
 1

End users as co-designers of their own tools and products*

Carmelo Ardito, Paolo Buono, Maria Francesca Costabile, Rosa Lanzilotti, Antonio Piccinno

Università di Bari Aldo Moro

Dipartimento di Informatica

via Orabona 4, 70125 Bari, Italy

{ardito, buono, costabile, lanzilotti, piccinno}@di.uniba.it

Abstract

In our Age of exponential technological advance, recent developments are determining an evolution of

end users from passive information consumers into information producers. Users are increasingly willing

and, indeed, determined to shape the software they use to tailor it to their own needs. Based on a brief

review of research activities we performed in the last decade, this paper analyzes some challenges that

software designers face to comply with the new roles of end users in the software life cycle, and discusses

how to provide end users with software environments that empower them to become co-designers of their

own tools and products. The examples reported in the paper show why and how end users are involved in

design activities in various application domains.

Keywords: End-User Development, Meta-Design, Design Model.

*Dedication

This paper is dedicated to the memory of Piero Mussio. It refers to some research developed by our

research group at the University of Bari working with Piero and his collaborators at the University of

Brescia and the University of Milan. It also refers to some very early papers by Piero, which show that he

was one of the pioneers in visual languages, in Human-Computer Interaction, and in end-user

development. Since the 1970s, when Human-Computer Interaction had not yet become a discipline in its

own right, Piero devoted close attention to user needs in the interaction with databases, pointing out

important issues such as the diversity of users of interactive systems, the need for computer scientists to

develop software environments and tools that take into account languages and notations adopted by users

in their work practices, the possibility to allow users to adapt and refine by themselves the environments

and tools they use. In the years we collaborated with Piero, we learnt to appreciate his wide culture, his

scientific and human qualities; we argued a lot in many discussions about our work, and we shared some

very enjoyable moments of our lives.

carmelo
Text Box
Pre-print version
Ardito C., Buono P., Costabile M.F., Lanzilotti R., Piccinno A., 2012. End users as co-designers of their own tools and products. Journal of Visual Languages & Computing, 23 (2), 78-90, issn: 1045-926X, doi 10.1016/j.jvlc.2011.11.005.

 2

1. Introduction

Software developers and users were traditionally considered as two distinct communities: developers

would create computer systems that would then be used by users to perform their daily activities. By

contrast, in today’s information and communication society, more and more people do not only use

software but also get involved in creating or modifying it. Thus, their role is no longer that of passive

consumers of computer tools, but is evolving toward a more active role of information and software

artifacts producers [1]. Web Content Management Systems and Enterprise Resource Planners are

significant examples in which users are willing to shape software [2-7], but this is true in many other

domains, as will be shown in this paper.

Even if the two terms user and end user will be used as synonyms in this paper, except in cases

of ambiguity, it is worth distinguishing between them: users are all people interacting with software

systems, so even software engineers are users of the tools and environments (e.g. CASE tools) they use

for their work; end users are people who are not experts in Computer Science, nor willing to be, but who

use computer systems for their daily activities, for work as well as for entertainment or other purposes [8].

Recent technology and the rise of the so-called Web 2.0 now offer end users the possibility to perform

various activities that involve modification or even creation of software artifacts: they range from simple

parameter customization to more complex activities, such as variation and assembling of components [9,

10]. These activities are examples of End-User Development (EUD), as defined in [11]. In short, end

users are becoming co-designers of their software tools and services [12]. This evolution poses a

challenge to professional designers (software engineers), who have to create software environments that

can empower end users to shape the software they use, without obliging them to become programmers.

This paper starts with a brief discussion of the roles of end users in the software life cycle, and

describes joint research work performed with Piero Mussio and some of his collaborators at the

University of Brescia and the University of Milan over the last decade. One of Piero Mussio's major

concerns was the diversity of end users, this also influenced the research reported in this paper. Based on

various experiences about the development of interactive systems that address people’s activities in their

daily practice, a design approach has been defined and progressively refined [8, 13, 14]. The aim is to

create systems that permit EUD, i.e. that support people to tailor the software they use to make it better

suited to their own needs, also by creating or modifying software artifacts. EUD is not a luxury but a

 3

necessity [1], demanding new paradigms and approaches to create systems to comply with the new roles

of end users in the software life cycle. This paper describes one of such approaches and discusses its

application through examples that show, in various contexts, how end users become co-designers of

software.

The paper is organized as follows. Section 2 briefly discusses how end users roles are evolving

towards a more active participation in the development of computational artifacts. Section 3 illustrates

some challenges faced when addressing the diversity of end users. Section 4 describes how end user

involvement in the whole software life cycle and the need to support EUD are determining a shift toward

a new software design paradigm; the approach developed, based on meta-design, is briefly reported.

Section 5 presents some examples, which show how our approach to create systems enabling end users to

become co-designers of their tools and products is adapted to comply with different application domains.

Section 6 concludes the paper.

2. About end users

The desire of end users to adapt software to their needs had already begun to be analyzed by various

authors by the beginning of ’90s; empirical studies on the activities end users were willing to perform

were reported in [15, 16]. End-User Development and End-Users Software Engineering are terms that

have been coined in the last years to refer to these activities [11, 17-19]. End users are not pure end users

any more, but are determined to become increasingly involved in software development; some may have

certain software development skills but, surely, they are not interested in software per se, they simply

want to solve their own specific problems [14].

The activities performed by end users, which result in software modification, were analyzed in

[20]. Two main types were identified: parameterization and tailoring. Parameterization refers to

activities that allow end users to choose among alternative behaviors (or presentations or interaction

mechanisms), already available in the application, by setting some parameters. Other names used in

literature for such activities are customization or personalization (see, for example [11]); they are already

possible in widely used applications such as Microsoft Word™. Tailoring includes all activities that

involve some programming in any programming paradigm, thus creating or modifying a software artifact.

Other analyses of end-users activities are reported in [21] and [22].

Our research was originally driven by the specific needs of people we worked with, who were

 4

experts in a specific discipline, such as geology, mechanical engineering, medicine, etc.; they required our

expertise to develop interactive systems to support their daily activities. We called these end users

domain-expert users: they are experts in a specific domain but not necessarily experts in Computer

Science [13]. Today, thanks to the increasing availability of technology and software applications, we are

facing an exponential increase of the number and type of end users, ranging from very young to elderly

people, who use computer applications on the Web and on various mobile devices to support their daily

activities. These are not confined to work, but also include information needs, or entertainment and

pleasure purposes. A study published in 2005 estimated that in 2012 there will be 90 million end users in

American workplaces and fewer than 3 million professional programmers [23].

Most end users have no programming skills and do not want to be constrained by formalisms

unfamiliar to their culture. They wish to use software environments that are easily accessible and usable,

but which they can tailor to their needs, tasks and habits. Even if they use software applications that allow

them to create or modify software artifacts, for example by creating a macro in Microsoft Excel™, they

do this without being aware that what they are doing is programming. In other words, they are unwitting

programmers [24], like the children analyzed in [25]. Indeed, children playing with a computer often use

sophisticated programming skills, but this is embedded in an intrinsically motivated activity that they

perceive as something easy and fun to perform. They do not regard it as programming which, in the

child's opinion, is very difficult. Various computer applications allow children to construct interactive

simulations, animations, and games, in a manner that places a lot of emphasis on construction; they

program by composition, not by algorithm development: their intention is to play and enjoy, and they

don't even realize they are programming. Children learn by trying things out. When they use a new

environment, they do not read tutorials, but go straight to the example or ask friends. Children greatly

enjoy communicating with friends and possibly performing collaborative activities, often conducted

remotely by exchanging artifacts online. This behavior is very similar to that of the end users we analyzed

[8, 14]: end users want to manipulate and tailor objects in their software environments in order to create

new configurations or new designs. They want to do this as a part of activities that they are highly

motivated to perform, without thinking that they are programming. As a consequence, designers should

create systems that empower end users by providing such communication and collaboration capabilities.

This is a major point addressed by the EUD research community, as discussed in [26].

 5

3. User diversity

Addressing user diversity has been a concern of our research since the very beginning. In particular, we

observed that even the end users of the same interactive system are often diverse, constituting different

communities characterized by specific cultures, goals, tasks and context of activity [8]. The projects

reported in Section 5 provide various examples of diversity within the target end users of an interactive

system. To ensure a good design, it is of critical importance to address this diversity of end users [27].

The slogan “one size fits all” does not work for user interfaces, as different users of a same interactive

system may need different interfaces that provide them adequate support. It is well known that people

experience many difficulties when they interact with a system that has been designed without taking into

account their cultural background, their reasoning strategies, the way they carry out their tasks in their

daily practices, the languages and notations they are familiar with.

Piero Mussio highlighted this problem in his very first works dating back to the ‘70s. At that

time, he was involved in satellite image processing, but his attention was already devoted to allowing

domain-experts to interact in the best way with the databases storing such images, while carrying out their

analysis work. Citing from one of his papers [28]: “The data related with the surface water system are

utilized by several users, according to the interdisciplinarity of the system analysis… Specialists of

different disciplines use their languages to describe phenomena and data… The same elementary objects

and names appear in both descriptions but with different meaning and associated computations… The

communication with the user must be different according to the various disciplines”. In another section of

that paper, he points out that scientists of different disciplines have developed their own models and

languages, thus software tools have to match these languages.

It is amazing to see that well before the development of the worldwide Human-Computer

Interaction literature, Mussio had a clear vision of how to support people interacting with computer

systems by providing them with user interfaces capable “to speak the user language”. He also declared

that what the “information analyst” is required to do is to identify what can be coded in the user language

(i.e. the language for the human-computer dialog), that is, the user is asked to design with the

“information analyst” an “intermediate language” which is the basis of the query language for the

specialized database [28]. Thus, he anticipates the importance of defining a user interface and an

interaction language to mediate the communication with the database query language. It is worth

 6

mentioning that Mussio later became an active contributor to the field of visual languages, which

appeared in the eighties with the aim of defining easier to use formal languages. More importantly for the

specific topic addressed in this paper, he foresaw the collaboration between users, as domain-experts, and

professional developers (called “information analysts”) in the design of the formal language to be used in

the human-computer dialog. In other words, he already had a vision of end users being co-designers of

their environments and tools, as the recent EUD approaches state.

User diversity has been addressed in our approach to interactive system design, which states that

an interactive system should propose different interaction environments, each one suited to a specific

community of users and adopting a language for the human-computer dialog that is inspired by languages

and notations used in the community’s daily pratice [8]. In a paper published in 1991, Mussio already

recommended that “the variety of specialized visual and verbal expressions used by the expert in his

traditional activity be translated into a set of computer languages and organized as an interactive

environment” [29]. In another paper in 1992, he anticipated EUD and set the basis for the design model

we later developed [30]; for example, he declared that, by collaborating with professional developers, the

domain expert “specifies high-level visual languages by which he can program i) the interaction

necessary to execute and control his computational tasks, ii) his own computing tools, iii) how input data

can be captured by the system in a way which is natural for the naïve user (naïve from the Computer

Science point of view), and iv) how output data can be presented in a form communicable to other

experts”. In summary, Piero Mussio had a very early vision that end users would actively participate to

create their system, i.e. would need to be involved in the whole software life cycle. Our experience

confirms this position, as discussed in the next section.

4. Involving end users in the whole software life cycle

The traditional life cycle of interactive systems distinguished between design time and use time. At

design time, system developers would create environments and tools, figuring out end users’ needs and

objectives. At use time, end users would use the system. Design frameworks were based on the

assumption that major design activities end at a certain point, after which the use time begins. End users

would be active only at use time. Even when performing User-Centered Design, which requires the

system to be designed by iterating a design-implementation-evaluation cycle, development was carried

out by software professionals, while end users only use the system and, at most, are involved in prototype

 7

evaluation [31].

Participatory Design was introduced as a design paradigm which considered the participation of

end users in the design process [32]. The rationale was that users are experts of the work domain so a

system can be effective only if these experts are allowed to participate in its design, indicating their needs

and expectations. Thus, end users had become members of the design team, but no tools were yet

provided to let them create or modify software.

More recently, EUD started the trend toward a more active involvment of end users in the overall

software design, development, and evolution processes. Tasks that are traditionally performed by

professional software developers are transferred to end users, who become co-designers of the tools and

products they will use. Of course, end users have to be specifically supported in these new roles of

designers and developers. This does not imply transferring the responsibility of good system design to

them. It actually makes the work of professional developers even more difficult, since it is still their

responsibility to ensure the quality of the artifacts created by end users. These issues are discussed in [18].

Some EUD-oriented techniques have already been adopted in software for the mass market, such as the

adaptive menus in Microsoft Word™ or some Programming by Example techniques in Microsoft

Excel™. iGoogle™ is another excellent example of a Web application which requires end users to

perform EUD activities to tailor the available software tools to their own needs [33].

In order to allow end users to create and modify software artifacts, a two-phase design process

must be considered: the first phase (meta-design phase) consists of designing the design environments,

i.e. the environments suited to the diverse stakeholders who participate in the design of the final

applications; the second phase consists of designing the final applications, using the design environments.

The two phases are not clearly distinct, and are executed several times in an interleaved way because the

design environments evolve, both as a consequence of the progressive insights the different stakeholders

gain into the design process, and as a consequence of the feedbacks provided by end users working with

the system in the field. This two-phase process requires another shift in the design paradigm, which

moves from participatory design to meta-design (i.e. design for designers) [8, 12].

In EUD approaches, the separation between design time and use time becomes fuzzy [34]. This

is true also in recent software development methodologies, like Agile Development [35]. These two

stages are now bridged into a unique “design-in-use” continuum that permits the creation of open and

 8

continuously evolvable systems, which are extended and/or redesigned at use time by end users

collaborating with all the other stakeholders. This design paradigm considers software design as an

evolutive and never-ending process, which can be modeled as a design-develop-use-evolve cycle. In

agreement with other authors, we can say that the system is in a “perpetual beta” version [36].

The shift towards a new approach to create interactive systems was confirmed by a study

commissioned by the U.S. Department of Defense, which clearly states that development activities will in

the near future be distributed and initiated by various stakeholders [37]. Besides end users (of possibly

different types), who “own” the problem, and software engineers, who “own” the technology, in the

design team other experts and/or stakeholders are needed, e.g.: Human-Computer Interaction (HCI)

experts, who know human factors and may advise on the design of usable systems capable of generating a

valuable user experience; marketing experts, who may advise on how to design a product with market

appeal; graphic designers, who should contribute to the design of an attractive user interface; other

experts of the system domain. These people contribute to the system design with their own expertise.

They need different software environments, specific to their culture, knowledge and abilities, through

which they can contribute to shape software artifacts. They should also be able to exchange among

themselves the results of these activities in order to converge toward a common design.

Over the years, we have been working on the creation of software infrastructures that support

EUD activities as well as knowledge creation and sharing among the stakeholders involved. This research

resulted in the definition of a design approach based on the Software Shaping Workshop (SSW) model,

which allows a team of experts to cooperate in the design, development, use and evolution of interactive

systems [8, 13, 14]. The SSW model supports meta-design in that it prescribes that, instead of developing

the final interactive system as in traditional design approaches, professional developers should design

software environments for the different communities of stakeholders involved in the creation of the

system, who will use such environments not only to carry out specific tasks at use time, but also to

contribute to design and evolution of the interactive system [38]. These software environments are called

Software Shaping Workshops (SSWs or briefly workshops). The term workshop comes from the analogy

with an artisan’s workshop (e.g. the joiner’s or the smith’s workshop), i.e. the workroom where the

artisan finds all and only those tools necessary to carry out her/his activities. Each SSW provides an

interaction language tailored to its users’ culture, since it is defined by formalizing the traditional user

 9

notations and system of signs [39]. Communication channels among the various workshops are provided

in order to support collaborative development and evolution. Thus, the workshops act as cultural

mediators among the different stakeholders by presenting the shared knowledge according to their own

languages. The SSWs are designed according to the “gentle slope of complexity” principle [10, 27, 40]:

people find in their SSW only those tools and functionalities necessary to their tasks, presented in a way

that is adequate to their culture and skills, so that they can easily use them. Of course, once users get

familiar with their SSW, they may require new and more complex functionalities: such needs likely crop

up later on determined by users’ evolution during time.

To summarize the SSW approach, the first important step is a study aimed at accurately

gathering users and system requirements. In particular, those stakeholders who may contribute to one or

more of the phases of the software life cycle have to be identified and analyzed. Then, the meta-design

team is defined which, besides professional developers who are the technology experts, and HCI experts,

includes at least the domain and problem experts. This team creates the SSWs for the involved

stakeholders. Since domain experts are usually not familiar with software tools, to let them contribute to

the design of the final application, the meta-design team develops proper application templates. The

template is intended as a schema or a skeleton, which facilitates the assembling of some basic

components. In the SSW approach, an application template aims at guiding the design activities of the

stakeholders involved, who will behave as unwitting programmers, creating or modifying software

artifacts without explicitly programming.

Another model proposed to support meta-design is SER (Seeding, Evolutionary and Reseeding)

[41]. Instead of building a complete system at design time, the system design starts from seeds which are

developed by meta-designers collaborating with end users; a subsequent evolutionary growth follows, and

then a reseeding phase occurs. The seeding phase concerns the definition of the initial state (seed) of a

software artifact, which will be used by end users to perform their activities. The reseeding of a software

artifact is performed by any designer to modify the initial state of a software artifact. The evolving system

continually alternates between periods of unplanned evolutions by end users and periods of deliberate

restructuring and enhancement, involving end users in collaboration with designers. Compared with the

SER model, the SSW model more explicitly considers that end users can even take on the role of meta-

designers; it also blurs the distinction between design time and use time. Indeed, as shown in some

 10

examples in the next section, meta-design is not only performed by software engineers, but some end

users themselves want to shape software artifacts that are used by other end users to design other artifacts.

Moreover, the SSW model indicates how to support the designers in the reseeding phase, since there is

ongoing communication among the SSWs of end users, professional developers and other stakeholders.

5. EUD in different application domains

This section presents some examples showing that EUD activities are needed in many contexts and

illustrating how the SSW meta-design approach is carried out in the different application domains. In

Section 5.1, the design of the electronic patient record in the medical domain is discussed. Section 5.2

presents a Web portal whose aim is to allow end users to contribute to the design of virtual shop windows

for advertising purposes. Section 5.3 describes the EUD-based design of educational games in the cultural

heritage domain. In Section 5.4, a recent project on product customization whose aim is to empower

customers to create their own furniture is illustrated.

5.1. Designing the electronic patient record

Management of the Electronic Patient Record (EPR) is a key problem in the medical domain, which has

been addressed by various researchers [42-44]. No generally accepted implementation of the EPR yet

exists, because it is still commonplace that individual hospitals, and even specific departments within the

same hospital, create their own procedures. Physicians, nurses and other operators in the medical field are

reluctant to accept a common unified format; they want to customize and adapt the patient record to their

specific needs, as various authors also observed [45, 46]. Thus, the EPR is a natural target for EUD.

The patient record is a many-sided document: it is read and understood by very different people,

not only physicians and nurses, but also the patients themselves, their relatives, etc., thus it must have the

ability to speak different “voices” to convey different meanings according to people using it [46]. Patient

records are official artifacts that practitioners write to preserve the memory or knowledge of facts and

events that occurred in the hospital ward [47]. The patient record has two main roles: a short-term role to

collect and memorize data keeping trace of the medical care provided during the patient’s hospital stay; a

long-term role in storing the patient’s data for research or statistical purposes [48]. Accordingly, the

specialized literature distinguishes between the primary and secondary purposes. Primary purposes

include the demands for autonomy and support of practitioners involved in the direct and daily care of

 11

patients, while secondary purposes are the main focus of the hospital management, pursued in order to

rationalize care provision and enable clinical research [46].

In most systems proposed so far for EPR management, predefined document templates and

masks are usually imposed on practitioners, without considering the specific needs and habits of those

who are actually using the EPR. The combination of requirements for both standardization and

customization is a further element pushing toward the adoption of EUD techniques for managing EPRs.

We present here our proposal to create an EPR whose structure and functionalities support the specific

needs of each stakeholder involved, by allowing them to contribute to design and/or tailoring the EPR.

We conducted a field study at the “Giovanni XXIII” Children Hospital of Bari, whose purposes

were: 1) to understand which kind of documents, tools and languages were used in order to identify the

requirements of a system implementing the EPR; 2) to identify the stakeholders to be included in the

design team. Unobtrusive observations in the wards, informal discussions, individual interviews were

performed. The analysts involved in the study periodically observed different people during their daily

work in the hospital. An important point emerged: in each ward, even in the same hospital, there are

specific patient records; this because different data need to be stored, depending on the specific ward. For

example, in a children’s neurological ward, information about newborn feeding must also be available,

while in an adult neurological ward, information about alcohol and/or drug consumption is required. The

patient records are actually composed of modules, each one containing specific fields for collecting

patient data. Various hospital employees are interested only to a subset of such modules, and use them to

accomplish different tasks, i.e. the nurse records the patient’s measurements, the reception staff records

the patient’s personal data, the physician examines the record to formulate a diagnosis, and so on.

Moreover, the following main stakeholders who are involved in the EPR management were identified: 1)

practice manager; 2) head physicians; 3) physicians; 4) nurses; and 5) administrative staff. In particular,

the head physician has the right and the responsibility of the EPR to be adopted by physicians and nurses

of his ward.

According to the SSW model, we created the meta-design team composed by software engineers,

HCI experts and the practice manager, a domain-expert whose knowledge is necessary to design the EPR

modules. The meta-design team created the SSWs for the different stakeholders, as well as the data

modules, which are the basic component of the EPR, and the application template to allow each head

 12

physician to design the EPR for her/his ward by directly manipulating data modules in her/his SSW.

We briefly describe here the prototype system for the management of the EPR. The focus of this

prototype is on the activities of the head physicians for shaping the EPR. The system is composed of a

network of software environments (SSWs), each devoted to a different type of stakeholder to let them

accomplish their tasks in a comfortable and suitable way. The SSWs used by physicians and the ones

used by nurses of a specific ward result from the design activity performed by the head physician.

Figure 1. A screen shot of the SSW for the user “Dan”, the head physician (“Primario”) of the Neurology

(“Neurologia”) ward.

Let us consider a specific example. The SSW developed for the head physician of a specific ward allows

him (in our case he is a man) to design the EPR tailored to the ward needs by choosing from the pre-

designed modules those appropriate to the ward, and assembling them in the preferred layout. Figure 1

shows the SSW for the neurology head physician. The working area of the SSW is divided in two parts:

in the left part are the modules he can insert in the EPR (“Moduli Inseribili” in Italian), the right part

shows the current design of the EPR (“Cartella Clinica”) performed by the head physician. For example,

Figure 1 shows, on the left, a module about Standard Growth Charts (“Misure Antropometriche

all’ingresso”), which includes data about Weight (“Peso”), Height (“Altezza”), Head Circumference

(“Circonferenza cranica”). Another module is about Feeding (“Allattamento”) and includes data about

 13

breast or artificial feeding; in cases of artificial feeding, more data about the type of milk and other

aspects are included. The neurology head physician creates his tailored EPR by dragging and dropping

the modules from the left part of his SSW to the desired position in the right part. In the example shown

in Figure 1, the neurology head physician has already inserted some modules, namely a heading reporting

information about the hospital and the ward; the patient’s personal data, i.e. last name (“Cognome”), first

name (“Nome”), birth date (“Data Nascita”), etc.; a module with Basic Laboratory Tests (“Routine

Ematica”); a module for information about Required Consultations (“Consulenze Inviate”). In the figure,

the head physician is dragging the module about Tests Performed Outside the Hospital (“Esami Fuori

Sede”) to insert it in his EPR. Once the EPR design is completed, the head physician clicks on the Save

button (“Salva Layout” in Italian). In this way, he has actually created a software artifact that will be used

by the neurology ward personnel.

Figure 2. A screen shot of the SSW for the user “Cic”, a nurse of the Neurology (“Neurologia”) ward.

Figure 2 shows how the EPR designed by the head physician appears in the SSW of the nurses of his

ward (for privacy reasons, in figures dummy data are shown). A nurse primarily uses the EPR to input

patients’ data. This end user does not have the EUD possibilities allowed to the head physician in his

 14

SSW: nurse’s tailoring is limited to modifying the layout of the EPR modules. For example, if her/his

current activity is to insert patients’ data about “Routine Ematica”, s/he can move this module to the top

of the SSW by clicking on the “Up” button (“Su” in Italian).

In a similar way, the head physician designs the SSW to be used by the physicians of his ward.

Over time, if necessary, the head physician can update the EPR for his ward by inserting new modules

among those already designed. If what he requires does not yet exist, he refers to the meta-design team,

who has to create new modules and make them available in the SSW of the stakeholders.

We are well aware that there is a long way from this prototype to a completely working system,

but the formative user testing we performed with physicians and nurses confirmed our idea that users

appreciate the possibility to shape the EPR according to their needs. A main goal of our work is to inform

designers of EPRs of the value of EUD approaches in the medical domain.

5.2. Designing virtual showrooms on the Web

This section describes a recent project about the development of a Web portal for a company that

provides advertisement spaces for shops of various natures through virtual windows appearing in the

portal. The virtual windows are designed according to different patterns, which include various type of

multimedia elements, such as text, pictures, Flash™ animations, videos, etc. The company sells virtual

windows to shops for advertising purposes. The virtual windows are sold at different prices according to

the complexity of the pattern (in terms of combined multimedia elements). An innovative feature of the

portal is that the shops’ owners are allowed to create and manage the content of their own virtual

windows.

A preliminary study indicated the following main stakeholders of this system [49]: 1) Web

surfers, who are people browsing the virtual windows; 2) shop owners, who provide multimedia contents

to be shown in their virtual windows; 3) editorial staff members, who are company employees that

manage the available patterns of virtual windows; and 4) system administrator, a company employee with

some Computer Science knowledge. The system administrator is a member of the meta-design team that,

working with software engineers and HCI experts, develops the SSWs for the different stakeholders and

creates the patterns of virtual windows to be sold.

As an example of how a shop owner (a woman) uses her SSW to manage and craft her virtual

windows, let us consider what happens when she wants a feature modified in her virtual window. Figure 3

 15

refers to the screen shot of the SSW that, in the central part, shows the virtual window whose pattern is

composed of a textual description (left side) and a photo gallery (right side) with one large picture and

three small pictures at the bottom. As illustrated in Figure 3, the shop owner uses the tool available in her

SSW (through the item “Richiesta modifica” in the left menu) to request the changes she wants on a

widget of the interface she indicates with a mouse click. In this example the photo gallery has been

indicated: a popup window is shown, where the user writes her request, namely to shows four pictures in

the gallery.

Figure 3. Through the annotation tool in her SSW, the shop owner makes a request to the editorial staff.

The request is received by a member of the editorial staff and visualized in her/his SSW as an item in a

table at the screen bottom (Figure 4). The table shows all requests possibly issued by other shop owners.

It is worth noticing that the representation of a same message is different in the two SSWs: in the SSW of

the shop owner, the request is a text in an annotation; in the SSW of the editorial staff, it is an item in a

table, with several attributes that, even if represented by codes, are understandable by the SSW users.

 16

Figure 4. A screen shot of the SSW of the editorial staff, showing that the request sent by the shop owner

is visualized as an item in a table (at the bottom of the figure).

If the editorial staff member can directly manage the request, s/he performs the necessary software

modification and communicates it to the shop owner. For example, if a pattern with more pictures exists,

the editorial staff member makes it available in the SSW of the shop owner, who will update the content

of the new pattern. Otherwise, the editorial staff member communicates in a similar way with the

administrator in order to ask for the creation of the new pattern satisfying the shop owner’s request [49].

5.3. Designing educational games in the cultural heritage domain

Over the years, we have been involved in research projects that are aimed at developing interactive

applications for supporting visits to cultural heritage sites. In particular, pupils aged 10-13 years old have

been addressed, designing educational games on newfangled devices, such as cell phones and large

multitouch displays; which can potentially arouse pupils’ curiosity and to engage them in their learning

activities. The excursion-game has been developed; it is a pervasive game on cell phones to be played by

groups of pupils exploring outdoor cultural heritage sites, like archaeological parks [50, 51].

The successful design of this type of applications requires the joint effort of several stakeholders

with different/specific skills, namely: a) Education experts, who contribute to specifying and reviewing

requirements in design and evaluation of educational applications; b) Cultural Heritage (CH) experts,

who play a fundamental role in designing and developing applications that support visits to CH sites; c)

visitors, who use the developed applications. We describe here how the SSW model has been applied to

create an environment (CH expert workshop), which allows CH experts to be co-designers; having no

 17

expertise in application design, they need a proper environment to carry out EUD activities.According to

the SSW model, software engineers, together with HCI experts and other domain experts (e.g. education

experts, CH experts), design software environments (SSWs) to be used by the communities of

stakeholders. This meta-design activity also creates templates of the applications that support visitors of

CH sites, as well as building blocks through which experts give content and functionalities to such

applications.

Applications for visiting CH sites can be of different types, depending on the target visitors:

while an excursion-game is suitable for schoolchildren, other types of guide are proposed to adults or

more expert visitors (e.g. history experts or scholars). The CH expert workshop illustrated here evolve the

one in [52]; it is inspired by YahooPipes [53] and allows CH experts to contribute to the design of the

final application. It offers a visual design environment, application templates, and building blocks [54]. In

other words, CH experts create the final applications from the templates by composing building blocks

that allow them to shape user interfaces, functionalities and multimedia content without the direct help of

professional developers. For instance, if the application is an excursion-game, the CH expert has to

specify all the elements required by the game, namely the character to be impersonated and the prologue

(i.e. the game introduction), missions to be performed, hints, places to be discovered (goals), 3D

reconstructions of places, etc. [50]. In the example shown in Figure 5, the CH expert is interacting with

his own workshop for creating an excursion-game for the archaeological park of Egnathia, in Southern

Italy. First, he has selected Excursion-Game as application template. Thus, the workshop shows a screen

in which he properly combines building blocks, chosen from the elements listed in the left toolbar. The

screen shot in Figure 5 shows a situation in which the expert has already defined the game prologue by

connecting the Prologue building block to the root Excursion-Game. It has also defined some missions.

Specifically, the building block Mission represents a single mission of the game. If the CH expert wants

to add a mission, he drags the Mission building block from the toolbar to the main area of his workshop.

Then he draws a line between the connection point of the Mission and the Prologue building block. If a

building block allows 1:N connections, a Connector element is used. In Figure 5, three missions, i.e.

“Mission1”, “Mission2” and “Mission3”, have been connected to the Prologue through a Connector. The

building block referring to “Mission1” is maximized because the CH expert is defining the text of the

mission. For each mission, the CH expert is also defining goal and hints. For example, the goal of

 18

Mission1 is to reach the kiln (“Fornace” in Italian). Thus, when the mission is solved, the 3D

reconstruction of the kiln is shown. The Oracle Hint building block permits CH expert to specify some

hints for solving a mission.

Figure 5. A screen shot of the CH expert workshop.

The developed applications can be further modified by CH experts over the time. For instance, new

missions can be added to an excursion-game. Only when CH experts need new functionalities or new

building blocks in their workshop, do they refer to software engineers who, collaborating with the other

experts at the meta-design level, will update the CH expert workshop by providing the required elements.

5.4. Designing classic style furniture

The project described in this section is different from the previous ones, since it addresses design

activities that people perform on goods they are buying. Thanks to the new technologies, the demand for

narrow-target goods and services not available in traditional bricks and mortar stores can be as

economically attractive as mainstream fare. More and more companies are taking into account

opportunities to provide individual customers with unique personalized goods. Product configurators, also

 19

known as mass customization toolkits, design kits, or toolkits for user innovation and design, are now

available [55-57]. They allow customers to change several aspects of the product, e.g. color, material,

writings, etc. An example is the product configurator of IKEA™: the customer can select a product from

the catalog, e.g. a table, and change some of its features, like the type of wood, the size, the color. A

limitation of such configurators is that the changes allowed are constrained within a limited range of

possibilities. For example, the IKEA™ configurator does not permit customers to modify the drawers of a

table as they like, because the personalization possibilities are pre-defined.

The project presented here has been motivated by Maiellaro s.r.l., a company in the Puglia region

that produces classic style furniture. Since this type of furniture is very expensive, the company produces

only pieces that are ordered by customers: they look at the company catalogs and provide a description of

the piece of furniture they want, which may be composed of parts chosen from different items in the

catalogs; they also specify dimensions, type of wood and other characteristics. Currently, the customer

sketches his/her design on papers, which are sent via fax to the company for approval; the price of the

new piece of furniture is also negotiated via fax or e-mail between company and customer. Aim of the

project is to create a web-based system that allows customers to design the desired furniture and that

manages the order process. Compared to the product configurators on the market, customers have much

more freedom in designing their furniture; this is made possible by an ontology that models the possible

composition of different parts in a whole piece. The ontology describes the components of each piece of

furniture and their properties, i.e. it specifies colors, size, decorations, shapes, materials, etc., and

provides all rules and constraints for assembling various components, so that the user is guided in the

design of the desired pieces of furniture [58].

After a field study at the Maiellaro company for requirements analysis, we identified the

following stakeholders: 1) the managing director, who supervises the company business processes and, in

particular, is in charge of the approval of the order of new pieces of furniture, designed by the customers,

which will then be inserted in the company catalogs; 2) sales department employees, who manage

customers’ orders in collaboration with the technical department; 3) technical department employees, who

manage technical aspects of new pieces of furniture designed by customers and have the responsibility of

updating the ontology when new catalogs or new furniture are added; and 4) customers, who order pieces

of furniture they have created.

 20

Figure 6. A screen shot of the workshop for the company’s customers.

Following the SSW model, the system supporting the negotiation process between customers and

company is composed by the workshops for each community of stakeholders, created by the meta-design

team. The workshop for customers, which allows them to create the desired piece of furniture, is shown

as an example in Figure 6. The customer is browsing the catalogue, shown at the top of the screen, where

products are organized by category, e.g. Dressers (“Cassettiere”), Consoles (“Consolle”), etc. Figure 6

shows that the user has selected the Console category thus in the central part of the screen the different

consoles available in the catalogue are displayed. The customer chooses a console of interest by clicking

on its picture, and a thumbnail of that item appears in the box at the bottom of the screen. In Figure 6

three consoles have been selected. When the customer has selected all items of interest, s/he goes on to

create the piece s/he wishes. This piece can be either a specific item s/he found in the catalog, for which

the customer only wants to modify certain features, e.g. type of wood, size, etc., or it can be the result of a

more sophisticated design process, i.e. the composition of parts taken from different items. For example,

the customer might desire a console made up of components taken from the selected items in the box at

the bottom. S/He will go on with her/his customization process by clicking on the link

 21

“Personalizzazione” at the bottom right of the screen (see Figure 6). A new screen will appear, where s/he

can indicate the component of interest in each of the consoles previously selected. The reader can refer to

[58] for more details. Once the user has completed the desired console, the sales department checks the

received design by collaborating with the technical department. Once the new design is accepted and

sales department and customer have agreed on the price (by communicating through their respective

SSWs), the official order is delivered and the production of the console starts.

6. Conclusions

This paper has explored the roles of end users in the life cycle of interactive systems, determined by end

users’ increasing desire to become information producers, to shape the software they use and to contribute

to the design of their own products. These roles are driving the trend towards a design paradigm that

considers software design as an evolutive and never-ending process, which can be modeled as a design-

develop-use-evolve cycle. This poses several challenges to professional developers, who have to become

meta-designers, i.e. they have to design systems that permit end users to become designers themselves

and to collaborate in their EUD activities with other stakeholders.

When performing EUD, end users behave as unwitting programmers, i.e. they have to be enabled

to create or modify software, but this has to be permitted through software environments that recreate

situations they are familiar with in their daily practices, so that they do this as part of activities they are

highly motivated to perform, without being aware of programming. Such environments should comply

with the “gentle slope of complexity” principle, thus they have to be open systems that can easily co-

evolve with end users.

Another basic principle of our research work, addressed in this paper, is the diversity of end

users [8, 27]. This makes it necessary to: a) perform a careful analysis of end users targeted by the

system; b) provide different support to different end users. As we have pointed out, this was Piero

Mussio’s major concern since the beginning of his work in ‘70s.

To comply with these challenges, the model of meta-design we have illustrated in this paper

prescribes that the different communities of end users as well as the other communities of stakeholders

must be provided with different software environments, each suited to the specific skills and needs of the

community it is intended for. The interactive system is thus designed as a network of software

environments with proper communication channels among them [8]. By interacting with such

 22

environments, end users will perform their tasks (use phase), but some of them will also perform EUD

activities, contributing to design, development and evolution of the system. This paper presents several

examples of application of the design model we have developed. We hope it will provide insights for

involving end users to contribute to the design of software artifacts and products they use.

Our work is in line with the so-called “culture of participation”, which means that “people are

provided with the means to participate and to contribute actively in personally meaningful problems” [59]

(see also [60]). Contexts in which the culture of participation has been explored include architectural

design and urban planning, design of computational artifacts, models of teaching and learning. The

research we have carried out with Piero Mussio in the last decade has concentrated on models and

approaches to system development that foster the culture of participation in the creation of computational

artifacts.

7. Acknowledgments

This work was supported by the Italian MIUR through grant “CHAT”, by the EU and the Regione Puglia

through grant “DIPIS” and grant “Tecnologie End-User Development per la personalizzazione di mobili

classici italiani”, POR Puglia 2007- 2013.

8. References

[1] G. Fischer, End User Development and Meta-Design: Foundations for Cultures of Participation, Journal of

Organizational and End User Computing, 22 (2010) 52-82.

[2] N. Zang, M.B. Rosson, Playing with information: How end users think about and integrate dynamic data, in proc.

of: Symposium on Visual Languages and Human-Centric Computing, 2009. VL/HCC 2009. IEEE Corvallis, Oregon,

USA, 2009, pp. 85-92.

[3] C. Soh, S.S. Kien, J. Tay-Yap, Enterprise resource planning: cultural fits and misfits: is ERP a universal solution?,

Commun. ACM, 43 (2000) 47-51.

[4] A. Molla, I. Loukis, Success and Failure of ERP Technology Transfer: A Framework for Analysing Congruence

of Host and System Cultures, Working Paper Series, (2005).

[5] D. Fogli, L. Parasiliti Provenza, Information System Customization - Toward Participatory Design and

Development of the Interaction Process, in proc. of: International Conference on Enterprise Information Systems

(ICEIS), Milan, Italy, 2009, pp. 72-77.

[6] C. Dörner, S. Draxler, V. Pipek, V. Wulf, End Users at the Bazaar: Designing Next-Generation Enterprise

Resource Planning Systems, IEEE Software, IEEE Computer Society, Los Alamitos, CA, USA, 2009, pp. 45-51.

[7] Y. Dittrich, S. Vaucouleur, S. Giff, ERP Customization as Software Engineering: Knowledge Sharing and

Cooperation, IEEE Software, Los Alamitos, CA, USA, 2009, pp. 41-47.

[8] M.F. Costabile, D. Fogli, P. Mussio, A. Piccinno, Visual Interactive Systems for End-User Development: a

Model-based Design Methodology, IEEE T. Syst. Man Cy. A, 37 (2007) 1029-1046.

 23

[9] A.I. Mørch, G. Stevens, M. Won, M. Klann, Y. Dittrich, V. Wulf, Component-based technologies for end-user

development, Commun. ACM, 47 (2004) 59-62.

[10] V. Wulf, V. Pipek, M. Won, Component-based tailorability: Enabling highly flexible software applications,

International Journal of Human-Computer Studies, 66 (2008) 1-22.

[11] H. Lieberman, F. Paternò, V. Wulf (Eds.), End User Development, 9, Springer, Dordrecht, The Netherlands,

2006.

[12] G. Fischer, E. Giaccardi, Y. Ye, A. Sutcliffe, N. Mehandjiev, Meta-design: a manifesto for end-user

development, Commun. ACM, 47 (2004) 33-37.

[13] M.F. Costabile, D. Fogli, G. Fresta, P. Mussio, A. Piccinno, Building environments for End-User Development

and Tailoring, in proc. of: IEEE Symposium on Human Centric Computing Languages and Environments, IEEE

Computer Society, Auckland, New Zealand, 2003, pp. 31-38.

[14] M.F. Costabile, D. Fogli, P. Mussio, A. Piccinno, End-User Development: the Software Shaping Workshop

Approach, in: H. Lieberman, F. Paternò, V. Wulf (Eds.) End User Development, 9, Springer, Dordrecht, The

Netherlands, 2006, pp. 183-205.

[15] W.E. Mackay, Triggers and barriers to customizing software, in proc. of: SIGCHI conference on Human factors

in computing systems: Reaching through technology, ACM, New Orleans, Louisiana, United States, 1991, pp. 153-

160.

[16] B. Nardi, A Small Matter of Programming: Perspectives on End User Computing, The MIT Press, Cambridge,

MA, 1993.

[17] A. Sutcliffe, N. Mehandjiev, Introduction Special Issue: End-user development, Commun. ACM, 47 (2004) 31-

32.

[18] M. Burnett, C. Cook, G. Rothermel, End-user software engineering, Commun. ACM, 47 (2004) 53-58.

[19] A.J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C. Scaffidi, J. Lawrance, H.

Lieberman, B. Myers, M.B. Rosson, G. Rothermel, M. Shaw, S. Wiedenbeck, The state of the art in end-user

software engineering, ACM Computing Surveys, 43 (2011) 1-44.

[20] M.F. Costabile, D. Fogli, C. Letondal, P. Mussio, A. Piccinno, Domain-Expert Users and their Needs of

Software Development, in proc. of: 2nd International Conference on Universal Access in Human-Computer

Interaction, Lawrence Erlbaum Associates, Inc, Crete, Greece, 2003, pp. 532-536.

[21] A. Mørch, Three levels of end-user tailoring: customization, integration, and extension, in: Computers and

design in context, MIT Press, 1997, pp. 51-76.

[22] Y. Ye, G. Fischer, Designing for Participation in Socio-technical Software Systems, in: C. Stephanidis (Ed.)

Universal Access in Human Computer Interaction. Coping with Diversity, LNCS 4554, Springer, Berlin, 2007, pp.

312-321.

[23] C. Scaffidi, M. Shaw, B. Myers, Estimating the Numbers of End Users and End User Programmers, IEEE

Symposium on Visual Languages and Human-Centric Computing, IEEE Computer Society, 2005, pp. 207-214.

[24] M.F. Costabile, P. Mussio, L. Parasiliti Provenza, A. Piccinno, Advanced visual systems supporting unwitting

EUD, in proc. of: International Conference on Advanced Visual Interfaces (AVI), ACM, Naple, Italy, 2008, pp. 313-

316.

[25] M. Petre, A.F. Blackwell, Children as Unwitting End-User Programmers, in proc. of: IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC) IEEE Computer Society, Coeur d'Alène, Idaho, USA,

2007, pp. 239-242.

[26] G. Stevens, V. Pipek, V. Wulf, Appropriation Infrastructure: Mediating Appropriation and Production Work,

Journal of Organizational and End User Computing (JOEUC), 22 (2010) 58-81.

 24

[27] A. MacLean, K. Carter, L. Lövstrand, T. Moran, User-tailorable systems: pressing the issues with buttons,

SIGCHI conference on Human factors in computing systems: Empowering people, ACM, Seattle, Washington,

United States, 1990, pp. 175-182.

[28] P. Mussio, R. Rabagliati, Analysis of water remote sensed data: Requirements for data bases and data bases

interactions, in: A. Blaser (Ed.) Data Base Techniques for Pictorial Applications, 81, Springer Berlin / Heidelberg,

1980, pp. 369-411.

[29] P. Mussio, M. Pietrogrande, M. Protti, Simulation of hepatological models: a study in visual interactive

exploration of scientific problems, J. Vis. Lang. Comput., 2 (1991) 75-95.

[30] P. Mussio, M. Finadri, P. Gentini, F. Colombo, A bootstrap approach to visual user-interface design and

development, The Visual Computer, 8 (1992) 75-93.

[31] International Organization for Standardization, ISO 13407: Human-Centered Design Process for Interactive

Systems, 1999.

[32] D. Schuler, A. Namioka, Participatory Design: Principles and Practices, Lawrence Erlbaum Associates, Inc.,

1993.

[33] Google, iGoogle, 2011, http://www.google.com/ig, accessed on April 28, 2011.

[34] V. Pipek, V. Wulf, Infrastructuring: Toward an Integrated Perspective on the Design and Use of Information

Technology, Journal of the Association for Information Systems, 10 (2009).

[35] K. Beck, C. Andres, Extreme Programming Explained: Embrace Change (2nd Edition), Addison-Wesley

Professional, 2004.

[36] T. O'Reilly, What is Web 2.0: Design Patterns and Business Models for the next generation of software 2005,

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html, accessed on April 28, 2011.

[37] Software Engineering Institute, Ultra-Large-Scale Systems: The Software Challenge of the Future, Carnegie

Mellon University, Pittsburgh PA, 2006, http://www.sei.cmu.edu, accessed on February 22, 2011.

[38] M.F. Costabile, P. Mussio, L. Parasiliti Provenza, A. Piccinno, Supporting End Users to Be Co-designers of

Their Tools, in: V. Pipek, M.B. Rosson, B. de Ruyter, V. Wulf (Eds.) End-User Development, LNCS 5435, Springer,

Berlin / Heidelberg, Germany, 2009, pp. 70-85.

[39] K.E. Iverson, Notation as a tool of thought, Commun. ACM, 23 (1980) 444-465.

[40] M. Spahn, C. Doerner, V. Wulf, End User Development: Approaches Towards a Flexible Software Design, in

proc. of: 16th European Conference on Information Systems, Galway, Ireland, 2008.

[41] G. Fischer, Seeding, Evolutionary Growth and Reseeding: Constructing, Capturing and Evolving Knowledge in

Domain-Oriented Design Environments, Automated Software Engineering, 5 (1998) 447-464.

[42] G. Hardstone, M. Hartswood, R. Procter, R. Slack, A. Voss, G. Rees, Supporting informality: team working and

integrated care records, Proceedings of the 2004 ACM conference on Computer supported cooperative work, ACM,

Chicago, Illinois, USA, 2004, pp. 142-151.

[43] M. Berg, E. Goorman, The contextual nature of medical information, International Journal of Medical

Informatics, 56 (1999) 51-60.

[44] B.R. Winthereik, S. Vikkelsö, ICT and Integrated Care: Some Dilemmas of Standardising Inter-Organisational

Communication, Computer Supported Cooperative Work, 14 (2005) 43-67.

[45] C. Morrison, A. Blackwell, Observing End-User Customisation of Electronic Patient Records, in: V. Pipek, M.B.

Rosson, B. de Ruyter, V. Wulf (Eds.) End-User Development, LNCS 5435, Springer, Berlin / Heidelberg, 2009, pp.

275-284.

 25

[46] F. Cabitza, C. Simone, LWOAD: A Specification Language to Enable the End-User Develoment of Coordinative

Functionalities, in: V. Pipek, M.B. Rosson, B. de Ruyter, V. Wulf (Eds.) End-User Development, LNCS 5435,

Springer, Berlin / Heidelberg, 2009, pp. 146-165.

[47] M. Berg, Accumulating and Coordinating: Occasions for Information Technologies in Medical Work, Computer

Supported Cooperative Work, 8 (1999) 373-401.

[48] G. Fitzpatrick, Integrated care and the working record, Health Informatics Journal, 10 (2004) 291-302.

[49] C. Ardito, B.R. Barricelli, P. Buono, M.F. Costabile, A. Piccinno, S. Valtolina, L. Zhu, Visual Mediation

Mechanisms for Collaborative Design and Development, in: C. Stephanidis (Ed.) Universal Access in HCI, Part I,

HCII 2011, LNCS 6765, Springer, Heidelberg, 2011, pp. 3-11.

[50] C. Ardito, P. Buono, M.F. Costabile, R. Lanzilotti, T. Pederson, A. Piccinno, Experiencing the Past through the

Senses: An M-Learning Game at Archaeological Parks, IEEE Multimedia, 15 (2008) 76-81.

[51] M.F. Costabile, A. De Angeli, R. Lanzilotti, C. Ardito, P. Buono, T. Pederson, Explore! possibilities and

challenges of mobile learning, in proc. of: SIGCHI conference on Human factors in computing systems (CHI), ACM,

Florence, Italy, 2008, pp. 145-154.

[52] C. Ardito, R. Lanzilotti, An EUD approach to the design of educational games, International Journal of Distance

Education Technologies (IJDET), 9 (2011) 25-40.

[53] Yahoo! Inc., YahooPipes, 2011, http://pipes.yahoo.com/pipes/, accessed on July 28, 2011.

[54] C. Ardito, P. Buono, M.F. Costabile, Involving end users to create software supporting visits to cultural heritage

sites, in proc. of: 9th ACM SIGCHI Italian Chapter International Conference on Computer-Human Interaction:

Facing Complexity, ACM, Alghero, Italy, 2011, pp. 157-162.

[55] N. Franke, M. Schreier, U. Kaiser, The "I Designed It Myself" Effect in Mass Customization, Management

Science, 56 (2009) 125–140.

[56] A. Trentin, E. Perin, C. Forza, Overcoming the customization-responsiveness squeeze by using product

configurators: Beyond anecdotal evidence, Computers in Industry, 62 (2011) 260-268.

[57] T.W. Simpson, Product platform design and customization: Status and promise, Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, 18 (2004) 3-20.

[58] C. Ardito, B.R. Barricelli, P. Buono, M.F. Costabile, R. Lanzilotti, A. Piccinno, S. Valtolina, An Ontology-

Based Approach to Product Customization, in: M.F. Costabile, Y. Dittrich, G. Fischer, A. Piccinno (Eds.) End-User

Develpment, LNCS 6654, Springer, Berlin / Heidelberg, 2011, pp. 92-106.

[59] G. Fischer, Understanding, fostering, and supporting cultures of participation, Interactions, 18 (2011) 42-53.

[60] H. Jenkins, Confronting the Challenges of Participatory Culture: Media Education for the 21st Century, MIT

Press, Cambridge, MA, USA, 2009.

