global correlation filter model, and our method also inferior
to the Staple by 0.8%, the main reason of which is that the color histogram model
of Staple is more robust to the deformation of target.

4.3.2. Attribute Based Comparison

The sequences in OTB2015 are annotated with 11 different attributes to de-
scribe the different challenges in the tracking problem, including illumination
variation (IV), scale variation (SV), occlusion (OCC), deformation (DEF), motion
blur (MB), fast motion (FM), in plane rotation (IPR), out-of-plane rotation (OPR),
out-of-view (OV), background clutters (BC), and low resolution (LR). These at-
tributes are useful for analyzing the performance of trackers in different aspects.
The Tables[5|and[6] respectively shows the performance of ours and 7 state-of-the-
art methods in terms of AUC (success metrics) and DP (precision metrics) with
respect to each attribute . In Table [5) our method has gained 7 the best and 2
the second best out of 11 subcategories for AUC score. In case of deformation,
compared with other methods, our method achieves the second best results (The
DP score on the center location error is 73.4% and the AUC score on the overlap
rate is 54.6%), which is inferior to the ones of Staple because the color histogram
model used in the Staple is more robust to the deformation of target. As are shown
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Table 5: Success metrics (%) of the trackers for 11 attributes. The top two results are highlighted
by red and blue.

Attributes FM BC MB DEF IV IPR LR OCC OPR OV SV
RPT 52.0 58.1 51.3 50.2 53.9 52.5 36.2 48.2 50.9 42.2 48.1
SKSCF 52.6 58.0 52.0 51.0 55.5 54.4 35.1 52.1 52.8 40.1 48.8
DPCF 50.3 58.3 53.2 52.9 57.5 52.4 40.0 54.4 55.2 43.5 50.5
SRDCF 58.4 56.6 58.3 53.1 58.7 52.3 49.1 56.2 53.8 43.9 55.6
samf 53.0 55.3 53.3 50.9 54.8 53.1 42.8 55.3 54.2 48.9 50.7

lct2 50.5 54.1 51.2 49.5 51.9 53.0 29.9 489 51.2 42.9 43.3
Staple 53.9 57.3 53.9 56.3 59.1 54.3 39.9 55.4 54.1 46.5 52.7
ScaleSSKCF(our) 52.8 63.3 52.0 54.6 60.6 55.0 50.7 58.5 57.0 51.9 55.5

in Tables [5]and|[6] for the sequences involving the fast motion, the performance of
our method and other part-based trackers become bad because the searching area
of part-based tracking method shrinks, leading to drift problem. However, the
SRDCEF can obtain the best results because it can learn a strong model that adapts
the fast motion of target on the larger samples. For scale variation, our method
achieves the better results than other methods except the SRDCF. Note that the
DPCF adopts the scale estimation technique similar to ours but its performance is
significantly inferior to ours (e.g.,, our AUC score on the overlap rate exceeds it
by 5%). That is because the DPCF limits the scale changes in a small range (from
0.75 to 1.25), which let it not adapt to the large scale change of the target. For the
occlusion factor, our tracker obtains the best AUC score of 58.5% on the overlap
rate. The main reason is that our method eliminates the effect of the occlusion
when updating the discriminative model. For the low resolution sequences, our
method obtains the best results which may be attribute to the temporal consistent
term in our model. Fig. 4] shows a qualitative comparison of our approach with
7 existing methods on 11 challenging example videos. Both the SRDCF and Sca-
1leSSKCF perform well in the presence of heavy occlusion (e.g., Human6), which
can be attributed to the fact that SRDCF learns a discriminative model on larger
image region and our method removes the effects of heavy occlusion when up-
dating our tracking model. The Ict2 can effectively re-detect target in the case of
tracking failure, e.g., the sequence with the heavy occlusion (Shaking), but it can
not perform well in scale variation and illumination changes (e.g., Carl, Car4 and
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Table 6: Precision metrics (%) of the trackers for 11 attributes. The top two results are highlighted
by red and blue.

Attributes FM BC MB DEF IV IPR LR OCC OPR OV SV
RPT 68.5 81.4 68.1 72.3 80.1 74.4 59.5 68.0 72.7 54.5 71.2
SKSCF 70.7 82.1 67.9 69.7 76.8 77.7 63.0 72.3 76.0 55.0 72.3
DPCF 67.6 79.8 68.7 73.4 79.2 74.4 66.7 73.2 76.4 54.5 71.7
SRDCF 74.3 745 73.5 72.8 76.1 72.1 65.9 74.2 744 57.3 75.4
samf 69.9 74.3 67.6 69.0 74.2 74.1 68.4 75.3 75.8 66.3 73.5

lct2 68.0 75.9 66.8 70.6 74.6 78.2 53.7 69.7 75.9 58.2 69.1
Staple 70.9 77.4 69.8 76.8 78.2 76.8 61.0 74.3 74.9 65.8 73.8
ScaleSSKCF(our) 68.5 82.1 68.2 73.4 77.3 75.2 70.7 74.9 76.3 66.0 74.5

Car24). When the tracked target of the sequence is occluded by similar color bar-
rier (e.g., Box), the Staple performs very bad because the color histogram model
used by it does not distinguish them. Compared with these method, our method
can estimate the object size more accurately when occurring the large scale vari-
ation (e.g., Carl, Car4, Car24, CarScale and Human5). For the sequences (e.g.,
Skating1) including the deformation, our approach significantly outperforms other
several methods because it adopts some tricks (e.g., structural constraint term and
temporal consistency term ) to make our discriminative model more robust for
target deformation.

4.3.3. Robustness Evaluation to Initialization

We adopt two robustness metrics: spatial robustness (SRE) and temporal ro-
bustness (TRE) provided by [39] to evaluate the robustness to initializations. The
SRE criteria initializes the tracker with perturbed boxes, which the TRE criteria
starts the tracker at the frame corresponding to each segmentation point (each se-
quence is divided into the 20 segmentation points). The Fig. [5| shows the TRE
and SRE success plots of ours method compared with other related trackers. In
the success plots of TRE, the performance of our method is second only to that of
the SRDCEF but is significantly superior to the rest of trackers, especially DPCF
and RPT. For the SRE criteria, our method also is slightly inferior to the Staple
by only 0.4%. This evaluation demonstrates our method is relatively robust to
different spatial and temporal initializations.
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Figure 4: Qualitative comparison of our approach with 7 state-of the-art trackers (denoted in dif-
ferent colors) on the several typically challenging sequences (from left to right and top to down are
Box, Carl, Car4, Car24, CarScale, Couple, Skatingl, Shaking, Human5, Human6 and Freeman1
respectively).

4.4. Evaluation on TempleColor 128 dataset

Here, we evaluate our method on the TempleColor128 dataset. The Figlq
shows a comparison with 7 state-of-the-art and the most related methods from
the literature: Staple [44], SRDCF [30], DPCF [32]], Ict2 [45], SKSCF [12]], RPT
[14] and samf [28]]. The performance of our method is only ranked the fourth in
these methods. The main reason is that TempleColor128 dataset contains about
a half sequences with the fast motion [41] and our method is not suitable for
dealing with these sequences because the valid searching region becomes smaller
when the target is divided into the patches. For the SRDCEF, it can learn the filter
from the larger searching region because of the spatial regularization term, which
makes it against the fast motion. However, its speed is only about 2 frame per
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Figure 5: An evaluation of the temporal and spatial robustness to initializations on the OTB2015
dataset. The area under the curve (AUC) scores of each tracker are reported in the legends.

second and it can not meet the realtime applications. The DPCF integrates the
results of local and global correlation filter by the minimum spanning tree model.
Although its performance is slightly superior to our method, the complex model
brings down its speed.

4.5. Evaluation on VOT2015

Finally, we compare our method with other 9 related trackers (CCOT [46]],
deepSRDCEF, Staple [44], SRDCF [30], DPT[33], samf [28], DPCF [32]], SKSCF
[12] and Ict2 [45]) on VOT2015 consisting of 60 challenging videos. Here, we
evaluate the performance of the trackers by three metrics (accuracy (overlap with
ground truth), robustness (failure rate) and excepted average overlap (EAOP)) pro-
vided in [40]]. In VOT2015, a tracker is restarted in the case of a failure. In more
detail, we refer the readers to [40]. The Table [/| gives their comparison results
on VOT2015 according to three metrics mentioned above. Among the compared
methods, our method is only ranked the fourth. Note that the results of CCOT
and deepSRDCEF directly come from the VOT2016 competition. The CCOT and
deepSRDCEF both use the more discriminative deep convolution features. Accord-
ing to the conclusions in [47], the better features can dramatically improve the
tracking performance than the tracker its. Thus, it is not fair to directly compare
our method and them.

As is known, except the accuracy and robustness, the tracking speed is also
very crucial in many real tracking application. Therefore, we visualize the ex-
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Figure 6: Precision and success plots over all 128 sequences in TempleColor128 dataset. For the
success plots, the area under the curve (AUC) scores of each tracker are reported in the legends.
And the precision obtained at threshold 20 is shown in the legends of the precision plots.

Table 7: Comparison results on the VOT2015 dataset. The top two results are highlighted by red
and blue.

CCOT deepSRDCEF Staple SRDCF DPT samf DPCF SKSCF lct2 ScaleSSKCF(ours)

Accuracy 0.52 0.56 0.53 053 048 051 051 050 0.52 0.55
Robustness 0.85 1.00 1.35 1.53 1.75 2.08 215 240 252 1.75
EAOP 0.325 0.318  0.291 0.245 0.2340.202 0.191 0.185 0.175 0.252
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Figure 7: Expected average overlap scores with respect to the tracking speed in EFO units. The
dashed vertical line denotes the estimated real-time performance threshold of 20 EFO units.

pected overlap score with respect to the tracking speed measured in EFO units in
Fig. [/, where we exclude the CCOT and deepSRDCEF for fairness. Seen from
the Fig. [/} our method achieves the better balance between the performance and
speed.

5. Conclusions

In this paper, we proposed a scale-adaptive structural support kernel corre-
lation filter tracking model, which is called ScaleSSKCF. Our method combines
part-based tracking strategy into support correlation filter tracker by the structural
constraint term of the proposed model, which remains the strong discriminability
of the support correlation filter (SCF) and also preserves the spatial structure of
the target. To reduce the issues of drifting away from the object, we consider the
temporal consistency of each part in our model. In addition, we also introduce the
occlusion detection and scale estimation into the proposed tracking method, which
makes our tracker less sensitive to some complex factors (e.g., partial occlusion
and scale variation ). Results on three benchmark datasets show that our tracker
performs favorably against several state-of-the art tracking methods in terms of
accuracy, robustness and speed.
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