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Abstract

In this work, we study the power of Saak features as an
effort towards interpretable deep learning. Being inspired
by the operations of convolutional layers of convolutional
neural networks, multi-stage Saak transform was proposed.
Based on this foundation, we provide an in-depth exami-
nation on Saak features, which are coefficients of the Saak
transform, by analyzing their properties through visualiza-
tion and demonstrating their applications in image classi-
fication. Being similar to CNN features, Saak features at
later stages have larger receptive fields, yet they are ob-
tained in a one-pass feedforward manner without backprop-
agation. The whole feature extraction process is transpar-
ent and is of extremely low complexity. The discriminant
power of Saak features is demonstrated, and their classifi-
cation performance in three well-known datasets (namely,
MNIST, CIFAR-10 and STL-10) is shown by experimental
results.

1. Introduction

The quality of image features is crucial for a wide
range of image understanding and computer vision tasks in-
cluding object detection, segmentation, classification, and
recognition. All these higher-level tasks have traditionally
relied on handcrafted features by feature engineering that
intends to capture the essence of different visual patterns.
Much recent work has been focused on automatically learn-
ing good feature representations from a massive amount
of input data. Nevertheless, both feature engineering and
feature learning have their advantages in feature represen-
tations, which remains active research in computer vision
and machine learning domains. Good feature representa-
tions typically should be discriminative, robust, concise,
and computationally effective [10, 17, 11].

Before the surge of convolutional neural networks
(CNNs), feature extraction was most often conducted in an
unsupervised manner. That is, feature extraction and the
decision-making (e.g. classifier or detector) modules are
completely decoupled. Such framework however has been
changed in the feature learning architecture. The CNN so-

lution has been widely used in computer vision and im-
age processing tasks nowadays. One reason of CNN’s
success lies in the end-to-end system optimization where
there exists no clear boundary between the feature extrac-
tion and the decision-making modules. Thus, CNN features
are label-dependent (i.e., supervised training) and obtained
through backpropagation. The strong coupling between fea-
ture extraction and decision-making makes the whole CNN
mechanism difficult to explain. Another striking property
of CNNss is that the multi-layer convolutional layers can ex-
tract features of a large spatial size, which is clearly shown
through the visualization study in [24].

To explain the superior performance of CNNs, Kuo et
al. published a sequence of papers on interpretable CNNs
[6, 7]. Based on the idea of “Subspace approximation with
augmented kernels”, Kuo and Chen proposed a new trans-
form called the Saak transform in [8]. The Saak transform is
a variant of principal component analysis (PCA) that splits
the positive and negative response outputs into two separate
channels through kernel augmentation. The kernel augmen-
tation process facilitates the cascade of multi-stage Saak
transforms by resolving “’sign confusion” ambiguity. Being
similar to CNN features, Saak features at later stages have
larger receptive fields, yet they are obtained in a one-pass
feedforward manner without any supervision and backprop-
agation. The whole feature extraction process is completely
transparent and of extremely low complexity. In addition,
Saak transform is invertible, allowing the Saak feature rep-
resentations to be transformed back to the image space for
clearly visualizing, analyzing, and interpreting.

The Saak coefficients were adopted as features in classi-
fying hand-written digits under various noisy environments
in [1]. The Saak-based solution outperforms those by the
standard CNN in term of classification accuracy in most
cases. Furthermore, Saak transform can be used as a pre-
processing step and applied to adversarial images. The im-
pact of these attacks can be mitigated significantly [19].

Despite of the above-stated work, research on multi-
stage Saak transforms and the corresponding features is rel-
atively less. In this work, we provide an in-depth examina-
tion on the unique properties of Saak features in terms of
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Figure 1: Saak transform consists two modules: kernel
extraction and feature extraction. We use training images
to extract kernels followed feature extraction. Feature re-
sponses can used for any application.

discriminant power, robustness, and complexity. Our con-
tributions are as follows. First, we have several general-
izations on top of the basic Saak transform. Multiple Saak
transforms are cascaded to transform images of a larger size
from the spatial domain to a joint spatial-spectral domain.
Second, we develop new strategies for Saak feature selec-
tions and analyze their properties through visualization to
get insight into the Saak functions at different stages. Third,
we apply the new Saak feature representations to the prob-
lems of image classification and defense against adversarial
attacks. Their performances with three well-known bench-
mark datasets (namely, MNIST, CIFAR-10 and STL-10) are
demonstrated by experimental results.

2. Saak Transform and Generalizations

The Saak transform defines a mapping from a real-
valued function defined on a three-dimensional (3D) cuboid
consisting of spatial and spectral dimensions to a one-
dimensional (1D) rectified spectral vector. It is presented
as a new feature representation method. It consists of two
main ideas: subspace approximation and kernel augmenta-
tion. For the former, we build the optimal linear subspace
approximation to the original signal space via PCA or the
truncated Karhunen-Love Transform (KLT) [20]. For the
latter, we augment each transform kernel with its negative
and apply the rectified linear unit (ReLU) to the transform
output. This is equivalent to the sign-to-position (S/P) for-
mat conversion.

We review the Saak transform briefly in this section. For
input samples f € RN, we can obtain its DC component by
projecting f onto the dc (direct current) unit vector in form
of,

by (L,1,---,1)7 = ay. (1)
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The dc-removed samples contain only ac (alternating

current) components. They can be written as,
f=f—Dblf. )
The correlation matrix of f is
R =E[f fT) ¢ RNV, 3)
and its eigenvectors are orthogonal vectors:
b/b; =< b;,b; >= 0, ;. )

They are kernels of the one-stage Saak transform. By kernel
augmentation, we choose both b and —b as new kernels.
That is, we define

a2k—1:bka a2k:7bk; k:1727 7N71 (5)

Projection of input f onto augmented kernels yields Saak
coefficients in form of

pk:agfv k:()vla"'72N_17 (6)

The application of the ReLU activation to the projected vec-
tor (except for the DC component) gives the following out-
put,

g= (90,91, gon—1)" € RN (7

where go = po and
o Ifpor—1 >0, gar—1 = par—1and gop, =0

o If por, > 0, gox—1 = 0 and gox, = pas.

Thus, Saak coefficients are always non-negative.

Multi-stage Saak transforms are developed to transform
images of large spatial dimensions. The spectral dimension
of the lossless Saak transform [8] grows very rapidly as the
stage number becomes large. The lossy Saak transform [1]
adopts a truncated KLT.

We introduce several generalizations to the basic Saak
transform. First, Saak transform in [8] used non-
overlapping windows. Instead, we adopt overlapping win-
dows with stride equal to one. This is because we do not
know the optimal spatial location for pattern matching and
the redundant representation offers a richer feature set to
select in the later decision-making module. Second, the F-
test was applied as a criterion for feature selection in [§]
while a cross-entropy-based metric is adopted for feature
selection in Section 3.4. Third, the spatial dimension of all
transform kernels is set to 2 x 2 in [8]. We conduct an ex-
tensive evaluation of kernels of different spatial sizes in this
work. For the MNIST dataset, a kernel of spatial dimen-
sion 2 X 2 appears to be sufficient since the variation within
an image is relatively simple. However, the CIFAR-10 and
the STL-10 datasets contain more complex objects with di-
versified background. Kernels of larger spatial dimensions,
say, 3 x 3 or 5 X 5, do yield better performance [18]. If
similar objects are present in different regions in an image,
kernels of higher spatial sizes have a higher potential in de-
tecting these similarities. We will do a comparative study
on kernels of various spatial sizes.



Figure 2: Visualization of feature responses from STL-10 (three images from each class). Each pair contains the original
image and it’s first stage Saak response. Discriminant feature for every class is highlighted.

3. Interpretable Saak Features

In this section, we describe the developed techniques
used for analyzing, learning, and extracting multi-stage
Saak features. Visualization is employed to analyze and
have an understanding of these features to learn the opti-
mal ones for required application. New strategies and al-
gorithms based on the feature analysis are suggested for se-
lection and extraction of the optimal feature representations
from Saak transform.

3.1. Visualization

Visualizing features is to gain intuition about the net-
work model. We visualize the feature representation of
Saak transform at different stages. Figure 2 shows exam-
ples of Saak features extracted from STL-10 dataset. Three
random images from each class are shown along with their
first stage feature responses of Saak transform. It can be
seen that the feature responses are stronger in the most im-
portant regions of the images. This observation is consis-
tent for most of the images across classes. Furthermore, the
important regions of the images captured by Saak features
are also retained in the successive stages of Saak transform,
revealing different structures that excite those regions. It is
important to note that Saak transform is computed in a feed-
forward manner without any supervision and back propaga-

tion and the whole feature extraction process is completely
transparent.

3.2. Discriminability of Saak features

In this section we discuss the discriminability in Saak
features. We show that Saak features are able to capture
and encode the unique structures across different images
and classes. If a certain Saak kernel gives high response to
important locations in an image and if it is consistent across
all images of that same class, the coefficients corresponding
to that kernel can be considered as a discriminant feature.
To demonstrate the discriminant capability, Figure 2 shows
the Saak feature responses to different objects using care-
fully selected kernels. Specific kernels are chosen for a par-
ticular class and they are convoluted with the images from
those classes for visualization. We show that the chosen
filters cater high responses in certain locations of images,
helping us discriminate one class from other classes.

As mentioned above, Figure 2 shows features for images
from STL-10 dataset. To further explain, consider images
from bird, deer and horse classes. We carefully choose a
kernel that is consistent across all images of these classes.
Thus, a particular kernel for deer class gives high response
at locations of deer’s ears and horns. Similarly, a unique
kernel for horse class gives high response for it’s legs. Two
different kernel outputs are shown for bird class and we



can see that, one corresponds to feathers and another cor-
responds to beak. From these feature visualization, we can
recognize that these responses are discriminant. Some im-
portant features for airplane are it’s body and wings; for
ship are it’s stern and mast; for cat is it’s face; for car is it’s
wheels; and for monkey, dog and truck is their body itself.
This demonstrates the discriminant power of Saak features
in both classifying the image and localizing class-specific
image regions in a single forward pass.

Discriminant Saak kernels that work best for one class,
give a poor response for other classes. Saak features are
not shared by many classes and hence can be used for
many computer vision applications. Careful feature selec-
tion techniques can help us choose the right set of features
for a desired application. We discuss Saak kernels and de-
grees of freedom in extracting them in section 3.3. Since
our main focus for this paper is classification, we propose
cross-entropy measure to automatically select discriminant
features in section 3.4.

3.3. Saak Kernels

At stage 1, Local Cuboids (LCs) of size kg x ks X K are
extracted from input f, where Ky = 1 for monochrome im-
ages and K = 3 for color images. Conducting KLT trans-
form on these patches yields a set of signed KLT coeffi-
cients or Saak coefficients. Spectral dimension of consecu-
tive stages of Saak transform is given by,

Kyp,=Fksx ks x2x K,

where p = stage number = 2,3, ...

®)

The spectral dimension is doubled due to kernel augmen-
tation, as mentioned in the third term of RHS of (8). With
this recursive computation of multistage Saak LCs, there is
an exponential growth of spectral dimensions with respect
to stage number p (9).

K, = (ks x ks x 2)P 9)

Reduction in spatial dimension is inversely proportional
to the kernel size of non-overlapping LCs extracted. De-
grees of freedom for Saak kernel extraction lie in selection
of 1) ks (kernel size), 2) overlapping or non-overlapping
LCs and 3) stopping criterion (final stage spatial dimen-
sion).

Some datasets are simpler and more structured like
MNIST, while other datasets contain complex objects with
diverse background like CIFAR-10, STL-10 and ImageNet.
Saak kernels of different sizes needs to studied and modified
depending on the variations in the images. The 2x 2 cuboids
extracted from MNIST dataset are sufficient for classifica-
tion since variations within an image are less. Stack of 3 x 3
LCs [18], result in better performance when compared to
other kernel dimensions during convolutions. When similar

objects are present in different regions of the image, LCs
with higher spatial dimension have higher potential to de-
tect these similarities. Hence, we experiment Saak kernels
of increased sizes like 3 x 3 and 5 X 5.

We exploit spatial redundancy in the architecture using
overlapping kernels. This increases robustness of the model
against changes in the input. Overlapping cuboids with
max-pooling layer reduces spatial dimensions in both ver-
tical and horizontal directions. Some advantages of max-
pooling are that it is completely data dependent and in-
creases non-linearity in the model.

Multi-stage Saak transform can be understood as recur-
sive decomposition of an image into four quadrants to form
a quad-tree structure with its root being the image itself and
leaf being LCs. The stopping criterion for last stage can
be when one set of signed KLT coefficients of dimension
1 x 1 x Ky is obtained. For an image of size 2P x 2P,
Ky = 23P Final stage responses of dimension 1 x 1 works
well for simple images like MNIST, but in most cases, they
are not be able to capture complex structure in the images.
For these cases, final stage has high cross-entropy when
compared to the previous stages. Accordingly, multi-stage
Saak transform can be stopped at early stages.

3.4. Feature Selection

Input f is convoluted with extracted Saak kernels to ex-
tract Saak features. Based on kernel size k;, spatial reso-
lution of feature responses reduce at every stage. Consider
block of feature responses at any stage p for a single image
as fp with dimension D,,; x Dy % K,. First two dimensions
represent spatial dimension along vertical and horizontal di-
rections. The third one represents the spectral dimension of
feature responses for an image. If there are N images in the
training data, then total dimension of feature responses can
be given as N X Dp; X Dy x K.

Cross-entropy for feature responses is calculated at every
index (i, j, k), where (i, j) represents spatial location and
k represents spectral dimension. Let C' be the number of
classes. Entropy at every location is given by,

N
H=Y"> yne log —— (10)

n=1c=1 n,e

where
)1, if fp(n,i, g k) €c
e N0, fplniig k) ¢ e

th

Y

and p,, . is the probability of n*" sample in class c. To ob-
tain this, feature response values at (4, j, k) location across
all images are taken. Histogram of these N values is cal-
culated using a certain number of bins, B. From various
experiments, we concluded that feature selection is stable
irrespective of number of bins. We choose B = 10 and



Figure 3: Three different Saak feature maps for a bird im-
age. The maps capture different regions of information.
First two images contain discriminant regions (beak and
body) whereas the third (leaf) doesn’t.

proceed by getting
me = (mey, mea, ..., meg), (12)

where mc; represents maximum occurring class in bin i,
and mc; € 1,2, ..., C. Probability p,, . is determined as

B p—
po o = =t e =0 (13)

At the end, D, x Dyo x K, cross-entropy values will
be computed at stage p. Lower the entropy value at a lo-
cation, higher is the discriminant power. For every spec-
tral dimension, Dy, x Dpo pixels are ranked according to
their entropy. First few pixels with lowest cross-entropy val-
ues are retained, and others are made zero. This localizes
salient regions in an image. Similarly, spatially averaged
cross-entropy for all spectral dimensions is obtained. From
these average values, spectral dimensions are ranked, and
first few KZI) with lowest average cross-entropy values are
chosen. Thus spatially sparse feature responses with dimen-
sion Dpy X Dpa X K. ; are chosen at stage p. This is repeated
at all stages of multi-stage Saak transform for classification.

To understand the motivation behind the cross-entropy
based feature selection, we use feature visualization in Fig-
ure 3, which shows three different feature maps correspond-
ing to a bird image. First feature map has a high response
for the bird’s beak, second map has a high response for the
bird’s body (mainly its feathers), and the last map has a high
response for the leaf. The cross-entropy value for the last
feature map is high when compared to the first and second
maps. Lower the cross-entropy, higher is the discriminant
information for that particular class.

Figure 4 (a) shows the relationship between Saak trans-
form filters and the computed cross-entropy values for the
filters. The first kernel with the lowest cross-entropy gives
discriminant features for ship class. Similarly fourth kernel
gives a discriminant feature for the truck class. For instance,
when the first kernel is convoluted with all images, it high-
lights the important features of ship (stern and mast) when
the image is ship, whereas gives undesired responses when
the image is not a ship. When the fourth kernel is convo-
luted with an image of a truck, resulting feature response
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Figure 4: (a) shows relationship between Saak filters and
the computed cross-entropy values for the first stage; (b)
responses of filter with lowest cross-entropy on class “ship’
vs other classes

highlights the truck’s body, but a similar response is not ob-
tained from other classes. We can interpret this from Figure
4 (b), the first three images correspond to the responses ob-
tained by the lowest cross-entropy filter on ’Ship’ class and
the other images contain the responses of the same filter on
other classes.

4. Applications

Saak transform offers great potential to many computer
vision and machine learning tasks. For concreteness, we
focus on two applications in this paper, i.e. image classi-
fication and adversarial defense to demonstrate the unique
capabilities of Saak features learnt from images, though the
technique is applicable to other forms of data as well.

4.1. Image Classification

We revisit image classification problem using Saak trans-
form theory. There is major difference between the deep
neural network and the Saak transform methodology. For
example, deep neural network converts image classification
problem to multiple object segmentation problems using
object proposals. Saak transform does not need any bound-
ing boxes. As stated before, Saak transform offers a family
of joint spatial-spectral representations that have capabili-
ties for both classifying images and localizing class-specific
image regions. It tackles the challenging segmentation task
directly based on the spatial-spectral information. After the
segmentation task, it provides a semantic label to each re-
gion.

Saak transform consists of 1) Extracting LCs from the
images, 2) Obtaining KLT components, 3) Convoluting the
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Figure 5: 3-stage Saak architecture for CIFAR-10. Input image is of size 32 x 32 x 3. Spatial dimension reduces every stage
and final stage has response of size 4 x 4 x K. This is reshaped and fed as input to the classifier.

images with the extracted kernels, 4) Calculating the cross
entropy measures, 5) Selecting the best spatial/spectral
components. Our entire approach is shown in the Figure
5. Images are convoluted with all the kernels obtained. The
best coefficients are then chosen based on the lowest cross-
entropy values calculated. This is done on both spectral and
spatial dimensions. The responses corresponding to the best
kernels are then fed as inputs to the next stage of Saak trans-
form. The architecture in Figure 5, shows multi-stage Saak
transform using 3 x 3 Saak kernels, applied to CIFAR-10
images. After 3 stages of Saak transform, we end up with
a spatial dimension of 4 x 4 and a spectral dimension K.
These responses are then reshaped and used for classifica-
tion.

4.2. Defense Against Adversarial Attacks

Effective defense against adversarial attacks has been of
great concern in designing machine learning-based vision
systems. It has been shown that deep neural network is vul-
nerable to adversarial attacks [23]. These attacks come in
the form of adversarial inputs with carefully crafted imper-
ceptible perturbations added to the input images, which can
drastically cause learning systems to misinterpret adversar-
ial images.

Methods to defend adversarial attacks have been done
through adversarial training, adversarial detection, gradient
masking methods, etc [22, 14, 13, 4]. Adversarial train-
ing becomes specific to attack methods and fail to general-
ize while adversarial detectors still possess the risk of being
fooled by the attacker. We show how our Saak feature based
method is robust to such small perturbations in an image.

In the Saak transformation domain, clean and adversar-
ial images have different distributions at different spectral
dimensions. Careful selection of the spectral dimensions at

every stage, can be viewed as an automatic noise filtering
technique. Figure 6 shows distribution of Saak components
belonging to first few spectral dimensions, followed by the
distribution for higher spectral dimensions. Saak spectral
components differ for both clean and adversarial images at
higher dimension. We also show the normalized and the
original RMSE (root-mean-squared-error) values between
clean and FGSM adversarial samples in different spectral
components. We can observe from plots (c) and (d) that
clean and adversarial samples have different Saak coeffi-
cient values in high spectral dimensions. These results were
obtained from first stage Saak transform of CIFAR10 im-
ages using 3 x 3 local cuboids.

We classify adversarial images using Saak transform.
We extract kernels using clean images and follow the same
procedure as we classify clean images. As shown in Figure
1 Saak kernels are used to extract the coefficients from at-
tacked images. We classify adversarial attacked images af-
ter selecting features using our cross-entropy based method.

5. Experiments

We extensively conduct experiments aimed at deeply un-
derstanding the Saak feature representation and demonstrat-
ing its benefits and utilities to computer vision tasks. We
study classification performance under different settings to
provide in-depth examinations on the unique properties of
Saak features in terms of discriminant power, robustness,
and complexity.

Three well-known datasets are used for experiments:
MNIST, CIFAR-10 and STL-10. The MNIST [12] dataset
contains 60,000 training images and 10,000 testing im-
ages of handwritten digits. CIFAR-10 [5] dataset contains
60,000 32x32 color images in 10 different classes. STL-10
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Figure 6: (a) and (b) show distribution of Saak coefficients
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[2] dataset is inspired from CIFAR10 dataset but contains
higher resolution images (96x96) that make it a challenging
benchmark for developing more scalable algorithms.

5.1. Effect of Overlapping Local Cuboids

In the original Saak architecture given in [l], non-
overlapping Local Cuboids (LCs) were extracted. In the
new architecture, we use overlapping kernels to maximize
the information contained in each LC. However, this will re-
sult in an exponential increase in the number of features at
each Saak stage. To reduce the dimension, we employ max-
pooling for sub-sampling and construct multi-stage Saak
transform. In addition, it has been proven that max-pooling
is efficient in capturing variances in images after convolu-
tion with stride one [16].

Table 1 shows the classification performance using over-
lapping cuboids and non-overlapping cuboids. As in the
case of CNNs, max-pooling increases the performance,
since it increases non-linearity in the model. There is in-
creased redundancy in the overlapping LCs extraction, lead-
ing to better KLT components. Thus, overlapping cuboids
with max-pooling has enhanced the classification perfor-
mance. For example, the accuracy for MNIST is 99.3%,
for CIFAR-10 and STL-10, the accuracy has increased by
13.3% and 8.75% respectively.

5.2. Effect of Kernel Dimension

We evaluate the impact of Saak kernel dimension on the
classification performance. We experiment different kernel

Accuracy

Dataset Non-Overlapping  Overlapping

MNIST 98.81% 99.3%
CIFAR-10 61.3% 74.6 %

STL-10 54.3% 63.05%

Table 1: Effect of overlapping Local Cuboids and max-
pooling to classification performance

Accuracy
Datset - —5 75 —3%x3 5x5
MNIST  99.30% 98.94% 99.03%
CIFAR-10 65.68% 74.6%  73.06%
STL-10  55.30% 63.05% 59.50%

Table 2: Effect of kernel dimension to classification perfor-
mance

dimensions of 2 x 2, 3 x 3 and 5 X 5 to change the receptive
fields. Table 2 contains test accuracy obtained for different
kernel dimensions for all three datasets.

Since overlapping kernel extraction gives superior per-
formance, our experiments on kernel dimensions are also
based on the same. The results show a good increase in the
accuracy when the kernel dimension was increased from
2 x 2 to 3 x 3. Larger receptive fields help in localiza-
tion of required objects inside the images. However, the
performance does not increase when kernel dimension was
changed from 3 X 3 to 5 x 5. When 5 x 5 LCs are ex-
tracted, the number of stages of Saak transform reduces to
2, and hence the spatial dimension at the last stage is very
high when to compared to 3-stage Saak transform with 3 x 3
kernels. This will result in over-fitting due to high feature
dimension.

The change of kernel dimension has provided a signif-
icant boost in the performance for CIFAR-10 and STL-10.
Larger kernel dimension gives better performance when ob-
jects in the images are at different locations. For MNIST,
since the digits are mostly located in the center, there is a
very small increase in the performance when kernel dimen-
sion is increased. In the case of CIFAR-10 and STL-10,
the objects are not always present in the center. Thus, an
increased receptive field captures the discriminant regions
and improves performance. Saak transforms capability of
localizing the discriminative regions in the image is veri-
fied.

5.3. Robustness

To study the robustness of Saak features, we conduct ex-
periments using images attacked by state of the art attack
methods: Deepfool [15], FGSM [3] and BIM [9]. Adver-
sarial images are created by applying a small perturbation
to an image in a way that changes the predictions made by



Attack FGSM BIM  DeepFool

MNIST  94.52% 94.13%  95.51%
CIFAR-10 49.50% 48.50%  70.44%

STL-10  47.69% 50.55% 58.5%

Table 3: Performance comparison on different adversarial
attacks

Dataset Accuracy
LR RF SVM MLP
MNIST 98.77% 96.90% 98.5%  99.30%
CIFAR-10 64.43% 55776% 58.5% 74.60%
STL-10 5470% 4590% 49.43% 63.05%

Table 4: Performance comparison on different classifiers

a pre-trained model. Classification accuracy results for at-
tacked images are shown in Table 3 for different datasets.
Many deep learning methods are vulnerable to adversarial
images [21]. Unlike other methods, Saak transform based
classification is robust and the accuracies of clean and at-
tacked images are very close.

We flexibly combine different classifiers with the ex-
tracted Saak features intending to evaluate the overall per-
formance of a complete classification system. Four clas-
sifiers are tested, i.e. Random Forest (RF), Support Vec-
tor Machines (SVM), Logistic Regression (LR) and Multi-
layer Perceptron (MLP), though the technique is applicable
to any classifier that accepts feature representations. Table
4 shows the test accuracy corresponding to each classifier.

5.4. Complexity

Complexity analysis is gaining popularity in developing
practical machine learning frameworks. The main aim is
to understand if added complexity is worth the benefits. In
similar lines, we conduct complexity analysis of Saak trans-
form based feature representation. KLT components of dif-
ferent stage Saak kernels are considered for this experiment.
Images are selected on the basis of stratified sampling. Ta-
ble 5 displays cosine similarity of the components between
subset of images and the whole dataset. We experiment with
different dataset sizes like 5000, 10000, 20000, 30000 and
40000 and compare with 50000 images from CIFAR-10.
We can see that the components extracted at each stage with
different number of images are very stable. The KLT com-
ponents from smaller dataset sizes are very similar to the
components extracted from the entire training set. This is
very advantageous in constrained environments where huge
number of training images cannot be used.

Mean of the KLT components against number of images
used for the extraction is shown in Figure 7 (a). Similarly
Figure 7 (b) shows variance of KLT components. A con-
vergence in mean and variance can be observed with use of

Size  Stage 1 Stage2  Stage3
5000 0.9999 0.9885 0.9632
10000 0.9999 09877  0.9851
20000 0.9999 0.9881 0.98492
30000 0.9999 09914 0.9816
40000 0.9999 0.9999  0.9999

Table 5: Cosine Similarity between KLT coefficients ob-
tained using different subsets of images and the entire
CIFAR-10 dataset
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Figure 7: Mean and variance of last stage KLT components
obtained using different subsets CIFAR-10 training images

just 25% (20000 samples) of the training dataset. Hence,
number of images needed for kernel extraction plays a less
significant role in performance, thereby greatly reducing the
complexity of the whole system.

6. Conclusion and Future Work

This paper studies the power of Saak features as an effort
towards interpretable deep learning. We have provided an
in-depth examination on the unique properties of Saak fea-
tures in terms of discriminant power, robustness, and com-
plexity. Multiple Saak transforms are generalized on top of
the basic Saak transform to transfer image to a joint spatial-
spectral feature representation. Visualization approach is
developed to analyze and understand Saak representation
to learn the optimal ones for required applications. New
strategies and algorithms based on the feature analysis are
proposed for selection and extraction of the optimal fea-
ture representation. Two applications with extensive experi-
ments are developed to demonstrate the benefits and utilities
of Saak transform and features.

Saak representation is entirely a new signal transform
concept. On one hand, it is a complete data-driven trans-
form that provides an unsupervised one-pass mechanism.
On the other hand, its complexity is much lower than that
of state-of-the-art and it can be effectively implemented in
portable computing devices. Most importantly, Saak pro-
cess is completely transparent and interpretable with solid
theoretical support. We will continue to shed light on its
theory and applications.
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