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Abstract

Recognizing hand-sketched symbols is a definitely complex problem. The input drawings are often

intrinsically ambiguous, and require context to be interpreted in a correct way. Many existing sketch

recognition systems avoid this problem by recognizing single segments or simple geometric shapes in

a stroke. However, for a recognition system to be effective and precise, context must be exploited,

and both the simplifications on the sketch features, and the constraints under which recognition may

take place, must be reduced to the minimum.

In this paper, we present an agent-based framework for sketched symbol interpretation that

heavily exploits contextual information for ambiguity resolution. Agents manage the activity of low-

level hand-drawn symbol recognizers, that may be heterogeneous for better adapting to the

characteristics of each symbol to be recognized, and coordinate themselves in order to exchange

contextual information, thus leading to an efficient and precise interpretation of sketches. We also

present AgentSketch, a multi-domain sketch recognition system implemented according to the

proposed framework. A first experimental evaluation has been performed on the domain of UML

Use Case Diagrams to verify the effectiveness of the proposed approach.
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1. Introduction

The recognition of hand-sketched symbols is a very active research field, since it finds a
natural application in a wide range of domains, such as engineering, medicine, and
architecture [1–7]. However, it is a particularly difficult task since the symbols can be
drawn by using a different stroke-order, -number, and -direction. The difficulties in the
recognition process are often made harder by the lack of precision and by the presence of
ambiguities in messy hand-drawn sketches [8,9]. In fact, hand-sketched symbols are
imprecise in nature: corners are not always sharp, lines are not perfectly straight, and
curves are not necessarily smooth.
Usually, hand-drawn sketches consist of shapes whose meaning depends heavily on

context. For example, a single line fragment could constitute the side of a box, or a
connector between boxes, and its role could be disambiguated only by looking at
neighboring fragments. This means that, when a recognized symbol is unique to a context,
then the recognizer may exploit this information to determine the context and thereby
resolve pending recognition ambiguities. The context can also be used to recover from low-
level interpretation errors by reclassifying low-level shapes, obtaining significantly reduced
recognition errors [10].
Besides this, the literature describes many proposals where sketch interpretation is

carried out by applying, to any symbol in the sketch, the same recognition approach. To
the best of our knowledge, no framework exists that allows the adoption of different
techniques for recognizing different symbols. Nonetheless, this is a very useful feature for
an effective recognition process, since each symbol shows its own peculiar characteristics,
which makes a particular recognition technique more or less suitable for it.
In this paper, we present an agent-based framework for sketched symbol interpretation.

The reasoning process performed by the intelligent agents devoted to symbol recognition
(Symbol Recognition Agents, SRA for short) and to the correct interpretation of the sketch
(Sketch Interpretation Agent, SIA for short), is based on the knowledge about the domain
context, which is used for disambiguating the recognized symbols. SRAs exchange
contextual information by cooperating with other SRAs in the system. The contextual
information obtained in this way is sent to the SIA that solves possible conflicts and gives
an interpretation of the sketch drawn so far. At the lowest level of our framework, the
symbols of the domain language are recognized by applying suitable hand-drawn symbol

recognizers (HDSRs, for short) to the input strokes. The execution of these HDSRs is
coordinated by SRAs. In spite of the differences among the existing HDSRs, several of
them could be profitably integrated into our system. As long as there is one SRA that
correctly integrates a set of HDSRs by managing their execution as well as data conversion
issues, the actual implementation of the HDSRs and the approach to recognition that they
adopt do not matter. For this reason, our framework has the potential to seamlessly

integrate symbols recognized by heterogeneous HDSRs.
Moreover, we describe the AgentSketch system, an implemented instance of the general

framework, which can be applied to a variety of domains by just integrating the proper
symbol recognizers. We have applied AgentSketch to the domain of UML Use Case
Diagrams and performed a preliminary evaluation study. The obtained results have
highlighted the effectiveness of the proposed context-based recognition approach.
The paper is organized as follows. Section 2 illustrates three scenarios that, despite of

their differences, would all benefit from a multi-agent approach to sketch recognition.
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Section 3 explains why we claim that the multi-agent approach is suitable to sketch
recognition, and outlines the agent-based general framework we propose. Sections from 4
to 6 describe the three main components of our general framework, namely HDSRs,
SRAs, and SIA, respectively. Section 7 describes the AgentSketch system and its
preliminary evaluation. The related work is discussed in Section 8. Finally, conclusions and
further research are presented in Section 9.

The preliminary version of this paper was published in the proceedings of IEEE
Symposium on Visual Languages and Human-Centric Computing, 2006 [11].

2. Motivating examples

To motivate the agent-based approach to hand-drawn sketch recognition discussed in
Section 3, we analyze three types of sketches taken from three different domains: Use Case
Diagrams (software engineering domain), ancient Egyptian hieroglyphs (hand-written
patterns domain), and anatomic sketches (medical domain). We have chosen these types of
sketches because they raise different challenges that could be suitably faced following an
approach based on intelligent software agents. In the sequel of this section we will discuss
each of them; we will pay more attention to the Use Case Diagrams, since they are used
throughout the paper to show the design, implementation and use of our system.

2.1. Use Case Diagrams

Description. The first type of sketch is taken from the software engineering area, where
sketching is mainly used to represent software design ideas in terms of diagrams. It is a
common practice for the designers to model software systems by using the UML
diagrammatic notation [12], the de-facto standard for engineering Object-Oriented
software. In particular, during the requirement analysis phase, designers draw Use Case
Diagrams to describe the available functionalities and the main usage scenarios of an
application. Such diagrams are composed of use cases (represented by ovals), actors

(represented by stick figures), and connectors among them (Fig. 1).
There is only one type of relationship that may occur between actors and use cases; it is

visualized like a solid line, named communication link, and means that an actor participates
to a use case. Instead, four types of relationships between use cases are supported by UML:
communication, inclusion (visualized as a dashed arrow from the including to the included
use case, with label ‘‘include’’), extension (a dashed arrow from the extending to the
extended use case, with label ‘‘extend’’), and generalization (a solid line ending in a hollow
triangle drawn from the specialized to the more general use case). The only type of
relationships that may hold among actors is generalization.

Being able to correctly interpret hand-drawn Use Case Diagrams would allow software
engineers to converge more quickly towards an agreement in situations like brainstorming
Use Case Actor Communication Include

<<include>> <<extend>>

Extend Generalization

Fig. 1. Symbols used in a Use Case Diagram.
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meetings and teleconferences, where manually sketching the ideas that emerge during the
conversation are easier, more convenient and rapid than drawing them by means of a
CASE tool. An example of UML Use Case Diagram is shown in Fig. 2. Fig. 2(a) shows a
diagram drawn using a UML editor, and modeling the functionality of account creation
for the Administrator of a blog. Fig. 2(b) shows a hand-drawn version of the same
diagram, without considering textual descriptions whose recognition is out of the scope of
this paper. Note that extend and include symbols have been drawn with solid lines for
simplifying the drawing process.

Challenges raised by Use Case Diagrams recognition. The recognition of the hand-drawn
Use Case Diagram in Fig. 2(b) presents several challenges. In fact, users should be able to
draw without indicating where one symbol ends and the next one begins, and should be
free to draw a symbol with any number of strokes and in any order. Indeed, use case

symbols might be drawn as a single pen stroke, or as two or more separated strokes.
Alternatively, a single pen stroke might contain multiple shapes, as the communication

symbol and a use case in Fig. 2(b). Moreover, another problematic condition occurs when
two different symbols present similar parts. Considering the example of Fig. 2(b), how is it
possible to distinguish the communication links from a line composing the actor or
another relationship symbols? Finally, a last problem is due to the on-line processing of the
sketch. In fact, new strokes become available while the user is drawing, and these newly
disclosed strokes may change the interpretation previously given to a symbol. Thus,
solving ambiguities must undergo an incremental approach, where any new information
coming from the user is exploited for tuning the sketch interpretation given so far.
The variation in drawing style may be managed for example by an ink parsing process

that establishes which strokes are part of which shapes by grouping and segmenting the
user’s strokes into clusters of intended symbols [13]. It may be also useful to integrate,
within the system, symbol recognizers implemented following different approaches; in fact,
recognizing a symbol composed by many strokes, like the actor, might benefit from the
adoption of techniques different than those used to recognize a communication symbol,
usually made by just one stroke.
Administrator
Create Blog Account

Create Regular Blog Account Create Editorial Blog Account

<<include>>

a b

<<extend>>

Record Application Failure Check Identity

Fig. 2. A Use Case Diagram drawn with a UML editor (a) and using a sketch-based interface (b).
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The ambiguities due to the possible membership of one stroke to more than one symbol,
can be solved by analyzing the objects surrounding the ambiguous parts, i.e., the context
around them. As soon as the context changes, or new strokes become available for
recognizing new symbols or for correcting previously given interpretations, the system
must be able to use this new information in an incremental way, namely, without re-inter-
preting portions of the sketch whose interpretation does not raise any conflict, and
working only on the ambiguous portions.

2.2. Ancient egyptian hieroglyphs

Description. Ancient Egyptian hieroglyphs consist of more than 2000 logographic,
alphabetic, and ideographic elements. Logographs may represent either a word or a
morpheme (a meaningful unit of language). The logographic approach stands in contrast
to other writing systems, such as alphabets, where each symbol (letter) primarily represents
a sound or a combination of sounds. Ideographic elements are similar to (sometimes used
as synonyms of) logographic ones, but they represent pure ideas rather than words of
morphemes. Examples of hieroglyphs are shown in Fig. 3.

Challenges raised by hieroglyphs recognition. The challenges raised by recognizing
Egyptian hieroglyphs, as well as similar pattern-based writing systems such as the ancient
logographic languages of Near East, India, China, and Central America, are almost
different from those raised by diagrammatic sketch recognition. In fact, although the
hieroglyph, like a symbol in a diagrammatic language, can be divided into a set of
primitives shapes with relationships among them, there is no global ‘‘sketch’’ in the written
document, and the recognition process works on each symbol of the language (each
hieroglyph, in this case) in an independent manner. Besides this, although all ancient
hieroglyphs are, of course, ‘‘hand-written’’, the hand-writing process does not take place
on-line. It is in fact reasonable to assume that hieroglyphs are supplied to the recognition
system as scanned images, thus making recognition an off-line process. This means that
primitive patterns composing each hieroglyph are not produced by a sketch editor, but by
a static image segmentation system. Thus, no information on the temporal succession of
pattern drawing may be exploited for helping the recognition. Also, the same hieroglyph
may have a different appearance in different documents, due to differences in the period,
place and style of the document composition: the recognition process must be able to
recognize the same symbol despite of its different representations and to the different
supports where it has been engraved or painted (see Fig. 4).

Finally, the set of known hieroglyphs is still evolving: as new historical documents are
discovered by the archaeologists, new hieroglyphs are classified and interpreted. Thus, the
system should be able to easily integrate new hieroglyph recognizers without requiring any
substantial change to its code and behavior.

Based on the challenges identified so far, a system for the recognition of ancient
Egyptian hieroglyphs should be able to work off-line, taking scanned images as input; do
soul mountain house sun scarab (''hpr'' triliteral sound)

Fig. 3. Some Egyptian hieroglyphs (from Wikipedia, http://en.wikipedia.org/wiki/Egyptian_hieroglyph).
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not make assumption on the temporal succession of drawn primitive patterns; be open to
the insertion of new hieroglyph recognizers as new hieroglyphs are discovered; be flexible
enough to recognize the same symbol also when represented in different fashions, like the
system described in [14] that uses Fuzzy Hierarchical Attributed Graphs for recognition of
hieroglyphs.

2.3. Anatomical sketches

Description. As observed by Haddawy et al. in [3], drawing anatomical sketches is a
common practice in medicine. Physicians use sketches when taking notes in patient records
and for conveying diagnoses and treatments to patients, and medical students use them for
supporting reasoning about clinical problems in individual and group problem solving.
The top right box of Fig. 5 shows a template of the external view of lung, while in the left

part of the figure, the first column shows the sketches drawn by different students, the
second column is the physician’s segmentation of the sketch, and the last column is the
segmentation performed by UNAS, the automatic system described in [3]. By looking at
the sketches, it is clear that they show deep differences in line style and width; also, they
may either miss strokes or contain more strokes than expected.

Challenges raised by anatomic sketches recognition. Understanding an anatomical sketch
requires the ability to recognize what anatomical structure has been sketched and from
Fig. 4. Different representations of the scarab symbol.

5

Template

1. Superior lobe of the right lung

2. Middle lobe of the right lung

3. Inferior lobe of the right lung

4. Superior lobe of the left lung

5. Inferior lobe of the left lung

6. Trachea

4

(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

1

2
3

6

Fig. 5. A template and three hand sketches of lung’s external view (courtesy of Haddawy et al. [3]).

Please cite this article as: G. Casella, et al., An agent-based framework for sketched symbol interpretation,

Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.04.002

dx.doi.org/10.1016/j.jvlc.2007.04.002


ARTICLE IN PRESS
G. Casella et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 7
what view (e.g., parietal view of the brain), as well as to identify the anatomical parts and
their locations in the sketch (e.g., parts of the brain), even if they have not been explicitly
drawn. The lowest level objects of the sketches are not geometric primitives, such as lines,
rather they are symbols that must be recognizable in isolation.

Thus, an automatic sketch recognizer should be able to exploit symbol recognizers that
perform an image-based analysis in order to avoid many problematic issues such as
segmentation and feature extraction. Symbol recognizers should be tolerant of over
stroking, missing and extra pen strokes, variations in line style, and variations in drawing
order, since anatomical sketches are usually characterized by all these features.

In this domain, an automatic sketch recognition system might be used both on-line and
off-line. Its main requirement would be, once again, the ability to integrate in a seamless
way heterogeneous symbol recognizers, since, due to their different complexity, the
sketches of some anatomical organs may be better recognized using different techniques.

2.4. Features required by a recognition system for facing the above challenges

If we consider the challenges arising in the three above scenarios, the features that an
automatic sketch recognizer should have in order to face them may be summarized in
being able to:
�

P

J

exploit contextual information (when the graphical language of the sketch allows it) for
correctly interpreting symbols;

�
 coordinate the behavior of the symbol recognizers in such a way to detect and solve

conflicting interpretations of symbols;

�
 integrate in a seamless way heterogeneous symbol recognizers in order to exploit

different techniques for recognizing different symbols starting from primitive shapes;

�
 add new symbol recognizers as soon as they become available, without needing to

change any other component of the system;

�
 work both on-line and off-line;

�
 according to the working modality (on-line vs. off-line), either do or do not exploit

information on the temporal succession of drawn primitive patterns;

�
 receive input from different kinds of devices and in different formats.

We claim that a multi-agent approach to sketch recognition may help in designing and
implementing a system having the above features. The next section introduces agents and
multi-agent systems, and discusses the reasons upon which our claim grounds.

3. The multi-agent approach to sketch recognition

The AgentLink III Technology Roadmap [15] defines an agent as:
leas

our
‘‘a computer system that is capable of flexible autonomous action in dynamic,

unpredictable, typically multi-agent domains.’’
According to [16], agents should be
1.
 autonomous: they should operate without the direct intervention of humans or others,
and have some kind of control over their actions and internal state;
e cite this article as: G. Casella, et al., An agent-based framework for sketched symbol interpretation,
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2.
P

Jo
responsive: they should perceive their environment and respond in a timely fashion to
changes that occur in it;
3.
 pro-active: they should not simply act in response to their environment, but should
exhibit opportunistic, goal-directed behavior and take the initiative where appropriate;
4.
 social: they should be able to interact, when appropriate, with other artificial agents and
humans in order to complete their own problem solving and to help others with their
activities.

Another characterizing feature of agents is situatedness: the agent receives sensory input
from its environment and it can perform actions which change the environment in some
way [17].
As far as sociality is concerned, it is now widely recognized that interaction is probably

the most important single characteristic of nowadays’ complex software. Two good
reasons for agents to interact and eventually cooperate, are to solve conflicts [18,19], and to
disambiguate the interpretation of objects in some domain [20].
A multi-agent system, or MAS for short, is a system composed by many interacting

agents. In a MAS, each agent has incomplete information or capabilities for solving the
problem, thus each agent has a limited viewpoint, there is no global system control, data is
decentralized, and computation is asynchronous. Also, due to the dynamicity and
unpredictability of scenarios where agents live, MASs are open to change. This means that
the topology of a MAS cannot be fixed a priori, but it dynamically changes as agents enter
and leave the MAS.
If we keep the above features in mind while considering the problem of recognizing

hand-drawn sketches in the three scenarios described in Section 2, we soon realize that an
architecture based on agents might be a proper solution.
In fact, when drawing takes place as an on-line process, the ‘‘virtual blank sheet’’ where

the user draws, represents a dynamic and unpredictable environment. Then, an ‘‘entity’’
devoted to recognizing the sketch drawn by the user must be situated in it, in order to
properly perceive the user’s actions. Also, this entity must react to changes that take place
in the virtual blank sheet, i.e., new strokes drawn by the user. Situatedness and reactivity
are not crucial issues if the system processes the input in an off-line way, like when
recognizing an Egyptian hieroglyph stored in an image file.
However, despite the on-line vs. off-line processing modality, entities working for

recognizing the sketch must have a complex long term goal, i.e., giving a correct
interpretation to what the user is drawing or to what the image represents, and must
operate in an autonomous way to reach this goal, since no explicit input or suggestions
must be required to the user of the system. Although each single entity may be able to
perform some task useful for recognizing the sketch (for example, recognizing one specific
symbol of the language with a certain degree of confidence), by working alone it cannot
easily resolve ambiguities (‘‘Is this symbol an arrow or a line?’’), and conflicts (‘‘In order to
recognize my symbol, I am using a primitive shape that is also used by another entity; to
which symbol does the shape really belong?’’). Thus, a social behavior is required to reach
the final goal of each entity, which consists in overcoming conflicts and ambiguities, and
providing the right interpretation of the sketch to the user. Finally, since the number
of graphic elements likely to be recognized is almost unlimited, a modular software
architecture is necessary so that entities can be connected or disconnected with the least
possible repercussions on the system [21].
lease cite this article as: G. Casella, et al., An agent-based framework for sketched symbol interpretation,
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In the end, each ‘‘entity’’ must be responsive, pro-active, situated, autonomous, and
social, and must live in an open environment. In other words, each entity must be an
intelligent agent living in a MAS.

Our proposal exploits the suitability of an agent-oriented conceptualization of the hand-
drawn sketch recognition problem, and the advantages of an agent-oriented approach to
engineering complex systems [22,23], for modeling and designing the agent-based
framework depicted in Fig. 6. An implemented instance of this framework is discussed
in Section 7 and demonstrates, in the domain of diagrammatic sketch recognition, the
feasibility of our approach. In this section, we provide a high-level overview of the general
framework, whereas in Section 7 we will discuss all the details of the implemented instance.

Our framework is composed by four kinds of agents:
Interface Agent. It represents an interface between the agent-based framework and the

generic ‘‘Input Suppliers’’ that are not included inside the framework. The nature of these
input suppliers may vary according to the type of sketch to be interpreted and to the
drawing process (on-line vs. off-line). For example, they might be editors suitable for on-
line drawing of diagrammatic and anatomic sketches, as well as interfaces that allow the
user to select an existing image to be interpreted (useful for an off-line recognition process
like that of hieroglyphs interpretation). The Interface Agent informs the ‘‘Sketch
Interpretation Agent’’ (SIA) and the ‘‘Input Pre-Processing Agent’’ (that, in turns,
informs the ‘‘Symbol Recognition Agents’’) about the nature of the recognition process
(off-line or on-line) and converts the information produced by the input suppliers into a
suitable format for these agents. It sends each new available piece of input (or the whole
input, in case of an off-line recognition process) to the Input Pre-Processing Agent, and
interacts with the SIA for sending the sketch interpretation requests to it, and for
delivering its answer to the user. While for on-line recognition the user can request the
sketch interpretation several times as he/she is drawing, for off-line recognition the sketch
interpretation is requested by the user, or automatically by the input supplier, just one time
when all the input has been acquired. For any new input supplier to be linked to the
framework, a new ‘‘stub’’ inside the Interface Agent must be created ad-hoc. For example,
Symbol Recognition 
Agent 1 •••

(new) input 

Sketch 
Interpretation 

Agent 

Symbol Recognition 
Agent 2 

Symbol Recognition  
Agent N 

Input 
Supplier 1 

HDSR 1 HDSR 2 HDSR N 

Input  
Pre-processing 

Agent 

interpretation Input 
Supplier 2 

Input 
Supplier 3 

Interface 
Agent 

 

 

 

Fig. 6. The agent-based framework for sketch recognition.
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the implemented instance of the Interface Agent discussed in Section 7 provides a stub for
an on-line editor that takes advantage of Java Swing components and Satin [24].

Input pre-processing agent. It processes the input received from the Interface Agent and
sends the obtained results to the ‘‘Symbol Recognition Agents’’ (SRAs) described in the
following, using a format compliant with the recognition approach they apply. For
example, if the input to pre-process is a Use Case Diagram sketched on-the-fly, the main
activity of this agent will be to segment and classify the user strokes into a sequence of
domain independent primitive shapes. It will receive from the Interface Agent the sequence
of strokes drawn by the user, and send their classification results, together with their
attributes, to the SRAs. In the case of the hieroglyphs recognition problem, the pre-
processing agent will behave in a different way: it will be devoted to identify and isolate
each single hieroglyph within the sketch, and send it to one or more SRAs, according to
some strategy based on the hieroglyph’s features.

Symbol Recognition Agents: Each SRA is devoted to recognize a particular symbol of the
domain. Moreover SRAs may collaborate with other SRAs in order to apply context
knowledge to the symbols they are recognizing, and with the SIA that deals with the sketch
interpretation activity. In our running example based on UMLUse Case Diagrams, there will
be an SRA devoted to recognize ‘‘generalize’’ symbols by managing the execution of the
related ‘‘hand-drawn symbol recognizers’’ (HDSRs), and by collaborating with other SRAs
to obtain contextual feedback. Each SRA tries to recognize a domain symbol by applying
suitable HDSRs to the stroke classifications produced by the Input Pre-Processing Agent.
The Input Pre-Processing Agent sends a stroke classification to an SRA only if the SRA may
use it to recognize new domain symbols (i.e., strokes classified as ellipses will not be sent to
the SRA devoted to recognize the generalize symbol, which does not include ellipses).
When a new symbol has been recognized by the HDSR, the corresponding SRA starts

the collaboration process with other SRAs for obtaining contextual information for the
recognized symbol. The collaboration consists of sending a feedback request message
containing the attributes of the recognized symbol to all the SRAs that recognize related
symbols (that are known ‘‘a priori’’ by each SRA). When an SRA receives a feedback
request message, it checks its set of recognized symbols to give a response. If it finds a
symbol that satisfies the language relationship with the symbol in the feedback request, it
sends a positive response to the requester; otherwise, it sends a negative response. For
example, due to the rules that govern the definition of well-formed UML Use Case
Diagrams, an SRA that recognizes an actor symbol should ask a feedback to the SRA that
recognizes communication symbols, since actors always participate to use cases to which
they are connected via a communication symbol.

Sketch Interpretation Agent: The SIA provides the correct interpretation either of the
sketch drawn so far (in case of an on-line drawing process) or of the entire sketch (in case
of an off-line recognition process) to the Interface Agent. In particular, it analyzes the
information received from SRAs and solves conflicts between symbols that might arise.
When all the conflicts have been solved, the SIA proposes the sketch interpretation to the
user, interacting with the Interface Agent. The SIA looks for conflicts by checking if there
are symbols that share one or more strokes. For example, conflicts may take place either
because a stroke is classified as two different shapes (for example, as a line and as an arc)
due to the sketch inaccuracy, or because the same stroke, although correctly classified, is
used by two SRAs to recognize two different symbols. By solving the ‘‘easiest’’ conflicts
first (namely, those conflicts where it is easier to identify the right interpretation), the SIA
Please cite this article as: G. Casella, et al., An agent-based framework for sketched symbol interpretation,
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is able to free some symbols from the conflicts they were involved in. These symbols are
used for solving other conflicts, and the process goes on until there are no more conflicts
left. The SIA also applies some heuristics to select a set of unlikely symbol interpretations,
which are pruned by the recognized symbol set of the SRAs improving their recognition
efficiency.

Hand-drawn symbol recognizers: HDSRs are not agents since they lack most of the
agent-characterizing features. They are just software modules managed by SRAs. Many
approaches have been proposed for recognizing free-hand drawings [25–30]. Each of these
proposals has the potential of being integrated into our system in spite of the fact that they
differ one from another under several aspects, ranging from the identification of the shape
of the symbols to the approach used to construct them. As we have already pointed out, as
long as there is one SRA that correctly integrates HDSRs by managing their execution as
well as data conversion issues, the actual implementation of the HDSRs and the approach
to recognition that they adopt do not matter. The framework that we propose may
seamlessly integrate symbols that have been recognized by heterogeneous HDSRs
managed by ad-hoc SRAs.

4. Hand-drawn symbol recognizers

In this section, we describe the main features of three HDSRs that can be exploited by
SRAs to identify the symbols of a given domain: LADDER [25], Sketch Grammars [27],
and CALI [28].

LADDER. In LADDER, the symbol recognition is performed using the rule-based
system Jess [31]. In particular, for each symbol of the domain, a Jess rule is automatically
generated from a LADDER structural shape description, which mainly contains
information on the shape of the symbol, but may include other information helpful to
the recognition process, such as stroke order or stroke direction. As an example, the
LADDER description and the generated Jess rule for the visualized generalize symbol of
UML Use Case Diagrams are described in the boxes below.
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The LADDER rule defines a generalize shape as a list of four lines from which the shape
is built plus the geometric constraints defining the relationships on these elements. The
generated Jess rule, like all Jess rules, is composed of two parts. The part on the left of the
‘‘) ’’ symbol contains the name of the rule (‘‘GeneralizeCheck’’) and the preconditions
that enable the rule to fire, namely: getting four lines, making sure that the four lines are
unique, getting the components of each line, and finally checking that the lines’
components meet the topological and geometric constraints that allow an arrow to be
composed with them. The part on the right of the ‘‘) ’’ symbol, defines what to do when
the precondition is met; in this case, the symbol, together with its constituent parts and its
accuracy, computed from the accuracy values produced by the primitive shape recognizers,
are given in output. Thus, when in the working memory of the HDSR there are four lines
that respect the precondition of the rule, the rule is fired and a generalize symbol is
recognized.
The shapes described with LADDER must be diagrammatic or iconic since they have to

be drawn using a predefined set of primitive shapes and composed using a predefined set of
constraints.

Sketch Grammars: Sketch Grammars (SkGs) represent a direct extension of string
grammars, where more general relations other than concatenation are allowed [27]. The
symbol recognizers automatically generated from SkGs try to cluster stroke interpretations
into symbols of the domain language. The parsing technique extends the approaches
proposed in [32]: the parsers scan the input in an incremental and non-sequential way,
driven by the spatial relations specified by the grammar productions.
An SkG G can be seen as a context-free string attributed grammar where the

productions have the following format:

AG! x1R1x2R2 . . . xm�1Rm�1xm;Act,

A is a nonterminal symbol, each xj is a terminal or nonterminal symbol, and each Rj is a
sequence of spatial and/or temporal relations [27]. Act specifies the actions that have to be
executed when the production is reduced during the parsing process. These may include a
set of rules used to synthesize the values of the attributes of A from those of x1, x2,y, xm.
Actions are enclosed into the brackets { }. G is used to dynamically insert new terminal
shapes in the input during the parsing process, enhancing the expressive power of the
formalism.
To go on with our running example based on UML Use Case Diagrams recognition, the

Actor SRA might manage an ‘‘Actor HDSR’’ implemented using SkG. This HDSR would
use the following production to recognize the Actor symbol:
P

Jo
Actor-Ellipse /joint1_1(t1)S
Line1/near(t2), near(t3), rotate(45,t4)S
Line2/joint2_1(t5), near1(t5), near2(t6), rotate1(�45,t4)S
Line3 /joint2_1

2(t7), rotate2(135,t4)S
Line4 /joint2_1

3(t9), rotate3(�135,t4)S Line5,
{Actor.attach(1) ¼ Ellipse.attach(1) [ Line1.attach(1);

Actor.accuracy ¼ ComputeAccuracy();}
The Actor symbol is composed of an ellipse and five lines, as shown in Fig. 7 (the
attributes are represented with bullets). The non-terminals Ellipse and Line cluster the
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Fig. 7. The Actor Symbol.
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single stroke arcs that form an ellipse and the parallel single stroke lines, respectively. The
attribute 1 of Ellipse, which represents its borderline, is jointed to the attributes 1 of Line1,
Line2, and Line3. The latter are rotated with respect to the former of 451 and �451,
respectively. The values t1,y,t9 specify the error margin in the satisfaction of the relations.
Finally, the attribute 1 of Actor is calculated from the values of the attributes of Ellipse and
Line1, and the accuracy of Actor is computed by the ComputeAccuracy function, which
combines the accuracy of the strokes forming the sketch and of their spatial relations.

CALI. CALI is a system for recognizing multi-stroke geometric shapes based on a naı̈ve
Bayesian classifier [28]. It is able to identify shapes of different sizes and rotated at
arbitrary angles, drawn with dashed, continuous strokes or overlapping lines. It detects not
only the most common shapes in drawing such as triangles, lines, rectangles, circles,
diamonds and ellipses, using multiple strokes, but also other useful shapes such as arrows,
crossing lines or wavy lines. A training process has to be performed for adding new shapes
to the set of symbols to be recognized.

The shapes are recognized by statistical analysis of various ratios of values such as the
convex hull around the area designated as containing a single shape, the largest triangle
and largest quadrilateral that can be inscribed within the hull, the smallest area enclosing
rectangle that can be fitted around the shape. For handling ambiguities naturally, fuzzy
logic is used to associate degrees of certainty to recognized shapes. Thus, the recognizer
works by looking up values of specific features in fuzzy sets associated to each shape and
command. This process yields a list of plausible shapes ordered by degree of certainty.
Nevertheless, the filters applied during the recognition are ineffective on ambiguous shapes
such as pentagon and hexagon.

In order to provide on-line recognition of sketches, the systems constructed on top of
CALI submit the strokes drawn by the user to the recognizer when the user’s pauses are
longer than a given time between strokes [33].

5. Symbol recognition agent

An SRA is an autonomous software agent able to control an HDSR and to cooperate
with other agents in order to recognize hand-drawn symbols. The SRA behavior is mainly
affected by received messages, as highlighted in the state diagram shown in Fig. 8.

Initializing, terminating and reading new messages: In the Initializing state each SRA
reads the MAS configuration in order to correctly initialize itself. In particular, the SRA
learns how to communicate (i.e., address, supported communication protocols, languages,
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interaction protocols, and so on) with SRAs that recognize related symbols. This
information is stored by the SRAs in the related SRAs data structure as shown in Fig. 9.
Moreover, the SRA loads some parameters to correctly initialize its HDSR. The
operations performed to initialize an HDSR depend on the particular HDSR considered.
For example, if the SRA uses a HDSR based on Jess, then suitable rules must be loaded in
the Jess engine during the initialization stage, while if the HDSR is based on SkGs, then
the parser must be instantiated with the proper rules, and if a CALI HDSR is used, the
training samples for the domain symbol must be provided. For other kinds of HDSRs,
suitable operations are carried out.
Once the initialization phase has been completed, the SRA goes in the Reading New

Messages state where it just waits for receiving a message. A terminate message is sent to all
the SRAs by the Interface Agent if the user stops the execution of the external input
supplier, be it a sketch editor or another kind of device. When the terminate message is
received, each SRA moves to the Terminating state, releases the allocated resources and
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terminates. When an SRA is in a state different from Reading New Messages, any new
message is stored in the incoming message queue and served when the SRA comes back to
the Reading New Messages state. On the other hand, when the SRA is in the Reading New

Messages state and no message is available, then the agent stays idle in a waiting mode.
Recognizing: When a message containing a new input is received from the Input pre-

processing agent, the SRA moves from the Reading New Messages state to the Recognizing

state. With the first message the Input pre-processing agent also informs the SRA of the
sketch recognition mode (on-line or off-line). The SRA uses this information to correctly
configure its HDSR. In the Recognizing state, for each received message, the SRA builds a
representation of the received data suitable for its HDSR (i.e., a fact for a Jess based
HDSR, a new token symbol for the sketch parser for an HDSR based on SkGs, etc.). Then
the SRA tries to recognize a new domain symbol giving the new available information in
input to its HDSR. If a new domain symbol is recognized, then the HDSR outputs the
strokes used to recognize it and the symbol attributes (e.g., starting point, ending point,
radius, etc.). For each recognized symbol the SRAs compute a confidence value which
represents a sort of probability that the symbol has been correctly recognized. The
confidence values obtained by the HDSRs require a normalization process since HDSRs
can output values belonging to different ranges. The recognized symbols and their features
are stored by the SRAs in the set of recognized symbols in a way that they can be easily
retrieved using their IDs, as shown in Fig. 9. If a new symbol is recognized when the SRA
is in the Recognizing state, then it moves to the Sending Feedback Request state, else it
moves back to the Reading New Messages state.

Sending feedback request: When the SRA recognizes a new symbol it sends a feedback
request to all the SRAs that recognize related symbols. The technical details necessary to
send the message are contained in the related SRAs set. The feedback request message
contains the attributes of the recognized symbol and its ID. SRAs always include in
feedback request and response messages their name (unique in the MAS) and the
identifiers of the involved symbols in order to better trace related recognized symbols. The
information on related recognized symbols will be used by the SIA to solve conflicts and to
prune misleading interpretations.

Checking recognized symbols: When a feedback request is received, the SRA checks its
recognized symbols set to verify if the symbol in the feedback request message is related
through a given relationship with one or more recognized symbols. If some relation holds,
the SRA sends a positive response to the requester, otherwise sends a negative response. As
shown in Fig. 9, a feedback vector is associated to each recognized symbol in the
recognized symbol set for containing all its related recognized symbols. If the SRA is able
to give a positive feedback response then the SRA updates the feedback vector associated
with the symbols involved in the positive feedback response.

Updating recognized symbols feedbacks: When a positive feedback response is received,
the SRA updates the feedback vector of the symbol that started the feedback request
process.

Sending recognized symbol: When the Interface Agent sends an interpretation request to
the SIA, it forwards the request to all the SRAs. Then, each SRA sends to the SIA the
symbols it was able to recognize together with the set of input drawings used to recognize
it, the symbol’s confidence, and the symbol’s feedback vector.

Pruning recognized symbols: HDSRs could produce wrong symbol interpretations,
mainly due to input inaccuracy. In particular, the input components could be not correctly
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classified or could be used to recognize more than one symbol. For example, if we consider
Use Case Diagrams, a line belonging to an actor might be also used by the communication
SRA to recognize a communication symbol. The SIA, as described in the following, is
responsible to detect and solve this kind of errors. For on-line recognition, when the SIA
terminates the interpretation process, it sends to all the SRAs a message containing the list
of all the misrecognized symbols. When this message is received the SRA goes in the
Pruning Recognized Symbols state in which it updates its recognized symbols set. In
particular it deletes all the wrong symbols and updates the feedback vectors of the symbols
with feedbacks from the wrong symbols. Moreover, to improve the efficiency of the on-line
recognition process, if the recognition process is stroke-based, the SRAs may perform a
pruning operation on the unrecognized strokes. As an example, the arrow symbol is often
drawn with a single stroke (as the include symbol of Fig. 2(b)), which is segmented in four
lines, three of which are used in the recognition of the arrow and one remains as
unprocessed input. The elimination of these strokes allows the SRAs to improve the
performance of the recognition process. However, the selection of the strokes to be
removed is not a trivial task and can depend from the domain language.
Considering our running example based on UML Use Case Diagrams, Fig. 10 shows the

incremental editing of a diagram and the recognition process performed by SRAs having
associated HDSRs constructed with Jess rules. At each edited symbol the figure shows the
result of input pre-processing, the symbol recognized by each SRA, the exchanged messages
and the obtained feedbacks. In particular, the drawings in the first column show the new
edited strokes in black, whereas the previous one are in gray; the numbers associated to the
strokes denote the temporal sequence of the drawing process. The second column shows
the result of the pre-processing on the new edited strokes. This process consists in the
segmentation of the strokes (the identified key points1 are visualized with a dot) and in
the classification of the substrokes obtained. We consider three primitive shapes in the
classification process: line, arc, and ellipse. The label associated with the strokes indicates
the result of the classification process: L, A, and E denote a line, an arc, and an ellipse
classification, respectively. The third column shows for each symbol to be recognized
(Actor, Communication, Use Case, Generalize, Extend, Include) an appropriate SRA, which
includes an appropriate HDSR, and the messages exchanged to compute feedbacks. The
recognized symbols are listed on the right side, whereas the solid arrows show the messages
producing positive feedbacks while the dashed arrows show those producing negative
feedbacks. The recognized symbols that have obtained a positive feedback are in boldface.
When the strokes from 1 to 4 in Fig. 10(a) are drawn, the strokes 3 and 4 are segmented

in two substrokes, and then classified in an ellipse E1 and five lines (L1,y,L5). Note that
stroke 3 is classified both as a line and an arc, and that the first one has a greater accuracy
value. The HDSR associated with the Actor SRA recognizes these primitive shapes as an
actor symbol. Moreover, stroke 1 is also recognized as the Use Case symbol u1 by the
HDSR associated with the Use Case SRA, whereas the line interpretations from L1 to L5

are recognized as the communication symbols c1, c2, c3, c4, and c5 by the HDSR associated
with the Communication SRA. As previously described, when an SRA recognizes a
symbol it starts to collaborate with SRAs recognizing related symbols for obtaining
contextual information. In Use Case Diagrams, the Use Case symbol is related to
1A key point is a point that contains the most characterizing geometric features of a sketch. For example, a high

curvature point, a tangency point, a corner point and an inflexion point.
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communication, generalize, include and extend. Thus, when the Use Case SRA recognizes
u1, it sends a feedback request to Communication SRA, Generalize SRA, Extend SRA,
and Include SRA. All of them reply with a negative response since no other symbol has
been recognized yet. These exchanged messages are not shown in the figure. When the
Communication SRA recognizes c1,y, c5, it sends a feedback request to the Use Case and
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Actor SRAs. The first replies with a positive response to c1, c2, c3, since u1 is correctly
related to them, while the second replies with a negative response. Finally, when the Actor
SRA recognizes a1, it sends a feedback request to the Communication and Generalize
SRAs, which reply with a negative response.
When stroke 5 in Fig. 10(b) is drawn, it is classified as a primitive shape line (L6) and

used by the Communication SRA to recognize c6. Once recognized c6, the Communication
SRA sends a feedback request to Use Case SRA and Actor SRA, and the latter replies with
a positive response.
Finally, strokes 6 and 7 in Fig. 10(c) are classified as two arcs, and recognized by the Use

Case SRA as symbol u2. As done previously, the Use Case SRA sends a feedback request
to the related SRAs, and receives a positive reply from the Communication SRA since u2 is
related to c5.

6. The Sketch Interpretation Agent

The goal of the SIA is to give, every time the user requests it, an interpretation of the
sketch drawn so far. In order to build the sketch interpretation the SIA requests the
information they have computed to the SRAs. In particular, it receives the set of
recognized symbols and their collected feedback, which are exploited to obtain the correct
sketch interpretation (detecting wrongly recognized symbols).
The SIA behavior is represented by the state diagram in Fig. 11 and described in the

following:
Initializing, terminating and waiting for interpretation requests: In the Initializing state the

SIA initializes itself and reads some configuration files to learn how to communicate with
SRAs (i.e., address, supported communication protocols, languages, interaction protocols
and so on). The SRAs information are stored in the SRA table as shown in Fig. 12.
When the SIA is in the Waiting for Interpretation Request state, it just puts itself in

waiting until a request message is received. On the other side if a sketch interpretation
request is received while the SIA is not in the Waiting for Interpretation Request state then
the message is stored in the incoming message queue.
terminate

terminate

Terminating

Intializing

recognized symbols received

[offline recognition]
[online recognition]

Waiting for

Interpretation Request

interpretation request received

Interpreting

Sketch

Communicating Symbols to

Be Pruned

Collecting

Recognized Symbols

Fig. 11. The state diagram describing the behavior of SIA.
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If a terminate message is received (it is sent by the Interface Agent when the user closes
the editor), independently from its state, the SIA transits to the Terminating state, releases
the allocated resources and terminates.

Collecting Recognized Symbols: When a sketch interpretation request message is received
the SIA transits from the Waiting for Sketch Interpretation Request state to the Collecting

Recognized Symbols state. Here, the SIA sends an interpretation request message to all the
SRAs and collects their responses. Using this information the SIA builds the recognized
symbol graph. Each node of the graph has associated the symbol that represents with some
information, such as the SRA that has recognized the symbol, the symbol confidence, the
strokes belonging to the symbol. The graph edges can be of two types: the conflict edges

link conflicting symbols, whereas the feedback edges link the symbols that have produced a
positive feedback during their recognition. A symbol without conflicts is named
unambiguous symbol. The SIA is able to build the graph thanks to the information sent
by the SRAs as described in the previous section. When all the SRA responses have been
received and the graph has been built the SIA transits to the Interpreting Sketch state.

Interpreting Sketch: In this state the SIA looks for conflicts by checking the recognized
symbol graph. The SIA goal, in this state, is to solve all conflicts by finding the wrongly
recognized symbols, and, consequently, to delete all the conflict edges in the graph. This
task is accomplished by the Reasoning Component.

The conflict between two symbols is solved in favor of the one having the following
higher truthful value:

tr ¼ w1 conf þ w2
#rn

#n

� �
,

where conf is the confidence value of the symbol, #n is the total number of nodes, #rn is the
number of unambiguous symbols reachable by following a feedback edge from the symbol,
and w1 and w2 are values between 0 and 1 that depend on the domain language. In
particular, for languages whose diagrams may have symbols involved in many relations
with each other, w2 must be greater than w1, in order to weight the existence of feedback
more than the accuracy of the symbol. Vice versa, for languages with few relations between
symbols, it is more important to consider the accuracy associated to the symbol, and thus
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w1 must be greater than w2. Unambiguous symbols are used to solve conflicts because they
represent stable and not conflicting elements in the current sketch interpretation.
Conflicts are solved starting from:
1.
P

Jo
Those that involve one symbol with feedback from unambiguous symbol(s) (unambiguous

feedback) and one symbol without unambiguous feedback.

2.
 Those that involve symbols with higher difference between their numbers of unambiguous

feedbacks.

3.
 Those that involve symbols with higher difference of their accuracy values.

This criterion helps in solving the ‘‘easiest’’ conflicts first, in order to obtain new
unambiguous symbols that can be used to solve other conflicts. When a conflict is solved,
the graph is updated deleting the node associated to the loosing symbol.
In addition to solve conflicts, the SIA might apply heuristics dependent from the domain

language for removing some symbol interpretations. For example, if there are two symbols
s1 and s2 such that s1 graphically includes s2 (e.g., in Use Case Diagrams actor includes a
Use Case symbol), then the SIA can solve all conflicts that arise between these two symbols
a priori.
When the conflict resolution phase terminates the SIA sends the sketch interpretation to

the Interface Manager that interacts with the Editor to show the sketch interpretation to
the user.
When the conflict resolution ends the SIA behavior depends on the drawing process

nature (on-line or off-line) communicated by the Interface Manager with the sketch
interpretation request. For on-line recognition, the SIA stores the graph before going in
the Communicating symbols to be pruned state. In this way, the next time the SIA has to
interpret the input sketch it only updates the stored graph and solves the new arising
conflicts, avoiding to solve the same conflicts more than one time. For off-line recognition,
the SIA just goes in the ‘‘Waiting for Interpretation Request Message’’ where it will receive
a terminating message by the Interface Manager.

Communicating symbols to be pruned: In this state the SIA selects and communicates to
the SRAs the recognized symbols to be pruned. Many heuristics can be chosen: for
example, pruning could be applied to HDSRs that have recognized symbols without
feedback, and are involved in conflicts with symbols having feedback, or to HDSRs
recognizing symbols whose constituent strokes all belong to another symbol with more
positive feedback, and so on. The choice of the heuristics to be applied also depends from
the diagrammatic language.
As an example, if the user requests the interpretation of the sketch in Fig. 10(c) the SIA

constructs the graph in Fig. 13 using the symbols communicated by the SRAs. In the figure
solid lines represent conflict edges, dashed lines represent feedback edges, while filled nodes
represent unambiguous symbols.
The actor symbol a1 is in conflict with several symbols (the communications c1, c2, c3, c4,

c5, and the Use Case u1). The first conflict that is solved is the one between a1 and c1.
Indeed, a1 collected one unambiguous feedback from c6, while c1 did not receive
unambiguous feedback (the one from u1 is not unambiguous). Supposing that a1 has a
greater truthful value than c1, a1 wins the conflict. The conflict resolution goes on and since
a1 wins all its conflicts, it becomes an unambiguous symbol providing unambiguous
feedback.
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Fig. 13. The graph constructed by the SIA on the Use Case Diagram of Fig. 10(c).
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7. The AgentSketch system

AgentSketch is a system for recognizing freely hand-drawn diagrammatic sketches
exploiting the multi-agent approach presented in Section 3. It supports both on-line and
off-line recognition mode and can be applied to a variety of domains by providing the
suitable recognizers. In the following, we describe the implementation details and then we
present an experimental evaluation of the system on the domain of Use Case Diagrams.

7.1. Implementation

The architecture of AgentSketch, that instantiates the general one presented in Fig. 6,
for recognizing UML Use Case Diagrams, is shown in Fig. 14. AgentSketch has been
implemented on top of the Jade agent-based platform [34] using Java 1.5. Agents in
AgentSketch communicate by exchanging messages encoded in FIPA-ACL messages [35],
a communication language natively supported by Jade. FIPA-ACL specifies both the
message fields and the message ‘‘performatives’’ (communicative acts such as requesting,
informing, making a proposal, accepting or refusing a proposal, and so on). Instead, the
content language of the message is not fixed by the FIPA-ACL specification, and may be
chosen by the MAS developer. We express it in XML according to a set of XML-Schemas
that we have defined. The messages within AgentSketch have various purposes, such as
communicating the availability of new strokes, requesting/providing feedbacks, request-
ing/providing the sketch interpretation, and so on. Jade offers the means for sending and
receiving messages, also to and from remote computers, in a way that is transparent to the
agent developer: for each agent, it maintains a private queue of incoming ACL messages
that our agents access in a blocking mode. Jade also allows the MAS developer to monitor
the exchange of messages using the ‘‘sniffer’’ built-in agent.

A screenshot of the Jade sniffer agent captured during the execution of AgentSketch is
shown in Fig. 15. The boxes represent the agents while the arrows the exchanged messages.
In particular the first box on the left represents the set of agents included in the jade
platform but not monitored by the sniffer agent, while the other boxes (from left to right)
represent the Interface Agent, the Input Pre-processing Agent, the SRAs, and the SIA. The
figure shows the messages exchanged in the following scenario:
(1)
Pl

Jo
A new line is drawn. The Interface Agent sends an inform message containing the stroke
attributes to the Input Pre-processing Agent (message 1) and the Input Pre-processing
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Fig. 14. The AgentSketch architecture.

Fig. 15. Agent message exchange in AgentSketch.
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Pl

Jo
Agent sends to all the SRA the new available input in a format that they can
understand (messages 2–7). The Communication SRA recognizes, using the new line, a
new Communication symbol and sends a feedback request to the Actor SRA and to the
Use Case SRA (messages 8 and 9). The Actor SRA and the Use Case SRA check their
recognized symbol set and answer to the feedback request (messages 10 and 11).
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(2)
Pl

Jo
The interpretation of the sketch is required. The Interface Agent sends a request message
to the Sketch Interpreter Agent (message 12) that forwards it to all the SRA (messages
13–18) in order to collect their recognized symbols. Each SRA sends its set of
recognized symbols to the Sketch Interpreter Agent (messages 19–24). When the Sketch
Interpreter Agent has collected all the recognized symbols and elaborated a sketch
interpretation it sends the sketch interpretation to the Interface Agent (message 25).
The Input pre-processing Agent is composed of two modules, the Stroke Segmenter and
the Stroke Classifier. Both modules have been implemented using third parties software
and, for their highly modular implementation, might be easily replaced with other pieces of
software with the same purpose. The same consideration holds for the Graph Manager
that composes the Sketch Interpretation Agent.

The Stroke Segmenter segments strokes into sub-strokes by identifying key points. In
this way, symbols can be drawn with multiple pen strokes, and a single pen stroke can
contain multiple symbols. Each sub-stroke may be classified by the Stroke Classifier either
as a line, an arc, or an ellipse. However, if the user stroke is imprecise, then the Stroke
Classifier may classify it as more than one primitive shape (for example, both as a line and
as an arc).

In our future work we want to exploit Web Services Technology to implement
replaceable, independent, self-consistent HDSRs. This would allow to reach a complete
decoupling between agents and HDSR, decoupling which is not fully achieved in our
current architecture. In fact, by publishing their functionalities as Web Services, HDSRs
might be implemented by anyone and in any language, might be physically stored
anywhere, might run on any platform, and might be replaced with a minimal effort. In
order to access them, agents should only know their physical address and the specification
of the offered services. These services would consist of operations that given a set of stroke
classifications, return a recognized symbol, if any.

In our current implementation of AgentSketch, each SRA checks symbol relations for
feedback exchange purposes. In particular, exploiting the attributes of symbols recognized
by HDSRs, SRAs are able to check a set of relations between symbols (or symbols’
portions/points) such as near, intersect, touch, parallel, and so on.

The behavior and the structure of the AgentSketch components (both agents and
HDSRs) are those described in Sections 4, 5 and 6. In the following, we provide some
details on their actual implementation.

Sketch-based user interface. The graphical user interface of AgentSketch has been
developed using the Java Swing components and Satin, a toolkit designed to support the
creation of 2D pen-based applications [24]. Satin provides a Java Swing component
(namely, the Satin sheet), that can be easily included in any Java based GUI and that
represents a canvas where the user can create strokes based on the path drawn by a pen or
mouse.

Strokes are represented as a list of (x, y, time) tuples. A Satin interpreter, associated with
the sheet, is automatically notified when a stroke is drawn on the sheet and receives a
stroke reference that can be used to obtain information about the stroke (i.e.,
characterizing points, length, height, width, etc.) and/or to modify it (for example, to
change its color or to execute beautification operations). We have developed a customized
interpreter that converts the available stroke information into a suitable representation for
our system.
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The AgentSketch editor is also able to load and save sketches in InkML format [36].
InkML is an XML data format, designed by the W3C working group, suitable to transfer
digital ink data between devices and software components, and for storing hand-input
traces for handwriting recognition, signature verification or gesture interpretation. By
using InkML, AgentSketch is able to load user sketches previously saved and to import
sketches realized with other sketch-based editors.

Stroke Segmenter and Stroke Classifier. The purpose of the Stroke Segmenter is to split
each stroke into a set of meaningful sub-strokes enabling the user to draw each symbol
with a single-stroke or with a set of strokes. Currently, we have used the segmentation
algorithm provided by Satin [24]. In the future, we intend to use the dynamic programm-
ing algorithm for stroke segmentation proposed in [37], which is able to split a freehand
stroke into the optimal number of line segments and elliptical arcs. When a new stroke is
received by the Stroke Pre-Processing Agent it is segmented into a set of sub-strokes
(possibly one). The classification process performed by the Stroke Classifier is then applied
to each sub-stroke.
The Stroke Classifier analyzes each sub stroke received, and classifies it into one or

more domain independent primitive shapes with a set of attributes that the SRAs can
use to build the input for AgentSketch HDSRs. In the current version of AgentSketch,
the Stroke Classifier is based on HHreco [38], a software library providing multi-stroke
symbol recognition capabilities written in Java. HHreco employs a statistical approach to
sketched symbol recognition that uses the Zernike moments of strokes as features and
enables the user to choose between various classification techniques. We have configured
HHreco to use a Nearest Neighbor Classifier, which compares each user stroke with every
sample in the training set by computing the normalized Euclidean distance. To classify
single strokes in three categories (lines, arcs and ellipses) we have created a training set
composed of about fifteen samples for each category. The statistical approach is quite
suitable for our problem because usually users draw primitive shapes (arc, line, ellipse) in a
similar way.

HDSR. The HDSRs included in AgentSketch have been implemented following the
approach proposed by LADDER, described in Section 4, and using the Jess engine [31].
When the SRA receives a new stroke classification, it builds a new fact representing the
new stroke classification and adds the fact to the working memory of the Jess recognizer.
Then the SRA queries the engine to discover if a new domain symbol has been recognized
thanks to the new knowledge just made available. In a similar way, when an SRA receives
a feedback request, it executes a Jess query on the working memory of the Jess recognizer
in order to check if the symbol in the feedback request message is related through some
relationship with some of the symbols it has already recognized. Only the HDSR of the
communication symbol has been implemented with Java, since it simply tests if one or more
received stroke interpretations represent a line longer than a given threshold.

Graph manager and reasoning module. The SIA of AgentSketch contains a reasoning
module and a graph manager. The first analyzes the graph of the recognized symbols and
determines how to interpret the input drawings. Currently, the interpretation is chosen by
considering the contextual information on the conflicting symbols as described in the
previous section. If this module is not activated the conflicts are solved considering the
information on symbol’s accuracy only.
The graph manager is based on JUNG [39], a software library that provides a common

and extensible language for modeling, analysis, and visualization of data that can be
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represented as a graph. Moreover, it includes the implementation of many algorithms from
graph theory.

7.2. An experimental evaluation

In order to evaluate the effectiveness of the proposed recognition system we have run an
experiment in the domain of Use Case Diagrams. We recruited twenty subjects (15 students
and 5 teachers of computer science) with basic knowledge of Use Case Diagrams, to which we
briefly introduced AgentSketch, included the multi-stroke symbol recognition capabilities.

We asked to the subjects to use the system for some minutes until they felt comfortable
with it and with the pen based input device. Then we gave them two diagrams of real
software systems, which they had to draw using AgentSketch. They knew that they were
not being timed and that they could not erase strokes during the editing process. The two
diagrams were formed by 16 and 23 symbols, respectively, thus we obtained 780 symbols
drawn by the subjects. Fig. 16 shows one of the diagrams.

To analyze the importance of the contextual information for the interpretation of
sketched symbols, we compared the results obtained by the context-based recognizer,
indicated with CR, with those obtained deactivating the SIA contextual reasoning module,
indicated with BR (baseline recognizer). As said above, with this approach, the conflicts
are solved by considering the shape’s accuracy only.

Table 1 contains some statistics on the recognition performances of both systems. In
particular, for each domain symbol we reported: the number of instances drawn by the
subjects, those correctly recognized by BR and CR with the relative percentages, the
percentage of true negatives (TN), the number of false positives (FP), and the percentage
of instances not recognized by any HDSR (US).

The results show that the context-based conflict resolution technique implemented by
the SIA considerably improves the overall precision in the recognition. On average, the
Fig. 16. AgentSketch user interface.
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Table 1

Recognition statistics by symbol

Symbols #Instances BR CR %US

#Correct %Correct %TN #FP #Correct %Correct %TN #FP

Actor 100 73 73 27 5 84 84 16 1 0

Use Case 260 206 79.23 13.46 15 241 92.69 0 10 7.31

Communication 280 259 92.50 6.07 76 274 97.86 0.71 52 1.43

Include 60 37 61.67 26.66 28 40 66.67 21.66 12 11.67

Extend 40 24 60 30 0 27 67.5 22.5 0 10

Generalize 40 26 65 27.5 4 35 87.5 5 4 7.5

Total 780 625 80.13 15.13 128 701 89.87 5.39 79 4.74

% BR ¼ percentage of symbol instances correctly interpreted without using contextual information.

% CR ¼ percentage of symbol instances correctly interpreted using contextual information.

% TN ¼ percentage of real instances of a symbol S recognized as another symbol (true negatives).

# FP ¼ number of symbol instances erroneously recognized as a symbol S (false positives).

% US ¼ percentage of symbol instances unrecognized.
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baseline system correctly identified 80% of the symbols while CR correctly identified 90%,
with a 39% reduction in the number of recognition errors (i.e., the false positives decrease
from 128 to 79). This is particularly true for the generalize symbol. This symbol is often
recognized as both generalize and communication, and by considering only the shape
accuracy communication wins almost all the conflicts. On the other side, the generalize

symbol is the only one that can link two actors. Thus, in many cases the use of contextual
information allows to disambiguate the generalize symbol properly.
We can also notice that include and extend are the symbols with worst performances

for both BR and CR. This is mainly due to the symbol recognition approach, which is
unsuitable to recognize letters.
Table 2 shows the statistics of each diagram for CR only. We can observe that as the

number of symbols to be recognized in a diagram increases, the more the number of true
negatives and false positives decreases. This is mainly due to the increase of contextual
information exchanged between SRAs. On the contrary, the number of unrecognized
symbols is dependent from the imprecision in the symbol drawing only.
Table 3 reports the confusion matrix obtained for the CR recognizer. The rows contain

the interpretations obtained for the drawn symbols, while the columns indicate the
instances (mis-)recognized for a given symbols. As an example, the Generalize row
indicates that 35 out of 40 generalize symbols drawn are correctly recognized and 2 have
been misrecognized as include (true negatives), whereas the Use Case column indicates that
251 Use Case symbol instances have been recognized, 10 of which are false positives since
they should be part of the actor symbol. Thus, a number in the matrix indexed by (row,
column) indicate how many times a row symbol is misclassified as a column symbol. The
correctly recognized symbols appear on the diagonal.
As shown in the matrix, when an actor symbol is misrecognized, more than one symbol

interpretation can be produced. This motivates why the first row exceeds the total number
of actor symbols (100). Indeed, the actor head can be interpreted as a Use Case and the
actor body as a set of communication symbols, which obtain feedback with the Use Case.
For the same reason some include symbols are misrecognized as communication symbols.
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Table 2

Recognition statistics of CR by diagram

#Symbols Total no. of symbols #Correct %CR %TN %FP %US

Diagram 1 16 320 277 86.56 8.75 11.9 4.69

Diagram 2 23 460 424 92.17 3.04 7.3 4.78

Table 3

Confusion matrix for symbols recognized by CR.

Symbols Recognized

Actor Use Case Communication Include Extend Generalize

Drawn Actor 84 10 39 4 – –

Use Case – 241 – – – –

Communication 1 – 274 1 – –

Include – – 9 40 – 4

Extend – – 4 5 27 –

Generalize – – – 2 - 35
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Finally, analyzing the confusion matrix columns we notice that the communication and
include symbols are those more involved in false positives. This depends on the fact that
their shape is contained, or at least in the case of include, in all the other symbols except for
the Use Case. On the contrary, the extend symbols are never involved in false positives
because the letter E has a little probability to be contained in the other drawing symbols.

8. Related work

In the last two decades several approaches have been proposed for the recognition of
freehand drawings. The novelty of our work consists in the exploitation of intelligent
agents for the integration and coordination of heterogeneous hand-drawn symbol
recognizers.

If we consider the agent technology, that mainly characterizes our approach, we find
that very few approaches are based on it. One of the oldest systems we are aware of is
QuickSet, a suite of agents for multimodal human-computer communication [40].
Underneath the QuickSet suite of agents lies a distributed, blackboard-based, multi-agent
architecture. The blackboard acts as a repository of shared information and as a
facilitator. The agents rely on this facilitator for brokering, message distribution, and
notification. The gesture recognition agent recognizes gestures from strokes drawn on the
map. Along with the coordinate values, each stroke from the user interface also provides
contextual information about objects touched or encircled by the stroke. Recognition
results are an n-best list of interpretations and an associated probability estimate for each
interpretation. This list is then passed to the multimodal integrator that accepts typed
feature structures from both the gesture and the parser agents (that interpret natural
language sentences), and unifies them. A very similar, but more recent, agent-based
multimodal system is Demo, described in [41]. In [42], Achten and Jessurun discuss how
graphic unit recognition in drawings can take place using a multi-agent systems approach,
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where singular agents may specialize in graphic unit-recognition, and multi-agent systems
can address problems of ambiguity through negotiation mechanisms. In [43], Mackenzie
and Alechina propose an agent-based technique for the classification and understanding of
child-like sketches of animals, using a live pen-based input device. Once the segmentation
stage is completed, an agent-based search of the resultant data begins in an attempt to
isolate recognizable high-level features within the sketch. Newly recognized strokes are
inserted into an ‘‘arena’’ (a sort of blackboard shared by all the agents, where agents can
move), and every single agent is in charge of recognizing a specific high-level feature.
Agents are mobile, and they wander around the arena looking for strokes that they can use
for recognizing a symbol. The mobile agents gradually become more and more restless
over time if they are unsuccessful in their task. The more restless an agent is, the less
reputable it is considered by other agents; agents that are happy with their position are
indeed considered more reliable, since they are likely to have correctly recognized their
symbol, and they exert a major influence on the other agents. Agents can cooperate in an
implicit way, if they are close enough, and if the strokes that they are recognizing should be
close enough in the sketch. In this case, the close agents become more confident in their
recognition. In [21], Juchmes et al. describe EsQUIsE, an interactive tool for free-hand
sketches to support early architectural design. The EsQUIsE environment uses pen
computer technologies featuring the ‘‘virtual blank sheet’’. Lines drawn on the screen are
captured and interpreted in real time thanks to the activity and collaboration of different
types of agents. ‘‘One stroke’’ agents recognize single strokes, while ‘‘multi-stroke’’ agents
recognize group of strokes with chronological, topological and geometric relations, such as
dotted lines. The system also involves agents that recognize individual chars, and a
dictionary agent. Each stroke can be marked with a flag by the agents (apart from the
dictionary one) that are sure enough to have recognized a symbol by using this stroke.
When many different interpretations of the drawing are possible, the agents must work
together to propose a pertinent interpretation of the sketch. In particular, agents that
put a flag on the same stroke, collaborate to decide which of them is wrong, based on
the probability that each of them assigns to the successful recognition. If for example,
a long sequence of vertical lines is drawn, the char recognizer agent puts flags on them,
since it is almost sure that they are ‘‘i’’s, and the multi-stroke agent recognizing ‘‘hatch
marks’’, also puts flags on them. Since the dictionary agent cannot find any word
composed by only ‘‘i’’s, the text recognizer agent realizes that it was wrong, and removes
its flags from the vertical lines. Thus, the sequence of vertical lines is recognized as a hatch
mark. In [44], Azar et al. extend the previous multi-agent architecture with the possibility
of interpreting also vocal information. The graphical inputs are interpreted by either rule-
based agents or model-based agents, while the spoken inputs are interpreted by model-
based vocal agents.
When we compare our proposal with those using the agent technology, we find that the

main differences lie in the technique exploited for recognizing symbols from stroke
classifications, that is established once and for all by the other approaches, and in the
intended usage domain of the system, which is very specific for all the implemented
systems. In fact, Quickset and Demo have been developed for interacting with maps and
for drawing Gantt charts, respectively. The system described in [43] classifies child-like
sketches of animals, and EsQUIsE is designed for architectural sketches. The only general-
purpose view is provided by Achten and Jessurun. However, their paper is more similar to
a feasibility analysis of the adoption of multi-agent techniques to sketch recognition in the
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very general case, rather than to a proposal of a concrete MAS architecture, like the other
papers and ours are.

Regarding the construction of symbol recognizers, besides the ones described in Section 4,
many other approaches have been proposed [26,29,30,45,46]. We believe that each of these
proposals can be integrated into our framework in spite of the fact that they differ one
from another under several aspects, ranging from the identification of the shape of the
symbols to the approach used to construct them. For instance, the Rubine recognition
engine is a trainable recognizer for single stroke gestures [30]. Gestures are represented by
global features and are classified according to a linear function of the features. However,
the recognizer is applicable to single-stroke sketches and is sensitive to the drawing
direction and orientation. In [26], Apte et al. developed a hard-coded recognizer that
examines the geometric properties of the convex hull of a symbol. The recognizer also
makes use of special geometric properties of particular shapes. In [29], Kara and Stahovich
have developed a symbol recognizer that is capable of learning new definitions from single
prototype examples. Moreover, since it is based on a down-sampled bitmap representation,
it is particularly useful for drawings with heavy over-stroking and erasing. In [45], Gennari
et al. present a circuit diagram recognition system that runs isolated symbol recognizers to
generate an interpretation. The symbols are located by considering the areas with high
density of pen strokes and the temporal information associated to the segmented input
strokes. Then, the candidate symbols are classified using a statistical model constructed on
training examples. Their system has as number of strengths such as fast recognition,
support for multi-stroke objects and multi-object strokes and arbitrary stroke orderings
within each object. However, the approach constrains users to draw non-overlapping
symbols and to complete drawing one symbol before beginning the next. Moreover, to
reduce the size of the search space, the parsing algorithm sets a limit for the number of
segments that a symbol may contain. Finally, in [46] Krishnapuram et al. present a
generative probabilistic framework for symbol recognition. Their approach is able to
recognize messy drawings using single examples by assuming a Gaussian noise model.
However, to keep the search for the optimal segmentation tractable, the authors assume
that each subset of stroke fragments considered during segmentation contains no more
than seven straight line segments. This might be a severe limitation in domains with
moderately complex objects.

Regarding the systems that take into account contextual information for sketch
recognition several interesting approaches have been proposed [8,13,47,48]. We believe
that the rationale underlying these proposals can be integrated into our SIA reasoning
module. Mahoney and Fromherz [47] uses a structural language to model and recognize
stick figures. The recognition process starts with the generation of an attributed graph
representing the input sketch using the set of lines in the sketch and their relationships.
Then, by applying perceptual organization principles such as good continuation and
proximity the scene graph is augmented by subgraphs corresponding to possible
ambiguities in the interpretation of line relations. Next, the algorithm looks for instances
of the model graph in the scene graph by performing subgraph matching. In [13], Kara
et al. present a multi-level parsing scheme based on a ‘‘mark-group-recognize’’ archi-
tecture. The recognition process is guided from ‘‘marker symbols’’, which are symbols easy
to recognize. The identified marker symbols are used to efficiently cluster the remaining
strokes into individual symbol using a trainable symbol recognizer having the advantage of
learning new definitions from single prototype examples [29]. The parser uses contextual
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knowledge to both improve accuracy and reduce recognition times. The applicability of
this approach is constrained to the presence of marker symbols in the domain language. In
[49], Costagliola et al. present a multi-layer parsing strategy for the on-line recognition of
hand-drawn diagrams based on the grammar formalism of SkGs [27]. The recognition
system consists of three hierarchically arranged layers that include context-based
disambiguation and ink parsing. The recognizer of the diagrammatic language, which is
at the top of the hierarchy, applies its context knowledge to prune some of the symbol
interpretations, to force the recognition of incomplete symbols, and to select the more
suitable interpretation. A similar approach has been developed by Alvarado and Davis
[8,10]. They present a parsing approach based on dynamically constructed Bayesian
networks that combines bottom-up and top-down recognition algorithm that generates the
most likely interpretations first, then actively seeks out parts of those interpretations that
are still missing. A major strength of this system is its ability to model low-level errors
explicitly and use top-down and bottom-up information together to fix errors that can be
avoided using context. Finally, by the observation that in certain domains people draw
objects using consistent stroke orderings, Sezgin and Davis have presented a hierarchical
recognition model that uses both stroke- and object-level temporal ordering information
(i.e., the temporal context) gathered automatically from training data [48]. By exploiting
knowledge of how people characteristically follow specific patterns when drawing certain
sketches, segmentation and recognition can be perform efficiently and some recognition
errors should be avoidable. However, the recognition algorithm requires each object to be
completed before the next one is drawn.

9. Conclusions and future work

In this paper we have presented an agent-based framework for interpreting hand-
sketched symbols in a context-driven fashion, exploiting heterogeneous techniques for the
recognition of each symbol. The recognition process is supported by intelligent agents
(SRAs) that manage the activity of hand-drawn symbol recognizers, and coordinate
themselves in order to provide efficient and precise interpretations of the sketch to the user.
In a certain sense, SRAs can be seen as mediators that implement the middle layer for
integrating information provided by different data sources (the HDSRs). The approach to
information mediation based on intelligent agents has a long tradition [50,51]. In our
approach we apply the ideas behind mediation to a new research field.
We have also presented AgentSketch, a sketch recognition system implemented

according to the framework exemplified in Section 3. It supports both on-line and off-
line recognition mode and can be applied to a variety of domains by providing the suitable
recognizers. We have performed a first experimental evaluation of the system on the Use
Case Diagrams domain, and the results have indicated that the use of context to
disambiguate symbol shapes significantly reduced recognition error over a baseline system
that did not consider contextual information.
We are investigating how to make our framework a fully open and dynamic MAS,

where new SRAs and new SIAs can be integrated at run-time, and exploring ways to
improve the effectiveness of the recognition process, such as the integration of a parser into
the SIA for analyzing the syntax of the domain language. This will allow us to improve the
accuracy in computing feedback information and to reduce the number of active
recognition processes.
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We also intend to investigate user interface issues, such as how to visualize feedback for
the recognition results. In the current version of AgentSketch it is the user that decides
when to interpret the input drawings, but this can lead to compound errors that can be
difficult to detect and correct. On the other hand, recognizing and adjusting shapes as they
are drawn can distract the user during the editing process. Thus, sketch-based interfaces
should balance between these two modes of showing feedback [9].

Finally, for improving the recognition performances and the usability of the system it
would be useful to incorporate information from external knowledge sources in the
recognition process. As an example, the user could explicitly indicate the interpretation of
a set of strokes interacting with the user interface or giving voice commands. The proposed
agent-based framework has the advantage to be easily extensible, so external information
can be incorporated in the system independently from the nature of the supplied
information.
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