
Contents lists available at ScienceDirect
Journal of Visual Languages and Computing

Journal of Visual Languages and Computing 24 (2013) 350–364
1045-92
http://d

☆ This
projects
is partia
under t

☆☆ Th
n Corr

fax: þ4
E-m

guercan
(L. Berg
k.g.vand

1 M
journal homepage: www.elsevier.com/locate/jvlc
Vibes: A visual language for specifying behavioral
requirements of algorithms$,$$

Gürcan Güleşir n, Lodewijk Bergmans, Mehmet Akşit, Klaas van den Berg
Department of Computer Science, University of Twente, Germany
a r t i c l e i n f o

Article history:
Received 29 April 2010
Received in revised form
18 August 2013
Accepted 25 August 2013
Available online 4 September 2013

Keywords:
State-transition diagrams
Formal methods
Software specification
Visual formalisms
6X/$ - see front matter & 2013 Elsevier Ltd.
x.doi.org/10.1016/j.jvlc.2013.08.005

work has been carried out as a part of th
, under the management of the Embedded S
lly supported by the Netherlands Ministry
he Senter and Bsik programs.
is paper has been recommended for acceptanc
esponding author. Tel.: þ49 89 382 13810;
9 89 382 52691.
ail addresses: gulesirg@cs.utwente.nl, ggules
.guelesir@bmw.de (G. Güleşir), bergmans@c
mans), aksit@cs.utwente.nl (M. Akşit),
enberg@cs.utwente.nl (K. van den Berg).
agnetic resonance imaging.
a b s t r a c t

Manually verifying the behavior of software systems with respect to a set of requirements
is a time-consuming and error-prone task. If the verification is automatically performed
by a model checker however, time can be saved, and errors can be prevented. To be able to
use a model checker, requirements need to be specified using a formal language. Although
temporal logic languages are frequently used for this purpose, they are neither commonly
considered to have sufficient usability, nor always naturally suited for specifying
behavioral requirements of algorithms. Such requirements can be naturally specified as
regular language recognizers such as deterministic finite accepters, which however suffer
from poor evolvability: the necessity to re-compute the recognizer whenever the alphabet
of the underlying model changes. In this paper, we present the visual language Vibes that
both is naturally suited for specifying behavioral requirements of algorithms, and enables
the creation of highly evolvable specifications. Based on our observations from controlled
experiments with 23 professional software engineers and 21 M.Sc. computer science
students, we evaluate the usability of Vibes in terms of its understandability, learnability,
and operability. This evaluation suggests that Vibes is an easy-to-use language.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

New generations of large-scale and complex embedded
systems such as wafer scanners [4], medical MRI1 scan-
ners, and electron microscopes are rarely developed from
scratch [23]. Instead, engineers continuously modify older
generations to develop new ones. Therefore, evolvability
is one of the key quality factors that determine the
All rights reserved.

e Ideals and Darwin
ystems Institute, and
of Economic Affairs

e by Shi Kho Chang.

ir@hotmail.com,
s.utwente.nl
commercial success or failure of large-scale and complex
embedded systems.

During the evolution of such systems, manually verify-
ing the software behavior with respect to a set of require-
ments is a time-consuming and error-prone task [10].
If the verification is automatically performed by a model
checker [6] however, time can be saved, and errors can be
prevented [10].

To be able to use a model checker, requirements need
to be specified using a formal language. Although temporal
logic languages such as LTL [6] are suitable for specifying
behavioral requirements, these languages are commonly
considered to have insufficient usability.2 For example,
Hatcliff and Dwyer [13] state the following: “Although
model-checker property specification languages are built
on the theoretically elegant temporal logics, practitioners
2 A set of attributes that bear on the effort needed for use, and on the
individual assessment of such use, by a stated or implied set of users [2].

www.sciencedirect.com/science/journal/1045926X
www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2013.08.005
http://dx.doi.org/10.1016/j.jvlc.2013.08.005
http://dx.doi.org/10.1016/j.jvlc.2013.08.005
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jvlc.2013.08.005&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jvlc.2013.08.005&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jvlc.2013.08.005&domain=pdf
mailto:gulesirg@cs.utwente.nl
mailto:ggulesir@hotmail.com
mailto:guercan.guelesir@bmw.de
mailto:bergmans@cs.utwente.nl
mailto:bergmans@cs.utwente.nl
mailto:aksit@cs.utwente.nl
mailto:k.g.vandenberg@cs.utwente.nl
http://dx.doi.org/10.1016/j.jvlc.2013.08.005

G. Güleşir et al. / Journal of Visual Languages and Computing 24 (2013) 350–364 351
and even researchers find it difficult to use them to
accurately express complex event-sequencing properties.
Once written, the specifications are often hard to read and
debug”.

Temporal logic languages are designed for specifying
behavioral requirements of non-terminating systems,
which have infinite executions. Therefore, these languages
do not have a built-in construct that can identify the last
step of a finite execution. Consequently, temporal logic
languages are not always naturally suited for specifying
behavioral requirements of algorithmic systems, which
have finite executions. Nevertheless, model checker tool
developers can overcome this limitation by implementing
an artificial termination construct that can be used in a
transparent way.

Behavioral requirements of algorithmic systems can be
naturally specified using regular language recognizers,
such as deterministic finite accepters or regular expres-
sions [18]. The downside of using such a recognizer is
however, poor evolvability: the necessity to recompute
the recognizer whenever the alphabet of the model of
the underlying system changes.3 This necessity arises from
the fact that the recognizer shares the same alphabet with
the model of the underlying system.

Unlike regular language recognizers, temporal logic
formulas do not suffer from the evolvability problem
explained above; because such a formula does not depend
on the alphabet of the model of the underlying system.
As a result, the formula does not need to be updated upon
a modification of the alphabet.

In the context of this paper, we say that a specification
is highly evolvable, if and only if the specification does not
need to be changed as long as the behavioral requirement
it represents does not change. This definition of highly
evolvable specifications also entails that such a specifica-
tion does not need to be changed whenever the under-
lying model changes. In other words, a highly evolvable
specification does not depend on the underlying model
but only on the requirement it represents.

The goal of this research is to come up with an easy-to-
use language that both is naturally suited for specifying
behavioral requirements of algorithms, and enables the
creation of highly evolvable specifications. To reach this
goal, we introduce a visual language Vibes (VIsual BEhavior
Specifications) that combines the strengths and eliminates
the weaknesses mentioned above of temporal logic lan-
guages and regular language recognizers. Since such a
language has not been presented in the literature to our
best knowledge, we consider Vibes as the contribution of
this paper.

At a first glance, a Vibes diagram is similar to a
traditional state-transition diagram. However, Vibes dia-
grams are distinguished by a key feature that we call
Context-Sensitive Wildcard (CSW). Intuitively, a CSW is a
transition that stands for an infinite set of transitions, such
that the elements of this set is determined by the ‘context’
of the CSW. In this paper, we formally define CSW as the
3 An update is not necessary upon removing a symbol from the
alphabet.
key feature of Vibes. We present the syntax, formal
semantics, expressive power, and an empirical evaluation
of Vibes, which reveals the theoretical and practical impli-
cations of using CSWs in visual specifications of software
behavior.

The remainder of this paper is structured as follows:
In Section 2, we present an example application, survey
some of the related work, and define the goal of this
research. In Section 3, we informally present Vibes, and
explain why it brings us to the goal of this research. In
Sections 4, 5, 6, and 7 we present the syntax, formal
semantics, and expressive power of Vibes. Section 8 con-
tains empirical results that provide insights into the usabi-
lity of Vibes. The remaining sections contain the related
work, conclusions, and future work.
2. An example: the authentication algorithm of an ATM

An automated teller machine (ATM) is an embedded
system that can authenticate a user based on a bank card
and password. Upon successful authentication, the user
can access his or her bank account(s) to perform various
actions such as withdrawing money. In this section, we
present two realistic requirements for the authentication
algorithm of a generic ATM, and create a model that fulfills
these requirements. In addition, we discuss some of the
related work, and define the goal of this research.

Two realistic requirements for the authentication algo-
rithm of a generic ATM can be as follows:
R1
 If a user cannot enter the correct password within
three attempts during an authentication session, then
the ATM must block the card (i.e., retain the card and
prevent its further use).
R2
 If the ATM blocks a card during an authentication
session, then the ATM must immediately terminate
the session.

To create a model of the authentication algorithm that
fulfills these requirements, we need to choose a suitable
modeling language. Statecharts [1,12] is suitable in our
case; because the authentication algorithm can be seen as
a reactive system [11] where the user can perform an input
action such as entering a password, and depending on the
current state, the algorithm may react by performing an
output action such as authenticating the user. Accordingly,
we can model the authentication algorithm using state-
charts, as shown in Fig. 1.

This model can be informally explained as follows: If a
user inserts a card into the card slot of the ATM, then the
ATM reads the card. If the card is invalidated, then the ATM
ejects the card, and terminates the session. If the card is
validated, then the ATM sets the number of authentication
attempts to zero, and then requests the password of the
user. After the password is entered, the ATM increments
the number of authentication attempts, and then tries to
authenticate the user. If the user is authenticated, then the
algorithm terminates as normal. If the authentication
attempt fails (i.e., the password is wrong), then the ATM
allows the user to re-enter the password at most two

READY

cardInserted

READING
do / readCard

WAITING FOR
PASSWORD

[numAttempts < 3] / requestPassword

cardInvalidated / ejectCard

AUTHENTICATING
do / authenticateUser

passwordEntered / incrNumAttempts

wrongPassword [numAttempts >= 3] / blockCard

userAuthenticated

cardValidated / setNumAttemptsToZero

Fig. 1. The authentication algorithm of a generic ATM, modeled as a UML
statechart.

G. Güleşir et al. / Journal of Visual Languages and Computing 24 (2013) 350–364352
additional times. If the user cannot enter the right
password upon two additional trials, then the ATM blocks
the card.

For the sake of simplicity in this paper, the model
shown in Fig. 1 does not consider the possibility that the
user requests to cancel the process and eject the card after
it has been validated. ATMs usually allow this. In such a
case, the reset of the number of attempts to zero might
provide a vulnerability, where a malicious user cancels
after one failed attempt and then retries the card with the
same number of attempts available.

After a model of a system is created, the model typically
needs to be checked against its requirements. A manual
check is both time consuming and error prone [10]. If a
model checker tool is used instead, people's time can be
saved and errors can be prevented [10]. To be able to use a
model checker however, requirements need to be forma-
lized. This can be done in two steps: In the first step, the
requirements can be rewritten in terms of the action4

names that appear in the model. In the second step, the
rewritten requirements can be specified using a formal
language. Below, we perform the first step by rewriting the
requirements R1 and R2, in terms of the action names that
appear in Fig. 1.
R1′
4

unifo
repre
distin
In each possible execution of the authentication algo-
rithm, immediately after the third occurrence of the
For the sake of simplicity in this paper, we use the term action to
rmly refer to the terms action, event, and activity, which actually
sent distinct concepts in the terminology of statecharts. Such a
ction is not necessary in the context of this paper.
wrongPassword action, there must be an occurrence of
the blockCard action.
R2′
 In each possible execution of the authentication algo-
rithm, if there is an occurrence of the blockCard action,
then this must be the last occurrence of the execution.
In Sections 2.1 and 2.2, we perform the second step of
the formalization, by specifying R1′ and R2′ using alter-
native formalisms. In these sections, we also evaluate
these formalisms for the purpose of specifying the beha-
vioral requirements of algorithms. Based on the outcome
of this evaluation, we define the goal of this research, in
Section 2.3.

2.1. Temporal logic languages

Temporal logic languages such as LTL [6], CTL [6], CTLn [6],
and FLTL [7,17] are suitable for specifying the temporal or
logical properties of reactive systems. Therefore, we can
formalize the requirements of the authentication algorithm
using these languages. For example, R1′ can be formalized as
the following LTL specification: spec¼ ðððeventually wrong
PasswordÞ) ðeventually wrong PasswordÞ Þ) ðeventually
wrongPasswordÞÞ) ðnext blockCardÞ. Based on this example
specification, below we explain a key benefit of using tem-
poral logic languages for specifying behavioral requirements.

Note that the set of action names that appear in spec is
equal to the set of action names that appear in R1′.
Therefore, spec and R1′ are at the same level of abstraction,
which has the following benefit: As long as R1′ does not
change, one does not need to update spec during the
evolution of the authentication algorithm modeled in
Fig. 1. Thus, spec is highly evolvable, which is also true in
general: temporal logic languages enable us to create
highly evolvable specifications.

In the remainder of this section, we discuss the dis-
advantages of using temporal logic languages for specify-
ing the behavioral requirements of algorithms.

In temporal logic languages, there is no built-in notion
of ‘last action occurrence’, because these languages are
designed for specifying the requirements of infinite execu-
tions. Hence, temporal logic languages are not always
natural for specifying the requirements of algorithms, which
have finite executions. For example, R2′ is a desired property
of the last action occurrence in the possible executions
of the authentication algorithm. To specify R2′ using a
temporal logic language, possible executions of the authenti-
cation algorithm, which are finite, need to be transfor-
med to infinite executions. For example, the finite sequence
〈cardInserted; readCard; cardInvalidated; ejectCard〉 of action
occurrences represents a possible execution of the authenti-
cation algorithm that we modeled as the statechart shown in
Fig. 1. This sequence can be transformed to the infinite
sequence 〈cardInserted; readCard; cardInvalidated; ejectCard;

� ; � ; � ;…〉, where a � represents an occurrence of a
pseudo action that is reserved for marking the end of a finite
sequence of action occurrences. Assuming that all possible
executions of the authentication algorithm are transformed
to infinite executions as explained above, R2′ can be specified
using LTL as follows: ðeventually blockCardÞ) ðnext �Þ.
Nevertheless, this specification is less natural and concise,

q1

blockCard

q2

cardInserted, cardInvalidated, ejectCard, cardValidated,
setNumAttemptsToZero, requestPassword, passwordEntered,

incrNumAttempts, userAuthenticated, wrongPassword

q0

cardInserted, cardInvalidated, ejectCard, cardValidated,
setNumAttemptsToZero, requestPassword, passwordEntered,

incrNumAttempts, userAuthenticated, wrongPassword, blockCard

cardInserted, cardInvalidated, ejectCard, cardValidated,
setNumAttemptsToZero, requestPassword, passwordEntered,

incrNumAttempts, userAuthenticated, wrongPassword, blockCard

Fig. 2. The state-transition diagram of a DFA that is a formal specification
of the requirement R2′ defined in Section 2.

G. Güleşir et al. / Journal of Visual Languages and Computing 24 (2013) 350–364 353
due to the usage of) ðnext�Þ. Thus, temporal logic lan-
guages are not always natural for specifying properties of
algorithms, since these languages are designed for specifying
properties of infinite executions.

According to Hatcliff and Dwyer [13], one of the major
problems that are currently preventing the successful
application of model checking technology to software is
“the requirement specification problem: the difficulty of
expressing software requirements in the temporal specifi-
cation languages of the existing model-checking tools.
Although model-checker property specification languages
are built on the theoretically elegant temporal logics,
practitioners and even researchers find it difficult to use
them to accurately express complex event-sequencing
properties. Once written, the specifications are often hard
to read and debug” [13].

Based on the discussion in this section, we can con-
clude that temporal logic languages enable us to create
highly evolvable specifications; but these languages are
neither always naturally suited for specifying the beha-
vioral requirements of algorithms, nor are they commonly
considered to have sufficient usability.
blockCard<<initial-final>>
q0

*
<<final>>

q1

Fig. 3. A Vibes diagram that represents the requirement R2′, which is
defined in Section 2.
2.2. Regular language recognizers

In the theory of computation [18], a regular language is
a set of finite sequences of symbols from a finite alphabet,
such that the elements of this set are determined by a
regular language recognizer: deterministic finite accepter
(DFA), non-deterministic finite accepter (NFA), regular
expression, or regular grammar. Since regular language
recognizers accept or reject finite sequences of symbols,
they are naturally suited for specifying requirements on
the executions of algorithms, including the requirements
on the last action occurrences. For example, using the
action names shown in Fig. 1, R2′ can be specified as the
DFA whose state-transition diagram is shown in Fig. 2.

A disadvantage of using DFAs however, is as follows: as
visible in Fig. 2, the alphabet of the DFA consists of all the
action names that appear in the model shown in Fig. 1.
That is, the DFA shares the same alphabet with the model.
This is a drawback, because each time the set of action
names that appear in the underlying model changes, e.g.,
a new action name is added or an existing action name is
renamed, the transitions of the DFA need to be recom-
puted, e.g., new transitions need to be added or existing
transitions need to be renamed, although the actual require-
ment represented by the DFA may remain intact. Other types
of regular language recognizers also have this drawback,
because they need to share the same alphabet with the
underlying model. Thus, regular language recognizers do not
allow us to create highly evolvable specifications.

Based on the discussion in this section, we can con-
clude that regular language recognizers are naturally
suited for specifying behavioral requirements of algo-
rithms, but these languages do not allow us to create
highly evolvable specifications.

2.3. The goal of this research

The goal of this research is to come up with a language
that (a) is naturally suited for specifying behavioral
requirements of algorithms, (b) enables the creation of
highly evolvable specifications, and (c) is easy to use. In
Section 3, we intuitively explain this new language, which
we call Vibes. In addition, we discuss why Vibes brings us
to the goal stated above.

3. Vibes: VIsual BEhavior Specifications

The requirement R2′ (see Section 2) can be formally
specified using Vibes, as shown in Fig. 3. Informally
speaking, Vibes diagrams can be seen as state-transition
diagrams augmented with wildcard transitions (e.g., the
⋆�transition shown in Fig. 3). In this section, we explain
Vibes using Fig. 3 as an illustrative example.

A Vibes diagram is a pattern of nodes and edges. For a
given finite sequence of action occurrences, the edges
match the occurrences, whereas the nodes determine if
the sequence is matched by the pattern.

Regarding the pattern shown in Fig. 3, the matching of
a given sequence starts at the node q0; since its stereotype
contains initial. Such a node is called initial node. There is
exactly one initial node in each pattern.

The ⋆�labelled edge originating from q0 matches each
occurrence from the beginning of a sequence, until an
occurrence of blockCard is reached. This “until” condition

anIdentifier

<<initial-final>>
anIdentifier

<<final>>
anIdentifier

<<initial>>
anIdentifier

anIdentifier *

Fig. 4. The elements of the notation of Vibes.

G. Güleşir et al. / Journal of Visual Languages and Computing 24 (2013) 350–364354
is due to the existence of the blockCard-labelled edge origi-
nating from the same node (i.e., q0). In a pattern, no two
edges originating from the same node have the same label.

In general, a ⋆�labelled edge matches an occurrence, if
and only if this occurrence cannot be matched by the other
edges originating from the same node. That is, the matching
of a ⋆�labelled edge is ‘sensitive’ to the other edges
originating from the same node. Therefore, a ⋆�labelled
edge e is a Context-Sensitive Wildcard (CSW), where the
context is the set of labels of the other edges whose source
node is the same as the source node of e.

During the matching of a given sequence of action
occurrences, if the first occurrence of blockCard is reached,
then this occurrence is matched by the edge labelled with
blockCard (see Fig. 3). If there are no additional occur-
rences in the sequence, then the sequence terminates at q1.
If the sequence terminates at q1, then the sequence is
matched by the pattern, because q1 contains final in its
stereotype.

In general, a given sequence is matched by a pattern,
if and only if the sequence terminates at a node that has
final in its stereotype. We call such a node final node. There
can be zero or more final nodes in a pattern.

If a given sequence has additional occurrences after the
first occurrence of blockCard, these additional occurrences
cannot be matched, because there is no edge originating
from q1 (see Fig. 3). Consequently, such a sequence is not
matched by the pattern shown in Fig. 3.

Based on the explanation so far in this section, one can
conclude that the pattern shown in Fig. 3 matches a given
sequence, if and only if either the sequence does not have
any occurrence of blockCard, or the first occurrence of
blockCard is the final element of the sequence. Hence, the
Vibes diagram shown in Fig. 3 is a formal specification of
R2′, which is defined in Section 2.

Vibes brings us to the goal stated in Section 2.3, due the
following reasons:
�
 Vibes diagrams ‘work with’ finite sequences of actions.
Therefore, Vibes is naturally suited for specifying beha-
vioral properties of algorithms. In this respect, Vibes is
similar to regular language recognizers.
�
 While drawing a Vibes diagram to specify a require-
ment, one can use CSWs to abstract from the action
names that do not appear in the requirement but in the
underlying system. Consequently, one does not need to
maintain a Vibes diagram during the evolution of
the underlying system, as long as the requirement does
not change. Therefore, Vibes diagrams are highly
evolvable. In this respect, Vibes is similar to temporal
logic languages.
�
 Vibes is a visual language that is similar to state-
transition diagrams, which are widely used by practi-
tioners. This fact and the empirical evidence presented
in Section 8 suggest that Vibes is an easy-to-use
language. In Section 8.3, we provide a detailed evalua-
tion of Vibes, from a usability perspective.

Having intuitively explained Vibes in this section, we
now precisely define the notation, syntax, and formal
semantics of Vibes, in the upcoming sections.

4. The notation and syntax of Vibes

In Fig. 4, the notational elements of Vibes are depicted.
The rectangles are nodes, and the arrows are edges. To

explain these elements, we use the terms “alphabet” and
“string”, which are defined in [18] as follows: a finite and
non-empty set of symbols is called alphabet. A finite
sequence of symbols from an alphabet is called string.
A Vibes identifier is a string consisting of alphanumeric
symbols.
Nodes
 In Fig. 4, the node with the stereotype initial is
called an initial node. The node with the
stereotype final is called a final node. The node
with the stereotype initial-final is called an
initial-final node, which is both an initial and
a final node. The node without any stereotype
is called a plain node. The anIdentifier labels on
the nodes are placeholders of Vibes identifiers
that are the names of the nodes.
Edges
 The arrow with the label anIdentifier is an
edge where anIdentifier is the placeholder of
an action name. The edge with the label ⋆ is a
context-sensitive wildcard (CSW) .
Reserved
words
initial, initial-final, final, and ⋆ are the reserved
words [21] of Vibes. Each of these reserved
words has a mathematical meaning defined in
Section 5.
Syntax
 A Vibes diagram has (a) either one initial node
or one initial-final node, (b) zero or a finite
number of final nodes, (c) zero or a finite
number of plain nodes, and (d) zero or a finite
number of edges. Each edge has a source node,
target node, and label. No two edges have both
the same source node and the same label.
5. Formal semantics of Vibes

An arguably obvious way to provide formal semantics
for Vibes would be to define an algorithm that takes a
Vibes diagram together with a model of the corresponding
system as inputs, and then constructs a DFA that (a)
denotes the Vibes diagram, and (b) shares the same
alphabet with the model. For example, if we would
provide the Vibes diagram shown in Fig. 3 together with

G. Güleşir et al. / Journal of Visual Languages and Computing 24 (2013) 350–364 355
the model shown in Fig. 1 as the inputs, then the algorithm
would construct the DFA whose state-transition diagram is
shown in Fig. 2.

A DFA that is constructed as explained above would
typically have a larger number of transitions compared to
the number of edges of the corresponding Vibes diagram
because for each action name that appears in the model
but not in the Vibes diagram, the DFA would have jQ j
additional transitions, where Q denotes the set of states of
the DFA. For example, the DFA whose state-transition
graph is shown in Fig. 2 has 33 transitions, whereas the
corresponding Vibes diagram (Fig. 3) has two edges. The
arguably disproportionate difference between these num-
bers is due to the 10 action names that appear in the
model (Fig. 1) but not in the Vibes diagram (Fig. 3).

Having to deal with such a disproportionate number of
transitions would create storage and performance bottle-
necks for the algorithms that would need to exhaustively
visit each transition of a DFA. An example of such an
algorithm is presented in [9].5 This algorithm performs an
intersection emptiness check for multiple Vibes diagrams,
to determine the feasibility of a model that fulfills all of the
requirements represented by the diagrams. To be able to
do the emptiness check, the algorithm constructs a pro-
duct automaton of the input automata that denote the
diagrams. This construction requires the algorithm to visit
each transition of each input automaton at least once.

To avoid the excessive number of transitions and the
consequent storage and performance bottlenecks explained
above, we define the semantics of Vibes using a formalism
that is a variant of DFA. In Section 5.1, we present this
alternative formalism.

5.1. Deterministic Abstract Recognizer (DAR)

In this section, we introduce a formalism called determi-
nistic abstract recognizer (DAR), which we use for defining the
semantics of Vibes, in Section 5.2. A DAR is a variant of a DFA.
The key difference between a DFA and a DAR is as follows: a
DFA with an alphabet Σ either accepts or rejects a finite
sequence of symbols, provided that the sequence is an
element of Σn; whereas a DAR either accepts or rejects any
finite sequence of symbols. To precisely explain this differ-
ence, we first need to formally define DAR:

A DAR M is a quintuple 〈Q ;Σa; δ; q0; F〉, where
�
 Q ¼Ω [fqtg is a finite set of states, where Ω is the set of
user-defined states, qt is the default trap state, and qt =2Ω.
�
 Σa ¼ Σb [f#g is the abstract input alphabet, where Σb is
a finite set of symbols such that #=2Σb. Σb is called the
base input alphabet. # is a reserved symbol that will be
explained in this section.
�
 δ : Q � Σa-Q is a total function called transition func-
tion. 8aAΣaðδðqt ; aÞ ¼ qtÞ.
�
 q0AΩ is the initial state.
�
 FDΩ is a set of final states.
5 In [9,10] Vibes is referred to as “VisuaL”, and ⋆ is referred to as “$”.
To explain howM accepts or rejects a given sequence of
symbols, we use the following terms: the set of all possible
symbols is called the universal set of symbols, and this set is
denoted by ϒ . A finite sequence of symbols from ϒ is called
strand.6 ϵ denotes the empty strand (i.e., the strand that
contains no symbol). If w and x are strands, then wx
denotes the strand obtained by concatenating w and x.
ϒn denotes the set of strands obtained by concatenating
zero or more symbols from ϒ . Note that any alphabet (see
Section 4) is a proper subset of ϒ , and ϒn is the set of all
possible finite sequence of symbols.

Let qAQ , aAϒ , and wAϒn. The function δn : Q � ϒn-Q
is called extended transition function, which is recursively
defined as follows: δnðq; ϵÞ ¼ q, and

δnðq;waÞ ¼
δðδnðq;wÞ; aÞ if aAΣb

δðδnðq;wÞ;#Þ if a=2Σb

(

M accepts w if and only if δnðq0;wÞAF. M rejects w if and
only if δnðq0;wÞ=2F. The asymptotic time complexity of the
extended transition function is OðjwjÞ, where jwj denotes
the number of symbols in w. Note that the definition of the
extended transition function provides the semantics of the
symbol. We call the # symbol wildcard, because it
matches any symbol in ϒ\Σb.

LðMÞ ¼ fwAϒnjδnðq0;wÞAFg is the language of M. A set L
of strands is an Open Regular Language (ORL), if and only if
there is a DAR M such that LðMÞ ¼ L.

If L is an ORL, then the strands in L consist of symbols
from ϒ ; i.e. not from an alphabet, which is a non-empty
and finite set of symbols. Since ϒ is an ‘open-ended’ set, we
chose the name “open regular language”. In Section 7, we
show that the set of regular languages is a proper subset of
the set of ORLs, and the set of ORLs is not a subset of the
set of context-free languages [18].

“Strand” and “string” are different but related terms:
First of all, both a string and a strand are finite sequences
of symbols. A string consists of symbols from an alphabet.
Since any alphabet is a subset of ϒ , a string is a strand.
Since a strand w consists of finite number of symbols, the
set Σ of symbols in w is also finite. Therefore, Σ is an
alphabet, and w can be interpreted as a string that consists
of symbols from Σ. The empty string can be interpreted as
the empty strand, and vice versa.

We conclude this section by revisiting the key difference
between a DFA and a DAR: a DFA with an alphabet Σ either
accepts or rejects a finite sequence of symbols, provided that
the sequence is an element of Σn; whereas a DAR either
accepts or rejects a finite sequence of symbols, provided that
the sequence is an element of ϒn. Since ϒn is the set of all
possible finite sequences of symbols, a DAR either accepts or
rejects any finite sequence of symbols.

5.2. Translating Vibes diagrams to DARs

In this section, we provide the semantics of Vibes, by
presenting a function that takes a Vibes diagram as the
6 Note that “strand” and “string” (see Section 4) are different terms.
Despite being different terms, “strand” and “string” are still related. We
will explain the relation in this section.

q1 qtq0

Fig. 5. The states of Me, after step 2.

q1
blockCard qt

#

q0

Fig. 6. The states and some of the transitions of Me, after step 4.

G. Güleşir et al. / Journal of Visual Languages and Computing 24 (2013) 350–364356
input, and outputs the DAR corresponding to the Vibes
diagram.

We formally define the semantics of Vibes by a total
function getDARof : V-D, where V is the set of Vibes
diagrams, and D is the set of DARs. Let S be a Vibes
diagram, and M be a DAR, such that getDARof ðSÞ ¼M. In
the remainder of this section, we step-by-step explain how
getDARof constructs M, based on S. The explanation of each
step is structured as follows: first, we formally explain the
step in general terms using S and M; next we provide an
example execution of the step using an example Vibes
diagram Se and the corresponding DAR Me.

5.2.1. Step 1: the initialization of M
At this step, getDARof initializes M¼ 〈Q ;Σa; δ; q0; F〉,

such that
�

from
Q ¼Ω [fqtg and Ω¼ fq0g,
�
 Σa ¼ Σb [f#g and Σb ¼∅,

�
 δ is not defined yet, and

�
 F ¼∅.
Now, let us see an example. Let Se denote the Vibes
diagram shown in Fig. 3.7 If Se is given to getDARof as the
input, then getDARof initializes a DAR Me ¼ 〈Qe;Σe

a;

δe; q0; F
e〉, such that
�
 Qe ¼Ωe [fqtg and Ωe ¼ fq0g,
�
 Σe
a ¼ Σe

b [f#g and Σe
b ¼∅,
�
 δe is not defined yet, and

�
 Fe ¼∅.
5.2.2. Step 2: adding the user-defined states
At this step, getDARof adds new states to Ω and F,

as follows: Let n0;n1;…;nm be the nodes of S, such that n0
is either the initial or the initial-final node. Given
n0;n1;…;nm, getDARof performs the following steps:
1.
 Define new states q1; q2;…; qm, and add them to Ω.

2.
8 Note that we intentionally format the nodes of the Vibes diagram Se
For each ni where 0r irm, map ni to qi. We denote this
mapping with the total function getStateOf : N-Ω,
where N is the set of nodes of S.
7 We use the superscript e for distinguishing the example diagram
the general diagram S, which is introduced earlier in Section 5.2.
3.
as t
form
dist
this
If n0 is the initial-final node, then add q0 to F.

4.
 For each final node nf of S, add getStateOf ðnf Þ to F.

Now, let us revisit the example. The nodes of Se (see
Fig. 3) are q0 and q1, where q0 is the initial-final node.8

Accordingly, getDARof
1.
 Defines a new state q1, and adds it to Ωe.

2.
 Maps q0 to q0, and q1 to q1.

3.
 Adds q0 to Fe.

4.
 Adds q1 to Fe.
Consequently, Ωe becomes fq0; q1g, Fe becomes fq0; q1g, and
Qe becomes fq0; q1; qtg. In Fig. 5, the states of Me are
depicted.

The initial state is depicted as the circle that is the
target of the only arrow without any source, each non-final
state is depicted as a single circle, and each final state is
depicted as a double circle.

5.2.3. Step 3: adding the symbols
At this step, getDARof adds new symbols to Σb, as

follows: Let LBL be the set of the labels of the edges of S.
For each lblA ðLBL\f⋆gÞ, getDARof defines a new symbol a,
maps lbl to a, and adds a to Σb. The mapping between the
labels and the symbols is denoted by the total function
getSymbolOf : ðLBL\f⋆gÞ-Σb.

Now, let us revisit the example. The set of the labels of
the edges of Se (see Fig. 3) is fblockCard;⋆g. Accordingly,
getDARof defines a new symbol, say, blockCard. Subse-
quently, getDARof maps blockCard to blockCard. Finally,
getDARof adds blockCard to Σe

b. Thus, Σe
b becomes

fblockCardg, and Σe
a becomes fblockCard;#g.

5.2.4. Step 4: partially defining the transition function
At this step, getDARof partially defines δ, as follows: for

each edge e (of S) with the source node sn, target node tn,
and label lbl, getDARof does the following: If lbl¼⋆, then
getDARof defines that δðgetStateOf ðsnÞ;#Þ ¼ getStateOf ðtnÞ.
If lbla⋆, then getDARof defines that δðgetStateOf ðsnÞ;
getSymbolOf ðlblÞÞ ¼ getStateOf ðtnÞ.

Now, let us revisit the example. In Se (see Fig. 3), there
is a ⋆�labelled edge from q0 to q0; thus, getDARof defines
that δeðq0;#Þ ¼ q0. There is a blockCard-labelled
edge from q0 to q1; thus getDARof defines that δeðq0;
blockCardÞ ¼ q1. These transitions are depicted as labelled
arrows in Fig. 6.

5.2.5. Step 5: defining the remaining transitions with #
At this step, getDARof defines the remaining transitions

performed by M with the symbol #, as follows: for each
state qAQ , if δðq;#Þ is not defined yet, then getDARof
defines that δðq;#Þ ¼ qt .

Now let us revisit the example. The transitions δeðq1; #Þ
and δeðqt ;#Þ are not defined yet (see Fig. 6). Therefore,
hey appear in Fig. 3 (e.g., q0), which is a formatting different from the
atting of the states of the DAR Me (e.g., q0). In this way, we

inguish between a node of Se and the corresponding state of Me in
paper.

q1
blockCard qt

#

q0

#

Fig. 7. The states and some of the transitions of Me, after step 5.

q1
blockCard qt

#

q0

#, blockCar

#, blockCard

Fig. 8. The transition graph of Me, after step 6.

G. Güleşir et al. / Journal of Visual Languages and Computing 24 (2013) 350–364 357
getDARof defines that δeðq1;#Þ ¼ qt and δeðqt ;#Þ ¼ qt , as
shown in Fig. 7.

5.2.6. Step 6: defining the remaining transitions
At this step, getDARof defines the remaining transitions

of M, as follows: for each state qAQ , and for each symbol
aAΣb, if δðq; aÞ is not defined yet, then getDARof defines
that δðq; aÞ ¼ δðq;#Þ.

Now, let us revisit the example. The transitions δeðq1;
blockCardÞ and δeðqt ; blockCardÞ are not defined yet (see
Fig. 7). Therefore, getDARof defines that δeðq1; blockCardÞ ¼
δeðq1;#Þ ¼ qt and δeðqt ; blockCardÞ ¼ δeðqt ;#Þ ¼ qt , as visible
in Fig. 8, which is the transition graph9 of Me.

Upon the completion of this step, the construction of M
and Me are also completed. This six-step construction
(i.e. getDARof : V-D) defines the semantics of Vibes. The
asymptotic time complexity of getDARof is OðjQ j � jΣbjÞ,
which is determined by the sixth step.

5.3. The benefit of using DARs instead of DFA

Note that the function getDARof does not depend on a
model of the underlying system, while translating a Vibes
diagram to a DAR. Therefore, the resulting DAR does not
contain any additional transitions due to the action names
that appear in the model of the underlying system, but not
in the Vibes diagram. Consequently, the algorithms that
need to exhaustively visit each transition do not suffer
from the storage and performance bottlenecks mentioned
at the beginning of Section 5. This is the benefit of using
DARs instead of DFA to provide the formal semantics
of Vibes.

For example, the DFA whose state-transition diagram is
shown in Fig. 2, and the DAR whose transition graph is
shown in Fig. 8 can be seen as alternative formal repre-
sentations of the Vibes diagram shown in Fig. 3. However,
the DAR has six transitions as visible in Fig. 8, whereas the
DFA has 33 transitions as visible in Fig. 2.
9 The transition graph of a DAR is a graph where nodes represent the
states, and edges represent the transitions of the DAR.
6. The expressive power of Vibes

In Section 5, we have seen that each Vibes diagram
represents a DAR; hence expresses an ORL, which is
defined in Section 5.1. This entails that the set of ORLs is
the ‘upper bound’ on the expressive power of Vibes. In this
section, our goal is to find the ‘lower bound’, so that we
can determine the exact expressive power of Vibes.
In particular, we intend to answer the following question
in this section: for any ORL L, is there a Vibes diagram that
can express L? To answer this question, we state the
following theorem:

Theorem 1. For any DAR M, there is a Vibes diagram S such
that LðgetDARof ðSÞÞ ¼ LðMÞ.

Proof. For any DAR M¼ 〈Q ¼Ω [fqtg;Σa ¼ Σb [f#g;
δ; q0; F〉, it is possible to construct a Vibes diagram S such
that LðgetDARof ðSÞÞ ¼ LðMÞ. This construction is denoted by
the total function getVibesOf : D-V , where D is the set of
DARs, and V is the set of Vibes diagrams. If M is given to
getVibesOf as the input, then getVibesOf performs the
following steps to construct S:

6.1. Step 1: creating the nodes

At this step, getVibesOf creates the nodes of S, as
follows: for each state qAQ , getVibesOf creates a distinct
node n, such that
�
 q is mapped to n.

�
 If q¼ q0 and qAF, then n is the initial-final node.

�
 If q¼ q0 and q=2F , then n is the initial node.

�
 If qaq0 and qAF , then n is a final node.

�
 If qaq0 and q=2F, then n is a plain node.
We denote the mapping from the states of M to the nodes
of S using the total function getNodeOf : Q-N, where N is
the set of nodes of S.

Now, let us see an example of this step. In Section 5.2,
we constructed the DAR Me, whose transition graph is
shown in Fig. 8. As visible in this figure, the states ofMe are
q0, q1, and qt. q0 is the initial and a final state, and q1 is a
final state. Accordingly, getVibesOf creates the nodes, say,
q0, q1, and qt of Se, such that
�
 getNodeOf ðq0Þ ¼ q0, where q0 is the initial-final node.

�
 getNodeOf ðq1Þ ¼ q1, where q1 is a final node.

�
 getNodeOf ðqtÞ ¼ qt, where qt is a plain node.

Fig. 9 shows the Vibes diagram Se, upon the creation of
its nodes.

6.2. Step 2: creating the edges

At this step, for each transition δðqi; ajÞ ¼ qk of M,
getVibesOf creates an edge e of S, such that the source of
e is getNodeOf ðqiÞ, and the target of e is getNodeOf ðqkÞ. If
aj ¼ , then the label of e is ⋆, else the label of e is the
symbol denoted by aj.

<<initial-final>>
q0

<<final>>
q1 qt

Fig. 9. The Vibes diagram Se, after step 1.
blockCard

*

*

blockCard<<initial-final>>
q0

*

<<final>>
q1 qt

blockCard

Fig. 10. The Vibes diagram Se, after step 2.

q1
blockCard qt

#

q0

#, blockCard

#, blockCard

qt
new #, blockCard

Fig. 11. The transition graph of getDARof ðSeÞ, after step 2.

g

#, g

#, g
q1 qtq0

Fig. 12. The transition graph of a DAR.

G. Güleşir et al. / Journal of Visual Languages and Computing 24 (2013) 350–364358
Now, let us revisit the example. Fig. 10 shows the Vibes
diagram Se, upon the creation of the edges according to the
transitions of Me (see Fig. 8).

Upon the completion of this step, the construction of S
and Se are also completed. LðgetDARof ðSÞÞ ¼ LðMÞ, because
the only difference between getDARof(S) and M is as
follows: getDARof(S) has one extra state, say, qnewt , which
is the unreachable default trap state of getDARof(S). Since
this is the only difference between getDARof(S) and M, we
can conclude that LðgetDARof ðSÞÞ ¼ LðMÞ.

Now, let us revisit the example. Fig. 11 shows the
transition graph of getDARof ðSeÞ, where Se is shown in
Fig. 10.

By comparing Figs. 8 and 11, one can notice that
LðgetDARof ðSeÞÞ ¼ LðMeÞ. □

Based on Theorem 1 and the semantics of Vibes
(Section 5.2), we can conclude as follows: Using Vibes,
one can express any ORL and nothing else. Hence, the
Vibes language and the DAR formalism have the same
expressive power.

In [9], interested readers can find additional theoretical
results, such as the closure properties of ORLs, and an
algorithm that minimizes the number of nodes and edges
of a Vibes diagram without altering the ORL expressed by
the diagram. For example, if the Vibes diagram shown in
Fig. 10 is given as the input to this algorithm, then the
algorithm outputs the Vibes diagram as shown in Fig. 3.

7. Open regular languages vs. other language families

In Section 5.1, we have already defined the Open
Regular Languages (ORLs). In this section, we compare
ORLs with the Regular Languages (RLs) [18] and Context-
Free Languages (CFLs) [18].

7.1. Open regular languages versus regular languages

In this section, we compare ORLs with RLs. In particular,
we answer the following two questions: Is any RL also an
ORL? Is any ORL also an RL? To answer the first question,
we use the following theorem:

Theorem 2. For any given RL L, there is a DAR Mdar, such
that LðMdarÞ ¼ L.

Proof. Let L be an arbitrary RL. By the definition of RL [18],
there is a DFA Mdfa ¼ 〈Qdfa ;Σdfa ; δdfa ; qdfa0 ; Fdfa〉, such that L
ðM dfaÞ ¼ L. Based on Mdfa, we can step-by-step construct a
DAR Mdar ¼ 〈Qdar¼ Qdfa [fqdart g;Σa ¼ Σdfa [f# darg; δdar ;
qdfa0 ; Fdfa ;Ξ; η〉, such that Lð MdarÞ ¼ LðMdfaÞ ¼ L. The steps of
this construction are as follows:
1.
 For each state qAQdfa and for each symbol aAΣdfa,
define δdarðq; aÞ ¼ δ dfaðq; aÞ.
2.
 For each symbol aAΣdfa, define δdarðqdart ; aÞ ¼ qdart .
3.
 For each qAQdar , define δdarðq;#darÞ ¼ qdart .

4.
 Define Ξ and η arbitrarily. □

Based on Theorem 2 and the definition of ORL (Section
5.1), we conclude that any RL is also an ORL. Consequently,
the answer to the first question stated at the beginning of
this section is “yes”. This also entails that DFAs are not
more expressive than DARs. To answer the second ques-
tion, we use the following theorem:

Theorem 3. For any given ORL L, it is not guaranteed that
there is a DFA Mdfa, such that LðMdfaÞ ¼ L.

Proof. For any given ORL L, assume that there is a DFA
Mdfa, such that LðMdfaÞ ¼ L (i.e. assume that Theorem 3 is
false). Let Mdar denote a DAR whose transition graph is
shown in Fig. 12. Observe that LðMdarÞ ¼ ðϒ \fggÞn , which
is the set of all possible strands that do not contain the
symbol g. By the definition of ORL (Section 5.1), ðϒ \fggÞn is
an ORL. Based on the assumption above, there is a DFAMdfa

such that LðMdfaÞ ¼ ðϒ \fggÞn . Hence, the input alphabet of
Mdfa is ϒ \f gg. Since the set ϒ \ fgg is infinite, this set is not
an alphabet [18]. Note that the previous two sentences
contradict with each other. □

Based on Theorem 3 and the definition of RL (Section
5.1), we can conclude that a given ORL is not necessarily
an RL. Consequently, the answer to the second question
stated at the beginning of this section is “no”. This also

G. Güleşir et al. / Journal of Visual Languages and Computing 24 (2013) 350–364 359
entails that DARs have different expressive power than
DFAs.

Since (a) any RL is also an ORL, and (b) a given ORL is
not necessarily an RL, we conclude that the set RLs of
regular languages is a proper subset of the set ORLs of open
regular languages. Since (a) DFAs are not more expressive
than DARs, and (b) DARs have different expressive power
than DFAs, we conclude that DARs are more expressive
than DFAs.
7.2. Open regular languages versus context-free languages

A given set L of strings is a Context-Free Language (CFL),
if and only if there is a Non-deterministic Pushdown
Automaton (NPDA) that exclusively accepts the strings in
L [18]. The set of RLs is a proper subset of the set of CFLs
[18]. Since the set of RLs is a proper subset of both the set
of CFLs and the set of ORLs, the relation between ORLs and
CFLs is an interesting topic to investigate. In this section,
we study this relation. In particular, we answer the
following two questions: Is any ORL also a CFL? Is any
CFL also an ORL?.

In the Venn diagram depicted in Fig. 13, CFLs denotes
the set of context-free languages, and each number
denotes the distinct set represented by the closed region
where the number is placed.

By discovering whether each of these four sets is empty
or not, we can understand the relation between CFLs
and ORLs.

Set 3 contains RLs, so it is non-empty. Since an RL is
both a CFL and an ORL, CFLs \ ORLsa∅.

Let anbn denote the set of strings, where a string
consists of n number of a's followed by n number of b's,
such that nZ0. For example, aaabbb is in anbn, but abb not.
anbn is known to be a CFL that is not an RL [18]. Now, the
question is, whether anbn is in Set 2 or 4 (see Fig. 13).

anbn is not an RL, due to the following facts: any DFA
has a finite memory (i.e. a finite set of states), thus for a
sufficiently large value of n, a DFA cannot ‘remember’ how
many a's it encountered. Therefore, the DFA cannot ‘know’

how many b's the string should have. This means that it is
impossible to construct a DFA that exclusively accepts the
strings in anbn. Since a set of strings is an RL if an only if
there is a DFA that exclusively accepts these strings, anbn is
not an RL.

Similar to a DFA, a DAR also has a finite memory (i.e. a
finite set of states). Hence, it is not possible to construct a
ORLs CFLs

RLs

1 2 3 4

Fig. 13. Each number in this Venn diagram denotes a distinct set
represented by the region where the number is placed.
DAR that exclusively accepts the strings in anbn. As a result,
anbn is in Set 4 (Fig. 13), so Set 4 is non-empty.

In Section 7.1, we have shown that ðϒ \fggÞn is an ORL
but not an RL. ðϒ \fggÞn is not an RL, because the sequences
in an RL (i.e. the sequences accepted by a DFA) consist of
symbols from a finite set of symbols, whereas the
sequences in ðϒ \fggÞn consist of symbols from ϒ\fgg, which
is infinite. Since, the sequences in a CFL, i.e., the sequences
accepted by a non-deterministic push-down automata
(NPDA) [18], also consist of symbols from a finite set of
symbols, we can conclude that ðϒ \fggÞn is not a CFL, either.
Consequently, ðϒ\fggÞn is an element of Set 1, that is, Set 1
is non-empty.

Let us assume that Set 2 is non-empty. Hence there is at
least one language L that is both an ORL and CFL but not an
RL. Accordingly, there is a DARMdar and a NPDAMnpda such
that LðMdarÞ ¼ LðMnpdaÞ ¼ L, and there is no DFA Mdfa such
that LðMdfaÞ ¼ L. This means Mdar has infinite number of
states and Mnpda has an infinite alphabet, which are
contradictions. Therefore, we can conclude that Set 2
is empty.

Based on the discussion so far in this section, we
conclude the following:
�
 Since Set 1 is non-empty, a given ORL is not necessarily
a CFL. Hence, the answer to the first question stated at
the beginning of this section is “no”.
�
 Since Set 4 is non-empty, a given CFL is not necessarily
an ORL. Hence, the answer to the second question
stated at the beginning of this section is “no”.
�
 Based on (a) the definition of ORL (Section 5.1), (b) the
definition of CFL (see the beginning of this section), and
(c) the fact that Sets 1 and 4 are non-empty, we
conclude that DARs and NPDAs have different expres-
sive power; i.e. NPDAs are not more expressive than
DARs, and vice versa.
�
 Since Set 2 is empty, ORLs \ CFLs¼ RLs.
Using the theoretical results presented in this section
as a starting point, we think that one can construct a
hierarchy of open formal languages (open regular lan-
guages, open context-free languages, open context-
sensitive languages, etc.) analogous to the Chomsky hier-
archy, where the intersection of these two hierarchies is
the set of regular languages.
8. Empirical results

In Section 2.3, we mentioned that a part of the goal of
this research is to define a language that is easy to use. In
this section, we provide empirical results suggesting that
Vibes is indeed an easy-to-use language. In Section 8.1, we
discuss the industrial Vibes diagrams created by a profes-
sional software engineer. In Section 8.2, we present the
results of the controlled experiments that we conducted
using the industrial Vibes diagrams. Based on these
empirical results, we discuss why Vibes can be considered
as an easy-to-use language, in Section 8.3.

<<initial>>
State1

step_and_jump
_checking

DetermineSeg
BusyState1

State3

State2

State6

Step3

DetermineSeg
BusyState2

CCXA_step_and_jump_check

SIENET_port_get_locate_counter

SITOCU_convert_port_to_segment

SIENET_dmy

SIENET_location_get_info

*

SIENET_port_get_object

SIENTG_segment_busy

*

SIENET_dmy

SIENET_dmy

SIENET_dmy

*
SIENET_finished

*

*

*

*

G. Güleşir et al. / Journal of Visual Languages and Computing 24 (2013) 350–364360
8.1. Industrial Vibes diagrams

After we developed the Vibes language, we wanted to
gain an initial understanding of whether a professional
software engineer can efficiently and effectively use Vibes
in an industrial setting. Therefore, we conducted a pre-
liminary case study. In this section, we first explain the
industrial setting in which this case study was conducted,
and then present the results of the case study.

We conducted the case study at ASML (www.asml.com)
which is a supplier of lithography systems for the semi-
conductor industry. In a nutshell, ASML develops wafer
scanners, which are mechatronic systems that print inte-
grated circuit designs onto silicon chips. Software of an ASML
wafer scanner contains approximately 15 million lines of
source code written in the C programming language [16] and
is decomposed into approximately 200 components that are
continuously maintained and extended by more than 600
software engineers on a daily basis.

We conducted the case study within the context of
a mid-sized component that has 55,000 lines of source
code. The domain expert of this component is a profes-
sional software engineer who has 15 years of industrial
experience.

Before the case study, we trained the domain expert for
1 h, so that he can create Vibes diagrams. Subsequently,
the expert created three Vibes diagrams each of which
expresses a behavioral requirement on a distinct function
of the component. The expert selected the requirements
and the functions based on the existing daily work that he
had to carry out at that time.

In total, the expert worked 8 h under daily conditions:
he was interrupted by colleagues, phone calls, lunch and
coffee breaks, etc. Using two video cameras, we captured
the expert, his screen, and his desk while he was working.
The resulting footage enabled us to accurately calculate the
net amount of time he spent for creating the diagrams,
which was 155 min.

The first diagram created by the expert contains 11
nodes and 19 edges. To create this diagram, the expert
spent 80 min in total. In Table 1, the data for each of the
three diagrams are listed.

Using the data presented in Table 1, one can calculate
that the expert spent on the average 160, 83, and 56 s per
node or edge while creating D1, D2, and D3, respectively.
This calculation indicates that the expert quickly gained
speed in creating diagrams. To be able to generalize this
conclusion to other engineers however, we need to repeat
this study with more software developers.

To create the specifications, the expert had to rigorously
analyze the relationship between the implementation, the
Table 1
The size and cyclomatic complexity of the Vibes diagrams, and the time
that the domain expert spent for creating the diagrams.

Diag. # Nodes # Edges Complexity Time (min.)

D1 11 19 10 80
D2 11 23 14 47
D3 10 20 12 28
detailed design, the architecture, and the requirements of the
software component. This rigorous analysis enabled him to
find one defect, which had to be repaired in the next release,
four design anomalies that required restructuring and main-
tenance, and one undocumented feature. Two weeks earlier,
the component in which the expert found these problems
had been maintained by himself, and reviewed by two of his
colleagues.
State4

<<final>>
State5

*

*

Fig. 14. The industrial Vibes diagram D3.

www.asml.com

G. Güleşir et al. / Journal of Visual Languages and Computing 24 (2013) 350–364 361
To provide an understanding of how an industrial Vibes
diagram looks like, we present D3 in Fig. 14.10

This Vibes diagram represents a requirement on a
function whose state model has 27 distinct action names.
The diagram however contains eight action names, which
are shown as edge labels in Fig. 14.

8.2. Experimental results

In [10], we report on two controlled experiments that
we conducted with 44 participants (21 M.Sc. computer
science students and 23 professional software engineers).
In these experiments, the participants were asked to use
the industrial Vibes diagrams, which we discussed in
Section 8.1, to repair realistic defects that we injected into
the corresponding functions from ASML's software. The
goal of this experiment was to evaluate our tools, which
can automatically find and report such defects. Accord-
ingly, we formulated the following hypotheses:
�

agr
H1
0: The tools do not have any effect on the amount of

time spent by the participants.

�
 H2

0: The tools do not have any effect on the number of
defects that the participants leave not-repaired.

Based on the results of the statistical tests we per-
formed, we successfully rejected both H1

0 and H2
0, in both

the student and developer experiments.
In the student experiment, the tools reduced the time

spent by an average student by 50%. In addition, the tools
prevented approximately one defect per 100 lines of
source code in this experiment.

In the developer experiment, the tools reduced the
time spent by an average developer by 75%. In addition,
the tools prevented approximately one defect per 140 lines
of source code in this experiment.

8.3. An evaluation of Vibes from a usability perspective

According to an ISO standard [2], the usability of a
software product can be investigated in terms of three
sub-characteristics:
Understandability
10 The identifiers
eement with ASML
Attributes of software that bear in the
users' effort for recognizing the logical
concept and its applicability [2].
Learnability
 Attributes of software that bear on the
users' effort for learning its application
[2].
Operability
 Attributes of software that bear on the
users' effort for operation and operation
control [2].
In this section, we evaluate the usability of Vibes by
discussing its understandability, learnability, and operabil-
ity, based on the empirical results presented in Sections 8.1
and 8.2.
in Fig. 14 are obfuscated, due to our non-disclosure
.

8.3.1. Understandability of Vibes
Vibes has been developed as a part of a solution to an

industrial problem presented in [10]. This problem was
reported to us and experienced by some of the profes-
sional software engineers at ASML. The logical concept
and application of Vibes was easy to recognize for the
engineers at ASML, as confirmed by the empirical results
presented in Sections 8.1 and 8.2. Thus, we can conclude
that Vibes is an easy-to-understand language for the soft-
ware engineers at ASML. Nonetheless, additional research
is needed to find out whether this conclusion can be
generalized to other people.
8.3.2. Learnability of Vibes
The professional software engineer mentioned in

Section 8.1 could create Vibes diagrams after a 1 h training.
In addition, the 44 participants of the experiments men-
tioned in Section 8.2 were able to work with the Vibes
diagrams, upon a 15-min training. Accordingly, we can
conclude that Vibes is an easy-to-learn language for the
professional software engineers and M.Sc. computer
science students whose profiles are explained in [10]. To
find out whether Vibes is easy to learn for a different
group of people requires additional research.
8.3.3. Operability of Vibes
The results of the controlled experiments mentioned in

Section 8.2 indicate that tool-support plays a key role in
the operability of Vibes diagrams. If there is tool support
that can automatically verify various artifacts such as
design models or source code, then Vibes can be consid-
ered as an operable language for professional software
engineers and M.Sc. computer science students whose
profiles are explained in [10].

Based on the discussion so far in Section 8.3, we can
conclude that Vibes is an easy-to-use language, at least for
the specific group of people and within the specific context
explained throughout Section 8.
9. Related work

9.1. Temporal logic versus Vibes

Temporal logic languages such as LTL [6], CTL [6], CTL*
[6], FLTL [7,17] are textual languages that are intended for
expressing the temporal or logical properties of non-
terminating systems; whereas Vibes is a visual language
that is intended for expressing temporal or logical proper-
ties of terminating systems. Given a dedicated termination
construct built into a temporal-logic-based model checker
tool, one can still use temporal logic languages to express
all possible properties that can be expressed by Vibes.
However, Vibes would arguably be easier to use while
specifying such properties.

The semantics of a temporal logic formula is typically
defined with respect to a model of the underlying system
[6], whereas the semantics of a Vibes diagram is defined
independent of any underlying system, as explained in
Section 5.2.

G. Güleşir et al. / Journal of Visual Languages and Computing 24 (2013) 350–364362
9.2. Wildcards in automata-based testing and verification

The idea of using wildcard transitions in automata is
not entirely new. For example, the n transitions [7] facilitate
partial order reduction for the properties that are closed
under stuttering. The “n”-transitions [14], and the other-
transitions [5] seem to be similar to context-sensitive wild-
cards. However, the semantics of these transitions are not
formally defined in the respective literature.

The classical book by Sippu and Soisalon-Soininen [22]
also presents wildcard transitions for the definition of
lexical analyzers, and any reasonable formalization of the
notion of pattern would of course provide a similar con-
struct to deal with variables. Building further upon the
familiar notion of wildcard however, this paper reveals not
only theoretical but also practical implications of using
context-sensitive wildcards in visual specifications of soft-
ware behavior, and introduces a promising visual language
that can easily be used by people in order to specify
behavioral requirements of algorithms.

9.3. Closure properties of open regular languages

In [9], we introduced open-regular languages (ORLs) as
a new family of formal languages, and investigated some
of their closure properties. Consequently, we showed the
following:
�
 For any given ORL L, L is also an ORL.

�
 For any two ORLs L1 and L2, L1 [L2 is also an ORL.

�
 For any two ORLs L1 and L2, L1 \ L2 is also an ORL.

�
 For any two ORLs L1 and L2, the set of strands obtained

by concatenating a strand from L1 with a strand from L2
is also an ORL.
�
 For any ORL L, the set of strands obtained by concate-
nating zero or more strands from L is also an ORL.

Based on these closure properties, we defined opera-
tors for composing new Vibes diagrams from existing
ones [9].

9.4. Automata for strings over infinite sets of symbols

In Section 5.1, we have explained the key difference of
DARs from DFAs: DARs can accept or reject finite
sequences of symbols from the universal set of symbols,
which is an infinite set. Kaminski and Francez [15], Glober-
man and Harel [8], Milo et al. [19], and Neven et al. [20]
have also studied the recognition of finite sequences of
symbols from an infinite set of symbols, as we discuss in
the remainder of this section.

9.4.1. Register automata
Kaminski and Francez [15] introduced register auto-

mata: a register automaton is a finite-state machine
equipped with a finite number of registers. Each register
can store a symbol. While processing the input tape, a
register automaton compares the current symbol of
the tape with the symbols in the registers. Based on the
current state and the result of the comparison, the
automaton decides (a) the next state, (b) whether to store
the current symbol (of the tape) in a register (by over-
writing the existing symbol in the register), and (c)
whether to move to the left or the right position on the
tape, or to stay at the current position of the tape. The
symbols on the input tape of a register automaton can
come from an infinite set of symbols.

A DAR has a built-in wildcard symbol (i.e., the #
symbol), which matches an infinite number of symbols.
Whereas a register automaton has finite number of regis-
ters each of which contains exactly one ‘regular’ (i.e., non-
wildcard) symbol. Therefore, the symbol in a register of a
register automaton cannot match infinite number of sym-
bols. As a result, a register automaton cannot ‘simulate’ the
#�transitions of a DAR.

A register automaton can modify the contents of the
registers, while processing the input tape. Whereas, a DAR
cannot modify the contents of the abstract input alphabet.
These differences between a DAR and a register automaton
suggest that DARs and register automata possibly have
different expressive power.
9.4.2. Pebble automata
According to Milo et al. [19], a pebble automaton is a

finite-state machine equipped with a finite number of
consecutively numbered pebbles. A pebble can be placed
on a position of the input tape, so that the symbol at that
position is marked by the automaton. While processing
the input tape, a pebble automaton can drop down the
pebbles or pick them up. This is regulated according to the
stack convention: the ith pebble can be dropped down
only if the ði�1Þth pebble is already on the tape, and the
ith pebble can be picked up only if the ðiþ1Þth pebble is
already picked up. While processing the input tape, a
pebble automaton compares the current symbol of the
input tape with the symbol marked by the most recently
dropped pebble. Based on the current state and the result
of the comparison, the automaton decides (a) the next
state, (b) whether to drop down or pick up a pebble, and
(c) whether to move to the left or to the right position on
the tape, or to stay at the current position of the tape. The
symbols on the input tape of a pebble automaton can be
from an infinite set of symbols.

A pebble automaton has a finite number of pebbles
each of which can be used for marking exactly one
‘regular’ (i.e. non-wildcard) symbol. Therefore, the sym-
bols marked by the pebbles of a pebble automaton cannot
match infinite number of symbols. As a result, a pebble
automaton cannot ‘simulate’ the #�transitions of a DAR.

By dropping down and picking up the pebbles, a pebble
automaton can modify the set of marked symbols.
Whereas, a DAR cannot modify the contents of the abstract
input alphabet. These differences between a DAR and a
pebble automaton suggest that DARs and pebble automata
possibly have different expressive power.

Neven et al. [20] have investigated the expressive
power of different types of register and pebble automaton,
and compared them with first order logic and monadic
second-order logic. They investigated variations of register
and pebble automaton: one way or two way tape readers;

G. Güleşir et al. / Journal of Visual Languages and Computing 24 (2013) 350–364 363
and deterministic, non-deterministic, or alternating (i.e.
hybrid) versions.

10. Conclusions

The commonly used graphical languages such as sta-
techarts support hierarchies (i.e. nested structures), so that
one can define different levels of abstraction in behavioral
specifications. In this paper, we presented an additional
mechanism for abstraction, which we call Context-Sensi-
tive Wildcard (CSW). We defined CSW as the key feature of
Vibes, which is a simple visual language for expressing the
logical and temporal properties of possible executions of
an algorithm. We presented the syntax, formal semantics,
and expressive power of Vibes, which reveals the theore-
tical and practical implications of using CSWs, in the visual
specifications of software behavior.

A Vibes diagram represents an automaton called Deter-
ministic Abstract Recognizer (DAR), which is a variant of a
Deterministic Finite Accepter (DFA) [18]. The key differ-
ence between DFA and DAR is as follows: a DFA with an
alphabet Σ either accepts or rejects a finite sequence of
symbols, provided that the symbols are from Σ, whereas a
DAR either accepts or rejects any finite sequence of
symbols. The usage of DAR instead of DFA avoids the
storage and performance bottlenecks for the algorithms
that need to visit each transition.

DARs express a new family of formal languages called
Open Regular Languages (ORLs) [9]. Using Vibes, one can
express any ORL and nothing else; thus the Vibes language
and the DAR formalism have the same expressive power.
Based on these findings it is possible to extend the existing
visual languages with CSW, which is an abstraction
mechanism to create highly evolvable specifications of
software behavior.

We conducted an initial pilot study where a profes-
sional software engineer created three real-life Vibes
diagrams. Using these diagrams and the corresponding
source code, we conducted formal experiments with 23
professional software engineers, and 21 M.Sc. computer
science students. Based on our observations from these
empirical studies, we evaluated the usability of Vibes in
terms of its understandability, learnability, and operability.
This evaluation suggests that vibes is an easy-to-use
language.

10.1. Future work

10.1.1. A formal comparison of DARs with register and pebble
automata

In Section 9.4, we discussed the similarities and differ-
ences between DARs and register and pebble automata. In
the future we intend to conduct a rigorous and formal
comparison, so that we can find out the relative expressive
power of Vibes with respect to the expressive power of
register and pebble automata.

10.1.2. Extending the Vibes language for expressing the
logical or temporal properties of non-terminating systems

The current version of Vibes, as it is defined in this
paper, is intended for specifying behavioral requirements
of terminating systems. Considering the current trend
towards always-on connectivity and ubiquitous interaction
however, an interesting direction for future research would
be to extend Vibes for specifying behavioral requirements
of non-terminating systems, which typically interact with
their environment over a prolonged period of time, in a
collaborative context, and across different users. In this
section, we outline what we think is a solid basis for such
an extension to Vibes.

In Section 9.1, we mentioned some of the existing
formalisms for expressing the logical or temporal proper-
ties of non-terminating systems. Yet another formalism for
expressing such properties is Büchi automata [6,3]. There
are three differences between a Büchi automaton and a
DFA:
1.
 A Büchi automaton with an input alphabet Σ either
accepts or rejects any infinite sequence of symbols from
Σ, whereas a DFA with an input alphabet Σ either
accepts or rejects any finite sequence of symbols
from Σ.
2.
 A Büchi automaton can perform transitions non-deter-
ministically, whereas a DFA performs transitions deter-
ministically.
3.
 A Büchi automaton may have multiple initial states,
whereas a DFA has exactly one initial state.

The set of infinite sequences of symbols accepted by a
Büchi automaton is called ω-regular language [6].

Using the contents of Section 5 as a basis, one can
define a new type of automata, say Non-deterministic
Abstract Infinite-sequence Recognizer (NAIR), such that the
differences between a NAIR and a DAR is the same as the
differences between a Büchi automaton and a DFA:
1.
 A NAIR either accepts or rejects any infinite sequence of
symbols, whereas a DAR either accepts or rejects any
finite sequence of symbols.
2.
 A NAIR can perform transitions non-deterministically,
whereas a DAR performs transitions deterministically.
3.
 A NAIR has multiple initial states, whereas a DAR has
exactly one initial state.

Since a NAIR would accept or reject any infinite
sequence of symbols, it could be used for expressing
logical or temporal properties of non-terminating systems.
Accordingly, Vibes could be extended, such that each Vibes
diagram represents a NAIR, and each NAIR can be repre-
sented by a Vibes diagram. Hence, the extended Vibes
would be naturally suited not only for reasoning about
non-determinism, but also for expressing the logical and
temporal properties of non-terminating systems.

10.1.3. Augmenting the existing visual languages with
context-sensitive wildcards

There are several visual languages for expressing the
behavioral designs of software systems: statecharts [12],
activity diagrams [1], sequence diagrams [1], collaboration
diagrams [1], etc. Wieringa [24] surveys such visual lan-
guages. Augmenting these languages with context-sensitive

G. Güleşir et al. / Journal of Visual Languages and Computing 24 (2013) 350–364364
wildcards may be an interesting research direction for the
future. For example, if concurrency were a key issue in
modeling behavior, one could augment activity diagrams
with context-sensitive wildcards in order to benefit from
the advantages of Vibes, and at the same time to have
explicit constructs for representing concurrency and syn-
chronization. Based on a few examples of such diagrams,
one can conduct empirical studies to find out if the
combination of context-sensitive wildcards with concur-
rency and synchronization concepts has any impact on the
usability of augmented activity diagrams.

References

[1] UML, 〈http://www.uml.org/ 〉.
[2] ISO/IEC 9126-1:1991, Software Engineering – Product Quality.
[3] Bowen Alpern, Fred B. Schneider, Verifying temporal properties

without temporal logic, ACM Transactions on Programming Lan-
guages and Systems 11 (1) (1989) 147–167.

[4] ASML, 〈http://www.asml.com 〉.
[5] Hao Chen, David Wagner, Mops: an infrastructure for examining

security properties of software, in: CCS '02: Proceedings of the 9th
ACM Conference on Computer and Communications Security, New
York, NY, USA, 2002, ACM, pp. 235–244.

[6] Edmund M. Clarke, Orna Grumberg, Doron A. Peled, Model Check-
ing, The MIT Press, 1999.

[7] Dimitra Giannakopoulou, Jeff Magee, Fluent model checking for
event-based systems, SIGSOFT Software Engineering Notes 28 (5)
(2003) 257–266.

[8] Noa Globerman, David Harel, Complexity results for two-way and
multi-pebble automata and their logics, Theoretical Computer
Science 169 (2) (1996) 161–184.

[9] Gürcan Güleşir, Evolvable Behavior Specifications Using Context-
Sensitive Wildcards, Ph.D. Thesis, University of Twente, Enschede,
March 2008.

[10] Gürcan Güleşir, Klaas van den Berg, Lodewijk Bergmans,
Mehmet Akşit, Experimental evaluation of a tool for the verification
and transformation of source code in event-driven systems, Empiri-
cal Software Engineering 14 (6) (2009) 720–777.
[11] D. Harel, A. Pnueli, On the development of reactive systems, in:
Logics and Models of Concurrent Systems, Springer-Verlag, New
York, Inc., USA, 1985, pp. 477–498.

[12] David Harel, Statecharts: a visual formalism for complex systems,
Science of Computer Programming 8 (June (3)) (1987) 231–274.

[13] John Hatcliff, Matthew B. Dwyer, Using the bandera tool set to
model-check properties of concurrent java software, in: CONCUR
'01: proceedings of the 12th International Conference on Concur-
rency Theory, Springer-Verlag, London, UK, 2001, pp. 39–58.

[14] Claude Jard, Thierry Jéron, TGV: theory, principles and algorithms: a
tool for the automatic synthesis of conformance test cases for non-
deterministic reactive systems, International Journal on Software
Tools for Technology Transfer 7 (4) (2005) 297–315.

[15] Michael Kaminski, Nissim Francez, Finite-memory automata, Theo-
retical Computer Science 134 (2) (1994) 329–363.

[16] B.W. Kernighan, D.M. Ritchie, The C Programming Language,
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[17] Emmanuel Letier, Jeff Kramer, Jeff Magee, Sebastian Uchitel, Fluent
temporal logic for discrete-time event-based models, in: ESEC/FSE-
13: Proceedings of the 10th European Software Engineering Con-
ference held Jointly with 13th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, ACM Press, New York,
NY, USA, 2005, pp. 70–79.

[18] Peter Linz, An Introduction to Formal Languages and Automata,
Jones and Bartlett Publishers, Inc., USA, 2001.

[19] Tova Milo, Dan Suciu, Victor Vianu, Typechecking for XML transfor-
mers, in: Proceedings of the Nineteenth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, ACM, 2000,
pp. 11–22.

[20] Frank Neven, Thomas Schwentick, Victor Vianu, Finite state
machines for strings over infinite alphabets, ACM Transactions on
Computational Logic 5 (3) (2004) 403–435.

[21] Robert W. Sebesta, Concepts of Programming Languages, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[22] Seppo Sippu, Eljas Soisalon-Soininen, Parsing Theory, vol. 1: Lan-
guages and Parsing, Springer-Verlag, New York, Inc., New York, NY,
USA, 1988.

[23] Remco van Engelen, Jeroen Voeten (Eds.), Ideals: Evolvability of
Software-Intensive High-tech Systems, Embedded Systems Institute,
Eindhoven, The Netherlands, 2007.

[24] Roel Wieringa, A survey of structured and object-oriented software
specification methods and techniques, ACM Computing Surveys 30
(4) (1998) 459–527.

http://www.uml.org/
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0010
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref3
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref3
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref3
http://www.asml.com
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0020
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0020
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0020
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0020
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref6
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref6
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref7
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref7
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref7
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref8
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref8
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref8
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0025
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0025
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0025
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref10
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref10
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref10
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref10
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0030
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0030
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0030
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref12
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref12
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0035
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0035
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0035
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0035
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref14
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref14
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref14
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref14
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref15
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref15
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref16
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref16
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0040
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0040
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0040
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0040
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0040
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0040
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref18
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref18
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0045
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0045
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0045
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0045
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref20
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref20
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref20
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref21
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref21
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0050
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0050
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0050
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0055
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0055
http://refhub.elsevier.com/S1045-926X(13)00048-7/othref0055
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref24
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref24
http://refhub.elsevier.com/S1045-926X(13)00048-7/sbref24

	Vibes: A visual language for specifying behavioral requirements of algorithms
	Introduction
	An example: the authentication algorithm of an ATM
	Temporal logic languages
	Regular language recognizers
	The goal of this research

	Vibes: VIsual BEhavior Specifications
	The notation and syntax of Vibes
	Formal semantics of Vibes
	Deterministic Abstract Recognizer (DAR)
	Translating Vibes diagrams to DARs
	Step 1: the initialization of M
	Step 2: adding the user-defined states
	Step 3: adding the symbols
	Step 4: partially defining the transition function
	Step 5: defining the remaining transitions with &machash;
	Step 6: defining the remaining transitions

	The benefit of using DARs instead of DFA

	The expressive power of Vibes
	Step 1: creating the nodes
	Step 2: creating the edges

	Open regular languages vs. other language families
	Open regular languages versus regular languages
	Open regular languages versus context-free languages

	Empirical results
	Industrial Vibes diagrams
	Experimental results
	An evaluation of Vibes from a usability perspective
	Understandability of Vibes
	Learnability of Vibes
	Operability of Vibes

	Related work
	Temporal logic versus Vibes
	Wildcards in automata-based testing and verification
	Closure properties of open regular languages
	Automata for strings over infinite sets of symbols
	Register automata
	Pebble automata

	Conclusions
	Future work
	A formal comparison of DARs with register and pebble automata
	Extending the Vibes language for expressing the logical or temporal properties of non-terminating systems
	Augmenting the existing visual languages with context-sensitive wildcards

	References

