
HAL Id: hal-00718943
https://inria.hal.science/hal-00718943

Submitted on 17 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Taxonomy-Driven Prototyping of Home Automation
Applications : a Novice-Programmer Visual Language

and its Evaluation
Zoé Drey, Charles Consel

To cite this version:
Zoé Drey, Charles Consel. Taxonomy-Driven Prototyping of Home Automation Applications : a
Novice-Programmer Visual Language and its Evaluation. Journal of Visual Languages and Computing,
2012, Journal of Visual Languages & Computing, 23 (6), �10.1016/j.jvlc.2012.07.002�. �hal-00718943�

https://inria.hal.science/hal-00718943
https://hal.archives-ouvertes.fr

Taxonomy-Driven Prototyping of Home Automation Applications:
a Novice-Programmer Visual Language and its Evaluation

Zoé Dreya, Charles Consela,b

aINRIA, Bordeaux Sud-Ouest
bUniversity of Bordeaux/LaBRI

Abstract

Home automation environments are dedicated to helping users in their everyday life and are
being deployed in an increasing number of areas, including home security, energy consumption,
and assisted living. The range of situations to be addressed makes the development of home
automation applications challenging: it requires to manage heterogeneous entities with a wide
variety of functionalities. Moreover, since this area covers a large spectrum of user needs, it is
crucial to ease the development and the evolution of these applications.

This paper presents Pantagruel, an expressive and accessible approach to integrating a tax-
onomical description of a home automation environment into a visual programming language.
A taxonomy describes the relevant entities of a given home automation area and serves as a pa-
rameter to a sensor-controller-actuator development paradigm. The orchestration of area-specific
entities is supported by high-level constructs, customized with respect to taxonomical informa-
tion.

We have implemented a visual environment that integrates a taxonomical approach in the
development of orchestration rules. Furthermore, we have developed a compiler for Pantagruel
and successfully used it to test applications in various areas related to orchestration development
for the domain of home automation. Finally, we have successfully evaluated the usability of
Pantagruel through a user study performed with eighteen novice programmers.

Keywords: Visual Rule-Based Language, Home Automation, Entity Orchestration

1. Introduction

Easing the programming of applications for assisting users in their everyday life has been a
dominant trend in the home automation research community [1, 2, 3, 4, 5, 6]. These applica-
tions aim to address the user needs by automating their daily tasks in various areas of the home
automation domain, such as assisted living, home security, and energy management. This goal
is facilitated by a constant flow of innovations in devices that enables to form ever richer home
automation environments. Furthermore, not only do devices have increasingly more computing
power, offering high-level interfaces to their rich functionalities, but they also are now network-
enabled, making these functionalities accessible remotely. The advent of this new generation of
devices allows the development of applications to abstract over low-level embedded systems in-
tricacies, paving the way for the high-level orchestration of entities, whether actual devices (e.g.,

temperature sensors, lights) or software components (e.g., databases, calendars).

Preprint submitted to Journal of Visual Languages and Computing May 31, 2012

*Manuscript

Click here to view linked References

Because the users of home automation environments are intimately concerned with applica-
tions, it is crucial to make the development process usable by the widest audience. To address
this challenge, the learning threshold of application programming can be lowered, enabling the
user of applications to program them. To do so, end-user approaches have been proposed to
prototyping pervasive computing applications. These approaches provide a domain-specific vo-
cabulary (e.g., iCAP [3]) or use a metaphor-based representation (e.g., CAMP [1]). To assess
their approaches, researchers conducted user studies [3, 1, 7, 4].

In most cases, usability is obtained at the expense of expressiveness: the proposed approaches
are restricted to a specific area, making hard the evolution of applications with regard to the tech-
nology advances. Because new devices and functionalities are continually made available, the
application areas should be enriched accordingly (for example, cellphones turned into a multi-
function device). Furthermore, as user requirements evolve over time, applications should be
easily adjusted. This situation is well illustrated in the assisted-living area. For example, ap-
plications for assisting an intellectually impaired person necessitate periodic adjustment as his
conditions improve or deteriorate.

Therefore, combining usability and expressiveness is crucial for an application development
approach in the domain of home automation.

This paper

This paper presents Pantagruel, a high-level language that integrates expressiveness and us-
ability for programming home automation applications. Pantagruel is dedicated to the devel-
opment of applications, parameterized by the description of a home automation environment.
Specifically, our approach consists of a two-step process: (1) the description of a home automa-
tion environment takes the form of a taxonomy and defines the functionalities and the properties
of the environment entities; (2) the development of a home automation application is driven by a
taxonomy of entities and consists of orchestrating them using high-level constructs. To support
these two steps, the Pantagruel language consists of a taxonomy layer and a visual orchestration
layer.

The taxonomy definition allows our approach to be instantiated with respect to a given ap-
plication area. This description defines the classes of entities that are relevant to the target area.
Each class specifies an interface to access its functionalities. Because the orchestration logic is
written with respect to the environment description, entities are combined in compliance with
their description. The taxonomy definitions make our approach open-ended, adding an expres-
siveness dimension to cover a range of areas. A first step towards evaluating this expressivenes
is reported in Section 7.

To facilitate the programming of the orchestration logic, we have developed a visual tool that
uses a sensor-controller-actuator paradigm. This paradigm is suitable for novice programmers, as
demonstrated by its use in various fields such as computer game design (e.g., Blender1) and robot
control (e.g., Altaira [8] or LegoSheets [9] for Lego Mindstorms2). Like a game logic, an orches-
tration logic collects context data from sensors, combines them with a controller, and reacts by
triggering actuators. Furthermore, our visual programming environment offers the developer an
interface that is customized with respect to the environment description. Information about the
environment entities is exploited to guide the programmer in defining sensor-controller-actuator

1http://www.blender.org
2http://mindstorms.lego.com/

rules. This approach makes Pantagruel usable by novice programmers, as illustrated by our user
study, reported in Section 8.

The main contributions of this paper are as follows.

An open-ended approach We introduce an approach to visually prototyping orchestration ap-
plications. The novelty in this approach is that it is parameterized with respect to a descrip-
tion of a home automation environment. This makes our approach applicable to a range of
areas for the domain of home automation.

A taxonomy-driven visual language We extend the sensor-controller-actuator paradigm to al-
low the programming of the orchestration logic to be driven by an environment descrip-
tion. This approach eases programming and enables verifications. Moreover, early testing
of applications is made possible by leveraging a home automation simulator, named Di-
aSim [10], in the Pantagruel environment.

Towards an evaluation of Pantagruel expressiveness We show that our taxonomy language
ranges over the categories of entities of the home automation domain. Furthermore, we
evaluate the ability of the orchestration layer of Pantagruel to express a range of home
automation applications.

An evaluation of the orchestration logic usability We validate the usability of the orchestra-
tion layer of Pantagruel by a user study performed with eighteen novice-programmer par-
ticipants. This study is based on existing usability evaluation processes found in the home
automation literature.

To motivate our approach, Section 2 presents an example of an assisted-living application.
Section 3 examines the requirements for a development approach targeting the domain expert
of home automation areas. Section 4 introduces our taxonomical approach to defining descrip-
tions of home automation environments. Section 5 presents a visual environment to develop
applications that orchestrate entities, defined in a taxonomy. Section 6 details the development
process for building home automation applications using our taxonomy-driven approach. Sec-
tion 7 presents a study towards validating the expressiveness of our approach. Sections 8 and 9
validate the usability of our approach. The related work is detailed in Section 10. Concluding
remarks and future work are provided in Section 11.

2. Working Example

To motivate our approach, we consider as an example an assisted-living application. This
example is based on scenarios collected by a thirty-years experienced caregiver, and dedicated to
cognitively impaired persons.

This application area orchestrates various kinds of entities, consisting of RFID readers and
tags, a calendar, an alarm clock, a mixing valve, and a time tracker to indicate a task status.
Figure 1 is an example of a physical layout for an impaired person’s apartment.

TIMETRACKER MOTIONSENSORTAGREADER

ALARMCLOCK

SMARTDOORALARM

TAG

MIXINGVALVE

Figure 1: Henrick’s apartment

Our example scenario compiles situations
encountered in Svensk’s career as a care-
giver [11]. More scenarios have been collected
and documented in Carmien’s thesis [12].

Svensk describes the beginning of a working
day for Henrick, a fictitious character with intel-
lectual disabilities, who lives independently in
an apartment. He needs to be assisted during the
day, from the time he wakes up until he leaves
his apartment for work. Specifically, Henrick
needs to wake up on time according to his day
activity: work or holiday. To help him wake up,
his alarm clock is configured to play a music
whose genre is determined with respect to the
day activity.

Once Henrick is awake, he needs to take a shower, then get dressed, and have breakfast. Be-
cause he has difficulties to regulate the water temperature, automation needs to be introduced in
the shower to address this problem. Svensk proposes a system such that “when [Henrick] closes

the door, the water comes on automatically at just the right temperature”. Such automation en-
ables Henrik to turn the shower activity into an ordinary step of his morning routine. After the
shower, Henrick gets dressed. To select the clothes that are appropriate for the weather, he is
assisted by a caregiver: he “gets dressed in the clothes a staff member has laid out on a chair”.
To relieve the caregiver from the task of picking clothes for Henrick a Web service and RFID
technology can be combined. Specifically, Henrick is being informed about the latest weather
report, when he enters the dressing room. To ensure that selected clothes are appropriate, they are
attached a RFID tag. These tags, combined with a tag reader, make it possible to warn Henrick
in case the selected clothes are not adequate for the weather of the day.

Because Henrick is unable to read the time on a clock, a specific process must be devised to
allow him to keep track of time and tasks he needs to perform. In doing so, Henrick’s daily tasks
can be streamlined, preventing panic caused by a task that is omitted or performed for too long.
To do so, software appliances such as a calendar and a time tracker can be used.

Many other scenarios for assisted living could be imagined, combining other related activi-
ties, such as assistance for cooking and leaving home on time. In fact, for a given environment,
it should be possible to define various orchestration scenarios, adapting to users’ requirements
and preferences, and reacting to users’ feedback. Because these scenarios can have a tremendous
impact on people’s life, it is critical to ease the creation and improvement of orchestration logic.
In doing so, orchestration logic becomes understandable to the widest audience and close to the
users’ informal specification.

Also, our example application area illustrates the richness of the entities that are commonly
available today, requiring expressiveness to combine them. Finally, the assisted-living environ-
ment consists of entities for which numerous variations are available, requiring an approach to
defining the orchestration logic that abstracts over these differences.

3. Requirements for home automation development tools

The requirements for tools to develop home automation applications strongly depend on the
developers targeted for these tools. In this section, we first identify these developers. Then, we
examine the needs for such tools. Finally, we examine the needs to make accessible the building
blocks of an application area of the home automation domain.

3.1. Identifying the users

The home automation domain involves a variety of roles, from the installer, who equips the
house with networked devices, to the occupants, who are the end users of applications. These
users can be more or less involved in the development of applications. Let us take the assisted-
living area as an example and consider caregivers as the end-user’s proxy. Building applications
for the apartment of an impaired person involves at least a caregiver and the impaired person.
The caregiver is a domain expert of the assisted-living area. Also, he has a good knowledge of
the needs of the person he is assisting.

Because they have an extensive knowledge of the end-user needs and the application area,
caregivers are most qualified to propose solutions. Specifically, they can picture what kind of
application could assist the end user to perform a given task based on his abilities and preferences.
This is particularly meaningful because the end user may not be able to directly express his
needs [13].

Consequently, an end user, or his proxy, is the domain expert required to develop a home
automation application.

3.2. Enabling a high-level description for orchestration

Entity orchestration occurs in a variety of areas, ranging from robot control to game pro-
gramming and service orchestration. In these fields, the flow-based paradigm [14, 15, 16] as
well as the rule-based paradigm [8, 17, 18, 19, 20] have been widely adopted and proved their
usability. Our aim is to apply one of these well-established paradigms for the home automation
area. Home automation devices are mainly composed of sensors and actuators, where actua-
tors perform actions in reaction to sensed data. There is a direct correspondance between the
sensor-controller-actuator paradigm and the rule-based paradigm: sensors represent context data
defining a condition; actuators represent actions triggered when this condition holds; and, a con-
troller combines conditions and actuators to form a rule. In contrast to the flow-based paradigm,
rules represent elementary reactions to sensor detection; they represent small units of program
that can be understood independently of each other, thus easing their visualization inside a win-
dow [8].

3.3. Describing the building blocks of an application area

A home automation application interacts with entities (e.g., motion detectors, lights, and
calendars) whose heterogeneity and low-level implementation make them unusable by a domain
expert. To overcome this problem, it is necessary to offer high-level constructs abstracting over
the entities low-level details and factoring entity variations. Such abstractions should provide the
relevant data to the domain expert.

4. Defining a networked environment

To abstract over the variations of entities, we introduce a declarative language to defining
a taxonomy of entities relevant to a given area. It is declarative in that it aims to specify what
the entities do, not how they are implemented. The entity declarations form an environment
description that can then be instantiated for a particular setting. Entities are specified by an
entity expert developer, based on the needs expressed by the domain expert.

datatype entity class

Alarm
beep()

inherits

FixedDevice
room: Locationc

Calendar
 today: Day
 remind: Answerv

v

SmartDoor
 state: DoorStatev

Tag
 id: TagID
 weather: Weatherc

c

w

AlarmClock
 genre: Music
 time: Time
trigger()
v

w

TimeTracker
 todolist: Task list
 panicbutton: ButtonStatus
 taskstatus: TaskStatus
init(Task list, Time list) {todolist}
terminateAll() {todolist}
terminate(Task) {todolist}
updateDisplay()

v

v

w

MixingValve
 state: Status
regulate(Temp)
run() {state}
stop() {state}

w

MotionSensor
 detected: Boolv

v

TagReader
 detected: TagIDv

WeatherApp
 current: Weatherv

c writevolatileconstant

TaskMusicDoorState Location Status WeatherDay Temp

Light
 state:Status
 count:Integer
on() {state, count}
off() {state}

w

w

Legend

ButtonStatus TaskStatus Answer

FallSensor
 detected: Boolv

Screen
display(String)

Figure 2: A taxonomy of entities for our working example

4.1. Environment description

An environment description consists of declarations of entity classes, each of which char-
acterizes a collection of entities that share common functionalities. The declaration of an entity
class lists how to interact with entities belonging to this class. The generality of these declarations
makes it possible to abstract over a range of variations, enabling the re-use of an environment
description.

Furthermore, the declaration of an entity class consists of attributes, defining contextual infor-
mation about the environment, and methods, accessing the entity functionalities. Entity classes
are organized hierarchically, allowing attributes and methods to be inherited. Figure 2 displays
a UML-based representation of entity classes for the assisted living area in an impaired person’s
apartment. Entity classes can be organized hierarchically, enabling them to share attributes and
methods. For example, the Light and the Alarm entity classes inherit the room attribute from
the FixedDevice entity class.

The specificity of our approach is that the nature of the context information captured by
entities is encapsulated both in their attributes and their methods, as explained next.

Context interface. A class of entities captures context information about a home automation
environment. This context information may be fixed (e.g., the location of a light) or vary over
time (e.g., a detected badge). In Pantagruel, context information is modeled by the attributes of
entity classes.

Context information plays a key role to express the conditions of orchestration rules. If
addressed with inappropriate abstractions, it may result in application code bloated with condi-
tionals and data structure operations. Defining a taxonomy thus relies on a thorough analysis of
the targeted area. To facilitate this analysis, we propose to classify context information into three
categories: constant, external or applicative.

A constant context information is an attribute whose value does not change over time. For
example, the FixedDevice entity class declares a room attribute that is constant for a given
setting. As such, instances of inherited classes have a constant location.

An external context information is aimed to collect changes in the physical environment. This
kind of context information may correspond to sensors (e.g., a device reporting RFID tag loca-
tion, a temperature sensor) or software components (e.g., a web service reporting the weather of

the day). To model an external context information that varies over time, we introduce the notion
of volatile attribute. To communicate context information to a Pantagruel program, an external
entity updates the value of this attribute. An updated value may then trigger an orchestration rule.
As an example of volatile attribute, consider the TagReader entity class in Figure 2. It defines
the detected attribute that corresponds to the identifier of the detected outfit worn by Henrick.

Lastly, an applicative context information corresponds to context data computed by the ap-
plication. To address applicative context information, we introduce write attributes. In our exam-
ple, Figure 2 shows the genre attribute of the AlarmClock entity class that can either be JAZZ,
COUNTRY or POP, depending on the planned activity of the day. This attribute is updated when
the calendar daily activity changes.

By making context information to an abstraction of the Pantagruel language, we facilitate its
manipulation, improve readability, and enable program verification.

Functionalities. Entity classes offer a variety of functionalities to perform actions according
to the context of a home automation environment. To access these functionalities, an entity
class declares method interfaces, each of which abstracting over the implementation of a specific
action. For example, the AlarmClock entity class includes a trigger method signature to
access the triggering functionality of an alarm clock.

When a method is invoked, it may modify the applicative context. Consider the Light entity
class. Instances of this class have a limited life expectancy that depends on the number of times
they are switched on and off. To allow the programmer to design rules that control the use of
lights, the Light class defines two attributes: state, holding the light status (ON or OFF), and
count, counting the number of times the light is activated. For example, this attribute can be
used to remind the user to soon change a light bulb. Additionally, the Light entity class includes
the on and off method signatures. Turning on/off a light affects the Light attributes, and thus
the applicative context. The side-effects of this method are exposed to allow reasoning when
invoked in the orchestration logic. To do so, methods declare the list of side-effected attributes.
For example, the on method declaration defines the {state, count} attributes as side-effected.

4.2. Instantiating an environment description

Once the environment description is completed, it is used to define concrete environments by
instantiating entity classes. Figure 3 gives an excerpt of the concrete entities used in our assisted
living example. Each entity has a name and refers to its entity class. For instance, we created the
alarmClock entity of the AlarmClock class. This entity corresponds to the alarm clock that is
located in the bedroom. Because it plays a specific role in our assisted-living scenario, it needs
to be created prior to programming the orchestration logic.

Figure 3 also includes examples of tagged outfits stored in Henrick’s wardrobe; they are
instances of the Tag entity class. As such, their attributes are constant. Entity instances can be
created dynamically in a given environment (e.g., RFID tags). As discussed in the next section,
the orchestration logic can be written so as to apply to all instances of an entity class, or to a
specific instance (e.g., alarmClock).

Pantagruel allows simple datatypes to be defined. For example, the Location enumeration
type in Figure 3 ranges over the rooms of our example assisted-living apartment.

datatype instance

Tag

SmartDoorMotionSensorAlarm redOutfit
id:=1
weather:=HOT

blueOutfit
id:=2
weather:=HOT

greenTrousers
id:=3
weather:=WARM

id:=4
blackTrousers

weather:=WARM

kitchenMotion

room:=KITCHEN

showerMotion

room:=BATHROOM

outMotion
room:=OUT

roomAlarm

room:=DRESSROOM

showerDoor

room:=BATHROOM

entranceDoor

room:=HALL

outAlarm

room:=OUT

AlarmClock

alarmClock

MixingValve

mixingValve

Calendar

calendar

WeatherApp

weatherApp

TagReader

tagReader

TimeTracker

timeTracker

Day: HOLIDAY, WORKDAYMusic: COUNTRY, JAZZ, POP

Location: KITCHEN, BEDROOM, BATHROOM, DRESSROOM, OUT

Temp: COLD, WARM, HOT Task: BREAKFAST, BUS, DRESS, SHOWER, LAUNDRY

DoorState: OPEN, CLOSED

TagID: INTEGER

Class name

instance name

attribute := value

Legend

Answer: YES, NO

ButtonStatus: PRESSED, OFF

TaskStatus: EXPIRED, ONTIME

FallSensor

showerFall

room:=BATHROOM

Screen

roomScreen

room:=BEDROOM

Figure 3: An excerpt of a concrete environment – datatype instances (top), entities (bottom)

5. Defining orchestration rules

We now present our visual language dedicated to the development of orchestration rules.
Following our paradigm, the Pantagruel orchestration language offers a panel divided in three
columns: sensors, controllers, and actuators. This panel is depicted in Figure 4.

ALARM-CLOCK MANAGER

calendar calendar

alarmClock alarmClock

today is WORKDAY

genre ← COUNTRY

trigger

section
Pantagruel operationsection nameRi

AND
Rule
name

today is HOLIDAY

genre ← JAZZ

SENSORS CONTROLLERS ACTUATORS

1

2

R1

1

2

R2

Legend

Figure 4: An example Pantagruel program : managing the tasks of the current day

It is integrated into a visual development editor, as illustrated in the right part of Figure 5.
This visual editor is composed of two parts : the view, containing orchestration rules, and the
palette, offering a tool for each Pantagruel visual element. The Pantagruel editor is connected to
a 2D editor and simulator called DiaSim [10], offering a 2D model of a concrete environment,
defined in the taxonomy language (Figure 5, left part).

Figures 4, 6, 7 and 8 present the orchestration rules of our working example of assisted living.
The first scenario (Figure 4) configures the alarm clock of the impaired person: whether he has to
wake up for a work day or for a holiday. The second scenario (Figure 6) handles the management
of the person’s tasks, using a time tracker, a calendar, an alarm clock, and a fall sensor. The third
scenario (Figure 7) offers assistance to the clothing task of the person, and the fourth scenario
(Figure 8) manages the apartment lights.

To develop an application, the programmer starts by defining some conditions on context
elements in the sensor column, combining them in the controller column, and triggering actions

Radio

Visual interaction:

1) When double-clicking on elements, a contextual
 pop-up window appears

2)

VIEW PALETTE

Drag-and-drop, or click on palette then click
on view

Sensor

Actuator

Def-
Actuator

Connection

Entity

Controller

Controller

VIEW PALETTE

Figure 5: DiaSim 2D model and the Pantagruel editor

in the actuator column. For readability, rules are numbered in the controller column (e.g., R1).
A key feature of our approach is to drive the development of orchestration rules with respect to
an environment description. In doing so, the development editor provides the programmer with
contextual menus and on-the-fly verification to guide the definition of rules. We further examine
the development process using the Pantagruel editor in Section 6.

5.1. Sections as constituent parts of a rule

To visually structure the definition of orchestration rules, the development panel is divided
into horizontal sections, one for each entity instance involved in the application.

TASK MANAGER

today is HOLIDAY

timeTracker timeTracker

updateDisplay

todolist changed

init with
[SHOWER, DRESS, BREAKFAST, BUS],
[8:40am, 9am, 9:40am, 10am]

R4

calendar calendar

today is WORKDAY

init with
[SHOWER, DRESS, BREAKFAST],
[9:20am, 9:40am, 10:30am]

R3

R5

SENSORS CONTROLLERS ACTUATORS

genre ← BUZZ

trigger

alarmClock alarmClock

taskstatus is EXPIRED

panicbutton is PRESSED

terminateAll

R6

OR

1

2

R7

detected is TRUE

fallSensor fallSensor

Figure 6: An example Pantagruel program : configuring the alarm clock

For example, the second section of Figure 4 is defined for the alarmClock entity instance.
Within a section, Pantagruel operations are in the scope of the corresponding entity instance.

For example, the todolist attribute, defined in the TimeTracker class of the environment
description (Figure 2), can be manipulated within the timeTracker section. A section is also
required to trigger an action on this entity, e.g., updating the task list display (see Figure 6). In
contrast, when an attribute is out of the scope of a section, it needs to be explicitly accessed;
this is done with the current attribute of the weatherApp entity (Figure 7) using the notation
“attribute of entity ”.

5.2. Refering to entity classes

As described above, Figure 4 illustrates a section for the alarmClock entity instance, repre-
sented with a single icon . This is needed to operate this specific alarm clock when Henrick has
to wake up on time. When a large range of entities are deployed in a home automation environ-
ment, orchestration rules as defined so far do not scale up; they need to range over all entities of
a class. Moreover, when actual entities are dynamically created (e.g., a new Tag instance appear-
ing in an environment, corresponding to a new outfit), they cannot be explicitly refered to in a
rule. To address these issues, we allow a section to refer to all entity instances of an entity class.
The name of such a section is composed of the entity class name (illustrated with a double icon).
When an orchestration rule includes an operation (sensor or actuator) coming from such a sec-
tion, it is executed over all the instances of the corresponding entity class. For example, Figure 7
includes the Tag section. One of the conditions defined in this section determines whether
the outfit worn by Henrick is adequate for the current weather (i.e., weather is current of

weatherApp). This condition enables a rule to apply to any tagged outfit stored in the wardrobe.

CLOTHES MANAGER

roomAlarm
roomAlarm

beep

tagReader tagReader

R8
AND

detected is id of Tag

timeTracker timeTracker

Tag Tag

weather is current
of weatherApp

terminate with DRESS

R9

AND

todolist has DRESS

SENSORS CONTROLLERS ACTUATORS

weather is not current
of weatherApp

roomScreen roomScreen

display with "wrong clothes"

p1

p2

p3

Figure 7: A example Pantagruel program to assist clothing

5.3. Defining context conditions

Sensors consist of conditions defined over context elements, whether constant, external or
applicative. Pantagruel provides notations and operators to easily express conditions.

5.3.1. Condition operators

Values of context elements can be tested with comparison operators (e.g., <, >, is and isnot)
and set operators (e.g., has and in). When a sensor operates on an entity class instead of a
specific entity instance, it acts as a filter on the instances of this class. For example, in Figure 8
at the Light section, the sensor room is room of MotionSensor collects the lights that are
present in the room where Henrick is detected.

A specific construct called changed operates on an external or applicative attribute (see Fig-
ure 6) . This construct yields true whenever an attribute value changes. As a result, the orchestra-
tion rules are completely insulated from the implementation details of the context change; they
focus on the logic to react to a context change.

5.3.2. Flow combination

As we collect entities from an entity class, we sometimes need to further refine the filtering
and trigger some actions. For example, when Henrick’s outfit is detected by the tag reader, we
further need to test whether the outfit is suited for the current weather. To do so, we define an
additional condition over the tagReader section that only filters relevant outfit tag(s). Specif-
ically, a tag instance is collected if (1) it corresponds to an outfit matching the current weather
(the p2 condition in the Tag section), and (2) Henrick is currently wearing the tagged outfit (the
p3 condition in the tagReader section). Filtering clauses can be combined by the AND and OR

controllers.

LIGHT MANAGER

R11

 MotionSensor MotionDetector

room is room of
MotionSensor

Light Light

on

detected is TRUE

SENSORS CONTROLLERS ACTUATORS

R10

AND

1

2NONE

off

Figure 8: Light manager application

Beyond logical operators, filtering an entity class requires to express clauses that apply to all
its instances, or none of them. This filtering is done by the ALL and NONE controllers, prefixed
with an entity class or its icon representation (e.g., NONE). This is illustrated in the R11 rule in
Figure 8, where Lights are switched offwhen none of the motion sensors of a room has detected
a presence. These sensors are collected using the MotionSensor entity class. In this case, a flow
ordering is applied, first selecting lights and motion sensors, then testing if none of the collected
sensors is activated.

5.4. Defining actions

When a controller evaluates to true, either a unique action (e.g., a method) is executed, as in
the R3 rule, or several actions are performed. In the latter case, the actions may be executed in any
order (the R9 rule, Figure 7) or sequentially (the R7 rule, Figure 6). Actions may correspond to
attribute assignments, typically needed to update an entity status, as in the alarmClock section
in Figure 4. Only write attributes can be assigned a value. The volatile attributes have their value
updated externally to Pantagruel. The action part of a rule may also involve method invocations,
as required to operate entities from Pantagruel. These invocations conform to the type signature

declared in the environment description. When the method of an instance is invoked, it may
update one of its attributes as declared in the environment description. For example, when the
terminate method is invoked on timeTracker, it may set the todolist write attribute to the
empty list (the R6 rule, Figure 6), indicating that no more tasks need to be achieved.

The use of write attributes enables to depict a causal relationship between rule actions. For
example, the display of the time tracker is updated only if its todo list has changed (the R5 rule,
Figure 6). This status is enabled by the R3, R4, R6, and R8 rules.

5.5. Executing the application : key concepts

Pantagruel is a reactive programming language in that it constantly interacts with the envi-
ronment, by reacting to context changes. We have defined a simplified model of computation,
facilitating the orchestration steps of a program. Our model relies on the following key concepts:
(1) context-centric model, (2) discrete time and parallel mode and (3) non-interference. We now
describe these concepts and we relate them to the Pantagruel visual paradigm and its usability.

Context-centric model. To represent the reactive nature of Pantagruel, we leverage the context
information provided by the taxonomy, focusing on what data are available at each orchestration
step, instead of how these data are acquired. These data, representing the runtime state of a
program, are made easy to manipulate via the sensor column of the orchestration panel.

Discrete time and parallel mode. Discrete time is modeled as clock ticks. Each tick corresponds
to an orchestration step where all the rules are evaluated within a tick. Parallel mode assumes
that all the rules, whose conditions are satisfied at a given step, are executed with the same state,
making this execution simultaneous. As a result, there are no rule dependencies within a step; the
user can observe the intended method invocations in the right part of the visual layer by selecting
specific sensors in the left part.

Non-interfering execution. We say that execution is non-interfering when two rules can be ex-
ecuted independently from each other because their side-effects are disjoint. The side-effect
declarations of methods enable to detect potential interferences. We use this language property
to guide the user when he defines orchestration rules with side-effecting methods. A conflict can
be displayed on the visual layer by highlighting interfering rules. This process forces determinis-
tic behavior, thus increasing the confidence of the domain expert when developing orchestration
rules.

6. Development process

Following our programming language presentation, we now explain an adapted programming
process for a given application area. This programming process is integrated in an overall process
summarized in Figure 9. Initially, the end user expresses his requirements that are analyzed by
the domain expert. This step results into (1) goals, which consist on an informal, decomposed
description of the expected behavior of the application, and (2) entities, further specified into a
Pantagruel taxonomy. Entities are specified by the entity expert, based on the needs expressed by
the domain expert. Once specified, the entities are used as the building blocks to be orchestrated
by Pantagruel. Application development is ensured by the domain expert, using the Pantagruel
visual development editor. We now examine how the editor eases the domain expert in the
development task ; this process is illustrated by creating a rule similar to the R9 rule of Figure 7.

Application

Expressing
requirements

Analysing the
requirements

Defining an
environment Executing the

application

end user domain expert
Entity library

Entities

 Defining
orchestration rules
2.

Goals

1.

entity expert

domain expert

domain expert
end user,

Figure 9: Overall development process of a Pantagruel application

The visual editor is parameterized with respect to an environment description, loaded as an
XML file. Doing so enables to guide the domain expert in the creation of rules. This process is
decomposed in conformance with the Pantagruel visual paradigm: first, the domain expert selects
the entities relevant to the application to be defined (Figure 10). To do so, he selects the entity
tool in the palette, which opens a contextual window listing the entity classes and their entity
instances, available in the target environment description. The domain expert can first define a
program that manipulates specific entities. To generalize rules, he can replace specific entities
with an entity class, by simply selecting the generic entity, as specified by the ANY keyword in
the pop-up window.

Figure 10: Selecting the relevant entities for the application

Second, he extracts context information from the selected entities (Figure 11). To guide the
domain expert, another pop-up window lists the available attributes within a section, as well as
their possible values, according to the data types defined in the concrete environment. In doing
so, the programming process prevents syntax and type errors by contruction.

Figure 11: Selecting the relevant context information among the available attributes

Third, he selects the actions that achieve the expected behavior from a pop-up window, simi-
lar to the attribute window. Finally, the domain expert connects the conditions and actions with a
controller selected in the palette; a phrasing of the rule appears on the controller pop-up window
(Figure 12).

click

Figure 12: Connecting context information and actions

7. Towards an expressiveness study

A first step towards evaluating the expressiveness of Pantagruel is to study its ability (1) to
model a range of entities that are found in the home automation domain, and (2) to model a range
of applications related to home automation. We now present this study.

7.1. Study context

To conduct our study, we have decomposed the requirements for applications of the home au-
tomation domain into increasingly specific goals This decomposition has resulted into elemen-
tary goals. For example, the “managing energy” requirement was decomposed into subgoals.
One of them was “controlling lights”, which itself was further decomposed into three subgoals,
“detecting presence”, “measuring luminosity”, “adjusting light intensity”.

This decomposition process exposes the context information and the functionalities needed
to express a range of applications in a given area. In doing so, each elementary goal is readily
mapped into one or more objects, selected from a library of entities, according to the function-
alities provided by these objects. For example, “measuring luminosity” was mapped to a light
sensor. In our study, this type of mapping resulted in a taxonomy for each application area.

Application areas Taxonomy

classes attributes methods

Light/music 10 10 5
Plantcare 11 9 5
Assisted living 15 15 9
Intercom 9 19 11
School information 10 16 7
School security 10 10 6
Meeting management 15 19 15

Table 1: Taxonomy case studies

Application area Orchestration application

Light and music

management

follow-me light
dim lightning control
radio configuration
follow-me music

Plantcare

humidity control
assisted manual lightning
automated lightning

Assisted living

wake-up assistance
clothing assistance
shower assistance
leaving home on time
task management

Intercom

presence manager
phone call control
follow-me conversation

Others (school

information and security,

meeting management)

door manager
fire manager
schedule manager
remote display manager
intrusion manager

Table 2: Orchestration application case studies
Each taxonomy definition consisted of 9 to 15 entity classes as reported in Table 1. In total,

the three areas involved 50 entity classes. Some of them were shared among the areas (e.g., the

presence detectors, the lights, and the calendars). For each area, we developed 3 to 6 applica-
tions, each consisting of 2 to 7 rules. Out of 20 applications, 15 of them have been deployed on
the DiaSim simulator. These applications are reported in Table 2. We consider school manage-
ment as a generalization of the home automation domain to large-scale buildings. Applications
reported for the assisted living area were demonstrated at Percom’10 [21].

7.2. Entity design space

Writing the taxonomy definitions for the domain of home automation exercised key dimen-
sions of our language expressiveness. Each dimension addresses the following facets of entities:
physical and virtual sensing, configuring and monitoring, and processing. An entity class may
be an arbitrary combination of these facets.

Physical and virtual sensing. Home automation applications highly depend on the periodical
changes of the surrounding environment. For example, an application that manages energy needs
to react to temperature changes. The varying nature of an environment is captured by physical
and virtual sensors. Unlike physical sensors, virtual sensors capture a status related to a computer
activity. For example, an instant-messenging client detects whether the owner of a computer is
online or away. The Calendar entity class of our example application, sending events according
to a day planning, can also be modeled as a virtual sensor. Such varying information can be
represented by volatile attributes, whether coming from physical or virtual devices.

Configuring and monitoring. A fundamental requirement of home automation is to be able to
configure an environment according to sensed information and user preferences. We call compo-
nents performing such activities, configuration components. For example, consider a music man-
agement application deployed in a house that relies on a radio installed in every room. Each radio
is configured according to the preferences of the user entering the room. The configurable parts
of this entity class are modeled as write attributes, such as a musicGenre attribute on Radio.
The preferences of a person can be gathered in a specific entity class (e.g., PersonProfile),
defining constant attributes (e.g., a preferredMusic attribute).

Entity classes monitoring actions also declare specific write attributes. In the shower exam-
ple, the run method of MixingValve is monitored by adding a showerStatus write attribute
on the MixingValve methods.

Processing. When they involve numerous entities, home automation applications often consist
of gathering and processing data sources. Such processing is typically defined in terms of in-
put/output dependencies. To illustrate this approach, let us consider an energy management appli-
cation. This application needs to configure heaters by processing sensed temperatures and other
sources such as time and room occupancy. An example of such component is the HeatManager
entity class that collects the people locations and working hours, and determines a target temper-
ature for the heaters. The target temperature is captured by a write attribute (e.g., avheat); the
processing is defined by the calculateHeat method, declaring the avheat in its side effects.

Summary. In this section, we identified three facets of entities, covering a range of application
areas, captured by our taxonomy language. Our preliminary expressiveness study provides an
illustration of the relevance of the Pantagruel taxonomy abstractions (e.g., attribute kinds and
side-effect declarations).

7.3. Orchestration language expressiveness

The taxonomy language provides the necessary building blocks to model a range of home
automation entities. This is put to practice by the following analysis that conforms with the
iCAP process [3] and covers Schilit’s four applications categories [22].

Proximate selection. Proximate selection applications enable to access resources according to
their proximity. The filtering mechanism of the Pantagruel orchestration layer generalizes this
selection process to any context information beyond location: it provides a concise means to
prototype a range of applications requiring resource selection. For example, it is used to select a
tagged outfit according to the current weather (see the Tag section of Figure 7). Such applications
involve at least sensing components, as defined in our entity design space (see Section 7.2).

Automatic contextual reconfiguration. Applications of this category can detect the dynamic
change of resources, that is, appearance or disappearance of components, or new connections
between components. These applications include the follow-me applications, where the user
interface of the application can follow the user as he moves around [23]. For example, a light
follow-me application written in Pantagruel is displayed in Figure 8. Because Pantagruel lever-
ages an entity discovery mechanism provided by its underlying platform [24], applications can
manage appearing and disappearing entities. Such applications combine configuring and sensing
components.

Contextual information and commands. Applications in this category execute commands pa-
rameterized by the contextual information captured by entities. We support these applications
through the use of typed attributes and parameterized methods. Attributes, representing the
context information may serve as parameters on the entity methods. For example, consider
an application such that when a person enters a room, his smart phone displays information cus-
tomized with respect to his new location; this operation would correspond to an actuator invoking
a displayLocation method on a smart phone entity class, with the location as an argument.
Such applications combine configuring and processing components.

Context-triggered actions. Applications that define such actions extend the previous category
by allowing context-triggered commands to be “invoked automatically according to previously

specified rules” [22]. In the Pantagruel orchestration layer, this feature is enabled by the write
attributes, as defined in monitoring components. Specifically, a write attribute depicts a depen-
dency between two rules when (1) it is accessed in the sensor part of a rule, and (2) it is modified
in the actuator part (i.e., an assignment or a side-effecting method) of another rule. This rule de-
pendency is illustrated in our working example (Figure 6): on the one hand, the R5 rule includes
in its sensor part the todolist attribute of the TimeTracker entity class; on the other hand,
the R3 and R4 rules set the value of todolist in their actuator part, through the init method
invocation; therefore, triggering R5 depends on the previous execution of either R3 or R4.

Summary. Through this study, we experimented and illustrated the ability of Pantagruel con-
cepts and paradigm to embrace the four categories of applications proposed by Schilit et al., in
conformance with their meaning.

8. User Study

We evaluated whether non-programmer users could create orchestration rules for a predefined
taxonomy, using the Pantagruel visual programming environment. In particular, we evaluated the
following aspects of our language:

• Intuitiveness of the Pantagruel visual paradigm. We evaluated whether a development
process driven by the entities was suitable for a non-programmer.

• Accessibility of the Pantagruel abstractions. We evaluated whether a non-programmer
could create class-based orchestration rules for a range of entities.

We conducted a user study in two phases. The first phase involved 12 participants, and aimed
to collect feedback for improving the Pantagruel tool. The second phase involved 6 participants,
and aimed to assess an improved version of the Pantagruel tool, as reported in Section 9.3. Both
phases were conducted with the same study context and process. We now describe the material
of this user study.

8.1. Study context

The user study was composed of the following material: a pre-questionnaire aimed to collect
the computer science background (programming language or visual software) of the participants.
After the participants were presented a short tutorial of our tool, we observed them expressing
a set of 6 rules (see Tables 3 and 4) using our tool. Finally, a post-questionnaire, based on the
System Usability Scale [25], gathered their overall acceptance of the Pantagruel tool. As shown
in Figure 5 of Section 5, two screens were set up for each session of our user study: a screen
displayed the Pantagruel editor; the other screen displayed a 2D-model of a house. It served as a
visual support for choosing the entities to orchestrate. Initially, the Pantagruel visual editor was
empty.

To accompany each participant during the study session, we recruited two test observers in
our research group. One of them helped the participant if he felt confused for too long (i.e.,

hesitating for more than 3 minutes) or if he had problems with the graphical interface (e.g., how
to use the tool palette). The other observer noted down the behavior of the participant (e.g.,

an invalid user-interaction with the editor, or when he thought aloud) and the interventions of
the first observer. Interventions mainly consisted in showing how to interact with the editor,
and showing elements of the solution (e.g., pointing at the ANY keyword on the entity pop-up
window).

8.2. Participants

We evaluated our system with 18 volunteer students (age range from 18 to 21, 4 females,
14 males) who majored in maths and physics in high school, and just started their undergrad-
uate studies. At that time, they had not attended any course related to Pantagruel, neither to
home automation nor programming. According to the pre-questionnaire, the students had little
or no exposure to programming languages or visual editors. Specifically, only 8 students had
a small experience of visual editors for music/video/graphism in undergraduate school, and 2
students had some programming experience (PHP and Visual Basic). However, whether or not
they had prior exposure to programming did not impact their approach to the Pantagruel editor.
Additionally, none of the students were familiar with the idea of home automation.

N◦ Simple rule sentences G1 G2

R1 If Bruno or Anna is in the living-room, put the music genre of the radio to JAZZ. 5.9 5.0
R2 If it is daylight outside, switch off the outside light. 4.7 4.2
R3 If Anna enters the kitchen, switch on the kitchen lights. 7.7 4.3

Table 3: Simple rule sentences and average rule completion time (group 1 and 2), in minutes

N◦ Advanced rule sentences G1 G2

R4 If a person enters a room, then switch on the lights of this room. 8.7 4.7
R5 If a person is in a room, then change the music genre of the radio located in this room to this person’s

favorite genre.
8.5 6.0

R6 If nobody is in a room, then switch off the lights of this room. 8.7 6.7

Table 4: Advanced rules sentences and average rule completion time (groups 1 and 2), in minutes

8.3. Study Sessions

Each participant came to our lab for a 60-minute session. Participants were first presented
a 15-minutes tutorial (included in the session). The tutorial started with an introduction to the
domain of home automation. Then, we demonstrated the usage of the Pantagruel editor through
an example that covered the language concepts.

Finally, sessions were conducted individually, using the Pantagruel editor parameterized
by a concrete environment. This environment was composed of various entities: lights (i.e.,

defined with a Light entity class), person tags (i.e., PersonLocalizer), light sensors (i.e.,

LightSensor), and radios (i.e., Radio).
Each participant was asked to create 6 rules with varying complexity for orchestrating these

entities. Specifically, they were asked to define each rule without guidance but by carefully
following the development process as described in Section 6. We classified these rules in 2
sets shown in Tables 3 and 4. The first set of rules aims to assess the visual paradigm of
Pantagruel, and necessitates to reason about specific entities. The second set of rules aims to
evaluate Pantagruel abstractions, and necessitates to use entity classes, thus introducing a level
of abstraction. The R4 rule generalizes the R3 rule; it requires to (1) create a filtering sensor
on an entity class (i.e., Light), (2) express a dependency between 2 classes of entities (i.e.,

PersonLocalizer and Light, combined with a condition on their location attribute). The
R5 rule requires to define an action whose parameter is an attribute of an entity class (i.e., the
preferredmusic attribute of PersonLocalizer). Finally, the R6 rule requires to express a
condition that has to match on all entities of a given class (i.e., PersonLocalizer).

9. User Study Results

Let us now expose the opinions of participants, gathered by our post-questionnaire. We will
then analyze the result of the study sessions with regard to the task performance of the first set
of participants. Finally, we report the lessons learned from the second set of participants.

9.1. Subjective results

To evaluate the overall opinion of the Pantagruel editor, we used the System Usability Scale
questionnaire [25]. It is a ten-statement questionnaire, each having a five-point scale ranging
from strongly disagree to strongly agree. The questionnaire score ranges from 0 to 100. The
global score of our questionnaire, including the 18 students, is 70 (Standard Deviation=11.8,

min=47.5, max=90.0). This rate ranks the usability of Pantagruel as acceptable according to
Bangor et al. [26, 27]. The separate scores were 68.5 and 73.8 for the first and the second set of
students, respectively. The latter score illustrates the efficiency of the improved version, which
preserved the visual concepts of the language.

Specifically, 15 participants reported that they would like to use frequently this tool to pro-
totype other home automation applications (agree or strongly agree). Though nobody disagreed
with the statement “I thought the system was easy to use”, 7 of them were undecided about
this statement (don’t know answer). 1 participant did not “feel very confident using the system”,
against 12 of them who either agreed or strongly agreed with this statement. To sum up, opinion
for each statement was different than don’t know, except for the statements (1) “I think I would

need the support of a technical person to be able to use this system” and (2) “I imagine that

most people would learn to use this system very quickly”, for which as many people agreed and
disagreed.

The questionnaire was completed with open remarks. It is worth noting that a participant
found it “fun and easy to program a house”. However, 2 of the participants reported that they
needed a 2 or 3 hour-training before feeling confident with the Pantagruel editor.

9.2. First phase: analysis of task performance

We now report our analysis on the first phase of our study, of the evaluation of the visual
paradigm with the first set of rules (Table 3), and of the language abstractions with the second
set of rules (Table 4).

9.2.1. Intuitiveness of the visual paradigm

Successes. For the first rule, we reminded individually each participant through a two-minute
tutorial how to use the user interface (using different entities than the ones required for the rule).
All of them then naturally applied the rule creation process associated with the visual paradigm;
it consisted of selecting and placing the relevant elements from the editor palette to the editor
view. As an illustration, 10 of the 12 defined the R2 rule in 3 to 6 minutes; 7 of them defined the
R3 rule without an intervention in 3 to 8 minutes.

Drawbacks. For the first rule (R1), 8 of the 12 participants required help with the user interface
to position the appropriate graphical elements on the editor view. For example, one participant
attempted to directly connect the left part of a section with an actuator using the wire element.

9.2.2. Accessibility of Pantagruel abstractions

Successes. The R3 rule (Table 3) involved, but did not require, the use of entity classes. 4
participants naturally used a class to define it (with the sensor location = KITCHEN on the
Light section). The R4 rule (Table 4) is similar to the R10 rule of Figure 8. For this rule, half
of the participants needed to be reminded of the notion of dependency between classes; such a
dependency is depicted by both sensors of the R10 rule, related to each other by the AND controller
and the use of the MotionSensor class. Then, 8 participants were able to create the R4 rule, and
10 for the R5 rule, without any help.

Drawbacks. As illustrated by the Tables 3 and 4, the second set of rules required more time
than the first one. A participant did not feel confident with the filtering effect of conditions on
the Light entity class of the R4 rule: although he intuitively created a correct rule, he was not
convinced of its meaning while reading it. Finally, all participants required the experimenter to

explain how the NONE quantifier, required for the R6 rule, changes the meaning of its sensors. At
the time of the study, the quantifier was placed on the sensor part.

9.3. Second phase: lessons learned and improvements

From our first study, we collected the feedback of the participants. This feedback helped us to
learn lessons regarding the improvement of the Pantagruel tool. We now report these lessons, as
well as the results of a preliminary improvement, from which the second set of students benefited.

Lessons learned. Pantagruel visual paradigm seems easy to grasp, although its entity-centric
structure is not as natural as we expected. Its intuitiveness may be increased with a stronger
connection between the 2D-model of the environment and the Pantagruel editor to emphasize
its entity-centric paradigm. For example, 2 of the participants at first wanted to drag-and-drop
the entities to orchestrate from the 2D-model to the Pantagruel editor. This seems an interest-
ing software improvement of our tool. Such an improvement would enable the user to create
orchestration rules through direct manipulation [28] of the entities via the 2D-model, instead of
manually creating sections in the Pantagruel editor.

Preliminary improvement. Pantagruel abstraction concepts require further training or user-interface
support. This observation motivated us to improve the Pantagruel tool with a rough natural-
language translation of rules that pops-up when double-clicking on a controller element. This
translation exposes the filtering effect of the rule conditions and the dependencies between classes
by combining the words these, any or all. Such a translation is illustrated in Figure 12. As a re-
sult, 5 of the 6 participants who benefited from this assistance completed the rules R1 to R5

without any help, 2 minutes faster than the others. The difficulties encountered on the ALL/NONE
quantifier leaded us to represent it as shown in this paper, making explicit its application to a
class. This improvement was approved by the test observers. However, further evaluation is
necessary for validation.

9.3.1. Summary

The overall observations and the acceptable subjective results show that the Pantagruel tool
is accessible to novice programmers. However, the time needed by the participants to create
rules showed that the Pantagruel abstractions are not intuitive enough: compared to iCAP [3],
which also has a rule-based paradigm, participants needed twice as much time to resolve similar
rules (e.g., R4). Pantagruel and iCAP are further compared in Section 10, and some usability
improvements are mentioned in Section 11.

10. Related Work

Our contributions can be measured with respect to four dimensions for developing orchestra-
tion applications. Let us examine existing approaches sharing these dimensions.

10.1. Taxonomy-driven approaches

Taxonomy-inspired approaches [29, 30, 31, 32, 33, 16, 17] have been used to address a range
of areas, such as pervasive computing, web services, graphical computing, and robot control. For
example, Olympus [32] is a programming model developed over a pervasive computing middle-
ware, enabling to define an ontology of services to be orchestrated. However, Olympus does not
provide an interaction model to specify the context information exposed by these services.

In web services, WSDL [33] is a language for describing the interaction interface of web
services. It declares the functionalities and the data provided by a service. However, it does not
provide any information about the data beyond its type. In contrast, Pantagruel entity classes
expose the nature of the context information captured by their attributes, whether external, ap-
plicative or constant. This strategy helps the developer understand entities and their context of
usage.

In the field of robot control, Prograph CPX [16] enables to define a hierarchy of object classes
that compose a robot. Similarly, AgentSheets [17, 9] is a toolkit for defining domain-oriented
environments composed of agents, interacting with each other, or with a user. AgentSheets
enables to model a domain by defining agent classes, and tasks defining the behavior of agents.
However, neither Prograph CPX nor AgentSheets provides any information about the nature of
the data that can be manipulated in a program or the effect of a method invocation. In contrast,
the entity interaction interfaces of Pantagruel offer useful information that guide the development
and the verification of applications.

10.2. Visual rule-based orchestration languages

The rule-based paradigm is widely spread in visual programming fields dedicated to robot
control (e.g., to orchestrate the sensors and effectors of a robot) [8, 9, 34] or game, agent-based
programming (e.g., to orchestrate agents or moving objects) [35, 17, 19].

To avoid rule explosion, AgentSheets [17] proposes a mechanism to easily specify analo-

gies [36] between the agents, resulting in the description of concise rules for a range of agents.
In contrast, Pantagruel leverages the class abstraction, enabling rules to be defined on a range of
entities, instead of specific entities.

KidSim [35] is another visual rule-based language that enables children to create games by
defining interactions rules between agents and/or their properties, through the use of pictures
that represent the agents. However, KidSim and AgentSheets do not offer a visual structuring of
rules centered on the entities. In contrast, our three-panel, section-based representation can be
naturally combined with selection mechanisms to visualize subsets of rules according to various
criteria: entities, sensors, or actuators.

Our paradigm extends the rule-based paradigm of the Blender Game Engine [19]. While
Blender is prototype-based, the Pantagruel orchestration language relies on classes. Our ap-
proach allows programs to be reusable over a range of concrete environments.

Ladder Diagrams is a rule-based language [37] to program logic controllers. It is limited to
manipulate low-level data, making large programs hard to read or analyze [38]. In contrast, our
approach enables the user to manipulate high-level information captured by entities, thus guiding
the development of orchestration rules.

Other paradigms have been proposed to develop applications for orchestrating objects. Ex-
amples include the puzzle paradigm, used by Scratch [39], and the storytelling paradigm, used by
Alice [40]. However, neither Scratch nor Alice provide domain-specific abstractions to represent
the sensing or actuating nature of objects. This situation makes it difficult to examine the context
information used for a given program. In contrast, the visual structure of Pantagruel facilitates
the reasoning about the context and actions used in a program.

10.3. Visual paradigms for programming home automation applications

There exist visual approaches to develop home automation applications. These approaches
have been shown to provide an intuitive representation for the orchestration logic, bridging the

gap between end-user requirements and a program. However, to the best of our knowledge,
none of the tools reported in the home automation literature proposes an open-ended approach to
developing applications, enabling an extensible set of entities to be orchestrated.

For example, CAMP [1] is a rule-based tool which uses the magnetic poetry metaphor to
define sentences by visual word composition. However, its vocabulary is restricted to a specific
area of home automation. Another related tool is iCAP [3], it provides a fixed set of generic entity
classes: objects, activities, time, locations and people. Its elements are visual representations of
these classes. Composition of conditions is achieved by visual arrangement of rectangles on the
screen. However, iCAP does not provide a uniform approach to expressing rules over a group
of entities besides a group of persons. In contrast, our approach provides syntactic support to
define filters over all instances of an entity class, as well as specific entities, enabling generic
orchestration rules to be described.

The visual language VisualRDK [41] contrasts with the previous tools in that it targets a range
of programmers, novice as well as experienced ones. VisualRDK is a programmatic approach,
offering language-inspired constructs such as processes, conditional cascades and signals. These
numerous visual constructs mimic conventional programming, without specifically targeting the
domain-specific aspects of home-automation orchestration logic. Pantagruel differs from this
approach in that rules are driven by (1) the entities and (2) connectors to orchestrate them.

Other visual prototyping tools like the rule-based language OSCAR [7] and Jigsaw [2], target
domestic spaces and propose an approach to discovering, connecting and controlling services and
devices. However, they offer limited expressiveness to access the functionalities of entities.

10.4. End-user development for home automation

Other approaches for enabling end users to “program” their own homes have been proposed
to reduce the end-user programming burden while proposing rich applications based on abstrac-
tions. For example, the Media Cubes language [5] enables to program applications by composing
cubes, representing abstract operations. This approach is based on a cognitive model [42] that en-
ables the end user to get familiar with abstractions. Our approach could benefit from this model
to improve the usability of entity classes. MAPS [43] is another approach to design assisted-
living applications using a design by composition approach. However, it is limited to handheld
prompter applications.

Our approach follows the lines of end-user software engineering proposed by Mørch et al. [6].
Specifically, Pantagruel is based on a compositional approach, where the user connects com-
ponents (i.e., , sensors, actuators, and controllers) together to form an application. Moreover,
constraints are integrated in the Pantagruel visual editor to guarantee correct composition and
connection of the visual elements.

11. Conclusion and Future Work

Conclusion. Home automation concerns an increasing number of areas, creating a need to fac-
torize knowledge about the entities that are relevant to each of these areas. This paper presents
Pantagruel, an approach and a tool that integrate a taxonomical description of a home automation
environment into a visual programming language. Rules are developed using a sensor-controller-
actuator paradigm, parameterized with respect to a taxonomy of entities. We have used Pan-
tagruel to develop a number of scenarios, demonstrating the benefits of our taxonomy-based
approach.

We explored the expressiveness of our taxonomy-based approach by defining orchestration
applications for a range of application areas that go beyond home automation. We developed
applications for these areas, and tested most of them on a home automation simulator called
DiaSim [10]. The simulator enabled us to explore the expressiveness of Pantagruel programs in
areas that would otherwise be out of reach. These studies resulted in an entity design space that
is covered by the Pantagruel taxonomy language. We further studied the expressiveness of the
Pantagruel orchestration language, parameterized by a taxonomy.

We conducted a usability study of Pantagruel orchestration language. This study has showed
that it is accessible and intuitive to novice programmers. Still, improvements are needed to
increase the usability of Pantagruel abstractions, as well as the efficiency of users while creating
rules.

Future work. Our user study has showed interesting research directions towards improving us-
ability. One of them would be to seamlessly integrating Pantagruel in the 2D editor, enabling
rules to be created by directly selecting and connecting together the entities represented in the
2D model of the environment. Doing so could later lead to a programming-by-example devel-
opment process [44]. This research direction could also leverage recent advances in end-user
software engineering [45]. These works introduce various techniques (e.g., interactive testing
and adapted debugging tools) to guide the end-user in writing correct applications using visual
tools. For example, one could provide support to visually render the execution process of a rule
subset prior to a complete program execution, provided a user-defined input of test values.

A direction towards end-user usability would be to define various layers over Pantagruel,
making it more user-friendly (e.g., providing a natural language-based programming layer such
as CAMP [1]) and more adapted to the problem vocabulary of a domain expert (e.g., a caregiver,
who would build assisted-living applications, is more comfortable when reasoning by means of
“actions” rather than entities). This approach could still leverage the DiaSpec [24] platform while
offering area-specific programming metaphors.

Finally, we have developed various analyses for Pantagruel programs to guarantee properties
such as safety, liveness, and non-interference of orchestration rules. These verifications could be
integrated in the Pantagruel development environment, to drive the developer in writing correct
orchestration logic.

[1] K. N. Truong, E. M. Huang, G. D. Abowd, A magnetic poetry interface for end-user programming of capture
applications for the home, in: 6th Int’l Conference on Ubiquitous Computing (UbiComp), Springer, 2004, pp.
143–160.

[2] J. Humble, A. Crabtree, T. Hemmings, K.-P. Åkesson, B. Koleva, T. Rodden, P. Hansson, "Playing with the Bits"
user-configuration of ubiquitous domestic environments, in: 5th Int’l Conference on Ubiquitous Computing (Ubi-
Comp), Vol. 2864, Springer, 2003, pp. 256–263.

[3] A. K. Dey, T. Sohn, S. Streng, J. Kodama, iCAP: Interactive prototyping of context-aware applications, in: 4th Int’l
Conference on Pervasive Computing (Pervasive), Springer, 2006, pp. 254–271.

[4] Y. Li, J. I. Hong, J. A. Landay, Topiary: a tool for prototyping location-enhanced applications, in: 17th Symposium
on User Interface Software and Technology (UIST), ACM, 2004, pp. 217–226.

[5] A. F. Blackwell, End-user developers at home, Commun. ACM 47 (2004) 65–66.
[6] A. I. Mørch, G. Stevens, M. Won, M. Klann, Y. Dittrich, V. Wulf, Component-based technologies for end-user

development, Commun. ACM 47 (2004) 59–62.
[7] M. W. Newman, A. Elliott, T. F. Smith, Providing an integrated user experience of networked media, devices, and

services through end-user composition, in: 6th Int’l Conference on Pervasive Computing (Pervasive), Springer,
2008, pp. 213–227.

[8] J. J. Pfeiffer Jr., Altaira: A rule-based visual language for small mobile robots, Journal of Visual Languages and
Computing 9 (2) (1998) 127–150.

[9] J. Gindling, A. Ioannidou, J. Loh, O. Lokkebo, A. Repenning, Legosheets: A rule-based programming, simulation

and manipulation environment for the leg0 programmable brick, in: Proceedings of the 11th Int’l IEEE Symposium
on Visual Languages (VL ’95), 1995, pp. 172–179.

[10] J. Bruneau, W. Jouve, C. Consel, Diasim, a parameterized simulator for pervasive computing applications, in:
Proceedings of the 6th Int’l Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services
(Mobiquitous’09), ICST/IEEE, Toronto, CAN, 2009.

[11] A. Svensk, Design for cognitive assistance, Certec, 2001.
[12] S. P. Carmien, Socio-technical environments supporting distributed cognition for persons with cognitive disabilities,

Ph.D. thesis, University of Colorado at Boulder, Boulder, CO, USA, aAI3239390 (2006).
[13] S. Carmien, M. Dawe, G. Fischer, A. Gorman, A. Kintsch, J. F. Sullivan, JR., Socio-technical environments sup-

porting people with cognitive disabilities using public transportation, ACM Trans. Comput.-Hum. Interact. 12
(2005) 233–262.

[14] S. A. White, Business Process Modeling Notation, V. 1.0., http://bpmi.org (May 2004).
[15] Microsoft Corporation, The Microsoft Visual Programming Language, http://msdn.microsoft.com/en-us/

library/bb483088.aspx.
[16] S. B. Steinman, K. G. Carver, Visual Programming with Prograph CPX, Manning Publications Co., Greenwich,

CT, USA, 1995.
[17] A. Repenning, Agentsheets: a tool for building domain-oriented dynamic, visual environments, Ph.D. thesis, Uni-

versity of Colorado at Boulder, Boulder, CO, USA (1993).
[18] D. C. Smith, A. Cypher, L. G. Tesler, Novice programming comes of age, Commun. ACM 43 (3) (2000) 75–81.
[19] J. van Gumster, Blender as an educational tool, in: SIGGRAPH Educators Program, 2003, p. 1.
[20] C. Neumann, R. A. Metoyer, M. M. Burnett, End-user strategy programming, Journal of Visual Languages and

Computing 20 (1) (2009) 16–29.
[21] Z. Drey, C. Consel, A visual, open-ended approach to prototyping ubiquitous computing applications, in: Work-

shops of the 8th IEEE Int’l Conference on Pervasive Computing and Communications, 2010, pp. 817–819.
[22] B. Schilit, N. Adams, R. Want, Context-aware computing applications, in: Proceedings of the Workshop on Mobile

Computing Systems and Applications, IEEE, 1994, pp. 85–90.
[23] A. Harter, A. Hopper, P. Steggles, A. Ward, P. Webster, The anatomy of a context-aware application, in: MobiCom

’99: Proceedings of the 5th annual ACM/IEEE Int’l conference on Mobile computing and networking, ACM, New
York, NY, USA, 1999, pp. 59–68.

[24] D. Cassou, B. Bertran, N. Loriant, C. Consel, A generative programming approach to developing pervasive comput-
ing systems, in: GPCE’09: Proceedings of the 8th Int’l Conference on Generative Programming and Component
Engineering, ACM, Denver, CO, USA, 2009, pp. 137–146.

[25] J. Brooke, J. sus-a quick and dirty usability scale, Jordan, P., Thomas, B. and Weerdmeester, B. (eds.). Usability
Evaluation in Industry.

[26] J. R. Lewis, J. Sauro, The factor structure of the system usability scale, in: Proceedings of the 1st Int’l Conference
on Human Centered Design, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 94–103.

[27] A. Bangor, P. T. Kortum, J. T. Miller, An empirical evaluation of the system usability scale, Int’l Journal of Human-
Computer Interaction 24 (6) (2008) 574–594.

[28] M. M. Burnett, D. W. McIntyre, Visual Programming, John WIley & Sons Inc., 1999.
[29] F. Paterno, Model-based design of interactive applications, Intelligence 11 (4) (2000) 26–38.
[30] D. Fogli, L. P. Provenza, A meta-design approach to the development of e-government services, Journal of Visual

Languages and Computing 23 (2) (2012) 47 – 62.
[31] C. Ardito, B. R. Barricelli, P. Buono, M. F. Costabile, R. Lanzilotti, A. Piccinno, S. Valtolina, An ontology-based

approach to product customization, in: Proceedings of the Third international conference on End-user development,
IS-EUD’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 92–106.

[32] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Campbell, M. D. Mickunas, Olympus: A high-level programming
model for pervasive computing environments, in: 3rd Int’l Conference on Pervasive Computing and Communica-
tions (PerCom), IEEE, 2005, pp. 7–16.

[33] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web service definition language (http://www.w3.
org/TR/wsdl), Tech. rep., W3C (March 2001).

[34] P. T. Cox, C. C. Risley, T. J. Smedley, Toward concrete representation in visual languages for robot control, Journal
of Visual Languages and Computing 9 (2) (1998) 211–239.

[35] D. C. Smith, A. Cypher, J. C. Spohrer, Kidsim: Programming agents without a programming language, Commun.
ACM 37 (7) (1994) 54–67.

[36] A. Repenning, Bending the rules: steps toward semantically enriched graphical rewrite rules, in: Proceedings of
the 11th Int’l IEEE Symposium on Visual Languages (VL ’95), IEEE, Washington, DC, USA, 1995, p. 226.

[37] D. Pessen, Ladder-diagram design for programmable controllers, Automatica 25 (3) (1989) 407–412.
[38] S. S. Peng, M. C. Zhou, Ladder diagram and petri-net-based discrete-event control design methods, Systems, Man,

and Cybernetics IEEE Trans. on 34 (4) (2004) 523 –531.

[39] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum,
J. Silver, B. Silverman, Y. Kafai, Scratch: programming for all, Commun. ACM 52 (2009) 60–67.

[40] C. Kelleher, R. Pausch, Using storytelling to motivate programming, Commun. ACM 50 (2007) 58–64.
[41] T. Weis, M. Knoll, A. Ulbrich, G. Muhl, A. Brandle, Rapid prototyping for pervasive applications, IEEE Pervasive

Computing 6 (2) (2007) 76–84.
[42] A. Blackwell, First steps in programming: a rationale for attention investment models, in: Human Centric Com-

puting Languages and Environments, 2002. Proceedings. IEEE 2002 Symposia on, 2002, pp. 2 – 10.
[43] S. Carmien, End user programming and context responsiveness in handheld prompting systems for persons with

cognitive disabilities and caregivers, in: CHI ’05 extended abstracts on Human factors in computing systems, ACM,
2005, pp. 1252–1255.

[44] D. C. Smith, A. Cypher, L. Tesler, Programming by example: novice programming comes of age, Commun. ACM
43 (3) (2000) 75–81.

[45] M. M. Burnett, C. Cook, G. Rothermel, End-user software engineering, Commun. ACM 47 (9) (2004) 53–58.

Appendix

The following table shows the detailed time spent by each participant for defining the rules
of Tables 3 and 4 of Section 8.

Figure 13: Detailed development times (in minute) spent by the participants of our user study

