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Abstract

Most existing trackers are based on using a classifier and multi-scale estimation to estimate the
target state. Consequently, and as expected, trackers have become more stable while tracking ac-
curacy has stagnated. While trackers adopt a maximum overlap method based on an intersection-
over-union (IoU) loss to mitigate this problem, there are defects in the IoU loss itself, that make it
impossible to continue to optimize the objective function when a given bounding box is completely
contained within/without another bounding box; this makes it very challenging to accurately es-
timate the target state. Accordingly, in this paper, we address the above-mentioned problem by
proposing a novel tracking method based on a distance-IoU (DIoU) loss, such that the proposed
tracker consists of target estimation and target classification. The target estimation part is trained to
predict the DIoU score between the target ground-truth bounding-box and the estimated bounding-
box. The DIoU loss can maintain the advantage provided by the IoU loss while minimizing the
distance between the center points of two bounding boxes, thereby making the target estimation
more accurate. Moreover, we introduce a classification part that is trained online and optimized
with a Conjugate-Gradient-based strategy to guarantee real-time tracking speed. Comprehensive
experimental results demonstrate that the proposed method achieves competitive tracking accuracy
when compared to state-of-the-art trackers while with a real-time tracking speed.
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1. Introduction

Target tracking is a very hot and challenging visual task. Trackers need to learn a target ap-
pearance model that relies on the given information of the target in the initial frame. The learned
model needs a strong generalization ability for the target appearance state. The target tracking task
in question could be divided into two parts: target classification and target estimation. For target
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Figure 1: A visual comparative experiment of our proposed tracker with other trackers.

classification, it is a rough way of distinguishing the target from the background. While the target
estimation is used to accurately predict the target bounding box.

Recently, target tracking research has tended to focus on the target classification component.
Within these studies, most researchers focus on designing a robust classifier which is based on e.g.
discriminative correlation filters [[1} 2 3, 4]], and exploiting some deep features [3, 6} 7, [8, 9] to
achieve good tracking accuracy. However, progress in the target estimation component has been
slower than expected. Most of the current representative trackers still adopt a multi-scale search
strategy to estimate the target boundary box. Such as, the MCPF [10] tracker handles the scale
variation via a particle sampling strategy, while the ASRCF [[L1]] tracker only uses five-scale HOG
features for scale estimation; moreover, the MetaCREST tracker extracts search patches in
different scales to conduct target estimation. Although the trackers mentioned above have achieved
some good tracking performance, this multi-scale search strategy cannot accurately estimate the
real target state. By contrast, the SiamRPN tracker adopts a bounding box regression method
for target estimation, while the ATOM [14] tracker employs an overlap prediction network to
estimate the target state; unfortunately, however, both of these trackers still struggle in cases of
occlusion, deformation, etc. (shown in Figure |I|) Therefore, currently available target estimation
methods cannot meet the requirements of practical applications.

Accordingly, in this work, our goal is to create a tracker that can improve tracking accuracy
while also ensuring the tracker’s robustness. The tracking framework that we used include target
estimation and classification. Inspired by the DIoU [13]] loss for bounding box regression in the
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Figure 2: Comparison of the DIoU loss and the IoU loss in some different cases. Green means ground-truth and red
means predicted bounding box.

object detection task, we learn the target estimation part so that it can predict the Distance In-
tersection over Union (DIoU) score between target ground-truth and an estimated bounding box.
In each tracking frame, the final target bounding-box is determined by maximizing the predicted
DIoU score of some proposals and target bounding box in a reference frame. It should be noted
here that our DIoU score differs from the IoU score in some cases (shown in Figure [2)). Specif-
ically, the loss of our DIoU-based network is higher than that of the IoU-based network when
the centers of the two bounding-boxes do not coincide, which forces the two boundary boxes to
quickly reach a state of the center overlaps. In other words, it is easier for DIoU-based trackers to
get accurate tracking results.

For the online target tracking phases, moreover, we choose a simple but effective two-layer
fully convolutional network as the target classification part, due to it can provide high robust-
ness in the complex tracking scenarios. To ensure the real-time tracking speed, we follow the
ATOM [[14] tracker, which addresses the problem of efficient online optimization by employing
a Conjugate-Gradient-based method. The process of our online target tracking phases is simple:
following model initialization, the target classification, target estimation, and model updating pro-
cesses execute alternately until the entire tracking task is complete. The main contributions are
summarized as follows:

* We formulate a novel DIoU network-based bounding-box regression model for target track-
ing. While preserving the advantages offered by the IoU network in tracking tasks, the DIoU
network can be deployed to directly minimize the distance between the ground-truth bound-
ing box and predicted bounding box, an approach that allows the tracker to obtain more
accurate tracking results.

* We adopt a Conjugate-Gradient-based strategy to ensure that the optimization problem in
the target classification component can be addressed efficiently online.

» Extensive experiments have verified that our tracking method is more competitive than other
state-of-the-art trackers on seven challenging datasets: OTB100 [16], UAV 123 [[17]], Track-
ingNet [18]], LaSOT [19], GOT10k [20], VOT2018 [21] and VOT2019 [22].



2. Related Work

At present, most target trackers either under the detection-based framework and or under the
template matching-based framework. Trackers based on the detection framework treat the target
tracking task as a classification problem and distinguish the target from the background by mod-
eling the target appearance. While, trackers based on the template matching framework typically
use a Siamese network to determine the target location utilizing spatial cross-correlation, which
can be used to the most relevant candidates for the target.

2.1. Tracking-by-detection frameworks

There are many tracking approaches that combine tracking and detection in some respect
[2, 23, 24) 25 26, 27, 28, 29]. In [24], the TLD tracking framework divides tracking task as
tracking, learning and detection sub-tasks. Each of these three parts complements each other to
enable the target tracking task to be completed. In [23], Wang et al. demonstrate that tracking
different objects could be formulated as a network-flow mixed-integer program. Lan et al. [28]
propose to the target tracker in a frame-by-frame manner by exploring the time, space, and multi-
camera relationship of detection hypotheses shortly frames. Other trackers have integrated the
detector within a particle filter tracking framework [10} 30]. Among these detection-based track-
ing methods, DCF-based tracking methods achieved some promising performance [2, 31} 32} 33]].
These DCF-based tracking methods learn a correlation filter from target ground-truth provided
in the initial image frame to discriminate between target and background. In [31], Henriques et
al. derive a kernelized correlation filter with the exact same complexity as its linear counterpart,
while also proposing a fast multi-channel correlation filter; this allows the KCF tracker to achieve
promising tracking accuracy and fast-tracking speed compared to other trackers of the same pe-
riod. However, DCF-based trackers can not model the background well. To resolve this issue,
Kiani et al. [2]] proposes a background-aware correlation filter-based tracker to model both target
and background. By introducing a temporal regularizer to the DCF-based trackers, it has been able
to achieve a competitive tracking result[11}[32]]. To improve tracking accuracy, a group feature se-
lection strategy has been proposed under the DCF-based tracking framework that can select group
features across channels and spatial dimensions to determine the structural correlation between
feature channel and filter system [1]. The DCF-based trackers mentioned above are only able
to determine the target center location, most of these trackers use a multi-scale search strategy
to predict the target state, which usually results in relatively inaccurate tracking results[34, 35]].
The recently proposed ATOM [14] tracker incorporates IoU modulation and IoU prediction to
improve tracking performance. However, the IoU loss has an inherent defect: that is, when one
bounding-box is completely inside the other, the IoU loss does not change; the centers of these
two bounding-boxes do not necessarily overlap [36]. Accurate target boundary box positioning is
very important for tracking tasks, meaning that further improvement of the loU-based trackers is
required.

2.2. Template matching frameworks

Template matching-based tracking frameworks typically use a Siamese network as the simi-
larity measurement network [37, [38) 39, 13, 40, 41]]. As the first Siamese network-based tracker,
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SINT [377] simply matches the initial target with proposals selected in the current frame and given
the most similar proposal as the tracking target. Despite its simple network structure, the SINT
tracker achieves efficient tracking performance, but suffers from a very slow tracking speed. In
[38], the SiamFC tracker was proposed with the aim of achieving a high tracking accuracy and
a fast-tracking speed. In response to this work, there are many trackers that extend the SiamFC
architecture for the target tracking task [13} 42, 43| 144, 45]. The SiamRPN [13] tracker joins
the RPN network under the Siamese-based tracking framework. As a result of the region pro-
posal refinement, the whole tracking process is simplified without affecting tracking performance.
Both the DaSiamRPN [6] tracker and the SiamRPN-++ [45] tracker, as improved versions of the
SiamRPN [13]] tracker, improve the tracking performance in different ways. Although Siamese-
based trackers provide an acceptable balance between tracking speed and accuracy. Most of the
Siamese-based trackers are difficult to classify targets effectively due to a lack of online model up-
dating. Unlike these trackers, our proposed tracker not only has an offline training of the model but
also offers a model update strategy during the online tracking phase, which allows for accurately
estimated the target state when the target appearance changes dramatically.

2.3. Bounding box regression for tracking task

In target tracking tasks, a rectangular bounding box is usually utilized to display the target
location. Accurate target boundary box estimation is a complex task, which depends strongly on
the target location and scale. The target location is the key to determine the bounding box center.
While the target scale is the key to whether the bounding box can accurately return to the state of
the target or not. As a result, many trackers use lots of off-line training to try to get enough priors
[13,6]]. Notably, the DaSiamRPN [6] tracker has obtained sufficient prior knowledge based on the
off-line training, and therefore obtained promising results on bounding box regression. However,
these trackers are always affected when they encounter the target classification problem. Different
from the Siamese-based tracking methods, the ATOM [14]] tracker and some of its variants [46,
47| trains a target estimation strategy to calculate the IoU overlap scores of proposals and the
reference target. By maximizing the IoU overlap score, the ATOM [14] tracker can predict a
compact bounding-box of the tracking target. GloU [48]] loss has also been proposed to tackle
the gradient vanishing issues, but is affected by slow convergence and inaccurate regression. In
comparison, the DIoU [15] loss offers faster convergence and better bounding box regression
accuracy. Accordingly, we utilize the DIoU loss to improve the IoU-based tracker to achieve some
competitive tracking results.

3. Proposed Method

We follow the process used in ATOM [14] and divide the tracker into two components: an
offline learned target estimation component and an online learned target classification component.
In other words, we separate the tracking problem into two sub-problems (classification and esti-
mation). The whole tracking architecture is shown in Figure 3]

3.1. Target estimation via bounding box regression
As described in the ATOM [[14] tracker, the target state estimation aims to accurately predict
the target bounding box by means of a rough initial estimate. The ATOM tracker uses an improved
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Figure 3: Architecture of the proposed method for target tracking task. The DIoU predictor is pre-trained on some
large training sets to predict the DIoU score of the target candidates. The target classifier is trained online to output
the corresponding confidence map.

IoUNet for the target estimation; this means that given image (x) and bounding box estimate
of a target (B3), the IoUNet can calculate IoU score between estimate bounding box (B) and target
ground-truth (BYY). t
g
AL ()
U B9
The prediction network to pool the region in the image x given by the estimate bounding-
box, resulting in a determined size feature map. The ROI Pooling is differentiable and can be
used to improve the predicted bounding box by maximizing IoU score. However, the loU-based
bounding-box regression for target tracking has an obvious drawback: when one bounding-box
is located entirely within another bounding-box, the objective function based on the IoU loss is
no longer optimized (see the right sub-figure of Figure[d). However, the prediction bounding-box
may not be optimal; in other words, the tracking results are not accurate. We, therefore, propose
an improved IoU loss-based bounding box regression method to ensure the tracking accuracy.

IoU =

3.2. Bounding-box regression by DIoU loss

We take inspiration from the DIoU [13], a method that was recently proposed for object detec-
tion task, as this results in much faster convergence in training than the IoU loss. The loss function
based on IoU can be defined according to the following format:

L=1-1IoU + P(B,B%), 2)



Figure 4: DIoU loss for bounding box regression. d = p(b, b9?) is the distance of central points of these two boxes.
where P(B, BY") is a penalty term. When the penalty term P(B, B%) = 0, the loss function will
degenerate into the IoU loss. The DIoU score could be calculated as follows:

?(b, 07)

Sproy = ToU — AL : 3)

2
where b and b9 are the central points of B and BY', c is the diagonal length of the minimized
enclosing bounding box C' that covers B and BY" (see Figure , and A is a parameter to balance
IoU score and penalty term. In general, the DIoU score is always lower than the IoU score, and
they are equal if and only if the centers of the two bounding boxes overlap. This also brings the
prediction bounding box depended on the DIoU score is closer to the reference bounding box
center. The DIoU loss could be defined as follows:

gt
me—1—1U+Aﬂ%ﬁl, 4)

where p(.) is Euclidean distance. The DIoU score can directly reflect the overlap degree between
B and B, as well as whether the center position of these two bounding boxes is the same. The
penalty term AZCD directly minimizes the distance between the central points of these two
bounding boxes. When A = 0, the DIoU loss will degenerate to the IoU loss. In addition, the
value of \ only affects the training speed of the model and has no obvious influence on the tracking
performance of the trained model. Therefore, we set A = 1 in this paper. The DIoU-based network
is trained by minimizing DIoU losses between candidate samples and reference targets. The target
boundary box is predicted by maximizing the DIoU prediction overlap score.

3.3. Target classification for tracking

Although the target estimation component can provide an accurate bounding-box for the track-
ing task, it cannot make robust distinctions between the target and the background. In this section,
we introduce a robust target classifier that can accurately determine the target and background,
regardless of whether or not the tracking scene is disturbed. Different from target estimation, tar-
get classification component can be trained directly online and used for target confidence score
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prediction. Refer to literature [14], the target classification component we used can be defined as
follows:

f(ziw) = da(wa * @1 (wy * 2)), &)

where z denotes the feature map of the target, while w = {w;, wo} are parameters, ¢, ¢ are the
activation functions in the network.

In order to achieve a fast tracking speed, we refer to the DCF-based trackers [2, 32] to build a
[, error-based model, as follows:

L(w) = ||f(z;w) =yl + ¢[lw]l?, (6)

where z is the training sample feature map and yrepresents the corresponding label with a Gaussian
shape. Generally, Eq. (6)) is optimized by stochastic gradient descent, which makes the tracking
speed slow. Similar with literature [[14], the object function (6)) can be formulated as a squared
L? norm of the residual vector L(w) = ||r(w)||?>. According to the first order Taylor expansion
method, we can know that: r(w + Aw) ~ r(w) + g—;Aw. Using the quadratic Gauss-Newton
approximation, we can obtain:

20rTo por”

L,(Aw) = Aw a—; a—;Aw + 2Aw a—; r(w) + r(w) r(w), (7)
where the Aw is a increment in the parameters w. The Gauss-Newton problem forms a pos-
itive definite quadratic function, it allows the Conjugate-Gradient method to be used to solve this
problem. The Conjugate-Gradient method consists of simple vector operations, which can be
implemented easily in code. The most important part of Conjugate-Gradient is to find the opti-

mal search direction p and step size « in each iteration. The search direction p is determined by

ar
ow Bw Bu) awp ’

%(r(w))Tu = g—; is the standard operatlon of the back-propagation procedure. The Jacobian

of the function u — —w Tuis tr1V1ally , ", since the function is linear. Each Conjugate-Gradient

T ) )
iteration requires two back-propagatlon. QG = g—;p and ¢ = 8—; q1. More details can be found in

)
literature [[14]].

. For evaluate 2 a vector u with the same size of r(w) has been considered, and

3.4. Offline training for DIoU-based predictor

The proposed DIoU prediction network is pre-trained offline by using labeled training images
as in Eq. (@). Similar to [14], we used the LaSOT dataset [[19]], the TrackingNet [18] dataset and
the COCO [50] dataset as training data. Each training image pair contains one template image and
one test image. For the template image, an image patch centered at the target has been cropped
as a template sample; the template sample’s size is 5 times the length and width of the target size.
For the test image, we crop a similar image patch and add perturbations to simulate a real tracking
scene. The cropped image patches are resized in the same size to train the network. We fixed
all weights of our backbone network in the training phase and use L2 to train the DIoU-based
predictor. The predictor was trained for 60 epochs and batch size set to 64. We also utilize ADAM
optimizer with an initial learning rate [r = 1073 and a decay factor df = 0.2 for every 15 epochs.
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4. Experiments

Our experiments are performed in Python using PyTorch, and the tracking speed is over 50/40
fps with the backbone network ResNet18/ResNet50 on an NVIDIA GTX 2080Ti GPU. To evalu-
ate the tracking performance of the proposed tracking method, we make some experimental com-
parisons of our tracker with several state-of-the-art trackers on 7 challenge datasets: OTB100 [16]],
UAV123 [17], TrackingNet [18]], LaSOT [19], GOT10k [20], VOT2018 [21] and VOT2019 [22].

4.1. Tracking process

Once the DIoU estimates have been trained offline, the online tracking process of the proposed
tracking method can be easily subdivided into the following four steps: model initialization, target
classification, target estimation, and model update.

Model Initialization. We use the ResNet as our backbone network to extract features. Beginning
with the initial target state, an image patch 5 times the size of the target was cropped and extract
features from patch size 288 x 288 from the cropped patch.

Target Classification. Following the ATOM [14] tracker, the target classification network in our
tracker consists of a 2-layer CNN network. The first layer consists of a 1 x 1 convolutional layer
(wq), while the second layer adopts a 4 x 4 kernel (wy) with a single output channel. Where
¢1(t) = t,t > 0 is an identity transformation and ¢5(t) = a(e?/® — 1), < 0 (o = 0.05 in this
paper). Moreover, ¢- offers continuous differentiability and is thus good for optimization. In the
first frame, we generate 30 training samples through data expansion, and optimize the parameters
wy layer with 6 rounds of Gauss-Newton iterations and 10 rounds of Conjugate-Gradient iterations.
We then only optimize the w, layer with 1 round of Gauss-Newton iterations and 5 rounds of
Conjugate-Gradient iterations for each 10th frame.

Target Estimation. At current ¢-th frame, the position with the highest confidence score can be
found by using the classification model (Eq. (3)). After that, we can use this position as the target
center point and generate 10 bounding boxes randomly. The DIoU score of each bounding box
was maximized by the offline trained target estimation network. The final state of the predicted
target in the current frame is determined by the average of these bounding-boxes with top-k DIoU
scores.

Model Update. In the target classification phases, we adopt the /5 classification error in the DCF-
based tracking framework so that we can distinguish target from background. And we adopt a
linear update strategy: w = (1 — )w;_; + dw; to update w, where 9 is a learning rate.

4.2. Ablation study

We first give an ablation study on the LaSOT [19] and OTB100 [[16] datasets to verify the
effectiveness of each component in the proposed tracker. The backbone network we used in this
part is ResNet18. We mainly analyze the impact of the two main components (DIoU loss &
Conjugate-Gradient) in our tracker on tracking performance. The experimental results are shown
in Table[I] To avoid confusion, we state that trackers without the DIoU loss mean that they adopt
the IoU loss to train their model, and trackers without the Conjugate-Gradient strategy mean that
they only adopt the Gauss-Newton strategy for the model optimizing. From this table we can know
that the tracking performance of the tracker with the DIoU loss is significantly improved than the
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Table 1: Comparison results of ablation study on the LaSOT [19] and OTB100 [[16] datasets.

LaSOT OTB100

DIoU Loss | Conjugate-Gradient — - — —
Precision scores ‘ Normalized Precision scores ‘ Success scores | Precision scores ‘ Success scores

X X 35.0 35.1 36.6 61.1 47.0
X v 44.5 45.7 42.9 77.2 58.7
v X 42.1 43.5 46.3 74.7 61.6
v v 51.6 54.7 54.7 89.0 68.1

tracker without the DIoU loss, especially in the success score, it has about 11% improvement on
the LaSOT [19] dataset. In addition, Table (1| also clearly reflects the tracking performance of the
tracker with the Conjugate-Gradient strategy is better than the tracker without it.

4.3. State-of-the-art comparison

We present some quantitive comparisons of our DIoUTrack with a number of state-of-the-
art trackers on the 7 most challenging single target tracking datasets. Since we use two back-
bone networks (ResNet18 / ResNet50), we give the tracking results of the corresponding trackers
(DIoUTrack18 / DIoUTrack50).
Experiment on OTB100 [16] dataset: The OTB100 dataset includes 100 testing sequences and
the tracking accuracy of each tracker is evaluated by precision (a center position distance between
the predicted and ground-truth of the target that is < a fixed threshold (such as 20 pixel values) is
considered to have successfully tracked the target) and success (an area-under-curve (AUC) > 0.5
is considered to have successfully tracked the target). We draw some experimental comparisons of
the proposed DIoUTrack and several state-of-the-art trackers (namely ATOM [14], GradNet [31],
GCTI[52], ARCF [3], UDT [53], MetaCREST [12], SiamRPN [13], SiamRPN++ [45], PTAV [54]],
DiMP18 and DiMP50 [46]]) on this dataset. Table [2] presents the results of these comparisons over
all 100 testing videos. From this table, we can know the proposed DIoUTrack50 achieved the
best tracking accuracy in both precision and success index. The SiamRPN [[13]] tracker employs a
bounding-box regression strategy, while the ATOM [14] tracker adopts an improved bounding-box
regression model based on the IoUNet to estimate the target state. Compared to other trackers, the
ATOM [[14] tracker achieves the acceptable success score and precision score ( 66.1% / 86.2%),
while the DiMP18 [46] tracker achieves good tracking accuracy (66.0% / 87.8%); however, our
DIoUTrack18 with the same backbone network (ResNet18), due to employing a DIoU network-
based bounding-box regression model for target estimation, significantly outperforms the ATOM
tracker and the DiMP18 tracker by achieving a success score of 68.1% and a precision score of
89.0%.

Table 2: Comparison results on OTB100 dataset. The top-3 scores are highlighted in red, blue and , respectively.
Trackers DIoUTrack18 DIoUTrack50 DiMP18 DiMP50 ATOM GradNet GCT ARCF UDT MetaCREST SiamRPN PTAV SiamRPN++
Ours Ours [46] @6 4 B B21 B B3l [z 3 54l [45]
Precision 89.0 92.3 87.8 86.2 86.1 859 81.8 76.0 85.7 85.1 84.8 91.6
Success 68.1 71.0 66.0 66.1 639 648 61.7 594 63.7 63.7 63.4 69.6

Experiment on UAV123 [17] dataset: This UAV 123 dataset consists of 123 testing aerial video
sequences, and the performance is evaluated in the same way as the OTB100 dataset. To eval-
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uate the tracking performance of the proposed DIoUTrack, we report some experimental com-
parisons of our tracker and several other state-of-the-art trackers (namely ATOM [14], GFSDCF
[L], LDES [53], UDT [53], STRCF [32], ARCF [3]], GCT [52], SiamRPN++ [45], SiamRPN
[13]], DaSiamRPN [6], DiMP18 and DiMP50 [46]) on this dataset. Table [3| presents the preci-
sion and success scores on 123 video sequences. DaSiamRPN [6], SiamRPN++ [45] and their
predecessor SiamRPN [13]] adopt a bounding-box regression-based target estimation component.
Compared to other tracking methods, DiMP50 [46] achieves superior tracking performance in
terms of AUC (65.4%) and precision (85.8%) indexes. While, SiamRPN++ [45]] achieves good
tracking performance in terms of AUC (61.3%) and precision (80.7%) indexes. However, the pro-
posed DIoUTrack50 with the same backbone network (ResNet50), which employs a distance-IoU
network-based bounding-box regression model for target estimation, outperforms the DiMP50
[46]] tracker and the SiamRPN++ [45] tracker, achieving an AUC of 65.5% and a precision of
86.6%. Compared to the ARCF [3]], which is a tracker specifically designed to track targets in a
drone scenario. Our DIoUTrack achieves an improvement of more than 15% in each index.

Table 3: Comparison results on UAV 123 dataset. The top-3 scores are highlighted in red, blue and , respectively.
Trackers DIoUTrack18 DIoUTrack50 DiMP18 DiMP50 ATOM GFSDCF LDES UDT STRCF ARCF GCT SiamRPN++ SiamRPN DaSiamRPN
; Ours Ours [46] [46] [14] (L IS5 (530 1321 (31 [52] [45] [L3] [6]
Precision 86.6 83.0 85.8 844 76.7 70.0 66.7 67.8 67.6 73.2 80.7 79.6 74.8
Success 65.5 654 632 534 492 479 477 47.0 50.8 61.3 58.6 52.7

Experiment on TrackingNet [18] dataset: TrackingNet is containing a test set of 511 video
sequences. To verify the tracking results of our DIoUTrack, we make some comparisons of its
performance on the TrackingNet test set with several state-of-the-art trackers, namely ATOM
[14], SPM [56]], GFSDCF [1], C-RPN [57], UpdateNet [58], DiMP18 [46], DIMP50 [46]], UPDT
[S9]], ECO [60], SiamRPN++ [45] and DaSiamRPN [6]]. Table 4| presents the comparison results
in precision score, normalized precision score, and success score. From this table, it is evident
that our DIoUTrack50 achieves the best scores in these three metrics. In terms of precision, our
DIoUTrack50 outperforms the second-best tracker, DIMP50 [46], by 1.3%; moreover, compared
to the Siamese framework-based DaSiamRPN [6] tracker, the proposed DIoUTrack50 achieves a
greater than 18% improvement in success and an improvement of over 28% in precision. Finally,
compared with the IoUNet-based ATOM [14] tracker, our DIoUTrack18 with the same back-
bone network (ResNetl8) achieves an improvement of more than 2% on each index. All of these
comparative results show that the adopted Distance-IoU loss can effectively improve the target
bounding-box regression model for accurate target location and estimation.

Experiment on LaSOT [19] dataset: The LaSOT dataset is that consists of 1,400 video se-
quences, with more than 3.5M image frames, and 280 videos in the testing set. To validate the
tracking accuracy, we conduct several experimental comparisons on LaSOT testing set in order to
assess our proposed DIoUTrack alongside some state-of-the-art tracking methods, namely MD-
Net [5], ECO [60], CFNet [61], PTAV [54], BACF [2], DSiam [62], StructSiam [63], VITAL [64],
STRCF [32]], TRACA [65], SiamRPN++ [45], ASRCF [11]], GCT [52], ATOM [14], DiMP18 [46],
DiMP50 [46], UpdateNet [58]], ROAM [66], SiamBAN [67], SiamCAR [68], LTMU [69], CLNet
[70] and Ocean [71]]. Table[5|present the results of this comparison. Among these compared track-
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Table 4: Comparison results on TrackingNet test set. The top-3 scores are highlighted in red, blue and , respec-
tively.

DIoUTrack18 DIoUTrack50 ATOM SPM GFSDCF C-RPN UpdateNet DiMP18 DiMP50 UPDT ECO SiamRPN++ DaSiamRPN

Trackers

Ours Ours 114] [56] 104 [57] 58] [46] [46]  [59] [60] [45] [6]
Precision 67.4 70.0 64.8 66.1 56.6 61.9 62.5 66.6 55.7 49.2 69.4 41.3
Norm. Prec. 79.3 81.2 771 77.8 71.8 74.6 75.2 75.8 80.1 70.2 61.8 60.2
Success 72.6 74.9 70.3 71.2 60.9 66.9 67.7 72.3 740 61.1 554 56.8

ers, the DiIMP50 [46] obtains the second best precision, normalized precision and success scores.
In contrast, our DIoUTrack50 outperforms the DiMP50 [46] tracker on each performance metric
item, which fully proves the effectiveness of our tracker.

Table 5: Comparison results on LaSOT dataset. The top-3 scores are highlighted in red, blue and , respectively.
Trackers Reference Precision scores Normalized Precision scores Success scores
MDNet [5] CVPR2016 37.0 37.3 39.7
ECO [60] CVPR2017 30.2 30.1 32.4
CFNet [61] CVPR2017 26.3 25.9 27.5
PTAV [54] ICCV2017 24.5 25.4 25.0
BACEF [2] ICCV2017 23.6 23.9 25.9
DSiam [62] ICCV2017 31.8 32.2 33.3
StructSiam [63] ECCV2018 32.6 33.3 33.5
VITAL [64] CVPR2018 36.2 36.0 39.0
STRCEF [32] CVPR2018 29.6 29.8 30.8
TRACA [63] CVPR2018 23.0 22.7 25.7
SiamRPN++ [45] CVPR2019 46.7 49.1 49.6
ASRCEF [11] CVPR2019 32.8 33.1 34.4
GCT [52] CVPR2019 32.8 33.1 34.4
ATOM [14] CVPR2019 47.9 50.5 51.4
DiMP18 [46] ICCV2019 51.1 54.1 53.7
DiMP50 [46] ICCV2019 53.8 56.9 57.1
UpdateNet [58]  ICCV2019 44.2 45.9 47.5
ROAM [66] CVPR2020 35.8 36.8 39.0
SiamBAN [67] CVPR2020 49.1 52.1 51.4
SiamCAR [68] CVPR2020 48.1 51.0 50.7
LTMU [69] CVPR2020 50.8 53.5 53.9
CLNet [70] ECCV2020 47.0 494 49.9
Ocean [71] ECCV2020
DIoUTrack18 Ours 51.6 54.7 54.7
DIoUTrack50 Ours 54.6 57.7 57.9

Experiment on GOT10k [20] dataset: This GOT10k test set includes 180 video sequences for
evaluation of tracking performance. We conduct experimental comparisons on GOT10k test set
to evaluate the tracking performance of our DIoUTrack relative to other state-of-the-art trackers,
namely MDNet [5], ECO [60], DSiam [62], DAT [72], DeepSTRCEF [32], STRCF [32], SASiamP
[44], SASiamR [44], MemDTC [73], MetaSDNet [12], RT-MDNet [74], LDES [55]], SiamDW
[43], SPM [56], ATOM [14], DiMP18 [46], DiMP50 [46], SiamCAR [68], ROAM [66], and Ocean
[71]. The comparison results are presented in Table [ The ATOM tracker obtains an average
overlap score of 55.6%; however, our DIoUTrack 18 with the same backbone network (ResNet18)
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achieves a 3.9% performance improvement over the ATOM tracker, as well as faster tracking
speed. Meanwhile, our DIoUTrack50 achieves the best AO score and SRy 59 score. Although our
tracking speed is slightly lower than that of SPM [56] tracker, in terms of tracking accuracy, our
tracker obviously exceeds the SPM [56]] tracker in each indicator.

Table 6: Comparison results on GOT10k dataset. The top-3 scores are highlighted in red, blue and , respectively.

Trackers Reference Average Overlap (AO) Success Rateg.50 (SRp.50) Success Rateg.75 (SRo.75) Speed
MDNet [5] CVPR2016 35.2 36.7 13.7 0.95
ECO [60] CVPR2017 39.5 40.7 17.0 2.21
DSiam [62] ICCV2017 41.7 46.1 14.9 3.78
DAT [72] NIPS2018 41.1 43.2 14.5 0.08
DeepSTRCF [32] CVPR2018 44.9 48.1 16.9 10.70
STRCEF [32] CVPR2018 37.7 38.7 15.1 3.06
SASiamP [44] CVPR2018 44.5 49.1 16.5 25.40
SASiamR [44] CVPR2018 44.3 49.2 16.0 5.13
MemDTC [73] ECCV2018 46.0 52.3 19.3 0.35
MetaSDNet [12] ECCV2018 40.4 42.3 15.6 0.53
RT-MDNet [74] ECCV2018 40.4 42.4 14.7 7.85
LDES [55] AAATI2019 35.9 36.8 15.3 1.23
SiamDW [43]] CVPR2019 41.1 45.6 15.4 12.00
SPM [56] CVPR2019 51.3 59.3 35.9 72.30
ATOM [14] CVPR2019 55.6 63.4 40.2 20.71
DiMP18 [46] ICCV2019 57.9 67.2 44.6 34.05
DiMP50 [46] ICCV2019 61.1 49.2 43.0
SiamCAR [68] CVPR2020 56.9 67.0 41.5

ROAM [66] CVPR2020 43.6 46.6 16.4 13.00
Ocean [71] ECCV2020 61.1 72.1 47.3 44.20
DIoUTrack18 Ours 59.5 70.4 44.0 53.46
DIoUTrack50 Ours 61.4 73.7 47.3 44.15

Experiment on VOT2018 [21] dataset: VOT2018 is containing 60 test video sequences, and
trackers are measured using the expected average overlap (EAO), robustness and accuracy. We
make some comparisons of our tracker with several state-of-the-art trackers, namely ATOM [14]],
DiMP18 [46], DIMP50 [46], PrDiMP18 [47], PrDiMP50 [47] DaSiamRPN [6], SiamRPN++ [43]],
UPDT [359] and Ocean [71] on this test set. The comparison results are shown in Table [/l Our
DIoUTrack18 has the best accuracy score compared to other trackers. Our DIoUTrack18 adopts
the same backbone network as ATOM [14]], DiMP18 [46] and PrDiMP18 [47] trackers, and the
EAO score and accuracy score are all higher than these trackers, which significantly indicates that
our proposed method can bring more accurate tracking results.

Experiment on VOT2019 [22] dataset: VOT2019 has the same data set size as VOT2018, and

Table 7: Comparison results on VOT2018 dataset.
DIoUTrack18 DIoUTrack50 ATOM DiMP18 DiMP50 PrDiMP18 PrDiMP50 DaSiamRPN SiamRPN++ UPDT Ocean

Trackers

Ours Ours [14] [46] [46] [47] [47] [6] [45] 1591 (71
EAO (1) 0.435 0.444 0.401 0402 0.440 0.385 0.383 0.414 0.378 0.467
Robustness ({) 0.185 0.143 0.204 0.182  0.153 0.217 0.276 0.234 0.184 0.169
Accuracy (1) 0.619 0.590 0.594  0.597 0.618 0.586 0.600 0.536 0.598
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Table 8: Comparison results on VOT2019 dataset.
DIoUTrack18 DIoUTrack50 ATOM DiMP18 DiMP50 PrDiMP18 PrDiMP50 TADT SiamRPN++ MemDTC Ocean

Trackers

Ours Ours [47) (7 [45] 1731
EAO (1) 0.298 0380 0299 0318 0368 0314 0.268 0207  0.285 0.228  0.327
Robustness ()~ 0.393 0.261 0411 0369 0278 0355 0429 0677 0482 0.587  0.376
Accuracy (1) 0.609 0609 0606 0595 0597 0611 0572 0516 0.599 0485  0.590

‘,g/
-"'!;-” | -ar

— DIoUTrack50 —SiamRPN++ —PrDiMP50 —DiMP50

Figure 5: Qualitative comparison (sequences from top to bottom are: bird1, matrix, motorrolling, skating1 and soccer
selected from the OTB100 dataset).

trackers are also evaluated using the expected average overlap (EAO), robustness and accuracy.
We make some comparisons of our tracker with several state-of-the-art trackers, namely ATOM
[14], DiMP18 [46]], DiIMP50 [46], PrDiMP18 [47], PrDiMP50 [47]], TADT [[7]], SiamRPN++ [43],
MemDTC and Ocean on this test set. The comparison results are shown in Table @
Our DIoUTrack50 has the best EAO score compared to other trackers. Our DIoUTrack50 adopts
the same backbone network as DiMP50 [46], PrDiMP50 [47] and SiamRPN++ [43]] trackers, and
the EAO score and accuracy score are all higher than these trackers, which also indicates that our
proposed method can bring more accurate tracking results.
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4.4. Qualitative comparison

To visually demonstrate tracking results, we present a qualitative comparison of our DIoUTrack50
to some state-of-the-art tracking methods, namely SiamRPN++ [45], PrDiMP50 [47/] and DiMP50
[46]]. All of these trackers utilize the same backbone network: ResNet50. Figure [5] presents these
visual comparison results on several of the most challenging sequences selected from the OTB100
[16] dataset. For the DiMP50 [46] tracker, it interferes easily in the scenes of occlusion, fast
motion, background cluster, and deformation (e.g., bird1, and soccer). One explanation for this
drawback is that it adopts the bounding-box regression model improved by an loUNet, meaning
that it is unable to locate the target accurately in some complex tracking scenes. By contrast, the
proposed DIoUTrack50 adopts a distance-IoU network to improve the bounding-box regression
model; this means that when the IoU score is constant, our model selects the candidate with the
more accurate center position as the target. Meanwhile, the PrDiMP50 [47/]] tracker can not achieve
ideal tracking results in illumination variation, deformation, scale variation and other aspects of
tracking scenarios (e.g., bird1, matrix and soccer). Moreover, the SiamRPN++ [45]] tracker read-
ily interferes in the scenes of fast motion, scale variation, and deformation (e.g., motorrolling,
skating1 and soccer); by contrast, our DIoU-based DIoUTrack50 obtains accurate tracking results
on these testing video sequences. In summary, compared with these state-of-the-art trackers, our
proposed tracker produces more accurate boundary boxes and tracking results.

5. Conclusions

In this work, we propose an accurate bounding-box regression tracking method based on the
distance-intersection-over-union (DIoU) loss. The proposed tracker comprises two components:
an estimation component and a classification component. The former is trained offline in order
to predict the DIoU overlap score between the target ground-truth and the predicted bounding
box. Compared with the IoU loss, the adopted DIoU loss can make the prediction result closer
to the real target in the training stage, which can predict the target boundary box more accurately
in the tracking process. While the classification component is trained online using the Conjugate-
Gradient-based method, resulting in a fast-tracking speed. Extensive experimental results on seven
challenging benchmarks show that our proposed method obtains competitive tracking results com-
pared with state-of-the-art trackers. Our future work will focus on how to better use large-scale
unlabeled data to train the CNN model of the tracker. We hope to apply an unsupervised domain
adaptation method for the tracker to achieve this goal.
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