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Streaming: Performance Evaluation of MEC-
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Abstract— Seamless streaming of high quality video under unstable network condition is a big challenge. HTTP adaptive 

streaming (HAS) provides a solution that adapts the video quality according to the network conditions. Traditionally, HAS 

algorithm runs at the client side while the clients are unaware of bottlenecks in the radio channel and competing clients. The 

traditional adaptation strategies do not explicitly coordinate between the clients, servers, and cellular networks. The lack of 

coordination has been shown to lead to suboptimal user experience. As a response, multi-access edge computing (MEC)-

assisted adaptation techniques emerged to take advantage of computing and content storage capabilities in mobile networks. In 

this study, we investigate the performance of both MEC-assisted and client-side adaptation methods in a multi-client cellular 

environment. Evaluation and comparison are performed in terms of not only the video rate and dynamics of the playback buffer 

but also the fairness and bandwidth utilization. We conduct extensive experiments to evaluate the algorithms under varying 

client, server, dataset, and network settings. Results demonstrate that the MEC-assisted algorithms improve fairness and 

bandwidth utilization compared to the client-based algorithms for most settings. They also reveal that the buffer-based 

algorithms achieve significant quality of experience; however, these algorithms perform poorly compared with throughput-based 

algorithms in protecting the playback buffer under rapidly varying bandwidth fluctuations. In addition, we observe that the 

preparation of the representation sets affects the performance of the algorithms, as does the playback buffer size and segment 

duration. Finally, we provide suggestions based on the behaviors of the algorithms in a multi-client environment. 
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1 INTRODUCTION

ultimedia content accounts for the majority of Inter-
net traffic. According to the Cisco Visual Network-

ing Index, global mobile data traffic is expected to reach 
82% by 2022 [1]. To handle traffic demands related to 
multimedia, HTTP adaptive streaming (HAS) solutions 
are often used. These solutions include Apple HTTP live 
Streaming (HLS), Adobe HTTP Dynamic Streaming 
(HDS), Microsoft ISS Smoothing Streaming, and Dynamic 
Adaptive Streaming over HTTP (DASH) developed un-
der MPEG and standardized by ISO/IEC. 

The basic model of HTTP adaptive streaming is shown 
in Fig. 1. In HTTP adaptive streaming, video content is en-
coded at different quality levels and fragmented into seg-
ments of equal duration. HAS operates by monitoring the 
network and adjusting the quality of the video stream ac-
cordingly. An HAS client initiates a streaming session by 
downloading a manifest file, which provides a description 
of the video content available at the HAS server. A HAS 
algorithm at the client side selects an appropriate segment 
depending on the received metadata and system condi-
tions, such as the throughput and occupancy of the play-
back buffer. At the server side, the content annotation module 
provides information about the characteristics of the stored 
multimedia content. The client initiates the request for the 

information about the stored content, which is known as 
metadata. In response to the request from the client, the 
server sends metadata to the client. The media preparation 
module provides tools for encoding and encapsulation so 
that the content can be presented and efficiently delivered 
to the client in the correct format. On the client side, the 
scheduler module is responsible for scheduling the download 
of upcoming segments. The bandwidth estimation module 
estimates the throughput during the download of the seg-
ments. The adaptation algorithm selects a suitable bitrate 
depending on the received metadata and system condi-
tions such as throughput and the occupancy of the play-
back buffer. The HAS adaptation algorithm attempts to 
maximize the quality of experience (QoE) by meeting con-
flicting video quality objectives. These objectives include 
selecting the highest feasible set of video bit rates, avoiding 
unnecessary video bit rate changes, assigning equitable 
video rates among competing video clients, and preserving 
the buffer level to avoid interruptions in playback [2–5]. It 
is easier to meet one of the video quality objectives. To 
maximize the video quality, the users can stream the video 
at the highest available video rate, which leads to extensive 
rebuffering in an unstable environment. Then, to minimize 
the rebuffering, the video can be streamed at the lowest  
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Fig. 1 HTTP framework 

available video rate, leading to poor video quality. The aim 
of an adaptive HAS algorithm is to simultaneously maxim-
ize all metrics to improve the QoE. 

Traditionally, HAS algorithm runs at the client side [6–
11] while the clients are unaware of bottlenecks in the radio 
channel and competing clients. Decisions are made inde-
pendently, which may affect the performance of competing 
clients. Rate adaptation algorithms can be divided into 1) 
throughput-based and 2) buffer-based methods. Through-
put-based algorithms estimate future throughput from past 
observations to select the video rate for the next segment. 
Buffer-based algorithms use playback buffer occupancy as 
an adjustment parameter in addition to the throughput 
estimation. The segment duration and playback buffer siz-
es also play an important role in the selection of the video 
rates. The video streaming services deploy the segment 
duration differently in their services. Similarly, HTTP cli-
ents offer distinct buffer sizes. A client would have more 
chances to adapt the video rates and accurately estimate 
the throughput by downloading a smaller segment. In case 
of sudden fluctuations in the throughput, smaller segment 
duration may allow the client to quickly adapt the video 
rates compared to a larger segment. Furthermore, a smaller 
playback buffer would fill up quickly compared to a larger 
buffer. Once the playback buffer fills up, a larger playback 
buffer would allow the client to aggressively select high 
video quality. The rate adaptive algorithms strive to guar-
antee QoE under different client settings. 

The throughput estimation methods cannot capture the 
bandwidth fluctuations in cellular networks [12]. It has 
been shown that they cannot accurately estimate the 
bandwidth when multiple clients compete for network 
bottleneck [3] [5]. The authors in [13] proposed that multi-
ple clients cannot achieve fair performance when the bot-
tleneck is the air interface. Furthermore, the unfairness in-
creases as the number of competing clients increase. The 
clients are unaware of the bottleneck radio channel and 
cannot coordinate with each other to fairly select video 
quality [14]. Recently, an edge computing paradigm has 
been proposed as a promising approach for providing per-
formance superior to that of cloud computing [15–17]. Mul-
ti-access edge computing (MEC) [15] offers computation 
and storage capabilities to the edge of a mobile network by 
deploying servers within the radio access network. The 
MEC also provides real-time access to application and 
RAN information. Moreover, the MEC helps to provide 
low-latency services to mobile clients requiring intensive 
computation [18][19]. The user experience could be en-
riched by moving the video quality adaptation at the MEC. 

The MEC presents an opportunity to enhance the user ex-
perience by centrally adapting the video quality. The ad-
vantage of MEC-assisted algorithms is that MECs have the 
real-time access to information of all clients within a cell. 
Therefore, a MEC-assisted adaptation algorithm jointly 
optimizes the video rate selection. Also, MEC-assisted al-
gorithms can exploit the information of the competing cli-
ents to fairly assign video quality to competing clients and 
efficiently utilize the bandwidth to enhance QoE 
[14][20][21]. 

Extensive research has been conducted to evaluate the 
performance of HTTP adaptive streaming algorithms in 
different experimental scenarios [22–27]. Akashbi et al. [22] 
evaluated three commercial HAS players and revealed the 
effectiveness and inefficiencies of the video players. 
Mueller et al. [12] evaluated multiple HAS systems, includ-
ing Microsoft Smooth Streaming, Apple HLS, and Adobe 
HDS in vehicular environments. Thang et al. [23] evaluated 
throughput- and buffer-based rate adaptation algorithms 
in the context of live streaming. The authors performed 
comparisons in terms of bit rate, playback buffer, and per-
ceptual impact on users. Ayad et al. [24] evaluated the op-
erations of different streaming players developed under 
the MPEG-DASH standard by code level analysis. Howev-
er, they only investigate the performance of video players 
within the wired network. Akashbi et al. [5] evaluated the 
performance of HAS clients competing for network band-
width. The authors demonstrated that during the steady-
state phase, when multiple streams compete for network 
resources, clients share the bandwidth unfairly. Seufert et 
al. [25] surveyed quality adaptation in video streaming and 
discussed its influence on QoE. Kua et al. [26] surveyed key 
rate adaptation algorithms and classified them based on 
feedback signals used to select video quality. Stohr et al. 
[27] provided an evaluation framework to analyze the per-
formance of HAS players. 

The above-mentioned studies focus only on client-side 
rate adaptation algorithms. The authors in [28] surveyed 
mechanisms that jointly utilize the resources of wireless 
end devices and the installed MEC to provide services to 
wireless end devices. This work focused on computation 
offloading and caching mechanisms to target performance 
parameters, which include latency minimization, through-
put maximization, security enhancement, utility maximiza-
tion, and energy conservation. Yang el al. [29] implement-
ed the proof-of-concept for the MEC-assisted mobile video 
streaming services, whereas Martin et al. [30] investigated 
QoE gains of an MEC-assisted infrastructure. In [31], the 
authors highlighted the prospects of edge computing for 
multimedia applications and presented the benefits of us-
ing MEC to save cost, bandwidth consumption, energy 
usage, and latency. Ma et al. analyzed the effectiveness of 
Wi-Fi and edge content catching solutions for mobile video 
streaming [32]. This work analyzed the effect of user mobil-
ity, cache capacity, content popularity, and caching strate-
gies on the caching performance for video delivery. In [33], 
we conducted experiments to analyze MEC-assisted rate 
adaptation algorithms and compared their performance 
with that of client-based approaches. We only analyzed the 
effect of varying segment durations, playback buffer sizes, 
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Fig. 2. ON-OFF behavior of HTTP adaptive streaming client.  
 

and number of competing clients. In [21], the authors pro-
posed an MEC-assisted adaptation algorithm and a client 
to server edge server mapping strategy to quantify the 
benefits of network-assisted solution. The authors com-
pared the effect of network topology and inter-arrival time 
on the performance of MEC-assisted algorithm and purely 
client-based adaptation algorithms. However, the authors 
did not discuss the performance of the adaptation algo-
rithms without employing client to serve edge mapping 
strategy. In addition, the authors did not use QoE and 
bandwidth utilization metrics to compare the performance 
of the algorithms. This study differs from previous works 
in the following ways: 
• We evaluate, compare, and analyze the performance of 

MEC-assisted algorithms and conventional client-side 
rate adaptation algorithms. The aim of the comparison 
with client-side algorithms is to analyze whether 
MEC-assisted algorithms achieve the objectives that 
motivate moving the adaptation intelligence from the 
client to the edge cloud. 

• We evaluate throughput-based and buffer-based algo-
rithms and analyze their performance under different 
settings. 

• We conduct extensive experiments by varying differ-
ent client and server side parameters, and evaluate the 
performance of HAS algorithms. We evaluate the ef-
fect of varying segment durations, playback buffer 
sizes, number of competing clients, client moving 
speeds, client arrival times, and different video da-
tasets on the performance of the algorithms. 

• We quantify the benefits and drawbacks of MEC-
assisted adaptation and client-side approaches in a 
multi-client cellular network. We evaluate the algo-
rithms in terms of not only the video rate and dynam-
ics of the playback buffer, but also the fairness and 
bandwidth utilization. 

• Finally, based on the results of the experiments, we 
suggest guidelines for improving the performance of 
adaptation algorithms. 

The remainder of this paper is organized as follows. Sec-
tion 2 explains the motivation for shifting the adaptation 
intelligence to the edge cloud. Section 3 describes the video 
streaming model and QoE metrics. Section 4 introduces our 
experimental settings and describes the operation of HAS 
algorithms. Section 5 evaluates and analyzes the perfor-
mance of algorithms. Section 6 presents key observations, 
while Section 7 provides suggestions to improve the per-
formance of the adaptation algorithms. Section 8 discusses 
future research challenges and directions. Section 9 con-
cludes the paper. 

2 MULTI-ACCESS EDGE COMPUTING-ASSISTED 

HAS 

Conventional client-side quality adaptation algorithms 
are widely implemented in the modern streaming sys-
tems. Because cellular links are highly dynamic and the 
underlying TCP is unfair, it is unlikely for an HTTP client 
to accurately capture the bandwidth share. Standard 
throughput estimation methods cannot accurately esti-
mate bandwidth fluctuations in the presence of compet-
ing video clients [3–5]. The reason for this is that the per-
segment throughput cannot estimate the bandwidth 
share. At the start of a streaming session, an HTTP client 
downloads a video as quickly as possible to fill the play-
back buffer. This phase is called the buffering phase. Once 
the buffer is full, the client enters the ON-OFF phase. This 
phase is called the steady-state phase. Fig. 2 depicts the 
ON-OFF behaviors of an HTTP adaptive streaming client. 
During the OFF state, the client waits for sufficient space 
in the buffer to download the next segment. The ON state 
signifies that the client requests the next segment. During 
the steady-state phase, when multiple clients compete for 
a network bottleneck, HTTP clients incorrectly estimate 
the available bandwidth. It has been shown that compet-
ing clients result in bandwidth underutilization, unneces-
sary bit rate switches, and unfair bandwidth sharing. In 
[4], the authors highlighted that in the presence of com-
peting HTTP clients, the rate adaptation algorithm selects 
variable and low-quality video, which is undesirable to 
users. In [5], the authors observed unfair bandwidth shar-
ing among three Microsoft Smooth Streaming clients. This 
behavior was observed in the presence of competing TCP 
traffic as well as other competing HTTP clients. Li et al. 
[3] presented an algorithm Panda (Probe and Adapt) to 
address fairness and instability of video rate selection. 
Although the scheme improves the performance of the 
clients in a wired network, it performed poorly under 
dynamic cellular links. 

Client-side schemes transfer the responsibility of fair-
ness to the underlying TCP; however, the underlying TCP 
is unfair and unreliable in cellular networks. Moreover, 
HTTP clients are unaware of other clients within the net-
work. This leads to one client receiving a higher band-
width share than another client. In this scenario, a client 
with a better QoE can reduce its bit rate in order to in-
crease the bandwidth share of a competing client with a 
poor QoE. The client with a poor QoE can then increase 
its bit rate and improve its QoE. Because the clients are 
unaware of the performance of competing clients, they 
cannot decide how aggressively or conservatively they 
should select their bit rates for fair performance. It is thus 
logical to shift the adaptation intelligence from the client 
to the base station. This enables a central controller to 
jointly optimize the video rate selection. The computa-
tional capabilities and storage support of MEC allows for 
the joint adaptation of multiple clients. Fig. 3 illustrates 
the edge computing-assisted HAS system for adaptive 
video streaming over cellular networks. The edge cloud is 
computationally powerful and can access the RAN in-
formation available in the base station. This is feasible  
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Fig. 3. Streaming architecture for multi-access edge computing-
assisted video streaming.  

 
Fig. 4. Dynamics of playback buffer.  

and compatible with the centralized resource manage-
ment in cellular network. The edge cloud is deployed at 
the base station to enhance the mobile services, and cellu-
lar entities such as the cellular scheduler operate in the 
same way as conventional cellular networks. The adapta-
tion module at the edge cloud can access the channel 
knowledge of multiple clients for joint adaptation. In the 
client-based adaptation, the network forwards the client 
requests to the video server. In case of an MEC-based ad-
aptation, the MEC can intercept the requests and over-
write adaptation decisions based on the high-layer play-
back information [14]. The client playback information 
such as buffer size, buffer level, batter percentage, and 
QoE status can be embedded in the feedback from clients. 
This is feasible as the 3rd Generation Partnership Project 
standardized the quality metric reporting process for the 
clients by using the HTTP POST request carrying the 
XML formatted metadata [34]. The jointly selected video 
rates by MEC are then delivered to the video servers to 
stream the upcoming segment. In this manner, the clients 
can download the jointly adapted video segments using 
the standard request-response framework of HAS with-
out any modification in the current infrastructure of cellu-
lar schedulers and video servers. 

3 VIDEO STREAMING MODEL 

For the dynamic adaptation of video streaming, a video is 
fragmented into τ second segments. Each segment is en-
coded at different video rates. The set of video rates 
available for the video stream is denoted by R where R = 
{R1, R2, R3,…,RN}. The video client can choose to down-
load segment i at bitrate Rk(i). The higher the video rate 
selected, the higher the video quality is perceived by the 
viewer. Let q(.) : R → R+ be a non-decreasing function 
which maps video rate to the quality perceived by the 
viewer q(Rk(i)). 

The video segments are downloaded into playback 
buffer. Data of τ seconds is added to the playback buffer 
when the segment is completely downloaded. The client 
begins to play the video after the first segment has been 
completely downloaded. The client selects Rk(i), the kth 
video rate, from the set of N available video rates for the 
ith segment. Fig. 4 illustrates the dynamics of the playback 
buffer. If Rk(i) is the selected video rate of the ith segment, 
then τ×Rk(i) is the size of the segment. The download time 
of the segment will be (Rk(i) × 𝜏/T(i)) where T(i) is the 
throughput observed by the client during the download 
of the ith segment. Let B(i) ϵ [0, Bmax] be the buffer occu-
pancy at the download of the ith segment. During the 
streaming session, the buffer level remains between 0 and 
Bmax. Once segment i is downloaded, the client waits for 
∆ti seconds before sending the request for the ith+1 seg-
ment. Waiting time is given by: 

∆𝑡𝑖 = {
0,   𝐵(𝑡) <  𝐵𝑚𝑎𝑥

𝜏,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                         (1) 

Throughput T(i) during the download of the ith seg-
ment is calculated as follows: 

 

𝑡𝑖+1 = 𝑡𝑖 +
𝑅𝑘(𝑖) × 𝜏

𝑇(𝑖)
+ ∆𝑡𝑖         (2) 

 

𝑇(𝑖) =
1

𝑡𝑖+1−𝑡𝑖−∆𝑡𝑖
∫ 𝑇𝑡𝑑𝑡
𝑡𝑖+1−∆𝑡𝑖

𝑡𝑖
         (3) 

 

At time ti when the video client selects Rk(i), only the 
past throughput {Tt, t < ti} is available, while future 
throughput values are not known. If the buffer level at the 
end of the download of chunk i-1 is B(i-1); then, B(i) is 
given by: 
 

)](/)([)1()( iTiRiBiB k−+−=          (4) 

 
Equation (4) demonstrates that if the selected video rate is 
greater than the throughput, then the playback buffer is 
depleted. 
 
3.1 QoE Metrics 

The objective of an adaptation algorithm is to optimize 
the QoE of viewers to achieve long-term user engage-
ment. Several studies have been conducted to determine 
the factors that affect user engagement. These factors in-
clude selecting the highest feasible set of video bit rates, 
avoiding unnecessary video bit rate switches, and pre-
serving the buffer level to avoid an interruption in play-
back [38‒40].  

The average video bitrate over downloaded segments 
by the client is given by:  
 

        𝑄 =
∑ (𝑅𝑘(𝑖))
𝑆
𝑖=1

𝑆
                       (5) 

 
where Rk(i) is the kth video rate selected for the ith seg-

ment and S is the total number of segments downloaded 
by the client.  

Frequent video rate switches inversely affect the user 
experience. Magnitude of the changes in the quality from 
one segment to another is given by: 
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𝑄𝑆 =
∑ 𝑅𝑘(𝑖)−𝑅𝑘(𝑖−1)𝑆𝑆
𝑖=1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑠
                         (6) 

 
The client experiences playback interruptions if the 

download time (𝜏×Rk(i) /T(i)) is higher than the playback 
buffer occupancy level. The interruption time during the 
download of the ith segment, IR(i), is (𝜏 × 𝑅𝑘(𝑖) /𝑇(𝑖) −
𝐵(𝑖))+. The notation (x)+ = max (x, 0) ensures that the term 
is always positive. 

The largest impact on user experience originates from 
playback interruption due to buffer underflow [41]. One 
long interruption is preferred to multiple short interrup-
tions [42]. For down switching, abrupt switching impairs 
the QoE to a larger extent than smooth switching [2]. On 
average, the minimum quality level is rated 30% better for 
gradual video rate switching than for instantaneous 
switching [43]. Experiments have indicated that a small 
noticeable difference in quality is observed between high- 
and mid-quality switches during video playback [44]. The 
authors of [45] suggested that the user experience improves 
when the video rate is increased aggressively, as it leads 
the users to believe that the provider is attempting to max-
imize the QoE. In addition, a long period of high-quality 
video improves the user experience [46]. In this study, we 
use the QoE metric used by the authors of [47], which is 
defined as follows: 
 
 𝑄𝑜𝐸 = ∑ 𝑞(𝑅𝑘(𝑖)) − 𝜇 ∑ 𝐼𝑅(𝑖)𝑆

𝑖=1
𝑆
𝑖=1   

 
    −∑ |𝑞(𝑅𝑘(𝑖)) − 𝑞(𝑅𝑘(𝑖 − 1))|𝑆

𝑖=1               (7) 
 
For a video fragmented into N number of segments, 

q(Rk) maps the video rate to the quality perceived by the 
viewer. IR(i) represents the rebuffering time during the 
download of the ith segment, while the final term discour-
ages frequent changes in the video rates. The authors of 
[34] used q(Rk) = Rk and µ = 3,000, signifying that a play-
back interruption of 1 s receives the same penalty as re-
ducing the bit rate of a segment by 3,000 kbps. We con-
sider the same values in our evaluation. In this study, we 
calculate the average QoE per segment, that is, the total 
QoE metric divided by the number of segments. 
 
3.2 Fairness and Inefficiency 

Rate adaptation algorithms are fairly effective when a 
client operates alone. In an environment in which multi-
ple clients compete for the bottleneck, the clients are inef-
ficient and select low-quality video rates. Furthermore, 
bandwidth is shared unfairly among the competing cli-
ents. 

The inefficiency at time t is given by the following [48]:                       
 

           𝐼𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
|∑ 𝑅𝑥,𝑡−𝑊𝑥 |

𝑊
        (8) 

 
where W is the bandwidth, and each client x selects bit 
rate Rx,t. 

Multiple clients competing at the bottleneck must be 
able to achieve equitable video rates. To quantify fairness, 
the Jain fairness index is used [49]. The Jain fairness index 

of Rx,t for all players x is given by: 
 

 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 = [∑ 𝑅𝑥,𝑡
𝑛
𝑥=1 ]

2
/𝑛∑ 𝑅𝑥,𝑡

2,    𝑥 ≥ 0𝑛
𝑥=1    (9)

              
Ideally, the inefficiency value should be 0 while the 

fairness value should be 1. In other words, low values of 
inefficiency and high value of fairness are desired. A low 
inefficiency value signifies that the client selects the high-
est feasible bit rates that are lower than the actual 
throughput, while a high fairness value signifies that the 
competing clients achieve equitable video rates. 

4 EXPERIMENTAL FRAMEWORK 

In this section, we present our ns-3-based experimental 
environment, video quality metrics, and details of the rate 
adaptation algorithms used for evaluation. We modified 
code available from https://github.com/djvergad/dash 
to perform our experiments. It provides an MPEG-DASH 
client-server ns3 module for simulating HAS algorithms. 
To implement the cellular network, we used ns-3 LTE 
module by the LENA project [50].  
 

TABLE 1 

CELLULAR NETWORK CONFIGURATION 

 

4.1 Experimental Settings 

We implemented HTTP-based adaptive video streaming 
in the MEC scenario presented in Fig. 3. An LTE network 
was used as the underlying cellular network. A detailed 
configuration of the cellular network is provided in Table 
1. The adaptation module at the MEC can access the 
channel knowledge of multiple clients for joint adapta-
tion. The HAS server shares the media presentation de-
scription with the MEC and the clients so that they have 
knowledge of the video representations stored on the 
server. In conventional client-side adaptation, the cellular 
network forwards the client request to the server. Unlike 
conventional client-side adaptation, MEC-assisted adap-
tation algorithms jointly select the video rates for the 
competing clients at the edge cloud.  

Table 2 presents the content information used for eval-
uating the algorithms. The HAS server stores two test 
sequences Tears of Steel (Dataset 1) and Big Buck Bunny 
(Dataset 2). Dataset 1 is segmented into three different 
durations. Microsoft Smooth Streaming, Adobe HTTP 
Dynamic Streaming, and Apple HTTP Live Streaming 
offer segment duration of 2, 4 and 10 s respectively [35–
37]. In this work, we select segment durations of 2, 4, and 
10 s for the evaluation. Dataset 1 was pre-encoded into 12 
different video rates, with dataset 1 encoded into higher 
video rates than dataset 2. In addition, the video rates in 
dataset 2 were more closely spaced than those in 

Cell Layout Single hexagonal cell 

UE distribution Random 

Path loss model Hata Model PCS Extension 

BS transmission power 38 dBm 

UE distance 1 ~ 500 m 

Scheduler Proportional fairness 

UE speed Pedestrian (3km/h) / Vehicular (75km/h) 
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TABLE 2 
CONTENT INFORMATION USED FOR EVALUATION 

dataset 1. Both videos are 600 seconds long. A number of 
rate adaptation algorithms select video rates higher than 
the bandwidth at the expense of the playback buffer. 
However, other algorithms select video rates lower than 
the bandwidth despite a high playback buffer level. In 
this paper, we analyze the effect of the video rates on both 
types of algorithms. 

 
4.2 Tested HAS Algorithms 

As explained in Section 1, HAS algorithms can be sum-
marized into throughput-based and buffer-based methods. 
Throughput-based algorithms select the video rates of the 
segments based on only the throughput observed during 
the download of the segments. Buffer-based algorithms 
observe playback buffer level in addition to the throughput 
to select the video rate of the future video segments. In 
addition, some HAS algorithms also consider segment du-
ration and segment size to select the video rates. 

In this section, we summarize the operation of the 
HAS algorithms used for experimentation and analysis. 
Table 3 presents the properties of the HAS algorithms. 
We adopt the solutions proposed in [20], [21], [6], [7], [8], 
[10], [51], and [52] to analyze the performance of these 
algorithms and refer to them as MECA, ECAA, NALD, 
SARA, QLSA, AAA, DASH-Google, and DBT, respective-
ly. In addition, we analyze the performance of the algo-
rithm that selects the highest video rate that is lower than 
the available bandwidth. We refer to this algorithm as 
Instant.  

1) MECA 
This algorithm is a hybrid heuristic adaptation algorithm 
designed to jointly enhance multiple conflicting video 
quality objectives. Because the MEC is unaware of the 
client’s capabilities, the client provides the MEC with the 
highest video rate it can playback based on the display 
capabilities and buffer level. Based on the suggestion 
from the client, the algorithm jointly selects the video 
rates of the competing clients on the basis of the estimat-
ed throughput. The algorithm selects the lowest available 
video rate for the first segment. To increase and decrease 
the video rate, the algorithm calculates the Fairness and 
Switching indices. The algorithm considers thresholds δF 
and δS of fairness and switching, respectively. The fair-
ness threshold δF is set equal to 0.7. The fairness index 
associated with the selected bit rate is computed as 1 ‒ 
(Rk(i)‒Ravg)/(Rmax‒Rmin), which takes the value between 0 
and 1. Ravg, Rmax, and Rmin denote the average of the video 
rates of the active competing clients, highest available 
video rate, and lowest available video rate, respectively. 
The switching threshold δS is computed as |max{R} < T(i-

1) – max {R} < T(i)| where max {R} < T(i) means the high-
est video rate in the set R that is less than the throughput. 
The switching index associated with the selected bit rate 
is computed as|𝑅𝑘(𝑖) − 𝑅𝑝𝑟𝑒𝑣| , where Rprev is the video rate 
selected for the previous segment. 

The highest video rate that is lower than the estimated 
throughput that satisfies the following condition is select-
ed: Fairness index > δF. To decrease the video rate, the 
selected video rate must satisfy the following two condi-
tions: (1) Rprev > Ravg and (2) Switching index ≤ δS. 

 
2) ECAA 

ECAA is a heuristic algorithm for efficiently solving vid-
eo client-to-edge-server mapping and video rate selection. 
The algorithm allocates a mobile client to the nearest base 
station or the base station with the highest achievable 
video rate. Unlike the MECA algorithm, the ECAA algo-
rithm selects video rates independently and does not rely 
on any guidance from the clients. Once the client has been 
allocated to the base station, the algorithm selects the 
highest available video rate for the first segment. For the 
following segments, the algorithm selects the video rate 
that results in a low switching level and high fairness 
value. First, the algorithm calculates the highest video 
rate that does not result in buffer underflow given the 
current bandwidth. The highest video rate for the ith seg-
ment is selected according to max {R} ≤ (Thr, B), where 
the buffer level B (in kbit) is calculated as follows: 

 
         

(10) 
 
 

where Ai is the client arrival time, and Li is the initial 
buffer delay. It should be noted that the authors in [21] 
calculate the buffer level in kbit. In this study, we calcu-
late the buffer level in seconds based on the number of 
segments downloaded into the buffer and the current 
playback time of the streaming session. The algorithm 
considers thresholds δF and δS of fairness and switching, 
respectively, and selects the video rate that results in a 
switching level less than δS and fairness value greater 
than δF. If no video rate satisfies these conditions, the al-
gorithm selects the video rate that results in a switching 
level less than δS and ignores the fairness condition. If 
there is still no feasible video rate, it selects the most sus-
tainable video rate. In this study, we adopt the ECAA 
algorithm for a single-cell scenario in which the MEC al-
locates video rates to the clients. 
 

Dataset 

Segment 

Duration Bitrates (kbps) 

Duration 

1 2, 4, 10 

184, 380, 459, 693, 1270, 1545, 2000, 2530, 3750, 5379, 

7861, 11321 kbps 

600s 

2 2, 4 

45, 88, 128, 177, 217, 255, 323, 378, 509, 577, 782, 887, 

1008, 1207, 1473, 2087, 2409, 2944,  3340, 3613, 3936 kbps 

600s 
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3) NALD 

The NALD algorithm is a buffer-based algorithm that 
observes the estimated throughput and playback buffer 
level to download the video segments. The algorithm 
maps the video rates to the corresponding buffer thresh-
olds. When the buffer level is less than 20% of the buffer 
size, the proposed algorithm selects the lowest available 
video rate. To increase the video rate in response to the 
increase in the throughput and buffer level, the following 
two conditions should be satisfied. First, the selected vid-
eo rate must be lower than the estimated throughput. 
Second, for a client to select the video rate, the buffer level 
must be higher than the corresponding buffer threshold. 
To decrease the video rate, the algorithm remains at the 
current video rate unless the buffer level decreases below 
the threshold. When the buffer level decreases below the 
threshold, irrespective of the estimated throughput, the 
algorithm selects the highest video rate such that the 
buffer level at the download of the next segment does not 
decrease below 20% of the buffer size. 
 

4) SARA 
The SARA algorithm considers the sizes of the upcoming 

segments in addition to the throughput and buffer occu-
pancy to predict the segment download time. The HTTP 
server sends an enhanced manifest file that contains in-
formation about the segment sizes. To accurately predict 
the download rate of the next segment, the algorithm as-
signs weights (w1, w2…) that are proportional to the seg-
ment sizes. To calculate the harmonic mean, these 
weights and the respective download rates (d1, d2…) are 
used to calculate the harmonic mean download rate.  

The harmonic mean download rate for n downloaded 
segments is calculated as follows:  

𝐻𝑛 = ∑ 𝑤𝑖/∑
𝑤𝑖

𝑑𝑖

𝑛
𝑖=1

𝑛
𝑖=1          (11) 

The algorithm divides the playback buffer into multiple 
predefined thresholds: I, Bα, and Bβ, where I < Bα < Bβ. 
When the buffer occupancy is less than I, the client se-
lects the lowest bit rate. When the buffer level is between 
I and Bα (I < Bcurr < Bα), the bit rate is incremented in sin-
gle steps. As the buffer level increases and remains be-
tween Bα and Bβ (Bα < Bcurr < Bβ), the client selects the 
most suitable video rate that is greater than or equal to 
the current video rate. When the buffer level increases 
above Bβ, the most suitable video rate for the current 
throughput is selected. The request to download the 

TABLE 3 
PROPERTIES OF HAS ALGORITHMS  

 

 

 

Algorithm 
Adaptation 

setting 
Type 

Parameters 

observed 
Video quality objectives 

Throughput estimation 

method 

MECA 
MEC-assisted 

adaptation 
Buffer-based 

Buffer level,  

throughput 

Maximize video quality, 

minimize switches, minimize 

playback interruption,  minimize 

switching magnitude, fairly 

distribute video rates 

Joint estimation of the 

throughput of the 

competing streams 

ECAA 

Hybrid MEC 

and client-based 

adaptation 

Buffer-based 
Buffer level,   

throughput 

Maximize video quality, 

minimize switches, minimize 

playback interruption,  minimize 

switching magnitude, fairly 

distribute video rates 

Throughput observed 

over download of last 

segment 

NALD 
Client-based 

adaptation 
Buffer-based 

Buffer level, 

throughput, 

segment 

duration, 

buffer size 

Maximize video quality, 

minimize switches, minimize 

playback interruption 

Switches between 

weighted average and 

moving average based 

on the network 

conditions 

AAA 
Client-based 

adaptation 
Buffer-based 

Buffer level, 

throughput 

Maximize video quality, 

minimize switches, minimize 

playback interruption 

Weighted average 

method 

SARA 
Client-based 

adaptation 
Buffer-based 

Buffer level, 

throughput , 

segment size 

Maximize video quality, 

minimize switches, minimize 

playback interruption 

Weighted harmonic 

mean method 

DBT 
Client-based 

adaptation 
Buffer-based 

Buffer level, 

throughput 

Maximize video quality, 

minimize switches, minimize 

playback interruption,  minimize 

switching magnitude 

Weighted average 

method 

Instant 
Client-based 

adaptation 

Throughput-

based 
Throughput 

Maximize video quality, 

minimize switches, minimize 

playback interruption 

Throughput observed 

over download of last 

segment 

QLSA 
Client-based 

adaptation 

Throughput-

based 
Throughput 

Maximize video quality, 

minimize switches, minimize 

playback interruption,  minimize 

switching magnitude 

Weighted average 

method 

DASH-

Google 

Client-based 

adaptation 

Throughput-

based 
Throughput 

Maximize video quality, 

minimize switches, minimize 

playback interruption 

Weighted average 

method with two 

different coefficients 
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next segment is only sent when the buffer level decreas-
es to Bβ. 
 

5) AAA 
Miller et al. [10] proposed a method that divides the 
buffer into multiple predefined thresholds Bmin, Blow, and 
Bhigh, where Bmin < Blow < Bhigh. This method makes differ-
ent decisions to select video rates when the buffer level 
remains in different ranges. The streaming session is 
divided into two phases of operation: a fast start phase 
and a steady phase. The fast start phase is introduced at the 
beginning of playback, with the goal to aggressively in-
crease the quality of the downloaded segments. During 
the steady phase, the algorithm conservatively selects the 
video rate when the buffer level is low. When the buffer 
level decreases below Blow, the algorithm reduces the 
video rate to avoid playback interruption. As the buffer 
level falls below Bmin, the algorithm selects the lowest 
available video rate. If the buffer level remains between 
Blow and Bhigh, the algorithm remains at the current video 
rate to mitigate the frequency of playback interruptions. 
When the buffer level increases above Bhigh and the risk 
of playback interruption decreases, the algorithm ag-
gressively selects high video rates. 
 

6)  DBT 
The DBT algorithm applies the buffer-based approach in 
selecting the video rates. The video rate is increased or 
decreased depending on the relationship between the 
current video rate and the estimated throughput. The 
video rate is decreased only when the estimated through-
put is less than the current video rate. The algorithm di-
vides the video rate into three buffer ranges through 
thresholds. The buffer ranges are named the dangerous 
range [0, Bmin], the low range (Bmin, Blow), and the safe 
range (Blow, Bmax). If the buffer level is within the safe 
range, the client maintains the current video rate irrespec-
tive of the bandwidth to mitigate unnecessary video rate 
switches. If the buffer level is within the low range, the 
algorithm decides to decrease the video rate immediately. 
The switching magnitude is adaptively decided to keep 
the buffer level above Bmin. When the buffer level drops 
below Bmin, the algorithm selects the lowest available vid-
eo rate. When the throughput increases, the algorithm 
does not abruptly increase because when the buffer level 
is low since future throughput fluctuations may force the 
client to decrease the video rate. The algorithm maintains 
the current video rate until the buffer level reaches Bmax. 
Once the buffer level reaches Bmax, the video rate is imme-
diately increased to quickly improve the video quality. 
The algorithm selects the highest video rate less than the 
estimated throughput for the next segment. 
 

7) QLSA 
The QLSA is a throughput-based algorithm with two key 
features: insertion of an intermediate video rate and miti-
gation of video rate switches. The algorithm first calcu-
lates ∆ = ltmp - lprev, where lprev defines the quality level of 
the previous segment, and ltmp calculates the highest video 
rate that is lower than the available bandwidth. The algo-

rithm selects two throughput thresholds: Thlow and Thhigh. 
If ∆ < - Thlow, the algorithm gradually decreases the video 
quality. If Thlow < ∆ < Thhigh, the algorithm selects the high-
est video rate that does not exceed the weighted average 
of the available throughput. If ∆ > Thhigh, the algorithm 
selects ltmp as the next video rate. 
 

8) DASH-Google Player 
Algorithm 1 provides the pseudo code of Google’s 
MPEG-DASH Media Source demo [51]. The algorithm 
selects video rates only on the basis of the throughput 
observed during the download of the segments. The algo-
rithm uses a moving average method with two different 
bandwidth estimation coefficients to reflect small- and 
large-scale bandwidth fluctuations. It then selects the 
minimum of the two as the bandwidth estimate for the 
next segment. Finally, the algorithm selects the highest 
available video rate that is lower than the bandwidth es-
timate. 
 

9) Instant Method 
The observed throughput T(i) over the download of the 
previous segment i is used as the estimated throughput, 
TE(i+1), for the next segment.  

TE(i+1) = T(i)                                  (12) 

The Instant throughput method selects the bit rate 
based on the instant throughput with a small safety mar-
gin, µ, as follows [53]: 
  Rk(i+1) = (1‒µ) × TE(i+1)      (13) 
 
Algorithm 1: DASH-Google Player Algorithm 
Eslow: Bandwidth estimation for small-scale bandwidth 

fluctuations 

Efast: Bandwidth estimation for large-scale bandwidth 

fluctuations 

αslow: Exponential moving average coefficient for Eslow (0.99) 

αfast: Exponential moving average coefficient for Efast (0.98) 

Thr: Bandwidth observed over the download of the previous 

segment 

BW: Estimated bandwidth for the next segment 

Rnext: Next selected video rate 

 

while segment is downloaded do 

Eslow = αslow × Eslow + (1‒ αslow) × Thr 

Efast = αfast × Efast + (1‒ αfast) × Thr 

BW = min (Eslow , Efast) 

 

for each bitrate in the set R in the decreasing order 

  If BW > =  Rk(i)  then 

    Rnext = Rk(i) 

    break 

 

5 PERFORMANCE EVALUATION 

In this section, we discuss our experiments to evaluate the 
adaptation methods under varying client, server, dataset 
and network settings. We evaluate the effect of varying 
segment durations, playback buffer sizes, number  
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TABLE 4 
EXPERIMENT SETTINGS USED TO EVALUATE THE IMPACT OF SEGMENT DURATION 

 

TABLE 5 
PERFORMANCE OF ALGORITHMS WHEN BUFFER SIZE IS 15 S AND SEGMENT DURATION IS 2 S 

 
TABLE 6 

PERFORMANCE OF ALGORITHMS WHEN BUFFER SIZE IS 15 S AND SEGMENT DURATION IS 4 S 

 

(a) 

 

(b) 

Fig. 5. Comparison of (a) rebuffering per client and average number 
of interruptions, and (b) average buffering time of the algorithms 
when the buffer size is set to 15 s and the segment duration is set to 
2 s. 

 

(a) 

 

(b) 

Fig. 6. Comparison of (a) rebuffering per client and average number 
of interruptions, and (b) average buffering time of the algorithms 
when the buffer size is set to 15 s and the segment duration is set to 
4 s. 

of competing clients, client moving speeds, client arrival 
times, and different video datasets on the performance of 
the algorithms. A grid based road topology is used to 
simulate mobility. The experiments are repeated ten times 
for each setting and the average of the results is presented 
in this section. The average YouTube video in 2018 was 
11.7 minutes [54]. In this work, videos were streamed for 
10 minutes for each experiment to evaluate the algo-
rithms. 
 

5.1 Effect of Segment Duration 

The video streaming services deploy the segment duration 
differently in their services. In this section, we describe the 
effect of varying the segment duration on the performance 
of the algorithms. Table 4 presents the client and server 
settings used to evaluate the impact of segment duration. 
Ten clients competed for bandwidth, and dataset 1 was 
used to evaluate the algorithms in this section. The client 
arrival time was uniformly distributed within the first 30 
s of the streaming session. Tables 5 and 6 display the per-
formance of the algorithms when the buffer size was set 
to 15 s and the segment duration was set to 2 and 4 s, re-
spectively. We observed that for both experiments, the 
MEC-assisted algorithms selected higher video rates 
while fairly assigning video rates among the users. Simi-
larly, they utilized the bandwidth more efficiently than 
the client-based algorithms. However, Figs. 5 and 6 indi-
cate that the ECAA algorithm failed to mitigate playback 

 

Experiment # Dataset Buffer Size Segment Duration Mobility Client’s Arrival Pattern No. of Clients 

1 1 15s 2s 75 kmph Random 10 

2 1 15s 4s 75 kmph Random 10 

3 1 60s 4s 75 kmph Random 10 

4 1 60s 10s 75 kmph Random 10 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1313.53 1462.57 1254.78 1179.13 1265.09 1223.38 1233.36 1205.04 1216.87 

Switching Ratio 0.28 0.34 0.26 0.15 0.67 0.10 0.42 0.32 0.45 

Fairness 0.88 0.88 0.86 0.81 0.81 0.87 0.87 0.85 0.86 

Inefficiency 0.18 0.10 0.22 0.39 0.27 0.28 0.21 0.23 0.19 

Average of Switches (kbps) 642.62 764.61 328.63 821.75 772.17 596.77 647.86 607.66 521.73 

QoE 1085.79 1208.49 1073.87 1046.63 735.06 1166.78 1047.33 992.39 930.74 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1314.88 1430.56 1365.01 1204.11 1290.85 1322.31 1266.12 1183.25 1277.40 

Switching Ratio 0.37 0.50 0.24 0.17 0.91 0.14 0.64 0.33 0.59 

Fairness 0.88 0.88 0.87 0.83 0.76 0.89 0.85 0.86 0.86 

Inefficiency 0.17 0.07 0.17 0.34 0.36 0.21 0.22 0.27 0.24 

Average of Switches (kbps) 655.15 505.95 896.33 847.18 1153.13 562.78 640.26 585.93 652.79 

QoE 1021.64 631.15 1052.90 897.49 29.03 1211.63 880.25 959.79 813.00 
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TABLE 7 
PERFORMANCE OF ALGORITHMS WHEN BUFFER SIZE IS 60 S AND SEGMENT DURATION IS 4 S 

TABLE 8 
PERFORMANCE OF ALGORITHMS WHEN BUFFER SIZE IS 60 S AND SEGMENT DURATION IS 10 S 

 

 
(a) 

 
(b) 

Fig. 7. Comparison of (a) rebuffering per client and average number 
of interruptions, and (b) average buffering time of the algorithms for a 
buffer size of 60 s and segment duration of 4 s. 
 

 

(a) 

 

(b) 

Fig. 8. Comparison of (a) rebuffering per client and average number 
of interruptions, and (b) average buffering time of the algorithms for a 
buffer size of 60 s and segment duration of 10 s. 
 

interruptions. The rebuffering per client metric represents 
the ratio of clients that experienced a playback interruption 
and the total number of clients, while average interruptions 
defines the number of times a client experienced playback 
interruptions. The ECAA algorithm selects the video bit 
rate for the upcoming segment such that given the current 
bandwidth, the amount of data consumed during the 
download of the segment is less than the amount of data 
available in the playback buffer. However, due to the cli-

ents’ mobility, which leads to fluctuations in the band-
width during the download of the upcoming segment, the 
clients experience buffer underflow. Tables 5 and 6 reveal 
that when the segment duration is set to 2 s, the ECAA 
algorithm achieved the highest QoE. However, when the 
segment duration was increased, the QoE of the ECAA 
algorithm decreased significantly due to playback interrup-
tions. From Figs. 5 and 6, we see that the playback inter-
ruptions increased with the increase in the segment dura-
tion. The buffer-based algorithms experienced higher 
number of buffer underflow events compared to through-
put-based algorithms. It should be noted that the ECAA is 
an MEC-assisted algorithm that selects video rates based 
on the playback buffer. The buffer-based algorithms ag-
gressively increased the video rate as the playback buffer 
became full. Because the playback buffer was only 15 s, a 
larger segment duration increased the risk of playback in-
terruption in case of a mismatch between the selected vid-
eo rate and available bandwidth. The DBT and AAA algo-
rithms experienced low number of video rate switches. The 
algorithms avoided switching the video rate unless the 
buffer level increased above or decreased below predefined 
thresholds irrespective of fluctuations in bandwidth. This 
helped the algorithms mitigate the video rate fluctuations; 
however, it led to inefficient utilization of the bandwidth. 
Except for the SARA algorithm, buffer-based algorithms 
were able to mitigate unnecessary video rate switches more 
effectively than throughput-based algorithms. The SARA 
algorithm experienced the highest number of fluctuations 
because it aggressively increased the video rate as the buff-
er level increased. If the selected video rate was higher 
than the available bandwidth, the buffer began to deplete. 
When the buffer level decreased below a predefined 
threshold, it reduced the video rate aggressively, and this 
cycle continued throughout the streaming session. The 
SARA algorithm had the lowest QoE due to the high  

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1126.99 1357.90 1264.14 1255.02 1198.18 1055.77 1150.59 1080.90 1225.20 

Switching Ratio 0.30 0.34 0.36 0.19 0.80 0.05 0.53 0.32 0.47 

Fairness 0.88 0.88 0.87 0.83 0.75 0.84 0.88 0.84 0.89 

Inefficiency 0.17 0.11 0.14 0.32 0.29 0.32 0.15 0.32 0.15 

Average of Switches (kbps) 614.26 893.88 652.80 757.00 617.16 834.45 539.66 572.24 639.08 

QoE 1018.96 1058.27 1052.76 1040.25 582.21 981.41 853.65 849.02 949.86 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1192.09 1320.40 1161.81 1189.55 1348.74 1139.06 1176.56 1143.38 1169.62 

Switching Ratio 0.36 0.54 0.55 0.44 0.42 0.17 0.73 0.60 0.65 

Fairness 0.88 0.88 0.83 0.82 0.78 0.82 0.85 0.85 0.85 

Inefficiency 0.18 0.17 0.16 0.23 0.38 0.23 0.16 0.22 0.18 

Average of Switches (kbps) 702.27 798.68 700.84 696.09 1073.68 982.64 728.45 601.53 693.96 

QoE 966.91 899.69 764.02 876.93 -145.51 882.41 598.66 801.57 719.20 
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frequency of video rate switches and playback interrup-
tions. In addition, the throughput-based algorithms had 
lower QoE due to the larger number of video rate switch-
es. 

Next, we increased the buffer level to 60 s. We first set 
the segment duration to 4 s and then increased the dura-
tion to 10 s. The statistics of algorithms are presented in 
Tables 7 and 8. Tables 5–8 reveal that the MEC-assisted 
algorithms achieved high video rates while efficiently uti-
lizing bandwidth and fairly electing video rates for com-
peting clients. In contrast, the fairness and bandwidth effi-
ciency of the client-side algorithms varied from experiment 
to experiment. The reason for this result is that the client-
based algorithms lacked knowledge of competing clients 
and were dependent on the network conditions and avail-
able video rates. Table 7 shows that the ECAA algorithm 
had the highest QoE when the segment duration was set to 
4 s. We observed that the buffer-based algorithms achieved 
higher QoE than throughput-based algorithms. We also 
observed that when the segment duration was increased to 
10 s, the switching ratio of the algorithms increased. As 
clients move at vehicular speed, they experience rapidly 
fluctuating bandwidth during the download of video seg-
ments. This leads to a high number of video rate switches 
as the segment duration increases. Table 8 indicates that a 
larger number of switches decreased the QoE of the algo-
rithms. Tables 5–8 demonstrate that the segment duration 
did not affect the average switching magnitude. When the 
segment duration was set to 4 s, the DBT and AAA algo-
rithms experienced the lowest and second lowest number 
of video rate switches, respectively. When the segment 
duration was increased to 10 s, the switching ratio of the 
DBT and AAA algorithms increased 3.4 and 2.31 times, 
respectively. Figs. 5–8 illustrate that larger segment dura-
tion increased the number of playback interruptions. Be-
cause a client cannot adapt the video rate during the down-
load of the segment, a mismatch between the bandwidth 
and selected video rate increases the risk of playback inter-
ruption while downloading a larger segment. Interestingly, 
the AAA algorithm experienced a high number of buffer 
underflow events when the segment duration was 4 s. 
However, when the segment duration was increased to 10 
s, the number of video rate switches increased but it did 
not experience playback interruption. Fig. 9(a) depicts the 
reason for this increase in video rate switches and illus-
trates how the AAA algorithm avoids playback interrup-
tions when the segment duration is increased to 10 s. Ini-
tially, the algorithm increases the video rate from R2 to Rn-1 
when the buffer level increases above Bhigh. The AAA algo-
rithm decreases the video rate down to R2 only when the 
buffer level decreases below Blow. When the playback 
buffer fills again and increases above Bhigh, the algorithm 
increases the video rate again. In an unstable environment, 
if this cycle continues, it increases the number of video rate 
fluctuations; however, the algorithm can avoid playback 
interruptions. Fig. 9(b) illustrates why the AAA algorithm 
experienced a larger number of playback interruptions 
when smaller segment duration was selected.  

 

(a) The buffer level fluctuates around the buffer threshold, which 

increases the number of video rate switches. 

 

 

(b) The buffer level remains close to Blow but does not drop below 

Blow, which would increase the risk of playback interruption 

Fig. 9. The challenges for buffer-based rate adaptation algorithms in 
selecting the buffer thresholds. 

When the bandwidth decreased, the buffer level de-
pleted but did not decrease below Blow. The AAA algo-
rithm remained at the higher video rate. The video rate 
cannot be adjusted in the middle of the segment down-
load, which leads to a buffer underflow event. This ob-
servation demonstrates the importance of dynamically 
adjustable buffer thresholds according to the network and 
client settings. Furthermore, the QoE of the SARA algo-
rithm was affected by playback interruptions in addition 
to the switches. 

The experiments conducted in this section demonstrate 
that the MEC-assisted algorithms downloaded high-
quality segments, equitably distributed video rates 
among the clients, and efficiently utilized the bandwidth. 
The client-based algorithms were unable to consistently 
maintain high fairness and efficient utilization of the 
bandwidth. Results also demonstrate that the buffer-
based algorithms experienced higher rebuffering events 
compared to throughput-based algorithms. Despite high-
er rebuffering events, the buffer-based algorithms 
achieved significant QoE than throughput-based algo-
rithms. Results reveal that the number of playback inter-
ruptions and video rate switching ratio increased with the 
increase in the segment duration. Furthermore, it is sug-
gested that the adjustable buffer thresholds on the basis of  
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TABLE 9 
EXPERIMENT SETTINGS USED TO EVALUATE THE IMPACT OF BUFFER SIZE 

 

TABLE 10 
PERFORMANCE OF ALGORITHMS WHEN BUFFER SIZE IS 30 S AND SEGMENT DURATION IS 4 S 

 
 

network conditions could improve the performance of the 
algorithms. 

 

 

(a) 

 

(b) 

Fig. 10. Comparison of (a) rebuffering per client, average number of 
interruptions, and (b) average buffering time of the algorithms for a 
buffer size of 30 s and segment duration of 4 s. 

 

5.2 Effect of Buffer Size 

In this section, we analyze the performance of the algo-
rithms as the playback buffer size of the clients was var-
ied. Table 9 shows the experiment settings used to evalu-
ate the impact of buffer size. Tables 6, 7, and 10 present 
the algorithm statistics as the buffer size was set to 15, 60, 
and 30 s respectively. In all of these experiments, the 
segment duration was set to 4 s, 10 clients competed for 
bandwidth, and the clients moved at vehicular speed 
within the cell. The clients’ arrival time was uniformly 
distributed within the first 30 s. We use database 1 to ana-
lyze the algorithms in this section. 

Tables 6, 7, and 10 indicate that the average video rate 
achieved by the throughput-based algorithms decreased 
with an increase in the buffer level. The reason for this is 
that when the buffer level is small, the clients quickly en-
ter the ON-OFF phase. During the OFF state, the client 
waits for sufficient space in the buffer to download the 
next segment. During this period, a smaller number of 
clients compete for the bandwidth. Therefore, the clients 
in the ON state observe higher throughput. However, the 

buffer-based algorithms did not exhibit this pattern be-
cause they selected video rates on the basis of the buffer 
level in addition to the throughput. If the buffer level is 
within the pre-defined buffer thresholds, the throughput 
fluctuations alone do not result in changes to the video 
rate. Tables 6, 7, and 10 also reveal that the throughput-
based algorithms experienced a larger number of video 
rate switches when the buffer size was set to 15 s. As in 
the previous experiments, the MEC-assisted algorithms 
achieved high fairness values and efficiently utilized the 
bandwidth irrespective of the buffer size. We observed 
that the fairness and bandwidth efficiency values of the 
client-based algorithms fluctuated from one experiment 
to the other.   

Figs. 6, 7, and 10 illustrate that as the buffer size in-
creased, the number of playback interruptions decreased. 
The buffer-based algorithms experienced a larger number 
of interruptions than the throughput-based algorithms. 
The DBT algorithm experienced the lowest number of 
video rate switches. This helped the algorithm achieve the 
highest QoE when the buffer size was set to 15 s. Howev-
er, when the buffer size was increased, the QoE dropped 
as the algorithm downloaded low quality segments. The 
ECAA algorithm had a low QoE for smaller buffer sizes 
due to playback interruptions; however, the number of 
playback interruptions decreased with an increase in 
buffer size. The ECAA achieved the highest QoE when 
the segment duration was increased to 60 s. Similarly, the 
SARA’s QoE improved when then buffer size was in-
creased to 60 s as the rebuffering events decreased. In 
contrast, the QoE of the Instant algorithm increased with 
a decrease in buffer size due to a higher video rate. The 
AAA algorithm achieved higher video rates with an in-
crease in buffer size; however, the QOE decreased as the 
number of switches increased.  

Results of this section reveal that the MEC-assisted al-
gorithms achieved high fairness value and low  

 

Experiment # Dataset Buffer Size Segment Duration Mobility Client’s Arrival Pattern No. of Clients 

1 1 15s 4s 75 kmph Random 10 

2 1 60s 4s 75 kmph Random 10 

3 1 30s 4s 75 kmph Random 10 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1243.71 1246.17 1195.98 1167.02 1322.62 1033.22 1114.94 1269.27 1285.14 

Switching Ratio 0.29 0.49 0.41 0.14 0.80 0.13 0.56 0.38 0.44 

Fairness 0.88 0.86 0.85 0.82 0.67 0.82 0.87 0.86 0.89 

Inefficiency 0.15 0.34 0.17 0.29 0.41 0.33 0.18 0.23 0.19 

Average of Switches (kbps) 596.77 684.23 612.22 497.24 988.57 668.30 531.72 551.19 534.21 

QoE 1105.26 617.64 915.65 1061.94 -162.15 887.51 829.07 1030.42 1021.27 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1243.71 1246.17 1195.98 1167.02 1322.62 1033.22 1114.94 1269.27 1285.14 

Switching Ratio 0.29 0.49 0.41 0.14 0.80 0.13 0.56 0.38 0.44 

Fairness 0.88 0.86 0.85 0.82 0.67 0.82 0.87 0.86 0.89 

Inefficiency 0.15 0.34 0.17 0.29 0.41 0.33 0.18 0.23 0.19 

Average of Switches (kbps) 596.77 684.23 612.22 497.24 988.57 668.30 531.72 551.19 534.21 

QoE 1105.26 617.64 915.65 1061.94 -162.15 887.51 829.07 1030.42 1021.27 
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TABLE 11 
EXPERIMENT SETTINGS USED TO EVALUATE THE IMPACT OF NUMBER OF CLIENTS 

 
TABLE 12 

PERFORMANCE OF ALGORITHMS WHEN 4 CLIENTS COMPETE FOR THE BANDWIDTH 

 
TABLE 13 

PERFORMANCE OF ALGORITHMS WHEN 6 CLIENTS COMPETE FOR THE BANDWIDTH 

 

 

(a) 

 

(b) 

Fig. 11. Comparison of (a) rebuffering per client, average number of 
interruptions, and (b) average buffering time of the algorithms when 
4 compete for bandwidth. All clients start streaming simultaneously. 
 

 

(a) 

 

(b) 

Fig. 12. Comparison of (a) rebuffering per client, average number of 
interruptions, and (b) average buffering time of the algorithms when 
6 compete for bandwidth. All clients start streaming simultaneously 

inefficiency value in each experiment. The throughput-
based algorithms downloaded lower quality segments 
with the increase in buffer size. However, the QoE of the 
throughput-based algorithms improved as the algorithms 
mitigated video rate switches and avoided the rebuffering 
event. The buffer-based algorithms achieved higher QoE 
than throughput-based algorithms despite experiencing 
more playback interruptions. 

 

5.3 Effect of Number of Clients 

In this section, we analyze the effect of the number of the 
competing clients on the performance of the algorithms. 
Table 11 shows the experiment settings used to evaluate 
the impact of buffer size. We set the buffer size and seg-
ment duration to 15 and 4 s, respectively. The clients 
moved inside the cell at vehicular speed. At the beginning 
of the streaming session, all clients started streaming 
simultaneously. 

Tables 12–15 demonstrate that with a decrease in the 
number of streaming clients, the clients achieved higher 
video rates. Similarly, the fairness increased with a de-
crease in the number of competing clients. However, we 
did not observe the same effect on the switching ratio and 
inefficiency value. We also observed an increase in the 
average switching magnitude with a decrease in the 
number of competing clients. The reason for this increase  

 

Experiment # Dataset Buffer Size Segment Duration Mobility Client’s Arrival Pattern No. of Clients 

1 1 15s 4s 75 kmph Simultaneous 10 

2 1 15s 4s 75 kmph Simultaneous 8 

3 1 15s 4s 75 kmph Simultaneous 6 

4 1 15s 4s 75 kmph Simultaneous 4 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 2718.56 3368.08 3329.27 3103.34 3357.80 2499.34 3061.16 2657.38 3005.37 

Switching Ratio 0.39 0.29 0.26 0.11 0.95 0.16 0.55 0.22 0.56 

Fairness 0.94 0.98 0.96 0.95 0.86 0.95 0.96 0.96 0.95 

Inefficiency 0.18 0.14 0.12 0.24 0.28 0.29 0.15 0.23 0.19 

Average of Switches (kbps) 979.89 1283.97 1241.50 1132.69 2478.26 798.64 1066.37 1001.73 1041.92 

QoE 2167.95 2965.04 3006.67 2946.76 737.74 2319.43 2451.36 2139.38 2356.78 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1887.34 2100.06 2140.23 1866.32 2084.64 1764.51 1889.17 2059.79 1640.90 

Switching Ratio 0.35 0.52 0.31 0.24 0.93 0.17 0.63 0.11 0.62 

Fairness 0.96 0.96 0.95 0.90 0.86 0.97 0.91 0.93 0.88 

Inefficiency 0.16 0.14 0.11 0.31 0.25 0.26 0.17 0.20 0.22 

Average of Switches (kbps) 808.12 1013.22 954.84 872.37 1661.95 549.89 390.41 638.67 402.36 

QoE 1736.24 1185.55 1865.94 1625.72 464.20 1636.49 1455.98 1794.57 1136.83 
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TABLE 14 
PERFORMANCE OF ALGORITHMS WHEN 8 CLIENTS COMPETE FOR THE BANDWIDTH 

 

TABLE 15 
PERFORMANCE OF ALGORITHMS WHEN 10 CLIENTS COMPETE FOR THE BANDWIDTH 

 

 
(a) 

 
(b) 

Fig. 13. Comparison of (a) rebuffering per client, average number of 
interruptions, and (b) average buffering time of the algorithms when 
8 clients compete for bandwidth. All clients start streaming simulta-
neously. 
 

 
 

 

(a) 

 

(b) 

Fig. 14. Comparison of (a) rebuffering per client, average number of 
interruptions, and (b) average buffering time of the algorithms when 
10 clients compete for bandwidth. All clients start streaming simulta-
neously.  
 

is that the clients were able to aggressively increase the 
video rates as higher bandwidth became available to each 
client, and a higher video rate increases the risk of play-
back interruption in case the bandwidth suddenly de-
creases. This led the algorithm to aggressively decrease 

the video rate as the bandwidth decreased. The MEC-
assisted algorithms were able to maintain high fairness 
and low bandwidth inefficiency values for all experi-
ments. In case of 10 clients competing for the bandwidth, 
we observe that the MECA and NALD algorithms 
achieved similar video rates; however, the MECA algo-
rithm had a higher QoE owing to lower playback inter-
ruptions. Tables 14 and 15 reveal that the MECA algo-
rithm achieved the highest QoE as the algorithm achieved 
high video rate and avoided unnecessary playback inter-
ruptions. Table 12 illustrates that the NALD algorithm 
achieved a higher QoE as it achieved high video rate and 
mitigated playback interruptions. Furthermore, Table 12 
also reveals that when the numbers of clients are de-
creased to 4, the buffer-based algorithms achieve higher 
video rate than the throughput-based algorithms. The 
throughput-based algorithms are unaware of the play-
back buffer; therefore, they conservatively select the vid-
eo rates in order to avoid playback interruption. Whereas, 
the buffer-based algorithms aggressively increase the vid-
eo quality as the buffer level increases. When the number 
of clients is decreased, the buffer fills up quickly. This 
allows the algorithms to quickly increase the video quali-
ty. Figs. 11–14 reveal that the clients experienced a larger 
number of playback interruptions as the number of com-
peting clients increased, and the buffer-based algorithms 
experienced a larger number of interruptions than the 
throughput-based algorithms. The buffer-based algo-
rithms select video rates higher than the throughput at 
the expense of the playback buffer, which leads to buffer 
underflow in an unstable environment. Because the high-
est available video rate in dataset 1 was 11,321 kbps, 
which was significantly higher than the throughput 
available to each client, selecting the higher video rates 
resulted in playback interruptions. A tradeoff can be 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1462.68 1474.29 1509.76 1329.95 1,507.98 1389.91 1202.61 1314.72 1413.81 

Switching Ratio 0.31 0.43 0.31 0.26 0.48 0.14 0.61 0.37 0.46 

Fairness 0.91 0.93 0.93 0.83 0.89 0.96 0.90 0.90 0.88 

Inefficiency 0.18 0.12 0.19 0.39 0.20 0.26 0.25 0.32 0.22 

Average of Switches (kbps) 601.44 708.20 872.46 787.07 993.45 449.89 595.87 613.41 578.39 

QoE 1313.27 949.46 1031.12 978.56 559.34 1298.75 699.11 1008.19 1034.51 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1209.78 1182.34 1216.31 1109.63 1010.12 1035.37 1051.05 1096.60 1006.44 

Switching Ratio 0.34 0.42 0.22 0.20 0.89 0.15 0.55 0.31 0.32 

Fairness 0.89 0.90 0.88 0.85 0.81 0.91 0.86 0.88 0.89 

Inefficiency 0.15 0.10 0.19 0.33 0.24 0.27 0.19 0.27 0.33 

Average of Switches (kbps) 581.19 603.44 830.10 560.87 848.45 434.77 562.37 524.54 549.77 

QoE 979.66 756.22 814.78 823.81 -71.77 948.06 790.30 894.41 811.91 
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TABLE 16 
EXPERIMENT SETTINGS TO EVALUATE THE IMPACT OF CLIENTS’ ARRIVAL TIME 

 
TABLE 17 

PERFORMANCE OF ALGORITHMS WHEN CLIENTS’ ARRIVAL TIME IS EXPONENTIALLY DISTRIBUTED 
 

observed between selecting a higher video rate and pro-
tecting the buffer from emptying. The ECAA algorithm 
selected high video rates in each experiment; however, 
higher video rate switches and playback interruptions 
affected the QoE. 
 

 

(a) 

 

(b) 

Fig. 15. Comparison of (a) rebuffering per client, average number of  

interruptions, and (b) average buffering time of the algorithms when 

clients’ arrival time is exponentially distributed 

 
The experiments conducted in this section demonstrate 

that the clients achieved higher video rates and fairly dis-
tributed video rates as the number of competing clients 
decreased. Similarly, the switching magnitude also in-
creased with the decrease in number of clients. However, 
the changes in the number of competing clients did not 
have the same effect on switching ratio and bandwidth 
inefficiency. Results highlight that the buffer-based algo-
rithms download higher quality segment when the 
throughput improves compared with the throughput-
based algorithms. Furthermore, a compromise between 
selecting higher video rates and avoiding playback inter-
ruption is highlighted. 

 
5.4 Effect of Clients’ Arrival Time 

In this experiment, we compared the performance of 
the algorithms for the following scenarios: (1) all clients 
simultaneously start streaming, (2) the client arrival time 

was uniformly distributed within the first 30 s of the 
streaming session, and (3) the client arrival time was ex-
ponentially distributed within the first 30 s of the stream-
ing session. Table 16 shows the experiment settings used 
to evaluate the impact of clients’ arrival time. We set the 
buffer size and segment duration to 15 and 4 s, respective-
ly. The clients moved inside the cell at a speed of 75 
km/h. 

Table 6 displays the performance of the algorithms 
when clients’ arrival time is uniformly distributed, Table 
15 displays the performance when the clients started the 
streaming session simultaneously, while Table 17 dis-
plays the performance of the algorithms when clients’ 
arrival time is exponentially distributed. Tables 6, 15, and 
17 indicate that the algorithms achieved slightly lower 
video rates and fairness when the clients joined the 
streaming session simultaneously. The reason for this 
result is that when all clients stream at the same time, 
there is a tug-of-war between greedy clients to obtain the 
bandwidth share from the beginning. However, the algo-
rithms experienced lesser number of playback interrup-
tions when the clients joined the streaming session simul-
taneously. The MEC-assisted algorithms were able to fair-
ly assign video rates to the clients and efficiently utilizing 
the available bandwidth in both scenarios. The DBT algo-
rithm has the highest fairness value in both scenarios. 
Among the client-based algorithms, the DBT and AAA 
algorithms avoided unnecessary video rate switches, 
whereas the SARA algorithm had the highest frequency 
of switches. Furthermore, the QLSA algorithm had a high 
bandwidth inefficiency value. The QLSA algorithm fo-
cused on minimizing the sharp decrease in video quality 
and minimizing the frequency of video rate switches. 
However, in a multi-client environment, this resulted in 
inefficient utilization of the bandwidth. Figs. 6, 14, and 15 
depict the statistics of playback interruption events for 
both scenarios. The figures indicate that only the DASH-  

 

Experiment Dataset Buffer Size Segment 

Duration 

Mobility Client’s Arrival Pattern No. of 

Clients 

1 1 15s 4s 75 kmph Simultaneous 10 

2 1 15s 4s 75 kmph Uniformly distributed 10 

3 1 15s 4s 75 kmph Exponentially distributed 10 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1299.11 1358.31 1221.56 1255.22 1310.26 1390.50 1188.73 1099.33 1303.09 

Switching Ratio 0.31 0.45 0.21 0.20 0.89 0.10 0.59 0.35 0.61 

Fairness 0.89 0.90 0.87 0.82 0.83 0.90 0.82 0.84 0.85 

Inefficiency 0.13 0.10 0.22 0.37 0.35 0.18 0.21 0.26 0.24 

Average of Switches (kbps) 612.21 558.83 721.77 696.87 534.83 640.36 733.54 576.12 511.03 

QoE 1099.34 833.18 921.55 917.41 248.59 1284.70 849.82 917.76 843.17 

0
2
4
6

0
0.3
0.6
0.9

M
E

C
A

E
C

A
A

N
A

L
D

A
A

A

S
A

R
A

D
B

T

In
s
ta

n
t

Q
L

S
A

D
A

S
H

-G
o
o
g

le

MEC-

Assisted

Buffer-

Based

Throughput-

Based
Rebuffering Per Client Average Interruptions

0
2
4
6
8

M
E

C
A

E
C

A
A

N
A

L
D

A
A

A

S
A

R
A

D
B

T

In
st

a
n

t

Q
L

S
A

D
A

S
H

-G
o
o
g

le

MEC-

Assisted

Buffer-

Based

Throughput-

Based

B
u

ff
e
r
in

g
 T

im
e
 (

s)



16  

 

TABLE 18 
EXPERIMENT SETTINGS USED TO EVALUATE THE IMPACT OF CLIENTS’ SPEED 

TABLE 19 
PERFORMANCE OF ALGORITHMS WHEN CLIENTS ARE MOVING AT 60KMPH. THE BUFFER SIZE IS SET TO 15 S 

 
TABLE 20 

PERFORMANCE OF ALGORITHMS WHEN CLIENTS ARE MOVING AT PEDESTRIAN SPEED. THE BUFFER SIZE IS SET TO 15 S 

 

 

(a) 

 

(b) 

Fig. 16. Comparison of (a) rebuffering per client, average number of 
interruptions, and (b) average buffering time when the clients move 
at 60kmph. The buffer size for this experiment is set to 15s. 

Google and DBT algorithms were able to avoid playback 
interruption during both experiments. We observed that 
the buffer-based algorithms experienced a larger number 
of playback interruptions than the throughput-based al-
gorithms. Except, for the ECAA, the adaptation methods 
achieve higher QoE when the clients randomly join the 
streaming session. The ECAA algorithm achieves low 
QoE scores due to larger number of playback interrup-
tions. DASH-Google has a similar QoE score in both sce-

narios.  
Results of this section reveal that the client’s arrival 

time affects the performance of the algorithms. It is 
shown that the algorithms achieved significant video rate, 
fairly distributed video rates, and experienced higher 
number of rebuffering events when the clients joined the 
streaming session randomly. Except for the ECAA algo-
rithm, the higher video rate leads to higher QoE when the 
clients joined the streaming session randomly. 

 
5.5 Effect of Clients’ Speed 

In this section, we compared the performance of the algo-
rithms for the following scenarios: (1) the clients moved at 
75km/h, (2) the clients moved at 60 km/h, (3) the clients 
moved at pedestrian speed (3km/h). Table 18 shows the 
experiment settings used to evaluate the impact of clients’ 
speed. 

In this first experiment, the buffer size and segment 
duration were set to 15 and 4 s, respectively, and 10 cli-
ents competed for bandwidth. Tables 6, 19 and 20 present 
the performance of the algorithms as the clients moved at 
75km/h, 60 km/h, pedestrian speed respectively. We 
observed that the clients achieved higher video rate,

 

Experiment Dataset Buffer Size Segment Duration Mobility Client’s Arrival 

Pattern 

No. of 

Clients 

1 1 15s 4s 75 kmph Random 10 

2 1 15s 4s 3 kmph Random 10 

3 1 15s 4s 60 kmph Random 10 

4 1 60s 4s 75 kmph Random 10 

5 1 60s 4s 3 kmph Random 10 

6 1 60s 4s 60 kmph Random 10 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1467.44 1402.32 1311.08 1291.11 1333.75 1280.50 1381.23 1123.19 1322.87 

Switching Ratio 0.29 0.45 0.28 0.15 0.92 0.10 0.61 0.35 0.62 

Fairness 0.89 0.88 0.87 0.84 0.78 0.90 0.87 0.85 0.84 

Inefficiency 0.17 0.17 0.16 0.29 0.36 0.18 0.20 0.26 0.24 

Average of Switches (kbps) 721.04 822.79 951.14 774.37 933.20 640.36 768.12 753.13 621.86 

QoE 1211.84 688.43 1022.03 977.34 110.95 1194.70 1027.88 940.73 854.55 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1546.01 1572.16 1615.81 1456.35 1608.45 1390.50 1594.81 1212.33 1400.71 

Switching Ratio 0.18 0.38 0.11 0.12 0.95 0.12 0.15 0.40 0.48 

Fairness 0.90 0.89 0.88 0.88 0.79 0.89 0.92 0.84 0.85 

Inefficiency 0.16 0.10 0.15 0.25 0.35 0.20 0.13 0.26 0.26 

Average of Switches (kbps) 950.22 695.20 1054.45 696.87 2277.83 640.36 729.54 616.22 522.94 

QoE 1380.69 722.03 1478.52 1300.41 9.59 1284.70 1416.82 941.18 1029.25 
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TABLE 21 
PERFORMANCE OF ALGORITHMS WHEN CLIENTS ARE MOVING AT 60KMPH. THE BUFFER SIZE IS SET TO 60 S 

 

 
TABLE 22 

PERFORMANCE OF ALGORITHMS WHEN CLIENTS ARE MOVING AT PEDESTRIAN SPEED. THE BUFFER SIZE IS SET TO 60 S 

 

 
 

 

(a) 

 

(b) 

Fig. 17. Comparison of (a) rebuffering per client, average number of 
interruptions, and (b) average buffering time when the clients move 
at pedestrian speed. The buffer size for this experiment is set to 15s. 

 

(a) 

 

(b) 

Fig. 18. Comparison of (a) rebuffering per client, average number of 
interruptions, and (b) average buffering time when the clients move 
at 60kmph. The buffer size for this experiment is set to 60s. 
 

fewer playback interruptions and a fair distribution of 
video rates when moving at pedestrian speed. Conse-
quently, the algorithms achieved higher QoE when mov-
ing at pedestrian speed. Tables 6, 19 and 20 indicate that 
the MEC-assisted algorithms achieved higher video rates 

and were able to efficiently and fairly assign video rates 
among the clients. All selected algorithms except for 
SARA and QLSA achieved a smaller number of video rate 
switches when moving at pedestrian speed than at vehic-
ular speeds. The number of playback interruptions de-
creased with the decrease in the clients speed. The buffer-
based algorithms experienced higher number of playback 
interruptions compared to throughput-based algorithms. 

 

 

(a) 

 

(b) 

Fig. 19. Comparison of (a) rebuffering per client, average number of 
interruptions, and (b) average buffering time when the clients move 
at pedestrian speed. The buffer size for this experiment is set to 60s. 

 
In the next experiment, we set the buffer size and seg-

ment duration to 60 and 4 s, respectively. Similar to the 
last experiment, Tables 21 and 22 show that the MEC-
assisted algorithms were also able to achieve high video 
rates by efficiently utilizing bandwidth and equitably 
assigning video rates to the clients. A comparison of Ta-
bles 7, 21 and 22 reveals that the QoE of throughput-
based algorithms improved with the decrease in the cli-
ents’ speed. Except for the ECAA algorithm, the QoE of 
buffer-based algorithms also improved with the decrease 
in the clients’ speed. A comparison of Figs. 7, 18, and  

 

 MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1297.08 1409.63 1252.08 1185.87 1355.14 1177.35 1144.99 1097.45 1251.80 

Switching Ratio 0.27 0.38 0.29 .21 0.77 0.07 0.36 0.35 0.41 

Fairness 0.89 0.88 0.84 .85 0.80 0.86 0.88 0.87 0.87 

Inefficiency 0.16 0.12 0.14 0.33 0.27 0.31 0.13 0.25 0.16 

Average of Switches (kbps) 662.74 772.19 576.04 697.57 805.22 571.32 687.61 722.11 587.41 

QoE 1167.46 1063.41 1096.91 1067.44 723.67 1099.23 923.07 855.98 1008.38 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1320.58 1376.94 1309.48 1199.69 1436.68 1141.76 1305.49 1179.04 1283.11 

Switching Ratio 0.15 0.40 0.28 0.12 0.62 0.05 0.25 0.32 0.45 

Fairness 0.90 0.90 0.87 0.86 0.83 0.84 0.89 0.88 0.86 

Inefficiency 0.14 0.15 0.14 0.28 0.24 0.28 0.13 0.19 0.16 

Average of Switches (kbps) 722.23 736.00 683.11 723.66 678.56 705.00 814.27 577.99 180.60 

QoE 1236.59 861.81 1131.94 1094.38 1048.70 1076.83 1169.66 1005.91 1012.80 
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TABLE 23 
EXPERIMENT SETTINGS USED TO EVALUATE THE IMPACT OF DATASETS 

TABLE 24 
PERFORMANCE OF ADAPTIVE METHODS WHEN BUFFER SIZE IS 15 S AND SEGMENT DURATION IS 2 S FOR DATASET 2 

19 shows that buffer-based algorithms experienced higher 
number of playback interruptions irrespective of the 
speed at which the client moved. The SARA algorithm 
experienced the highest number of interruptions at ve-
hicular speed, whereas, the ECAA algorithm experienced 
the highest number of interruptions at the pedestrian 
speed. At the pedestrian speed, the ECAA algorithm also 
experienced the highest number of video rate switches. 
As in the previous experiments, the SARA algorithm 
achieved high video rates but also experienced the high-
est number of video rate switches. This algorithm also 
had a high bandwidth inefficiency value. The reason for 
this result is that sum of the downloaded video rates of 
the competing clients was higher than the total band-
width available to the clients. This also led the SARA al-
gorithm to experience buffer underflow, as depicted in 
Figs. 6, 7, 16, 17, 18, and 19. The DBT and AAA algo-
rithms had high bandwidth inefficiency values. Both al-
gorithms wait for the playback buffer to increase above 
the predefined threshold before they increase or decrease 
the video rates irrespective of the available bandwidth 
irrespective of the selected video rate and available 
bandwidth. This leads to inefficient utilization of the 
bandwidth. 

Results obtained in this section demonstrate that the 
clients’ speed inversely affect the performance of the al-
gorithms. The clients achieved higher video rates and 
experienced lesser number of rebuffering when the clients 
moved at pedestrian speed compared to vehicular speed. 
Consequently, the clients achieved higher QoE at the pe-
destrian speed. Moreover, the bandwidth is more effi-
ciently utilized and video rates are fairly distributed at 
pedestrian speed. Irrespective of the speed, the buffer-
based algorithms experienced higher number of playback 
interruptions. 

 

(a) 
 

(b) 

Fig. 20. Comparison of (a) rebuffering per client, average number of 
interruptions and (b) average buffering time when the clients down-
load data set 2. The buffer size and segment duration are set to 15 
and 2 s, respectively. 

 
5.6 Effect of Datasets 

In this section, we compare the performance of the algo-
rithms for the two datasets presented in Table 2. Table 23 
shows the experiment settings used to evaluate the im-
pact of datasets. The aim of this comparison is to analyze 
how the selection of a representation set affects the per-
formance of the algorithms. The adaptation algorithm has 
no control over the representation set; therefore, it should 
adapt the video rates dynamically such that it achieves 
high user experience irrespective of the dataset.  

In the first experiment, we set the buffer size and seg-
ment duration to 15 and 2 s, respectively. Comparison of 
Tables 5 and 24 shows that algorithms achieved higher 
average video rate while downloading dataset 2. The vid-
eo rates in dataset 2 were close to each other, which 
helped the algorithms improve the fairness and reduce 
bandwidth inefficiency. However, we observed that for 
dataset 2, all algorithms experienced a larger number of 
video rate switches. A comparison of Figs. 5 and 20 indic- 

 
 

 

Experiment # Dataset Buffer Size Segment Duration Mobility Client’s Arrival Pattern No. of Clients 

1 1 15s 2s 75 kmph Random 10 

2 1 15s 4s 75 kmph Random 10 

3 1 60s 4s 75 kmph Random 10 

4 2 15s 2s 75 kmph Random 10 

5 2 15s 4s 75 kmph Random 10 

6 2 60s 4s 75 kmph Random 10 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1342.48 1423.48 1400.19 1367.88 1297.27 1229.03 1389.13 1380.94 1394.02 

Switching Ratio 0.32 0.46 0.43 0.13 0.73 0.13 0.48 0.42 0.48 

Fairness 0.90 0.87 0.88 0.86 0.78 0.88 0.91 0.89 0.89 

Inefficiency 0.14 0.15 0.20 0.26 0.38 0.25 0.15 0.19 0.14 

Average of Switches (kbps) 474.45 462.72 636.93 642.90 931.73 427.44 384.42 494.58 384.51 

QoE 1200.23 1304.51 1287.93 1291.51 646.17 1093.30 1189.92 1205.33 1135.70 
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TABLE 25 
PERFORMANCE OF ADAPTIVE METHODS WHEN BUFFER SIZE IS 15 S AND SEGMENT DURATION IS 4 S FOR DATASET 2 

TABLE 26 
PERFORMANCE OF ADAPTIVE METHODS WHEN BUFFER SIZE IS 60 S AND SEGMENT DURATION IS 4 S FOR DATASET 2 

 

(a) 

 

(b) 

Fig. 21. Comparison of (a) rebuffering per client, average number of 
interruptions, and (b) average buffering time when the clients down-
load dataset 2. The buffer size and segment duration are set to 15 
and 4 s, respectively. 

 

(a) 

 

(b) 

Fig. 22. Comparison of (a) rebuffering per client, average number of 
interruptions, and (b) average buffering time when the clients down-
load dataset 2. The buffer size and segment duration are set to 60 s 
and 4 s, respectively. 
 

ates that the algorithms experienced fewer playback in-
terruptions when downloading dataset 2. The higher data 
rates in dataset 1 allowed the algorithms to select high 
video quality but also increased the playback interrup-
tions.  

In the next experiment, we increased the segment du-

ration to 4 s. Table 25 reveals that the MEC-assisted algo-
rithms efficiently and fairly selected video rates for the 
clients. A comparison of Tables 6 and 25 demonstrates 
that the algorithms utilized the bandwidth more efficient-
ly and fairly when the clients downloaded dataset 2.  
However, the number of video rate switches increased 
when dataset 2 was used. Furthermore, a comparison of 
Figs. 6 and 21 reveals that the total number of playback 
interruptions decreased when dataset 2 was used. This is 
due to the availability of higher video rates in dataset 1 
and lower video rates in dataset 2. The MEC-assisted al-
gorithms had the highest QoE score. The ECAA algo-
rithm had a low QoE score when it downloaded dataset 1. 
In case of dataset 2, the QoE score of the ECAA algorithm 
increased 1.88 times, as the algorithm experienced smaller 
number of rebuffering events. 

Next, we increased the buffer size to 60 s. Similar to 
Section 5.2, Table 26 demonstrates that the average video 
rate decreased as the buffer size was increased. The ME-
CA algorithm achieved high video rate, fairly distributed 
video rates and efficiently utilized the bandwidth. Conse-
quently, the algorithm achieved the highest QoE. Fig. 22 
reveals that a larger buffer size reduced the number of 
buffer underflow events. However, the ECAA algorithm 
experienced a larger number of video rate switches and 
playback fluctuations despite the larger buffer size. To 
determine the reason for the large number of playback 
interruptions despite the larger buffer size, we examined 
the buffer level of the clients. We discovered that the 
buffer level never increased above 30% for any client. The 
ECAA algorithm selects the video rates aggressively, 
which leads to a low buffer level. On one hand, this helps 
the algorithm achieve higher video quality. On the other 
hand, it increases the risk of playback interruption in an 
unstable environment. A low frequency of video rate 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1355.38 1385.00 1302.65 1279.83 1316.02 1091.73 1273.18 1293.08 1380.85 

Switching Ratio 0.47 0.34 0.23 0.24 0.46 0.19 0.67 0.47 0.68 

Fairness 0.90 0.91 0.87 0.85 0.81 0.81 0.90 0.86 0.89 

Inefficiency 0.13 0.12 0.14 0.29 0.26 0.30 0.16 0.22 0.15 

Average of Switches (kbps) 460.24 534.53 589.60 482.70 950.53 507.93 448.73 614.87 489.85 

QoE 1118.27 1191.73 994.68 977.27 423.93 966.48 1000.20 1001.08 951.10 

 

 
MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1237.55 1256.41 1144.86 1109.00 1111.38 1043.21 1217.56 1272.98 1152.71 

Switching Ratio 0.30 0.59 0.31 0.14 0.83 0.10 0.62 0.45 0.68 

Fairness 0.91 0.88 0.87 0.87 0.72 0.77 0.89 0.87 0.90 

Inefficiency 0.13 0.26 0.23 0.30 0.41 0.31 0.13 0.24 0.14 

Average of Switches (kbps) 427.01 491.54 484.25 468.90 515.35 644.35 430.43 525.30 412.12 

QoE 1135.13 701.76 1033.43 1075.37 709.88 953.00 977.08 1006.99 905.28 
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TABLE 27 
PERFORMANCE OF ADAPTIVE METHODS AVERAGED OVER ALL EXPERIMENTS 

TABLE 28 
PERFORMANCE OF METHODS AVERAGED OVER ALL EXPERIMENTS WHERE 10 CLIENTS COMPETE FOR THE BANDWIDTH 

 

switches helped the AAA algorithm achieve high QoE. 
However, the algorithm utilized the bandwidth ineffi-
ciently. The DASH-Google, Instant, and QLSA algorithms 
had higher average video rates than the AAA algorithm, 
but they achieved lower QoE due to a larger number of 
video rate switches. 

Experiments conducted in this section reveal that the 
available set of video rates play an important role in the 
performance of the algorithms. A dataset with high video 
rates can help the algorithms in improving user experi-
ence. Results reveal that it also resulted in higher number 
of playback interruptions in an unstable environment. 
Similarly, a dataset with closely spaced data rates allows 
the algorithms to improve fairness and efficiently utilize 
bandwidth. Furthermore, it is demonstrated that the 
closely spaced video rates resulted in higher number of 
video rate switches, which inversely affects the user expe-
rience. 

6 KEY OBSERVATIONS 

The experiments conducted in this study led to numerous 
insights regarding the compared algorithms.  
 
• Fairness and bandwidth utilization: First, we ob-

served that the MEC-assisted algorithms were able to 
achieve high fairness and efficiently utilize band-
width in most settings. The MEC-assisted algorithms 
had a bird's-eye view of the network and were able to 
jointly assign video rates to the clients. This allowed 
them to efficiently select video rates. The perfor-
mance of the client-side adaptation algorithms varied 
as the client and server settings changed. 

 
• Fixed control laws: These results indicate that the 

client-side adaptation algorithms employ fixed con-

trol laws and were designed with certain cli-
ent/server and network settings in mind. There is a 
need for content and context-aware adaptation algo-
rithms that consider network settings, HAS clients’ 
information, video content details and device features 
to adapt video quality.  

 
• Tradeoff between selecting high quality video and 

mitigating playback interruption: The understand-
ing of MEC-assisted ABR strategies is still in the early 
stages. The results in this work show tradeoffs be-
tween selecting high quality video and protecting 
playback buffer from draining. Table 27 presents the 
performance of the algorithms averaged over all ex-
periments. The MEC-assisted algorithms selected 
high-quality video rates for clients. In improving the 
video quality, however, these algorithms were unable 
to protect the buffer from emptying. The hybrid algo-
rithm (MECA) was more effective in protecting the 
playback buffer. The MECA algorithm on average 
had the highest QoE among the competing algo-
rithms. The ECAA algorithm was unable to protect 
the playback buffer from emptying, which resulted in 
degraded performance in some experiments. Analy-
sis of the ECAA algorithm reveals that it selected 
video rates higher than the available throughput as 
the buffer level filled. This approach helped the algo-
rithm select high-quality video in a stable network; 
however, in an unstable network, this approach led 
to higher rebuffing events. The results indicate that a 
better coordination between the clients and edge 
cloud further improve the performance of MEC-
assisted algorithms. 

 
• Tradeoff between minimizing video rate switches 

and mitigating playback interruption Throughput-
based algorithms are dependent on bandwidth in se-

 

 MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1431.48 1536.86 1470.29 1385.24 1469.23 1306.32 1390.63 1333.45 1395.88 

Switching Ratio 0.31 0.43 0.30 0.19 0.75 0.12 0.53 0.36 0.53 

Fairness 0.90 0.90 0.88 0.85 0.79 0.88 0.88 0.87 0.88 

Inefficiency 0.16 0.14 0.17 0.31 0.32 0.26 0.17 0.24 0.20 

Average of Switches (kbps) 659.52 725.29 752.18 715.06 1059.28 626.78 629.39 622.19 548.50 

QoE 1232.07 1037.55 1208.51 1176.42 415.81 1193.26 1068.24 1079.10 1030.25 

 

 MEC-Assisted Buffer-Based Throughput-Based 

Adaptation Algorithms MECA ECAA NALD AAA SARA DBT Instant QLSA DASH-

Google 

Average Video Rate (kbps) 1304.76 1370.30 1286.84 1232.10 1300.33 1182.41 1249.12 1188.34 1262.13 

Switching Ratio 0.30 0.43 0.30 0.19 0.76 0.11 0.51 0.38 0.52 

Fairness 0.89 0.89 0.87 0.84 0.78 0.86 0.88 0.86 0.87 

Inefficiency 0.15 0.15 0.17 0.31 0.33 0.26 0.17 0.24 0.20 

Average of Switches (kbps) 630.17 666.04 694.16 668.86 934.32 632.63 617.64 594.53 521.56 

QoE 1123.41 895.59 1045.78 1032.01 349.17 1073.62 968.12 957.33 927.59 
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lecting the video rates. They do not have knowledge 
of the buffer level; therefore, they do not take the risk 
of conservatively reacting to changes in bandwidth. 
Interestingly, our results demonstrate that the buffer-
based algorithms performed more poorly than 
throughput-based algorithms in protecting the buffer. 
However, the buffer-based algorithms performed bet-
ter than the throughput-based algorithms in minimiz-
ing unnecessary video rate switches. Throughput-
based algorithms take the average of past throughput 
observations to smooth out the throughput fluctua-
tions. The throughput-based algorithms failed to mit-
igate the switching ratio, which degraded their QoE. 

 
• Buffer-based algorithms aggressively selecting high 

quality as buffer level grows: Table 28 presents the 
performance of the algorithms’ average over experi-
ments where only 10 clients competed for the band-
width. The experiment performed in Section 5.3 
showed that the algorithms achieve higher QoE as 
the number of competing clients decrease. A compar-
ison of Tables 27 and 28 illustrates that except the 
SARA algorithm, the buffer-based algorithms im-
prove their QoE more than the throughput-based al-
gorithms as the number of clients decreases. Once the 
buffer level increases above the buffer threshold, the 
buffer-based algorithms do not decrease the video 
rate even if the throughput fluctuates. This allows the 
buffer-based algorithms to maintain higher video 
rates and minimize video rate fluctuations.  

 
• Prioritizing video quality objectives: Results also 

indicate that each algorithm prioritized different vid-
eo quality objectives. This trend is observed in both 
MEC-assisted and client-based algorithms. In case of 
buffer-based algorithms, the playback buffer level 
plays an important role in prioritizing video quality 
objective. When the buffer level is low, the algorithms 
prioritize avoiding playback interruptions. As the 
buffer level fills up, the algorithms give precedence to 
improving the video quality. The selection of buffer 
thresholds dictates when the algorithms shift the fo-
cus between improving the video quality and miti-
gating playback interruption and video rate switches. 
The throughput-based algorithms have limited op-
tions as they do not observe buffer level. The algo-
rithms minimize small-scale bandwidth fluctuations 
but react quickly in case of large and high bandwidth 
fluctuations. This helps the algorithms in improving 
the video quality when the bandwidth improves and 
mitigating the risk of playback interruptions when 
the bandwidth drops. 

 
• Segment duration: Our results reveal that selecting a 

larger segment duration increases the risk of buffer 
underflow in case of a mismatch between the selected 
video rate and available throughput to the client. The 
results show that a smaller segment duration 
achieves a higher QoE in an unstable environment.  

 

• Set of available video rates: The available set of vid-
eo rates in the datasets also plays an important role in 
the performance of the algorithms. In this study, two 
datasets were used with three main differences. The 
highest available video rate was much higher in da-
taset 1 than in dataset 2, while the lowest available 
video rate was much lower in dataset 2 than in da-
taset 1. In addition, the video rates in dataset 2 were 
more closely spaced than in dataset 1. The results re-
veal that dataset 2 resulted in a higher frequency of 
video rate switches; however, it reduced the number 
of buffer underflow events and improved fairness 
and bandwidth efficiency. 
 

• Tradeoff between fairness and bandwidth utiliza-
tion: In a wired network, owing to TCP fairness, each 
client deserves an equal share of the available band-
width. In a cellular network, TCP achieves unfair 
throughput due to a poor interaction between TCP 
congestion control and PF scheduling. In addition, 
the throughput observed by video clients depends on 
multiple factors, including propagation distance, fad-
ing, interference, and user mobility. For example, a 
user close to the base station observes higher 
throughout than a user at the edge of the cell. Select-
ing a low video rate for the client closer to the base 
station to improve fairness increases bandwidth inef-
ficiency. Similarly, selecting a video rate higher than 
the available bandwidth for the user at the edge of 
the circle leads to buffer underflow. 

7 SUGGESTIONS FOR FUTURE ALGORITHMS 

DESIGNS 

• Adaptable buffer thresholds: We observed that buff-
er-based algorithms selected video rates higher than 
the available throughput once the buffer filled and 
increased above predefined buffer thresholds, and 
decreased the video rates once the buffer level de-
pleted and decreased below the predefined buffer 
threshold. In a rapidly fluctuating environment, we 
observed that the buffer-based algorithms were also 
unable to protect the buffer from depleting. Current-
ly, the algorithms employ fixed buffer thresholds. 
The results suggest that adaptable buffer thresholds 
on the basis of network conditions and client settings 
can provide a solution.  
    For instance, the video client can buffer a larger 
number of smaller segments, compared to larger 
segments, as shown in Fig. 23. Let us assume the cur-
rent buffer size is twenty seconds, and the segment 
duration (τ) is two seconds. This means the total 
number of segments the buffer can hold is ten. If the 
segment duration is four seconds, then only five 
segments can fit in the buffer. If throughput is less 
than the video rate of the segment being download-
ed, there is a greater risk of buffer underflow when 
downloading larger segments. As the buffer-based 
algorithms increase or decrease video quality based 
on buffer-thresholds, the algorithms should consider  
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Fig. 23. Comparing (a) and (b) shows that the larger buffer size 
allows the client to buffer more segments. Comparing (b) and 
(c) shows that longer segment durations decrease the number 
of segments that can be buffered. 

 
adapting the buffer thresholds as the segment dura-
tion, client’s playback buffer size and network condi-
tions vary. This would lead to a more consistent per-
formance by algorithms. 
 

• Selection of segment duration: The results show that 
a smaller segment duration achieves a higher QoE in 
an unstable environment. Therefore, it is desirable to 
fragment the playback video into smaller duration 
segments in an unstable environment.  
    The advantage of a larger segment duration is that 
the client does not react to small changes in through-
put. A larger segment duration signifies a smaller 
number of segments in the playback buffer. Although 
the switching ratio increases with an increase in the 
segment duration, the total number of video rate 
switches decreases as the total number of download-
ed segments decreases. Therefore, a larger segment 
duration is recommended for a stable network. 

 
• Selection of video rates: In a stable environment, a 

dataset with the properties of dataset 1 are preferable. 
Whereas, in an unstable network, a dataset with the 
properties of dataset 2 would lead to better QoE. 
These dataset properties can also help both through-
put- and buffer-based algorithms in designing algo-
rithms. For instance, in case of dataset with closely 
spaced video rates, the algorithm can restrict the 
changes in the video rate selection unless the client 
observes large variations in the throughput. In our 
previous work [55], we designed a method to distin-
guish between large and small-scale fluctuations in 
the throughput. The algorithms can utilize such 
methods to conservatively or aggressively select the 
video rate based on the properties of datasets. 

 
• Adaptive algorithm control laws: The existing HAS 

algorithms strive to keep the buffer filled to a prede-
fined threshold to minimize the risk of playback in-
terruption. To keep the buffer above a predefined 
threshold, the algorithms compromise on video qual-
ity. This strategy is understandable while streaming a 
long video, such as a complete movie. However, with 
a short video, such as a movie trailer, the user expects 
to watch the complete video at the most feasible vid-
eo quality. Therefore, to select video rates, it makes 

sense to design different strategies for short and long 
videos. 

 
• Context-aware adaptation: In addition to the infor-

mation utilized by the algorithms, some context data, 
such as the clients’ position, trajectory, and location 
inside a cell with poor coverage, can help the algo-
rithms improve their decision-making. The client’s 
location inside the cell can be acquired through usual 
built-in sensors. If a client receiving high bandwidth 
enters a location with poor coverage, this information 
can help the algorithms adapt their decision-making 
accordingly. In this scenario, the algorithm can focus 
on filling the buffer in advance to reduce the risk of 
buffer underflow events as the client enters a poor 
coverage area. 

8 CHALLENGES AND POTENTIAL RESEARCH 

DIRECTIONS 

In this section, the cost, complexity, and future research 
challenges and directions are discussed for MEC-assisted 
video streaming. 

 
(1) Energy Consumption 

MEC offers computation and storage capabilities to the 
edge of a mobile network. This allows edge cloud to re-
spond to video client requests and it can reduce wastage 
of returning resources. However, computing and com-
munication between MEC servers and users can lead to 
significant energy consumption. To this end, it is im-
portant to establish energy efficient resource consumption 
in order to schedule computing and communication re-
sources. Therefore, joint optimization of QoE and energy 
consumption is great challenge for future. 

 
(2) Backhaul traffic and QoE tradeoff 

The objective of dynamic adaptive streaming is to explore 
effective approaches to optimize QoE. Moreover, video 
caching and delivery at the MEC allows Internet service 
providers (ISPs) to reduce backhaul and inter-ISP traffic. 
In HAS, the video content caching at the MEC is challeng-
ing since for the download of each segment, not only the 
requested segment but also its video rate must be availa-
ble in the cache. Due to the unstable wireless network, the 
video caching at the MEC for HAS needs to be efficiently 
handled to reduce the backhaul traffic and improve the 
QoE of video users. For instance, by fetching low quality 
cached segment than that sustainable by network, the 
backhaul traffic can be reduced by avoiding downloading 
not yet cached high quality segment from the video serv-
er.  

 
(3) Multi-MEC Collaboration 

The storage capacity and computational capability of an 
MEC is limited. The deployment of MEC’s at the edge of 
the network is distributed, so that the storage and compu-
tational resources are available in different location with-
in the network. In case an MEC server gets overloaded, 
the tasks can be offloaded to the neighboring MEC serv-

Segment

Buffer size: 20 seconds, Segment duration: 4 seconds

Buffer size: 20 seconds, Segment duration: 2 seconds

Buffer size: 30 seconds, Segment duration: 2 seconds

Buffer size

(a)

(b)

(c)

𝐵 𝑓𝑓𝑒𝑟 𝑠𝑖 𝑒
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= 1 

𝐵 𝑓𝑓𝑒𝑟 𝑠𝑖 𝑒

𝑆𝑒  𝑒𝑛𝑡 𝑑 𝑟𝑎𝑡𝑖𝑜𝑛
= 10

𝐵 𝑓𝑓𝑒𝑟 𝑠𝑖 𝑒

𝑆𝑒  𝑒𝑛𝑡 𝑑 𝑟𝑎𝑡𝑖𝑜𝑛
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ers. The sharing of resources among MEC servers is an 
important research issue. For instance, if the bandwidth 
available at the current MEC server cannot provide high 
quality video, how to select an optimal server among oth-
er MEC servers that can stream high quality video to the 
video client. Moreover, when the current MEC server is 
computationally overloaded, how to offload the tasks to 
the neighboring servers. The resource sharing methods 
between collaborating MEC servers need to be studied to 
optimize resource utilization and QoE in the future. 

9 CONCLUSION 

In this paper, we perform an in-depth analysis of both 
MEC-assisted and client-side rate adaptation algorithms 
using a multi-client cellular network under varying client, 
server, dataset, and network settings. Evaluations and 
comparisons were performed in terms of conflicting vid-
eo quality metrics. The experimental results revealed that 
MEC-assisted algorithms fairly selected video rates for 
competing HTTP clients and efficiently utilized resources 
compared to client-based algorithms for most of the ex-
perimental settings. The performance of client-based al-
gorithms in terms of fairness and bandwidth inefficiency 
was inconsistent. Results suggest that the reason is that 
the algorithms were designed based on specific client, 
server, and network settings. It is also demonstrating that 
both MEC-assisted and client-based algorithms give prec-
edence to a specific video quality objective over others. 
This also leads to the algorithms providing inconsistent 
QoE in different environments. Results demonstrate that 
buffer-based adaptation algorithms selected higher video 
rates and experienced lesser video rate switches than 
throughput-based algorithms in a stable network; howev-
er, they were unable to protect the playback buffer in an 
unstable environment. The unnecessary video rate switch 
affected the QoE of throughput-based algorithms the 
most. In addition, results revealed that the buffer size and 
segment duration affected the performance of the algo-
rithms. The algorithms performed better while down-
loading smaller segments compared with larger seg-
ments. This effect was more prominent for buffer-based 
algorithms. It is suggested that rather than predefined 
buffer thresholds, algorithms need to select adjustable 
buffer threshold on the basis of client, server, and net-
work settings. Our results demonstrate that the selection 
of the representation set for algorithms should be careful-
ly considered. The results also suggest that the algorithms 
should utilize context data including HAS clients’ infor-
mation and device features to select the video quality.  

In future work, we will focus on designing context-
aware MEC-assisted algorithms that consider factors such 
as network settings, HAS clients’ information, video con-
tent details and device features in addition to the band-
width and playback buffer dynamics to select video rates. 
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