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Abstract—Recent years have witnessed the rapid development
of image storage and transmission systems, in which image
compression plays an important role. Generally speaking, image
compression algorithms are developed to ensure good visual
quality at limited bit rates. However, due to the different
compression optimization methods, the compressed images may
have different levels of quality, which needs to be evaluated
quantificationally. Nowadays, the mainstream full-reference (FR)
metrics are effective to predict the quality of compressed images
at coarse-grained levels (the bit rates differences of compressed
images are obvious), however, they may perform poorly for fine-
grained compressed images whose bit rates differences are quite
subtle. Therefore, to better improve the Quality of Experience
(QoE) and provide useful guidance for compression algorithms,
we propose a full-reference image quality assessment (FR-IQA)
method for compressed images of fine-grained levels. Specifically,
the reference images and compressed images are first converted
to Y CbCr color space. The gradient features are extracted
from regions that are sensitive to compression artifacts. Then
we employ the Log-Gabor transformation to further analyze
the texture difference. Finally, the obtained features are fused
into a quality score. The proposed method is validated on
the fine-grained compression image quality assessment (FGIQA)
database, which is especially constructed for assessing the quality
of compressed images with close bit rates. The experimental
results show that our metric outperforms mainstream FR-IQA
metrics on the FGIQA database. We also test our method on
other commonly used compression IQA databases and the results
show that our method obtains competitive performance on the
coarse-grained compression IQA databases as well.

Index Terms—Image compression, full-reference, image quality
assessment, fine-grained

I. INTRODUCTION

A. Motivation

With the rapid development of mobile devices and social
media, the last decade has witnessed the blowout develop-
ment of image services. To improve the viewer’s Quality
of Experience (QoE), images are expected to be transmitted
with better-perceived quality under the constraints of limited
bandwidth and demand for lower latency, which brings a huge
challenge for image compression techniques along with the
quality assessment for image compression [1]–[7]. Although
the visual quality of compressed images is extremely sensitive
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(a) Coarse-grained1 (b) Coarse-grained2

(c) Fine-grained1 (d) Fine-grained2

Fig. 1. Example of images with fine-grained and coarse-grained compression
levels. Specifically, (a) and (b) represent the images with coarse-grained
compression levels, and (c) and (d) are images compressed with fine-grained
levels.

to the bit rate (higher bit rate usually indicates higher visual
quality), the bit rate is fixed for image compression in most
situations, which means the image compression systems need
to obtain better visual quality of compressed images with fixed
bit-rate level. In this paper, coarse-grained compressed images
refer to images that are compressed with obviously different bit
rates while fine-grained compressed images represent images
that are compressed with close or the same bit rate.

JPEG and JPEG2000 are two of the most highly accepted
image compression techniques, which achieve required com-
pression rates by introducing information loss to the com-
pressed images [8]. In these image coding standards, various
coding parameters and modes are utilized to compress the
images, which can lead to distinct performance improvements
at fixed bit rate. In JPEG coding standard [9], the customized
quantization table is established based on subjective judgment.
The open-source and more developed JPEG library, lib-jpeg
[10], further employs 8 quantization tables based on various
optimization criteria. In these compression systems, MSE
(mean squared error) and PSNR (peak-signal-to-noise-ratio)
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are mostly utilized as the quality assessment metrics and
optimization criterion [11] [12]. However, it has been proven
that PSNR and MSE may not be effective enough to reflect
the human vision system (HVS) on the quality of fine-grained
compressed images [13], which indicates that the compression
systems using such criterion may sacrifice the quality-aware
information to compromise with the compression bit rate.
Therefore, better quality assessment methods are needed to
optimize such compression systems.

B. Related Works

Image quality assessment (IQA) is developed to evaluate the
perceived visual quality based on human vision system (HVS)
[14]–[24], which has a wide range of application in many
image processes including image compression. To keep more
consistent with HVS, a large number of IQA metrics have been
developed in recent decades [25]–[35]. Generally speaking,
IQA can be divided into subjective quality assessment and
objective quality assessment according to the involvement
of humans [17]. The subjective quality assessment is more
accurate but is very expensive and time-consuming, therefore,
objective quality assessment gains more research interest.
Specifically, objective quality assessment can be divided into
three categories: full-reference (FR) IQA methods, reduced-
reference (RR) IQA methods, and no-reference (NR) IQA
methods [36]. FR-IQA methods work only when the pristine
reference image is available while RR-IQA and NR-IQA meth-
ods operate with part of reference information and completely
no reference information. Despite that NR-IQA methods are
more robust facing various application scenarios, the reference
images are usually easy to access in compression systems.
Thus in this paper, we mainly focus on FR-IQA methods,
which are more commonly used in compression systems.

The popular peak-signal-to-noise-ratio (PSNR) index quan-
tifies reconstruction quality for images by measuring the dif-
ference between pixels. Another well-known FR-IQA method
is structural similarity index (SSIM) [25], which calculates
the quality scores by comparing the correlation of lumi-
nance and contrast based on the assumption that HVS is
sensitive to the local structures. Then some extended SSIM
methods are proposed. Multi-Scale SSIM (MS-SSIM) [27]
makes further improvements by calculating SSIM of different
image scales. Feature similarity index (FSIM) [29] combines
phase and gradient features’ similarity to obtain the quality
levels of distorted images. Information Weighted SSIM (IW-
SSIM) [28] uses spatially varied weights to gain better per-
formance. Gradient Magnitude Similarity Deviation (GMSD)
[31] achieves good performance by making use of gradient
magnitude information. Apart from SSIM’s extensions, Vi-
sual Saliency-Induced index (VSI) [26] proposes to employ
saliency information to optimize the quality assessment pro-
cedure. Information Fidelity Criterion (IFC) [32] utilizes the
natural scene statistics (NSS) to quantify the distortions of
images, which proves to be very effective for IQA tasks.
With the development huge success of convolution neural

networks (CNN), some deep learning-based methods have
been proposed to deal with IQA problems, such as PieAPP
[34] and LPIPS [35]. These methods achieve outstanding
performance, however, they heavily rely on the large-scale
IQA databases and may be less effective to predict the quality
of images outside the range of training.

The FR-IQA methods mentioned above are proven to be
consistent with human perception and are able to accurately
predict the quality levels of distorted images, including com-
pressed images. Although they have obtained excellent per-
formance on IQA databases like LIVE [37], TID2013 [38],
and CSIQ [39], they fail to correctly evaluate the quality
of fine-grained compressed images with subtle differences in
some piratical situations, which is demonstrated in Section
III. The reason is that the images in such IQA databases
are usually compressed at relatively coarse-grained levels,
which means that the bit rate and compression distortions of
evaluated images are obviously different. Therefore, the IQA
methods developed on such coarse-grained databases may not
be effective for fine-grained compressed images. This brings
a great challenge for image compression quality assessment
because the compression systems are often required to obtain
the satisfying visual quality of images at fixed bit rate. As
illustrated in Fig. 1, the image (a) is compressed at a bit rate of
2.67 bits per pixel (bpp) and the image (b) is compressed at a
bit rate of 1.96 bpp. It can be easily observed that these coarse-
grained compressed images have obvious distortion differences
such as blur and structural damage, and we can confidently
draw the conclusion that image (a) obtains better visual quality
than image (b). The images (c) and (d) are compressed at a
bit rate of about 2.37 bpp using two different optimization
methods and it is relatively difficult to distinguish the visual
quality differences.

C. Our Approach

Normally speaking, people usually perceive the compressed
images in both coarse and fine manners. They not only assess
the obvious compression artifacts such as blur and structure
damage, at the same time, they also judge the quality through
the indistinct details of compressed images. Therefore, to
correspond with the human perception process of compressed
images, we propose a novel FR-IQA metric for compressed
images by extracting coarse and fine features from two aspects:
image gradient and texture.

The gradient information is sensitive to obvious distortions
such as structural damage and block effect [31], [40] while
texture information can help further identify the tiny compres-
sion artifacts such as texture shift [41], [42]. Considering such
situations, the reference images and compressed images are
first converted from RGB color space to Y CbCr color space,
which has been employed in many compression systems. Then
the gradient-based features are extracted by calculating the sta-
tistical parameters of the gradient similarity maps in selected
regions. Specifically, we employ frequency information ob-
tained also by image gradient to describe the distortion-aware
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Fig. 2. The framework of the proposed method.

regions. The texture-based features are extracted by computing
the statistical parameters of the Log-Gabor similarity maps
with different frequency levels and orientations. Finally, the
quality score is obtained by fusing the feature similarities
mentioned above.

The proposed method is tested on the fine-grained com-
pression IQA (FGIQA) database and the experimental results
show that our method achieves a better correlation with HVS
than other state-of-the-art FR-IQA methods. The ablation
experiment and statistical test further confirm the contributions
of different feature groups and the effectiveness of our method.
We also validate our method on other popular IQA databases in
which the images are compressed at relatively coarse-grained
levels and the results show that the proposed method obtains
strong generalization ability on coarse-grained compressed
images.

This paper is based on our previous paper [43]. Compared
with previous work, we make several new contributions.
Most of the contributions have been described above, and a
summarization is given here. First, we connect the process
of extracting features with the coarse and fine perception
manners. Second, we make more detailed discussions and
show more figures in the proposed method explanation. Third,
we conducted the parameter sensitivity experiment to obtain
the optimal parameters. Fourth, the statistical test and ablation
experiment are conduct to further test the effectiveness and
contributions of the extracted features in the proposed method.

The rest of the paper is organized as follows. Section
II describes the proposed method. Section III presents the
experiment setup and the experimental results. Section IV
concludes the paper.

II. PROPOSED METHOD

The framework of the proposed method is clearly shown
in Fig. 2. It can be seen that the proposed method first
extracts features from gradient and texture information, and
the final quality score is then computed by incorporating the
similarities of gradient and texture feature maps. The gradient-
based features and texture-based features exactly correspond
to the process of perceiving compressed image quality from
coarse and fine levels. Specifically, the gradient features can
help reflect obvious distortions [31], [40] such as structural
damage and block effect while texture information is sensitive
to the tiny compression artifacts [41], [42] such as texture
shift.

A. Pre-processing

Since in most compression algorithms such as JPEG and
JPEG2000, the image is first converted from RGB color space
to Y CbCr color space, where Y indicates the luminance com-
ponent, and Cb and Cr indicate the blue-difference and red-
difference chroma components respectively. Thus, the same
color space transformation is utilized as the pre-processing,
which can be denoted as:

Y = 0.257 ·R+ 0.564 ·G+ 0.098 ·B + 16,

Cb = −0.148 ·R− 0.291 ·G+ 0.439 ·B + 128,

Cr = 0.439 ·R− 0.368 ·G− 0.071 ·B + 128,

(1)

where R,G,B represent the corresponding RGB color chan-
nels, and we refer to the Y,Cb, Cr color channels of the
reference and distorted images as Yr, Cbr, Crr, Yd, Cbd, Crd.
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(a) The reference image. (b) (c) (d) (e)

(f) The distorted image. (g) (h) (i) (j)

Fig. 3. An example of regions with compression distortion. The red rectangle illustrates the high-frequency area where ringing and blur occur, while the blue
rectangle illustrates the low-frequency area where block effect and structure over-restoration can be seen. (b) and (g) are enlarged illustrations of red rectangle
areas while (d) and (i) are enlarged illustrations of blue areas respectively. (c), (e), (h), and (j) are the corresponding gradient maps for the above illustrations.

B. Gradient-based Features
The gradient information has been proven to be very ef-

fective in many IQA methods [31] [40]. As can be seen in
Fig. 3, the gradient maps can effectively reflect the artifacts
caused by compression such as block damage and structural
damage. These distortions are obvious to identify and can be
easily quantified to function as the benchmark perception of
fine-grained compressed images. To emphasize the importance
of regions that are more sensitive to compression distortion,
we employ the statistical parameters of the gradient similarity
map in such regions for evaluation.

Given the reference luminance channel Yr and the distorted
one Yd, a Sobel gradient operator is first applied to calculate
the gradient maps. Then the gradient magnitude maps can be
computed as:

Gr =
√

(Yr ⊗ Sx)
2

+ (Yr ⊗ Sy)
2
,

Gd =
√

(Yd ⊗ Sx)
2

+ (Yd ⊗ Sy)
2
,

(2)

where Gr and Gd represents the gradient magnitude maps of
Yr and Yd, the symbol ⊗ denotes the convolution operation,
and Sx and Sy are the horizontal and vertical Sobel operators,
which are defined as:

Sx =

 − 1
4 0 − 1

4
− 1

2 0 − 1
2

− 1
4 0 − 1

4

 ,Sy =

 − 1
4 − 1

2 − 1
4

0 0 0
− 1

4 − 1
2 − 1

4

 . (3)

With the computed gradient magnitude maps, the gradient
similarity map Sg can be simply calculated as:

Sg =
2Gr ·Gd + c1
G2
r +G2

d + c1
, (4)

where c1 is a small constant value to avoid instability. Fig. 4
illustrates two typical kinds of areas where structure distortion

usually occurs: one is the high-frequency area where structural
damage and information loss may be easily perceived; the
other is the relatively low-frequency area where the unexpected
block and the structure over-restoration may be found. Specif-
ically, the area can be represented as:

φ1 ={(i, j) |Gr(i, j)>E (Gr)
⋃
Gd(i, j)>E (Gd)},

φ2 ={(i, j) |Gd(i, j)−Gr(i, j)>E (Gd −Gr)⋂
Gr(i, j)<E (Gr)},

(5)

where φ1 represents the high-frequency area in which the
pixel’s gradient of the reference image or distorted image is
larger than the average value of the corresponding gradient
maps Gr or Gd, and φ2 represents the low-frequency area
in which the gradient difference of a pixel is larger than
the average gradient difference and the pixel’s gradient of
the reference image is smaller than the average value of
gradient map Gr. Thus the mean and standard deviation of
the gradient similarity maps in such areas are employed as
the final features, which can be derived as:

Eg =
1

Tφ

∑
(i,j)∈Φ

Sg(i, j),

Stdg =

√√√√ 1

Tφ

∑
(i,j)∈Φ

(Sg(i, j)−Eg)2,

φ = φ1

⋃
φ2,

(6)

where Eg and Stdg denote the mean and the standard
deviation of the gradient similarity maps in area φ, area φ
is the union of φ1 and φ2, Tφ indicates the number of the
pixels in φ, and (i, j) are the indices of the image pixels.
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(a) Ref (b) 0◦ (c) 45◦ (d) 90◦ (e) 135◦

(f) Dis1 (g) 0◦ (h) 45◦ (i) 90◦ (j) 135◦

(k) Dis2 (l) 0◦ (m) 45◦ (n) 90◦ (o) 135◦

Fig. 4. An illustration of the reference image and two distorted images of bit rate b1 along with their Log-Gabor maps of 4 different orientations at frequency
scale 2

3
f0. Specifically, (f) is the compressed image with the uniform matrix as the optimization principle while (k) is the compressed image with MS-SSIM

[27] as the optimization principle respectively.

C. Texture-based Features

With the coarse perception features discussed above, we
focus on the texture-based features in this section. For the
quality assessment of compressed images, the texture is also
a significant aspect, especially when the quality differences
are subtle. Hence, we propose to use the Log-Gabor filter
as the texture-based features extractor. The Log-Gabor filter
is specially introduced to deal with the feature analysis [44]
and more importantly, it can determine whether there is any
certain frequency content in specific directions in the localized
region of an image. Fig. 4 shows the illustration of fine-grained
compressed images with uniform matrix and MS-SSIM as the
optimization principle. Although the two compressed images
share almost the same bit rate, the texture maps vary from
each other. Different texture shifts can be observed among
all the four orientations’ texture maps, which indicates that
texture information has a good ability to catch the slight
artifacts of compression. Then, the reference and compressed
images are first decomposed through a 2-D oriented Log-
Gabor transformation, which can be derived as:

G(f, θ)=exp

(
− (log (f/f0))

2

2 (log (σf/f0))
2

)
·exp

(
− (θ − θ0)

2

2σ2
θ

)
, (7)

where f and θ indicate the frequency and orientation of
texture, f0 and θ0 denote the center frequency and center
orientation, and δf and δθ are width parameters for frequency
and orientation. In this paper, parameters mentioned above are

set to cover five frequency scales ( 2
3f0, 4

3f0, 2f0, 8
3f0, 10

3 f0)
with each band spanning an approximately 2

3f0 bandwidth.
These frequency values are chosen to empirically reduce
the effect of overlap between bands and to cover the major
frequency spectrum that counts for human vision system [30].
Four orientations (0◦, 45◦, 90◦, 135◦) of texture are included in
experiment, which tends to be a valid setup for natural images.

All of the Y CbCr color channels of the reference and
compressed images are filtered through the Log-Gabor filter
with parameters mentioned above, which means that there
are a total of 120 = 5 × 4 × 2 × 3 (frequency scales ×
orientations × reference and compressed images × Y CbCr
color channels) Log-Gabor maps computed. Since the Log-
Gabor transformation results consist of real and imaginary
parts, we utilize the amplitude of the Log-Gabor maps of
reference and distorted images with all Y CbCr channels as the
feature maps, which can be denoted as Yra, Cbra, Crra, Yda,
Cbda, and Crda respectively. Therefore, the weighted average
sums of similarity maps for Y CbCr color space’s Log-Gabor
results are computed as the texture similarity map:

TΛ =

5∑
f=1

Wga ·
4∑
o=1

2Λra(f, o) · Λda(f, o) + c2
Λ2
ra(f, o) + Λ2

da(f, o) + c2
,

Λ ∈ {Y,Cb, Cr},

(8)

where TΛ denotes the texture similarity map for Y CbCr
channels, Λ is the indicator of specific Y CbCr channels, c2 is
a small constant value to avoid instability. Wga stands for the
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weight for each frequency component. Then the final texture
similarity map can be computed as:

St =

√
WY · T 2

Y +WCb ·
1

4
T 2
Cb +WCr ·

1

4
T 2
Cr, (9)

where WY , WCb, and WCr indicate the weight for TY , TCb,
and TCr components respectively. Finally, the texture features
can be computed as the mean and standard deviation of the
texture similarity map:

Et =
1

T

∑
St(i, j),

Stdt =

√
1

T

∑
(St(i, j)−Et)2,

(10)

where St stands for the texture similarity map, Et and Stdt
are the mean and standard deviation of the texture similarity
map, T indicates the number of the pixels in the image, and
(i, j) are the indices of the pixels.

D. Overall Quality Score Computation

After extracting the gradient-based and texture-based fea-
tures, the final quality score can be computed using these
features:

Q =
Eαg · E

β
t

Stdαg · Std
β
t

, (11)

where Q denotes the overall quality score, Eg , Et, Stdg , and
Stdt stand for the extracted features described in the above
sections, α, and β are the parameters to control the influence
of each feature group. More specifically, Eg and Et describe
the mean value of corresponding similarity maps, which are
positively correlated with the score. However, Stdg and Stdt
describe the fluctuation of similarity, which are thus negatively
correlated with the score. To further test the influence of
different values of α and β, we also conduct the parameter
sensitivity experiment in Section III-F.

III. EXPERIMENT VALIDATION

A. Validated Database

The proposed method is mainly validated on the fine-
grained IQA database (FGIQA) [13], which is specially built
for compressed images with fine-grained quality differences.
In the FGIQA database, 100 reference images are selected and
compressed into three constant target bit rates (1.96 bpp, 2.37
bpp, 2.67 bpp) by four different JPEG optimization methods,
which generates 1,200 (100×3×4) compressed images in total.
To distinguish subtle differences, the pair-wise comparison
subjective experiments are conducted by 30 participants for
every group of 4 compressed images. The final quality ranks
of the fine-grained compressed images are generated by the
Bradley-Terry model [45] from the pair-wise comparisons.

B. Experiment Criteria and Setup

To test the effectiveness of the IQA methods for fine-grained
compression quality assessment tasks, 3 mainstream criteria
are selected for comparing the correlation between the pre-
dicted scores and ranks, which include Kendall’s Rank Order
Correlation Coefficient (KRCC), Spearman Rank Correlation
Coefficient (SRCC), Pearson Linear Correlation Coefficient
(PLCC). Specifically, KRCC describes the similarity of the
orderings, SRCC is used to measure the correlation of ranks,
and PLCC denotes the linear correlation. Note that an excellent
model should obtain values of SRCC, KRCC, and PLCC close
to 1.

Considering that the pair-wise comparison subjective ex-
periments are conducted within each group of 4 compressed
images, the KRCC, SRCC, and PLCC values are calculated
for each group as well. Then, the average KRCC, SRCC, and
PLCC values of all compressed image groups for certain bit
rate are recorded as final experimental results. For example,
we calculate the KRCC values of all 100 compressed image
groups for b1 bit rate and record the average result as the final
KRCC value for b1.

We set the weight Wga described in Eq. (8) as (0.5, 0.75, 1,
5, 6). The weight parameters are set to increase the influence of
high frequency texture because high-frequency texture usually
has a greater impact on visual quality than low-frequency
texture for fine-grained compressed images. f and o represent
the serial number of frequency and orientations. Considering
that the HVS is more sensitive to the Y channels and the
perceived difference of the other two channels is roughly the
same, the weights (WY , WCb, WCr) for Y CbCr components
are empirically set as (1, 0.25, 0.25). Through experiment, we
obtain the optimal set of α and β as (0.1, 0.6) for the FGIQA
database, which is further discussed in Section III-F.

Additionally, we employ the similar procedures described
in [46] to fit the predicted scores to real quality values with a
five-parameter logistic function which can be derived as:

V = τ1

(
1

2
− 1

1 + eτ2(q−τ3)

)
+ τ4s+ τ5 (12)

where V and q represent the fitted scores and predicted scores,
{τi | i = 1, 2, . . . , 5} are the corresponding parameters.

C. Experiment Competitors

To compare the effectiveness of different IQA methods, we
choose several state-of-the-art FR-IQA methods for compari-
son, which can be categorized into two types:
• Hand-crafted-based methods: PSNR, SSIM [25], VSI

[26], MS-SSIM [27], IW-SSIM [28], FSIM [29], MAD
[30], GMSD [31], and IFC [32].

• CNN-based methods: PieAPP [34] and LPIPS [35].
Specifically, these CNN-based methods are tested with
default parameters.

D. Experimental Performance

The experimental results of the proposed methods and other
selected state-of-the-art FR-IQA models are listed in Table I,
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TABLE I
VALIDATED RESULTS ON THE FGIQA DATABASE.

Mehtods
SRCC KRCC PLCC

b1 b2 b3 average b1 b2 b3 average b1 b2 b3 average

PSNR 0.5021 -0.6857 -0.8373 -0.3403 0.4467 -0.5661 -0.7702 -0.2965 0.5279 -0.6777 -0.8498 -0.3332

SSIM 0.6362 0.2194 -0.4006 0.1517 0.5412 0.2203 -0.2647 0.1656 0.8086 0.8515 0.8004 0.8202

VSI 0.7885 0.7825 0.6891 0.7534 0.6974 0.6991 0.6368 0.6778 0.8081 0.8928 0.6998 0.8002

MS-SSIM 0.8965 0.8649 0.7959 0.8524 0.8607 0.8098 0.7432 0.8046 0.9157 0.9163 0.8420 0.8913

IW-SSIM 0.7467 0.8644 0.8771 0.7237 0.7933 0.8107 0.6361 0.8217 0.7851 0.6545 0.8183 0.7526

FSIM 0.7545 0.7872 0.3999 0.6472 0.6907 0.7042 0.5498 0.6482 0.8185 0.8780 0.7135 0.8034

MAD 0.9352 0.8295 0.6169 0.7938 0.8765 0.7248 0.5528 0.7180 0.9074 0.8286 0.6031 0.7797

GMSD 0.7845 0.8029 0.8659 0.8178 0.6907 0.7164 0.8198 0.7423 0.8313 0.9097 0.8727 0.8712

IFC 0.8113 0.8612 0.8047 0.8257 0.7344 0.6945 0.8011 0.7433 0.7894 0.8733 0.8577 0.8401

PieAPP 0.7521 0.7941 0.7699 0.7721 0.6767 0.7101 0.6998 0.6956 0.7926 0.8666 0.8051 0.8241

LPIPS 0.6875 0.7027 0.7100 0.7001 0.6391 0.6628 0.6634 0.6651 0.7068 0.7439 0.7300 0.7269

Proposed 0.9505 0.8760 0.8671 0.8978 0.9174 0.8201 0.8035 0.8470 0.9551 0.9096 0.8749 0.9132
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E
F

G
H

I
J

K
L

(c) b3

Fig. 5. Statistical test results of the proposed method and compared methods on the FGIQA database. A black/white block means the row method is statistically
worse/better than the column one. A gray block means the row method and the column method are statistically indistinguishable. The methods denoted by
A-L are of the same order as in Table I. (a), (b), and (c) are the statistical test results for bit rates b1, b2, and b3 respectively.

where b1, b2, b3 represent the three target bit rates and the top
2 results are marked in bold for each column. According to
Table I, several observations can be made. First, the proposed
method achieves top 2 places in KRCC, SRCC, PLCC among
all three target bit rates and obtains the best performance on
average, which indicates that our method is more effective for
fine-grained compressed image quality assessment. PSNR and
SSIM are the two most widely used models for compression
systems, however, they fail to accurately predict the quality
levels of fine-grained compressed images. The reason may
be that PSNR and SSIM are developed and validated on
traditional IQA databases where the distortions are relatively
simple and the images are usually distorted with coarse-
grained levels. Then, it can be seen that although some com-
pared traditional FR-IQA methods achieve good performance
on certain bit rate, they may be less effective for other bit rate,

meaning that they could be less stable when the bit rate keeps
changing. What’s more, the CNN-based methods perform at an
intermediate level. This is because that the models are trained
on databases with coarse-grained quality levels, which results
in their being less sensitive to fine-grained compressed images’
artifacts.

The scatter plots of the proposed method and compared
FR-IQA models are illustrated in Fig. 6, where the red, blue,
and green lines are curves fitted with a five-parameter logistic
function for bit rates b1, b2, and b3. We can observe that
the scatter points are more clustered to the proposed methods’
fitted curves for all three bit rates of the FGIQA database,
which strongly validates the excellent prediction ability of
the proposed method. What’s more, statistical significance
tests are conducted to further verify the performance of the
proposed method. We use t-test as described in [46] to compare
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Fig. 6. Scatter plots of all compared methods on the FGIQA database [13]. The red, blue, and green lines are curves fitted with a five-parameter logistic
function for bit rates b1, b2, and b3.
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TABLE II
PERFORMANCE RESULTS ON OTHER COMPRESSION DATABASES.

Methods
LIVE TID2013 CSIQ

Average
JPEG JP2K JPEG JP2K JPEG JP2K

SRCC

SSIM 0.9327 0.8744 0.9150 0.9505 0.9583 0.9616 0.9321

MS-SSIM 0.8746 0.8417 0.9096 0.9049 0.9219 0.9205 0.8955

GMSD 0.9340 0.9097 0.9507 0.9657 0.9659 0.9717 0.9496

VSI 0.9236 0.8856 0.9541 0.9706 0.9623 0.9692 0.9442

MAD 0.9710 0.9411 0.9217 0.9511 0.9613 0.9752 0.9536

PieAPP 0.9395 0.9056 0.8110 0.9417 0.9456 0.9447 0.9147

Proposed 0.9730 0.9651 0.9143 0.9439 0.9622 0.9685 0.9545

KRCC

SSIM 0.7648 0.6864 0.7308 0.8062 0.8224 0.8268 0.7729

MS-SSIM 0.6850 0.6562 0.7334 0.7202 0.7540 0.7532 0.7170

GMSD 0.7646 0.7321 0.8036 0.8400 0.8387 0.8525 0.8052

VSI 0.7448 0.6963 0.8121 0.8539 0.8280 0.8473 0.7971

MAD 0.8549 0.7852 0.7238 0.8139 0.8337 0.8699 0.8136

PieAPP 0.7824 0.7351 0.6417 0.7909 0.7843 0.7870 0.7535

Proposed 0.8573 0.8389 0.7192 0.7909 0.8280 0.8516 0.8143

PLCC

SSIM 0.8631 0.8142 0.9298 0.9506 0.9360 0.9106 0.8340

MS-SSIM 0.9041 0.8753 0.9187 0.8950 0.9033 0.8777 0.8290

GMSD 0.8595 0.9137 0.9736 0.9788 0.9438 0.9633 0.8721

VSI 0.9269 0.8908 0.9479 0.9494 0.8830 0.9008 0.8098

MAD 0.8599 0.8929 0.9510 0.9663 0.9694 0.9807 0.9034

PieAPP 0.8159 0.8246 0.7783 0.9027 0.9680 0.9545 0.8740

Proposed 0.9612 0.9279 0.9461 0.9305 0.9717 0.9816 0.9531

the difference between the predicted quality scores with the
subjective ratings. The null hypothesis of the t-test is set as
the residuals of two quality metrics derived from the same
distribution and they are statistically indistinguishable with a
95% confidence. The statistical significance tests results are
shown in Fig. 5, from which we can see the proposed method
is significantly superior to most compared methods.

E. Experiment Results on Other Compression Databases

To further test the generalization ability of the proposed
method on coarse-grained compressed images, we select some
popular IQA databases for validation, which include LIVE
[37], TID2013 [38], and CSIQ [39]. The well-known LIVE
database contains 9 reference images and 779 distorted images
with five distortion types. The TID2013 database contains 25
reference images and utilizes 24 types of distortions while the
CSIQ database consists of 30 reference images and employs
six types of distortions. All the IQA databases mentioned
above include distortion types of JPEG and JPEG2000, and
we only test our method on the compression distorted images.
The parameters are set the same as discussed previously.
The final results are shown in Table II, where the methods
with the best performance are marked in bold. Some IQA
methods that are competitive on the FGIQA database are also
tested for comparison. Although the proposed method achieves

first place only on the LIVE compression database, it still
outperforms other IQA methods on average, which proves the
effectiveness and stability of the proposed method.

F. Ablation Experiment

To analyze the contributions of different groups of features
and different scales of texture, we conduct the ablation exper-
iment in this section. Specifically, ablation groups are defined
as:
• G1: Without gradient-based features;
• G2: Without region selection of gradient-based features;
• G3: Without texture-based features;
• G4: Without texture-based frequency scale 1 features;
• G5: Without texture-based frequency scale 2 features;
• G6: Without texture-based frequency scale 3 features;
• G7: Without texture-based frequency scale 4 features;
• G8: Without texture-based frequency scale 5 features;
• G9: With all features.
The results of the ablation experiment are shown in Table

III, where the best performance is marked in bold for each row.
It can be clearly observed that G9 outperforms all other groups,
which indicates that gradient-based features and texture-based
features all contribute to the final results. By comparing the
performances of G1 and G3, we can find that G1 performs
better than G2, meaning that texture-based features make more
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TABLE III
PERFORMANCE RESULTS OF ABLATION EXPERIMENT.

Criteria Group G1 G2 G3 G4 G5 G6 G7 G8 G9

SRCC

b1 0.9133 0.9425 0.6330 0.9485 0.9405 0.9345 0.9065 0.9405 0.9505

b2 0.8460 0.8700 0.8088 0.8760 0.8649 0.8620 0.8460 0.8720 0.8760

b3 0.8331 0.8271 0.7731 0.8051 0.7871 0.8391 0.8491 0.8351 0.8671

Average 0.8641 0.8799 0.7383 0.8765 0.8675 0.8785 0.8672 0.8825 0.8978

KRCC

b1 0.8837 0.9041 0.5431 0.9147 0.9144 0.8907 0.8507 0.9007 0.9174

b2 0.7901 0.8167 0.7261 0.8267 0.8098 0.8034 0.7834 0.8167 0.8201

b3 0.7935 0.7535 0.6802 0.7168 0.7002 0.7735 0.7902 0.7668 0.8035

Average 0.8224 0.8248 0.6498 0.8192 0.7991 0.8225 0.8081 0.8281 0.8470

PLCC

b1 0.9236 0.9255 0.7045 0.9532 0.9529 0.9510 0.9266 0.9252 0.9551

b2 0.8902 0.9117 0.9049 0.9013 0.9133 0.9096 0.9037 0.9113 0.9096

b3 0.8459 0.8705 0.8510 0.8619 0.8647 0.8713 0.8730 0.8711 0.8749

Average 0.8865 0.9026 0.8201 0.9055 0.9103 0.9106 0.9011 0.9025 0.9132

TABLE IV
THE AVERAGED SRCC RESULTS OF DIFFERENT VALUES OF (α,β) ON THE FGIQA DATABASE.

α
β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.8825 0.8881 0.8895 0.8932 0.8939 0.8978 0.8941 0.8925 0.8919 0.8919

0.2 0.8578 0.8825 0.8891 0.8881 0.8894 0.8894 0.8925 0.8931 0.8938 0.8938

0.3 0.8458 0.8698 0.8825 0.8871 0.8885 0.8881 0.8901 0.8888 0.8894 0.8918

0.4 0.8365 0.8578 0.8731 0.8825 0.8865 0.8891 0.8891 0.8881 0.8894 0.8894

0.5 0.8284 0.8471 0.8645 0.8771 0.8825 0.8871 0.8905 0.8878 0.8891 0.8881

0.6 0.8257 0.8458 0.8578 0.8698 0.8785 0.8825 0.8858 0.8871 0.8891 0.8885

0.7 0.8210 0.8418 0.8525 0.8625 0.8731 0.8778 0.8825 0.8865 0.8865 0.8898

0.8 0.8117 0.8365 0.8445 0.8578 0.8671 0.8731 0.8785 0.8825 0.8838 0.8865

0.9 0.8070 0.8348 0.8458 0.8525 0.8625 0.8698 0.8751 0.8791 0.8825 0.8838

1.0 0.8063 0.8284 0.8431 0.8471 0.8578 0.8645 0.8718 0.8771 0.8798 0.8825

contributions. G9’s performance is superior to G2, meaning
that the region selection of gradient-based features can help
improve the performance. Additionally, it can be seen that
G5 and G7 achieve relatively lower performance among G4-
G8, which indicates that texture-based features from frequency
scales 2 and 4 make more contributions than other frequency
scales.

G. Parameter Sensitivity

Noticing that the proposed method includes two main pa-
rameters (α, β) in Eq. (10), we decide to conduct the parameter
sensitivity experiment in this section. These two parameters
are employed to determine the significance of gradient-based
features and texture-based features. Here, we change the values
of (α, β) to test the performance of the proposed method and
obtain the optimal values of (α, β). More specifically, we vary
the parameters (α, β) both from 0.1 to 1 with a step of 0.1 and
the parameters are changed at the same time. The experimental
results of averaged SRCC are shown in Table IV, from which

we can see that the proposed method gains good stability over
the range of test parameters and the optimal values for (α, β)
are (0.1,0.6).

IV. CONCLUSION

In this paper, we discuss the quality assessment problems
of fine-grained compressed images. Fine-grained compressed
images indicate the images that are compressed with close or
the same bit rate. These images’ distortion differences are quite
subtle, thus bringing a huge challenge for the corresponding
quality assessment. Most state-of-the-art full-reference metrics
are developed on the image quality assessment databases with
coarse-grained compression levels, therefore, they may be not
effective for dealing with fine-grained compression quality
assessment.

Normally speaking, people usually perceive the compressed
images in both coarse and fine manners. People judge the
quality both through the obvious distortions and indistinct de-
tails of compressed images. Thus, we propose a full-reference
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metric to especially assess the quality levels of fine-grained
compressed images. We extract coarse and fine features
from two aspects: image gradient and texture. The gradient-
based features are sensitive to obvious distortions while the
texture-based features can identify tiny quality differences.
The gradient-based features are extracted by calculating the
statistical parameters of the gradient similarity maps in regions
selected by frequency information. The texture-based features
are extracted by computing the statistical parameters of the
Log-Gabor similarity maps with different frequency levels and
orientations. Finally, the quality score is obtained by fusing the
features mentioned above. The experimental results show that
our method outperforms all compared methods on the FGIQA
database and achieves competitive performance on other
coarse-grained compression quality assessment databases. The
ablation experiment and statistical test further confirm the
effectiveness of the proposed method. We hope our method
can help promote the development of compression systems.
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