2007.15271v1 [cs.CV] 30 Jul 2020

arxXiv

Dynamic texture analysis for detecting
fake faces in video sequences

Mattia Bonomi', Cecilia Pasquini and Giulia Boato

Abstract—The creation of manipulated multimedia content
involving human characters has reached in the last years
unprecedented realism, calling for automated techniques to
expose synthetically generated faces in images and videos.

This work explores the analysis of spatio-temporal texture
dynamics of the video signal, with the goal of characterizing
and distinguishing real and fake sequences. We propose to
build a binary decision on the joint analysis of multiple temporal
segments and, in contrast to previous approaches, to exploit the
textural dynamics of both the spatial and temporal dimensions.
This is achieved through the use of Local Derivative Patterns
on Three Orthogonal Planes (LDP-TOP), a compact feature
representation known to be an important asset for the detection
of face spoofing attacks.

Experimental analyses on state-of-the-art datasets of manipu-
lated videos show the discriminative power of such descriptors
in separating real and fake sequences, and also identifying
the creation method used. Linear Support Vector Machines
(SVMs) are used which, despite the lower complexity, yield
comparable performance to previously proposed deep models
for fake content detection.

|. INTRODUCTION

Being able to ensure and verify the integrity of digital
multimedia content is recognized as an essential challenge
in our society. In the last decade, the field of multimedia
forensics has worked towards developing increasingly effective
technological safeguards to address these issues, with the goal
of inferring information on the acquisition settings and digital
history of the images and videos under investigation.

In parallel, computer graphics and machine vision have
achieved impressive advances in the very last years in the
creation of highly realistic synthetic audio-video content. Con-
vincing digital representations of human characters appear-
ing almost indistinguishable from real people can now be
obtained automatically through increasingly accessible tools.
These technologies are progressing at a tremendous pace,
and can be coupled with advances in the field of text-to-
speech synthesis. While offering exciting opportunities for
entertainment and content creation purposes, it is clear that
such technologies can have significant security implications
in different application scenarios. As a matter of fact, digital
versions of human faces are constantly streamed through video
chats, video conferencing services, media channels, and even

T Corresponding author.
M. Bonomi, C. Pasquini and G. Boato are with the Department of Information
Engineering and Computer Science, University of Trento, Trento 38123, Italy
(e-mail: mattia.bonomi@unitn.it, giulia.boato@unitn.it). C. Pasquini was with
the Department of Computer Science, Universitat Innsbruck, Innsbruck 6020,
Austria (e-mail: cecilia.pasquini@uibk.ac.at).

used for authentication purposes in replacement of traditional
schemes based on fingerprints or passwords.

Thus, the need for forensic techniques able to deal with
this new powerful manipulations has become of primary im-
portance, leading to huge efforts and initiatives in developing
robust forensic detection methodologies and benchmarking
them on common datasets [40], [17]. While the identification
of computer-generated faces has been widely addressed in
the last decade, the data produced by advanced and Al-
based creation tools have raised renovated attention due to the
higher level of hyper-realism [47], as well as new and more
complicated technical challenges. In response, a number of
new detection approaches have been proposed, with special
focus on still images depicting synthetic faces. However, the
problem of detecting fake characters in video sequences has
been faced only very recently, since the quality of Al-generated
videos depicting faces achieved only in the last couple of years
a good level of perceptual quality and realism. Currently, video
forensics approaches developed for this problem mostly apply
detection techniques designed for still images to single frames
of the video sequence, often relying on deep representations
of the pixel domain. However, in doing so they do not exploit
the temporal information provided by video sequences, which
might contain useful statistical characterizations and contribute
to the detection capabilities of an automatic detector.

The analysis of discriminative cues over time is tackled
by a few previous works. One direction is to detect be-
havioural anomalies of the face dynamics, like the absence of
physiological signals [11], inconsistent expression patterns [4],
irregular eye-blinking [27]. While in principle these methods are
robust to geometric degradations and easily interpretable, their
effectiveness is highly dependent on the scene content, as it is
based on few semantic cues that might not be available in all
video sequences. Also, deep learning machinery (like recurrent
neural networks [41], [22], [5]) has very recently been used to
model short frame sequences, showing promising results at
the price of low interpretability, a typical issue of deep learning
based approaches. Moreover, deep learning based techniques
present the classical drawback of requiring careful training on
a large and diverse amount of data to achieve transferability
of results and to avoid overfitting.

In this work, we aim at exploiting both texture and temporal
information of the video sequence, by tackling an intermediate
approach that relies on hybrid descriptors operating in both
spatial and time domain. This yields relatively small feature
representations that can be learned through simpler classifiers,
such as linear SVMs. While such descriptors have been
successfully used for video-based face spoofing detection [43],



to the best of our knowledge their effectiveness has never
been explored in the context of manipulated faces detection,
although the two problems present significant analogies. Our
approach employs so-called Local Derivative Patterns on Three
Orthogonal Planes (LDP-TOP), a variant of local binary patterns
that operates on three dimensions and proved to be particularly
effective in face anti-spoofing. Moreover, we propose to perform
the analysis of entire video sequences by combining the
predictions computed on multiple temporal segments, which
proves to bring a significant accuracy gain.

The remainder of the paper is structured as follows: Section
[ summarizes the state of research for the problem of ma-
nipulated video and image faces detection; in Section [l we
illustrate how the feature descriptors are extracted from single
videos, while Section [IV] describes the proposed classification
framework. Experimental results are reported in Section [V]and
conclusions are drawn in Section [VI

II. DETECTION OF MANIPULATED FACES IN IMAGES AND VIDEOS

In order to position our work with respect to existing litera-
ture, this section briefly reviews the main classes of methods
proposed for detecting manipulated and computer-generated
(CG) faces in multimedia data.

A. Methods based on statistical hand-crafted features

Several methods proposed to distinguish real from ma-
nipulated multimedia content by exploiting statistical features
capturing intrinsic properties of the media object. Earlier works
study specific traces that are present in real data due to
operations at acquisition time [33], such as color filter array
interpolation [21], or lens chromatic aberration [15]. Other
approaches extract statistical features capturing the character-
istics of the spatial texture [36] [25] and the coefficients distri-
bution in transformed domains (e.g., wavelet) [29] [9], leading
to supervised classification frameworks combining these cues
[37].

More recently, detectors based on Fourier analysis coupled
with conventional machine learning have been proposed also
for modern Al-based manipulations [16]. Such methods are
applied to images only, thus they do not deal with the temporal
evolution of video signals. As detailed in Section [T, our work
fills this gap by proposing a spatio-temporal texture description.

B. Methods based on deep neural networks

Deep neural networks are not only used for creation pur-
poses but also as powerful tools for detecting fake content.

Several studies have been conducted on the use of deep
networks to detect fake images generated by Generative Adver-
sarial Networks (GANSs) [31], [53], [30], and identify fingerprint
specific GANs may leave [52].

A number of Convolutional Neural Networks (CNN) architec-
ture have been proposed for the detection of manipulated faces
videos, with the goal of characterizing artifacts arising when
generating fake content. The authors in [39], [3] propose two
shallow CNNs architectures exploiting mesoscopic features.
In [40], it is shown that deeper general-purpose networks

like XceptionNet in the same supervised scenario generally
outperform shallow ones, as well as where re-adapted feature-
based methods originating from steganalysis [20] and general-
purpose image forensics [7].

While these methods are applied individually on video
frames, only few works operate along the temporal dimension.
This is done in [41] and [22] through the use of recurrent neural
networks. In in [5], a CNN is used to estimate and analyze the
optical flow field across frames.

Finally, several deep-learning techniques have been recently
proposed for other security applications, including the analysis
of surveillance videos [49], and the detection of suspect videos
through usage of blockchain and smart contracts [23].

While the mentioned approach deliver good results in su-
pervised scenarios, they typically tend to overfit the training
set and suffer from performance decrease when dealing with
unseen manipulations [26]. Additional strategies are then nec-
essary to increase generalization capabilities, such as attention
mechanisms [44] or segmentation modules [34]. We refer the
reader to [46] [35] for thorough surveys of the literature on the
topic.

C. Methods based on semantic cues

As an alternative to hand-crafted or self-learned features, a
number of methods aims at characterizing semantic features
differentiating real and manipulated content. The work in [32]
extracts typical artifacts appearing in GAN-generated images,
such as non symmetrical colors and shape (in eyes and ears)
or badly rendered details (e.g., blurry teeth areas).

Earlier studies on rendered faces exploited geometric prop-
erties of the face in the spatial [12] and temporal domain
[13]. Further properties like inconsistencies in facial landmark
locations [51], head pose [50], and eye-blinking [28] have also
been exploited for exposing fakes.

By relying on video magnification techniques [48], the tech-
niques developed in [11] and [8] estimate the pulse rate of the
depicted subject from temporal skin color variations, and show
that this physiological signal is typically flat when the subject
face is manipulated or computer generated. Similar ideas are
explored in [10] and [18], where deep networks are used for
this purpose.

Moreover, recent approaches [4] study and characterize soft
traits specific individuals have in reproducing facial expressions
and head movements, which are hardly reproducible in manip-
ulated content.

Ill. EXTRACTION OF SPATIO-TEMPORAL TEXTURAL FEATURES

The methodology proposed in this work is composed of a
preprocessing phase and a feature extraction phase. These two
processes are described in the following subsections. Obtained
feature representation will be learned in the classification phase
described in the next section.
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Fig. 1: Workflow of the proposed pre-processing pipeline.

A. Pre-processing

First, video patches are extracted and partitioned in multiple
temporal sequenceﬂ The different steps involved in the pre-
processing pipeline are depicted in Fig. [T]and explained below:

(a) Face detection and tracking: after extracting the frames,
the Python library d1lib (v. 19.8.1) is used on the first
video frame to obtain the ROI patch containing the face,
as well as on every subsequent frame to detect the 68
facial landmarks. The three landmarks corresponding to
the right eye lacrimal caruncle (r), the left eye lacrimal
caruncle (I), and top nose (n) are selected. A motion
vector A is then computed between each pair of con-
secutive frames by averaging the horizontal and vertical
displacements of r, I and n, and smoothed temporally

'Python 3.6.7 with the OpenCV2 4.1.0 libraries and MATLAB R2019a have
been used for the implementation.
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Fig. 2: Representations of the 3 x 3 neighborhood and the
three orthogonal planes used for the extraction of the LDP-
TOP descriptors.

through a Savitzky-Golay filter on both dimensions [42].
The initial patch is then tracked over time by shifting it of
A frame by frame.

(b) Temporal partition: after conversion to grayscale, over-
lapping temporal windows of d seconds with a stride
of s seconds are isolated. This yields different temporal
sequences of frames, whose numerosity depends on the
duration of the video. A generic temporal sequence S
resulting from this process is a 3D array of pixels of size
H x W x K, where H and W depend on the output of
the face detector on the first frame, and K depends on
the frame rate of the video.

(c) Area selection: at this stage, we allow to select a specific
area of the face to be used for the feature analysis, in
order to observe the relevance of different regions for
the chosen feature representation. In our tests, we have
considered three different cases, denoted in the following
with upper-case letters (see Fig. : the top-half (7'), the
bottom-half (B), or the full face information (F') is used.

B. Dynamic texture features

We aim at exploiting both spatial and temporal domains
in the analysis of video sequences. To this purpose, we
considered the Local Derivative Pattern features (LDP), already
used for face recognition as a pattern descriptor (e.g. [24], [6]),
in their extended version involving the temporal domain, the
Local Derivative Pattern on Three Orthogonal Planes (LDP-
TOP) [38].

The LDP, a generalization of the widely used Local Bi-
nary Pattern (LBP), is a point-wise operator applied to 2D
arrays of pixels, that encodes diverse local spatial relation-
ships. As suggested in [6], we consider the second-order
directional LDPs with direction «, indicated as LDPZ, where
a € {0° 45° 90°, 135°}. Given a 2D array of pixels A, the
LDP? at the location (h,w) is an 8-bit vector defined as:



LDPZ (h,w) = [f(I4(h,w), In(h™,w™)), f(IL(h,w), Io(h™, w)),
FIL(h,w), Io(h™,w ™)), f(IL(h,w), In(h,w™)),
FIL(h,w), I (b, w™)), f(IL(h,w), Io(h ', w)),
Fa(h,w), IL(h*,w™)), f(Ta(h,w), 1o (h,w™))]

with ht = h+1,h~ =h—landw’ =w+1l,w™ =w—1.
A representation of the 3 x 3 neighborhood is depicted in Figure
a). The operator I/, is the first-order derivative in the direction
a, and is defined pixel-wise as:

A(hy,w) — A(h,w™) ifa=0°
— - wt) if a = 45°
I (hyw) = A(h,w) — A(h—,w™) !fa 45 )
A(h,w) — A(h—,w) if a=090°
A(h,w) — A(h—,w™) if a =135°
while
0 ifz-y>0
,0) = 2
(o) {1 o @

Essentially, LDPi(h, w) encodes whether first-order deriva-
tives in the direction o have consistent signs when computed
at (h,w) and at proximal pixel locations. For a 2D array, the
LDPi are extracted for every pixel and their 28-bin histogram
is computed; this is replicated for the four different directions,
and the histograms are concatenated.

Similarly as it is done in [19] for LBPs, in [38] the au-
thors propose to extend the computation of LDP histograms
to 3D arrays. This is done by sequentially considering the
three central 2D arrays along each dimension that intersect
orthogonally (see Figure [2[b)) and again concatenating the
obtained histograms, yielding the so-called LDP-TOP features.

In our case, we apply this procedure to the temporal se-
guences S extracted as in Section[lll-A] and use the obtained
histograms as features. Considering 4 derivative directions
and three 2D arrays, the feature vector length is equal to
28 x 4 x 3 = 3072.

In order to explore potential peculiarities in the way the
temporal information is captured by LDPs, we add the op-
portunity to run the feature extraction on S in three different
temporal modes, which differ by the orientation of the temporal
information. In particular, we define:

o Direct mode (—): S is processed forward along the
temporal direction;

o Inverse mode (+): S is processed backward along the
temporal direction starting from the last frame;

« Bidirectional mode («+»): S is processed in both directions
and histograms are concatenated (thus yielding a feature
vector with doubled size).

IV. CLASSIFICATION FRAMEWORK

We now describe the framework adopted in our study for
training a classifier and taking a decision on single tested
videos.

As depicted in Fig. [3} the training process involves a set of
real and manipulated videos, that we indicate as 7R, (labeled
as 0) and TR, (labeled as 1), respectively. Every video in

these sets is fed into the pre-processing and the descriptor
computation blocks, as described in Sections and
The feature vectors computed from each temporal sequences
inherit the label of the video they belong and all of them are
used as inputs for training the classifier C, a Support Vector
Machines (SVM) with linear kerne[?

Afterwards, the videos to be tested belong to sets that we will
indicate as 7S, and TSy,. The prediction on single videos is
computed as depicted in Fig. |4l Pre-processing and descriptor
computation are again performed and each resulting feature
vector extracted is passed to the trained SVM model. This
returns a pair p,, s, for each of the N temporal sequences
extracted, where p,, is the predicted label and s,, is the output
score of the SVM. In order to determine a final label p for the
input video, a majority voting criterion is employed:

where maj(-) outputs the value recurring most frequently in the
input set. In case of equal number of conflicting predictions,
the maj criterion conservatively favors the 0 class.

Finally, for each video we compute a final score § through
a “reduced mean” criterion:

p =maj({p1,...

§ = mean({s,, where n is such that p,, = p}), (4)

i.e., only the score values corresponding to the sequences
whose predictions correspond to the final prediction p are
averaged.

V. EXPERIMENTAL RESULTS

The next sections present the experimental tests conducted
in order to validate the proposed method in practical scenarios.

As a benchmark dataset of real and fake videos, we con-
sidered the FaceForensics++ dataset described in [40], which
consists of a large set of videos depicting human faces, which
are then manipulated with different techniques. In particular,
we have considered the 1000 original videos (OR) and their
manipulated counterparts through the Deepfake (DF) [1], the
Face2Face (F2F) [45] and the FaceSwap (FSW) [2] techniques.
We operate on the version of the dataset subject to a light
compression (H.264 with constant rate quantization parameter
equal to 23). An example of these different manipulations is
depicted in Fig. The videos are recorded under different
conditions (e.g., interviews, TV shows, etc.), they have different
length and are captured by different cameras. This results
into a huge variability in terms of both data content and
video structure (i.e., frame rate, video length, original coding
standards, etc).

The dataset comes with a standard split of videos for
training, validation, and testing. In order to enable a fair
comparison with other recently proposed approaches, we also
considered the same training and testing set, yielding the sets
TRp with [TRp| =720 and TSp with |TSp| = 140, where
D € {OR, DF, F2F, FSW}. Different subsets will be combined
according to the experimental scenario considered.

2We used the MATLAB Statistics and Machine Learning Toolbox (v. R2019a)
and selected a linear kernel function with predictor data standardization and
Sequential Minimal Optimization (SMO).
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Fig. 4: Testing Pipeline: the pipeline C returns a binary label p and the corresponding score §.

We have tested the feature representation and classification
framework proposed in Section [l and [IV] in several experi-
mental scenarios and by analyzing different factors, which are
described in details in the next subsections. For the sake
of readability, we first summarize here the structure of our
experimental validations:

« Single-technique scenario (Section [V-A). Original and
fake videos are considered separately for different creation
techniques; the impact of the temporal partition operation,
the face area selection, and the temporal mode adopted
are discussed.

« Multiple-technique scenario (Section [V-B). Videos cre-
ated with arbitrary manipulation techniques are mixed in
the testing; the capabilities of detecting and identifying

Fig. 5: Frames extracted from (a) a sample OR video sequence
and its (b) DF, (c) F2F and (d) FSW manipulated versions.

the manipulation technique used in the testing phase is
evaluated.

« Strong video compression (Section [V-C). The proposed
detector is tested when a heavier compression is applied
to the videos, thus its robustness against video compres-
sion is analyzed.

« Comparison with other descriptors (Section [V-D).
Performance comparison is discussed both considering
the proposed detector exploiting the alternative spatio-
temporal feature representation given by the LBP-TOP and
other SoA approaches.

A. Single-technique scenario

We tested the performance of our approach in separating
original videos from videos that have been manipulated with a
specific technique. The goal is to show the capabilities of each
classifier when subjected to its corresponding test set. Thus:

TS, = TSor

TRm=TRpD
TSn=TSp

where D varies in the set {DF, F2F, FSW}. This yields an SVM
classifier for every manipulation technique, that we denote as
Cor, Cror and Crsw.

Videos in these sets are fed into the training pipeline
described in Fig.@ In this phase, we report the results obtained
by employing the three different facial areas (F', T, and B)
specified in Sectionl@and the three temporal modes (—, <,
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TABLE I: Classification accuracy and AUC computed on the single-manipulation scenario. Different facial areas

modes are considered.

and temporal

Accuracy ,a:‘::eJ:as]:y AUC A\:\el:é(l:ge
A\I/ge?;t:r:n Deepfakes | Face2Face | FaceSwap | Cross-Dataset | Deepfakes | Face2Face | FaceSwap | Cross-Dataset

(F,—) 93,57% 82,86% 93,57% 90,00% 98,23% 88,08% 98,22% 94,85%
(F,«) 93,57% 77,14% 90,71% 87,14% 98,78% 85,14% 98,00% 93,97%
(F, <) 94,29% 79,29% 90,71% 88,10% 98,65% 86,94% 97,45% 94,35%
(T, —) 91,43% 76,43% 92,86% 86,90% 95,39% 78,13% 98,18% 90,57%
(T, <) 92,14% 75,71% 92,14% 86,67% 94,41% 78,39% 98,00% 90,27%
(T, <) 90,71% 73,57% 93,57% 85,95% 94,89% 80,78% 98,06% 91,24%
(B,—) 93,57% 82,14% 92,14% 89,29% 97,53% 86,64% 97,47% 93,88%
(B, <) 92,86% 81,43% 89,29% 87,86% 97,57% 85,91% 97,55% 93,68%
(B, <) 93,57% 85,00% 92,14% 90,24% 97,55% 88,63% 97,47% 94,55%

and <) specified in Section [lT-B} yielding to nine classifiers per
manipulation technique, to observe how they vary and interact.

Results are depicted as bar plots in Figure |§| in terms of
accuracy, i.e., the fraction of videos in 7S, U TS, that is
assigned to the correct label. Full numerical results are reported
in Table [l where the value of the Area Under the Curve (AUC)
obtained by thresholding s (i.e., the reduced-mean score) is
also reported as performance indicator.

Tab. [ suggests that Cpe and Crsw almost always allow for
an accuracy greater that 90%, while for Cror the accuracy
does not exceeds 85, 0%. Interestingly, this correlates with the
observations made in [40], where a user study reveals that
F2F generally produces more challenging manipulations to be
detected for humans.

Moreover, it can be noticed that both the F' and the B facial
areas versions provide a better accuracy with respect to 7. This
indicates that the artifacts captured by the proposed feature
representation are generally concentrated in the bottom part of
the face. However, this effect is not uniform across manipulation
techniques (see FSW), suggesting that manipulation-specific
patterns are likely introduced, as we will exploit in the next
subsection.

Finally, we observe that the inverse temporal mode alone
does not introduce significant advantages, while the bidirec-
tional mode generally does. This is not so suprising, given

that the feature vector size is doubled, however the number of
training samples remains the same.

In summary, the best results in terms of both performance
indicators are achieved in the (F,—) and the (B, <) cases,
respectively yielding 90,00% and 90, 24% average accuracy.
Therefore, for the sake of readability and space, we focus on
the corresponding classifiers for the experimental analyses in
the next subsections.

As a further analysis, we evaluate the benefits of applying
the temporal partition through sliding windows in the prepro-
cessing phase by comparing with the baseline case where
videos are not subdivided in shorter video sequences (i.e.,
the w parameter in Fig. [1] is set equal to the video length in
seconds) and only one LDP-TOP feature vector is extracted
from each single video. This corresponds to the common
approach of previously proposed detection methods (see [40]).

First, we observe in Table [l how the number of input feature
vectors changes for these two cases, noticing that the sliding
window approach increases the number of training/testing
feature vectors by 6 to 8 times. Then, we provide in Table
[ the accuracy loss when skipping the temporal partition
step, defined as the difference in accuracy between of the
“sliding” and “non-sliding” case (i.e., positive values indicate
better performance of the “sliding” case). It can be noticed that
the “sliding” approach always outperforms the “non-sliding” in



TABLE II: Comparison between the number of samples
(batches) obtained in case of non-sliding and sliding window
approaches.

OR DF F2F FSW
Training | Testing | Training | Testing | Training | Testing | Training | Testing
‘ Sliding 3029 588 3026 588 2966 640 2307 482
‘ Non-sliding 360 70 360 70 360 70 360 70

TABLE lII: Classification accuracy loss per manipulation tech-
nique when applying the "non-sliding" approach.

Average

Accuracy Loss AccuracygLoss

A\'/%‘r’;'f:: DF FOF | FSW | Cross-Dataset
(F,—) 1,43% | 10,72% | -2,14% 3,33%
(F,«) 2,14% 571% | -2,15% 1,90%
(F, ) 2,15% 6,43% | -4,29% 1,43%
(T 2,14% | 10,00% | 0,00% 4,04%
(T, <—) 2,14% 3,57% 0,00% 1,91%
(T, ) 1,42% | -1,43% | 2,14% 0,71%
(B,—) -0,72% | 3,57% 0,00% 0,96%
(B, <) 0,00% 572% | -2,85% 0,96%
(B, <) 1,43% 7,14% 0,00% 2,86%

terms of average accuracy among all datasets, with significant
improvements (up to 10%) for F2F. Just in some single cases,
especially for FSW, this observation is reversed, showing again
manipulation-specific peculiarities. The two selected classifiers
(top and bottom one in Table ) however adhere to the general
trend, showing an average accuracy increase of 3,33% and of
2, 86%.

B. Multiple-technique scenario

We now consider the case where manipulation techniques
are mixed. In particular, we approach the more realistic case
where

TSr = TSOR TSm = TSDF U TSFZF U TSFSW

and the binary decision on each testing video needs to be
taken blindly, i.e., without prior information on the manipulation
technique used.

We have experienced that training a single binary classifier
with TRr = TROR and TRm = TRDF @] TRFQF @] TRFSW
brings to poor results. This might be interpreted in view of
the linearity of the classifier used, which seemingly does
not allow to properly separate the two classes through an
hyperplane in the feature space. Instead of enforcing that a
single classifier can accurately separate the samples, we rather
propose to combine the outcome of classifiers trained on single
manipulation techniques. This also allows us to estimate the
used manipulation technique in case of positive detection in a
cascade fashion as represented in Figure

More specifically, we propose to assign each test video a
label p € {0, 1} by combining the outputs of the classifiers Cpg,
Cror and Crgw trained as in Section This yields to three
predicted labels ppr, Pror, Prsw, and three average scores Spr,
SroF, Srsw. Then, the three estimated labels are passed to a
fusion block that applies the logical OR operator (indicated as

V) in order to get p. In other words, a video is classified as
manipulated as soon as one of the three detectors returns
the label 1. Furthermore, in case of p = 1, the maximum
value of the scores is selected as indicator of the manipulation
technique used to create the video.

Table [IV] reports the accuracy results obtained through this
approach for the two variants selected in Section (F,—)
and (B, <), which consistently exceed 85%. We also report
the false positive rate (fraction of original videos erroneously
classified as manipulated) and the false negative rate (fraction
of manipulated videos erroneously classified as original). The
former seems to be more crucial for this fused approach, likely
due to the fact that original videos are underrepresented in the
overall training set.

Finally, we measure the accuracy in estimating the manip-
ulation technique used when a video is correctly classified
as manipulated. Table |V| and Table are the confusion
matrices of the two classifiers for this task. The high diagonal
values (around 90, 00% in most cases) indicate that the feature
representation carries quite strong information on the specific
manipulations techniques.

C. Impact of Strong Video Compression

The FaceForensics++ dataset also offers a more heavily
compressed version of the videos, i.e., with ¢f = 40. As
reported in [40], the quality degradation due to compression
compromises the performance of detection algorithms, as well
as humans. We therefore assess how this impacts our method
by reproducing the single-technique scenario for the two best
performing classifiers, and report the results in Figure |8] and
Table While keeping an average accuracy around 70%, the
performance decrease is evident when compared to Figure [g]
(around 20%), thus confirming that, as most of the existing
methods, our feature representation also suffers from the

TABLE |V: Classification results in the multiple-technique sce-
nario.

Algorithm Fa!s_e Falsg
Version Positive | Negative | Accuracy
Rate Rate
(F,—) 20,00% 11,43% 86,43%
(B, <) 15,71% 11,90% 87,14%

TABLE V: Confusion matrix for the manipulation estimation task
with (F, —).

PREDICTIONS
DF F2F FSW
5 DF 89,23 10,77% 0,00%
g F2F 5,17% | 91,38% 3,45%
g FSW | 000% | 8,17% | 96,83%

TABLE VI: Confusion matrix for the manipulation estimation
task with (B, <).

PREDICTIONS
DF F2F FSW
5 DF 83,33 16,17% 0,00%
g F2F 5,08% | 91,53% 3,39%
& FSW | 000% | 500% | 95,00%
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TABLE VII: Classification accuracy and AUC computed on the sin

gle-manipulation scenario in case of strong video compression.

Average Average
Accuracy Accuracy AUC AUC
A\I/%?;t:r Deepfakes | Face2Face | FaceSwap | Cross-Dataset | Deepfakes | Face2Face | FaceSwap | Cross-Dataset
(F,—) 74,29% 62,14% 72,86% 69,76% 80,49% 68,97% 80,59% 76,68%
(B, <) 77,14% 69,29% 68,57% 71,67% 81,35% 74,04% 79,64% 78,34%

TABLE VIII: Classification accuracy in the multiple-technique

scenario in case of strong video compression.

Algorithm | Decision False False
R . Positive | Negative | Accuracy
Version Criterion
Rate Rate
(F,—) \Y 50,00% 27,62% 66,79%
(B, <) \Y 42,86% 23,81% 71,43%

application of a heavier compression. This holds also for the
multiple-technique scenario, where the accuracy of the best
classifier drop to 71% (see Table [VIII).

D. Comparison with other descriptors

In this subsection, we consider the performance of our
method with respect to other detection algorithms.

We first compare our feature representation with a known
competitor among the spatio-temporal texture descriptors used
in face anti-spoofing, the LBP-TOP [54]. Differently from LDPs,
LBPs capture only information on the first-order directional

derivatives computed at a central reference pixel, that are
thresholded, encoded into a binary number, and finally col-
lected into histogram over different pixels; LBP-TOP is the
corresponding temporal extension and yields a feature vector
of length [1,177], obtained by applying the uniform pattern
version of the LBP features that led to a more compact feature
vector and descriptor robust to rotations. We want to determine
whether and how much the improved performance observed
in [38] for the face spoofing detection task generalizes to
the detection of facial manipulations. To this purpose, the
tests performed in Section @ are extended by replacing the
LDP-TOP feature vector with the LBP-TOP one, while keeping
unchanged all the other steps described in Sections [l and [[V}
We report in Fig. [9] the classification accuracy loss observed
when using LBP-TOP instead of LDP-TOP (i.e., with respect to
the results in Figure @ The loss is always positive, thus LDP-
TOP indeed outperforms LBP-TOP by a significant margin.

Then, we position our results with respect to other methods
proposed in literature and benchmarked on the same dataset
in [4Q]. Since the training, validation, and testing splits of the
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indicates that the method is based on CNNs.

FaceForensics++ dataset are standard, it is fair to compare the
results obtained through our proposed pipelines with the ones
reported in [40] in terms of accuracy on the testing set. Figure
[10]reports the results of our (F, —) and (B, +) classifiers and
other six detection methods, namely “Steg+SVM” [20], “Coz-
zolino et al.” [14], “Rahmouni et al.” [39], “Bayar and Stamm” [7],
“MesoNet” [3], and “XceptionNet” [40], sorted according to their
average accuracy over manipulation techniques. All of them,
except for the “Steg+SVM”, are based on convolutional neural
networks. Remarkably, our approach outperforms the SVM-
based one [20] by a large margin, and also two techniques
based on CNNs [14] and [39]. While the performance of other
deep networks like XceptionNet remains significantly better,

the proposed spatio-temporal descriptors, separated linearly
in the feature space, provide fairly accurate results with the
advantages of higher explainability of the encoded patterns
and limited training time.

VI. CONCLUSIONS

In this paper we have proposed a novel methodology to
detect fake video sequences by exploiting spatio-temporal
descriptors successfully exploited for the task of face anti-
spoofing. Results show good performance on various ma-
nipulation techniques and in different experimental scenarios.
Relatively small feature representation and relatively simple



classifiers allow to detect manipulated video sequences and
identify the adopted manipulation technique.

Future work will deal with the challenging problem of heavy
video compression, where current literature still does not
achieve satisfactory results. Moreover, further extension will
consider the scenario where new manipulation techniques
could be considered and learned by the detector, e.g. by
exploiting innovative paradigms coming from the machine
learning domain like incremental learning.

ACKNOWLEDGMENTS

This work was supported by the project PREMIER (PRE-
serving Media trustworthiness in the artificial Intelligence ERa),
funded by the ltalian Ministry of Education, University, and
Research (MIUR) within the PRIN 2017 program. The second
author was partially supported by Archimedes Privatstiftung,
Innsbruck.

[1]
[2]
[3]

[4

5

6

7

[8]

9

(0]

1]

[12]

[13]

[14]

[19]

[16]

7]

REFERENCES

Deepfakes Github. https://github.com/deepfakes/faceswap, 2019.
Faceswap. https://github.com/MarekKowalski/FaceSwap/, 2019.

D. Afchar, V. Nozick, J. Yamagishi, and |. Echizen. Mesonet: a compact
facial video forgery detection network. In IEEE International Workshop
on Information Forensics and Security, pages 1-7, 2018.

S. Agarwal, H. Farid, Y. Gu, M. He, K. Nagano, and H. Li. Protecting
world leaders against deep fakes. In IEEE Computer Vision and Pattern
Recognition Workshops (CVPRW), 2019.

I. Amerini, L. Galteri, R. Caldelli, and A. Del Bimbo. Deepfake video de-
tection through optical flow based cnn. In IEEE International Conference
on Computer Vision Workshops (ICCVW), 2019.

Baochang Zhang, Yongsheng Gao, Sangiang Zhao, and Jianzhuang Liu.
Local derivative pattern versus local binary pattern: Face recognition
with high-order local pattern descriptor. IEEE Transactions on Image
Processing, pages 533-544, 2010.

B. Bayar and M. C. Stamm. Constrained convolutional neural networks:
A new approach towards general purpose image manipulation detection.
IEEE Transactions on Information Forensics and Security, 13(11):2691—
2706, 2018.

M. Bonomi and G. Boato. Digital human face detection in video
sequences via a physiological signal analysis. Journal of Electronic
Imaging, 29(1):1 — 10, 2020.

D. Chen, J. Li, S. Wang, and S. Li. Identifying computer generated and
digital camera images using fractional lower order moments. In 2009
4th IEEE Conference on Industrial Electronics and Applications, pages
230-235, 2009.

U. A. Ciftci and |. Demir. Fakecatcher: Detection of synthetic portrait
videos using biological signals. CoRR, 2019.

V. Conotter, E. Bodnari, G. Boato, and H. Farid. Physiologically-based
detection of computer generated faces in video. In IEEE International
Conference on Image Processing (ICIP), 2014.

D. Dang-Nguyen, G. Boato, and F. G. B. D. Natale. Discrimination be-
tween computer generated and natural human faces based on asymmetry
information. In European Signal Processing Conference (EUSIPCO),
pages 1234-1238, 2012.

D.-T. Dang-Nguyen, G. Boato, and F. G. B. De Natale. 3d-model-
based video analysis for computer generated faces identification. IEEE
Transactions on Information Forensics and Security, pages 746-761,
2015.

G. P. Davide Cozzolino and L. Verdoliva. Recasting residual-based
local descriptors as convolutional neural networks: an application to
image forgery detection. In ACM Workshop on Information Hiding and
Multimedia Security (IH&MMSec), 2017.

A. E. Dirik, H. T. Sencar, and N. Memon. Source camera identification
based on sensor dust characteristics. In IEEE Workshop on Signal
Processing Applications for Public Security and Forensics, pages 1-6,
2007.

R. Durall Lopez, M. Keuper, F.-J. Pfreundt, and J. Keuper. Unmasking
deepfakes with simple features. CoRR, 2019.

Facebook. Deepfake Detection Challenge (DFDC).
deepfakedetectionchallenge.ai, 2020.

https://

(8]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

[41]

S. Fernandes, S. Raj, E. Ortiz, I. Vintila, M. Salter, G. Urosevic, and
S. Jha. Predicting heart rate variations of deepfake videos using neural
ode. In The IEEE International Conference on Computer Vision (ICCV)
Workshops, Oct 2019.

T. d. Freitas Pereira, J. Komulainen, A. Anjos, J. M. De Martino, A. Hadid,
M. Pietikdinen, and S. Marcel. Face liveness detection using dynamic
texture. EURASIP Journal on Image and Video Processing, 2014.

J. Fridrich and J. Kodovsky. Rich models for steganalysis of digital
images. IEEE Transactions on Information Forensics and Security, pages
868-882, 2012.

A. C. Gallagher and T. Chen. Image authentication by detecting traces
of demosaicing. In IEEE Computer Vision and Pattern Recognition
Workshops (CVPRW), 2008.

D. Glera and E. J. Delp. Deepfake video detection using recurrent neural
networks. In IEEE International Conference on Advanced Video and
Signal Based Surveillance (AVSS), pages 1-6, 2018.

H. R. Hasan and K. Salah. Combating deepfake videos using blockchain
and smart contracts. /EEE Access, pages 41596-41606, 2019.

T. Jabid, M. Kabir, and O. Chae. Local directional pattern (Idp) for face
recognition. International Journal of Innovative Computing, Information
and Control, pages 329-330, 2010.

Y. Ke, W. Min, X. Du, and Z. Chen. Detecting the composite of
photographic image and computer generated image combining with color,
texture and shape feature. Journal of Theoretical and Applied Information
Technology, pages 844-851, 2013.

A. Khodabakhsh, R. Ramachandra, K. Raja, P. Wasnik, and C. Busch.
Fake face detection methods: Can they be generalized? In International
Conference of the Biometrics Special Interest Group (BIOSIG), pages
1-6, 2018.

Y. Li, M. Chang, and S. Lyu. In ictu oculi: Exposing ai created fake videos
by detecting eye blinking. In IEEE International Workshop on Information
Forensics and Security (WIFS), pages 1-7, 2018.

Y. Li, M. Chang, and S. Lyu. In ictu oculi: Exposing Al created fake videos
by detecting eye blinking. In IEEE International Workshop on Information
Forensics and Security (WIFS), pages 1-7, 2018.

S. Lyu and H. Farid. How realistic is photorealistic? /EEE Transactions
on Signal Processing, pages 845-850, 2005.

F. Marra, D. Gragnaniello, D. Cozzolino, and L. Verdoliva. Detection of
gan-generated fake images over social networks. In [EEE Conference on
Multimedia Information Processing and Retrieval (MIPR), pages 384-389,
2018.

F. Marra, C. Saltori, G. Boato, and L. Verdoliva. Incremental learning
for the detection and classification of GAN-generated images. In IEEE
Workshop on Information Forensics and Security (WIFS), 2019.

F. Matern, C. Riess, and M. Stamminger. Exploiting visual artifacts to
expose deepfakes and face manipulations. In IEEE Winter Applications
of Computer Vision Workshops (WACVW), pages 83-92, 2019.

T.-T. Ng, S.-F. Chang, J. Hsu, L. Xie, and M.-P. Tsui. Physics-motivated
features for distinguishing photographic images and thecomputer graph-
ics. In ACM International Conference on Multimedia, pages 239-248,
2005.

H. H. Nguyen, F. Fang, J. Yamagishi, and I. Echizen. Multi-task learning
for detecting and segmenting manipulated facial images and videos.
CoRR, abs/1906.06876, 2019.

T. T. Nguyen, C. M. Nguyen, D. T. Nguyen, D. T. Nguyen, and S. Naha-
vandi. Deep learning for deepfakes creation and detection. ArXiv, 2019.
F. Pan, J. Chen, and J. Huang. Discriminating between photorealistic
computer graphics and natural images using fractal geometry. Science
in China Series F: Information Sciences, pages 329-337, 2009.

F. Peng, D.-L. Zhou, L. Min, and X.-M. Sun. Discrimination of natural
images and computer generated graphics based on multi-fractal and
regression analysis. AEU - International Journal of Electronics and
Communications, 2016.

Q.-T. Phan, D.-T. Dang-Nguyen, G. Boato, and F. G. B. D. Natale. Face
spoofing detection using Idp-top. 20716 IEEE International Conference on
Image Processing (ICIP), pages 404-408, 2016.

N. Rahmouni, V. Nozick, J. Yamagishi, and |. Echizen. Distinguishing
computer graphics from natural images using convolution neural net-
works. In [EEE Workshop on Information Forensics and Security (WIFS),
pages 1-6, 2017.

A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. NieBner.
Faceforensics++: Learning to detect manipulated facial images. In IEEE
International Conference on Computer Vision, 2019.

E. Sabir, J. Cheng, A. Jaiswal, W. AbdAimageed, |. Masi, and P. Natara-
jan. Recurrent convolutional strategies for face manipulation detection in
videos. In IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 80-87, 2019.


https://github.com/deepfakes/faceswap
https://github.com/MarekKowalski/FaceSwap/
https://deepfakedetectionchallenge.ai
https://deepfakedetectionchallenge.ai

[42]

[43]

[44]

[45]

[46]
[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

A. Savitzky and M. J. E. Golay. Smoothing and differentiation of data by
simplified least squares procedures. Analytical Chemistry, pages 1627—
1639, 1964.

L. Souza, L. Oliveira, M. Pamplona, and J. Papa. How far did we get in
face spoofing detection? Engineering Applications of Artificial Intelligence,
72(C):3687381, 2018.

J. Stehouwer, H. Dang, F. Liu, X. Liu, and A. K. Jain. On the detection
of digital face manipulation. CoRR, abs/1910.01717, 2019.

J. Thies, M. Zollhéfer, M. Stamminger, C. Theobalt, and M. NieBner.
Face2face: Real-time face capture and reenactment of rgb videos.
Commun. ACM, pages 96-104, 2018.

L. Verdoliva. Media forensics and deepfakes: an overview. ArXiv,
abs/2001.06564, 2020.

J. Vincent. Watch Jordan Peele use Al to make Barack Obama deliver
a PSA about fake news, 2019.

H.-Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and W. Freeman.
Eulerian video magnification for revealing subtle changes in the world.
ACM Transanctions on Graphics, pages 65:1-65:8, 2012.

J. Xiao, S. Li, and Q. Xu. Video-based evidence analysis and extraction
in digital forensic investigation. /EEE Access, pages 55432-55442, 2019.
X. Yang, Y. Li, and S. Lyu. Exposing deep fakes using inconsistent head
poses. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 8261-8265, 2019.

X. Yang, Y. Li, H. Qi, and S. Lyu. Exposing gan-synthesized faces
using landmark locations. In ACM Workshop on Information Hiding and
Multimedia Security (IH&MMsec), pages 113-118, 2019.

N. Yu, L. Davis, and M. Fritz. Attributing fake images to gans: Learning
and analyzing gan fingerprints. In IEEE International Conference on
Computer Vision (ICCV), pages 75557565, 2019.

X. Zhang, S. Karaman, and S.-F. Chang. Detecting and simulating
artifacts in GAN fake images. In IEEE Workshop on Information Forensics
and Security (WIFS), 2019.

G. Zhao and M. Pietikainen. Dynamic texture recognition using local
binary patterns with an application to facial expressions. IEEE Trans.
Pattern Anal. Mach. Intell., (6):915-928, 2007.



	I Introduction
	II Detection of manipulated faces in images and videos
	II-A Methods based on statistical hand-crafted features
	II-B Methods based on deep neural networks
	II-C Methods based on semantic cues

	III Extraction of spatio-temporal textural features
	III-A Pre-processing
	III-B Dynamic texture features

	IV Classification framework
	V Experimental results
	V-A Single-technique scenario
	V-B Multiple-technique scenario
	V-C Impact of Strong Video Compression
	V-D Comparison with other descriptors

	VI Conclusions
	References

