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Abstract—This paper describes an automated tabu search 
based method for drawing general simple graph layouts with 
straight lines. To our knowledge, this is the first time tabu 
methods have been applied to graph drawing. We formulated the 
task as a multi-criteria optimization problem with a number of 
metrics which are used in a weighted fitness function to measure 
the aesthetic quality of the graph layout. The main goal of this 
work is speeding up the graph layout process without sacrificing 
the layout quality. To achieve this we used a tabu search based 
method that goes through a predefined number of iterations to 
minimize the value of the fitness function. Tabu search always 
chooses the best solution in the neighborhood. This may lead to 
cycling, so a tabu list is used to store moves that are not 
permitted so that the algorithm does not choose previous 
solutions for a set period of time. We give experimental results 
applied on random graphs and we provide statistical evidence 
that our method outperforms one of the fast search-based 
drawing methods (hill climbing) in execution time while it 
produces comparably good graph layouts. We also demonstrate 
the method on real world graph datasets. 

Keywords—Information visualization; graph drawing; graph 
layout; tabu search  

I.  INTRODUCTION 
In this work we address the research area of graph drawing. 

Here, the goal is to lay out a network diagram so that it can be 
analyzed and examined by users. There are several multi-
criteria approaches to graph drawing which are based on 
explicit cost functions that combine several metrics of graph 
layout quality. This approach has the advantage of allowing 
explicit, tunable combinations of metrics to meet user 
preferences. However, such methods work slowly, typically 
taking a considerable time to lay out the graph. The 
contribution of this paper is to improve the performance of 
such systems by introducing tabu search features. To our 
knowledge, this is the first time tabu methods have been 
applied to drawing general simple graph layouts with straight 
lines.  

Search based methods typically measure a number of 
metrics and combine them to form a fitness measure. When a 
new solution is found (perhaps by moving a node) the metrics 
are calculated again and a new fitness measure is found. This 
process happens a large number of times during the search, and 
so the process of finding a good layout is slow. Many drawers 
in the literature used search based methods, such as simulated 
annealing [2, 3], genetic algorithms [4, 5, 6, 7] and hill 

climbing [8, 9]. These produce good layouts, but they have 
great potential for improvement. For example, simulated 
annealing adds an element of non-determinism in order to 
escape from local minima in the search space. This slows down 
the performance of the algorithm since this stochastic behavior 
means that a larger number of iterations would be necessary to 
reach a minimum in the search space.  Genetic algorithms, on 
the other hand, typically have an even slower rate of 
convergence compared to simulated annealing and hill 
climbing as it makes a wider search of the problem space. The 
main problem with hill climbing is that it gets trapped in local 
optima.  

Our main goal in this work is concerned with improving the 
drawer’s efficiency by speeding up the drawing process, using 
a search based method known as tabu search, without 
sacrificing the layout quality. We are not looking for the global 
optimum solution, but aim to obtain a good optimal solution 
quickly. Therefore, we compare our approach with hill 
climbing. In addition to its simple implementation, hill 
climbing has proven its efficiency in graph drawing 
applications [8, 9]. The main disadvantage of hill climbing is 
the likelihood of finding a sub-optimal local minimum in the 
search space. However, as the method is completely 
deterministic, comparison against hill climbing is more reliable 
than against the non-deterministic approaches of simulated 
annealing and genetic algorithms.  

Tabu search is a general search based technique proposed 
by Glover [10, 11, 12] for finding good solutions to 
combinatorial optimization problems. It is considered to be a 
neighborhood search method (like simulated annealing) but it 
takes a more aggressive approach. It proceeds on the 
assumption that there is little benefit in choosing an inferior 
solution unless it is necessary, as in the case of escaping from a 
local optimum [13]. In other words, tabu search improves the 
efficiency of exploration process by keeping track of local 
information (like the current value of the objective function) 
along with information related to the exploration process. This 
systematic use of memory is an essential property of this 
searching technique. Tabu search keeps information on the 
itinerary through the last solutions visited. The role of this is to 
restrict the choice of some subsets in the neighborhood by 
forbidding moves to some neighbor solutions that have already 
been visited [14]. This constrains the direction of the search 
process by preventing the algorithm from going back to a 
previously reached state. At each iteration of the exploration 
process, it selects the best solution in the neighborhood. This is 
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unlike hill-climbing as it might make a down-hill move. 
Therefore, this technique does not run out of choices for the 
next move. However, this might lead to cycling by trapping the 
algorithm at locally optimal solutions. This problem can be 
resolved by introducing two structures called tabu lists and 
aspiration functions which are used to keep information about 
past moves in order to respectively constrain and diversify the 
search for good solutions [13].  

Tabu search has shown good results and comparably fast 
solutions for some graph theory applications such as graph 
partitioning [13], graph coloring [15] and straight line crossing 
minimization [16, 17, 18]. It has also been used to solve 
different multiple objective optimization problems. The 
algorithm was used to solve four different applications in 
different areas [19]. In every application, the solutions were at 
least as good as, if not better than, the reported results using 
different search based techniques. Tabu search has been 
applied to the problem of routing school buses [20]. This 
algorithm was shown to be competitive in a set of problem 
instances for which a scatter search method was applied. Other 
researchers [21] proposed a tabu search algorithm as meta-
heuristic method for network reconfiguration of multiple 
objectives problems in a radial distribution system. The work 
concluded that tabu search can quite easily handle the 
complicated constraints that are typically found in real-life 
applications. However, it failed in some circumstances for the 
following two reasons: an insufficient understanding of 
fundamental concepts of the tabu search method; and a lack of 
understanding of the problem in hand. 

Our paper describes an approach for drawing general 
simple graphs with straight lines. This is achieved with a tabu 
search based method which draws general graphs with multiple 
aesthetic criteria that include node-node occlusion, edges 
length, edge crossings, and angular resolution. These criteria 
are used in a weighted fitness function to measure the quality 
of the graph layout.  Whilst there have been empirical studies 
of what may be the most effective criteria for layout [1], we are 
not overly concerned with the particular criteria or their 
weights: our method would work effectively with other criteria 
or weightings.  

The method goes through predefined number of iterations 
to minimize the value of the fitness function and it uses a tabu 
list to store tabu moves in order to prevent the algorithm from 
choosing previously reached moves for particular nodes for a 
period of time. We have tested our method on random graphs 
of different sizes and we describe the experiments and 
statistical analysis that brought us to the conclusion that our 
tabu search based method produces graph layouts as good as, if 
not better than, layouts drawn with a hill climbing method with 
a clear improvement in the time spent to draw the graph. We 
have also recognized improvements in both quality and time 
over hill climbing when the method is applied to real world 
graphs.  

The rest of this paper is organized as follows: Section II 
describes some background in using search based techniques in 
graph layout; Section III describes our approach; Section IV 
describes experimental results on random graphs; Section V 
describes the results of applying our approach to real world 

graph datasets; finally, Section VI gives our conclusions and 
suggests future work.  

II. RELATED WORK IN GRAPH LAYOUT 
Multi-criteria graph layout can be modelled as a multiple 

objective optimization problem. When an algorithm attempts to 
draw a graph layout according to several graph aesthetic 
criteria, some of these criteria might conflict with each other. 
Hence, a fitness function that linearly combines all criteria is 
formulated. The optimizer attempts to minimize this function.  

The problem with using general fitness functions is that it is 
usually computationally expensive to find a minimum fitness 
value. Since the overall fitness function might include both 
continuous and discrete measures, general search based 
approaches, such as simulated annealing, genetic algorithms, 
and hill climbing, have been used in order to find a minimum 
fitness value [35, 36].  

Simulated annealing was the first general search method to 
be applied to the graph layout problem [2]. It was used to draw 
undirected graphs with straight line edges, taking into account 
several drawing aesthetics: distributing nodes evenly, making 
edge lengths uniform, minimizing edge crossings, and placing 
nodes not too close to edges. All these criteria were combined 
into a function that could be subject to a general optimization 
fitness function. This search based approach models the 
physical process of heating a material and then slowly cooling 
the temperature to decrease defects, so minimizing the system 
energy. It is often used for large-scale combinatorial 
optimization problems and implemented in a way that tries to 
escape from local minimum to global minimum by applying 
uphill moves (moves that worsen, rather than improve, the 
temporary solution). This allows the approach to escape from 
some local minimal solutions but with no guarantee that a 
global minimum can be reached eventually. The algorithm 
produces nice graph layouts for small sized graphs. However, it 
does not perform well for larger graphs.  

An adjustment to simulated annealing approach was made 
in the algorithm proposed in [3]. Here, the fitness function is 
minimized using gradient descent. The gradient vector of the 
fitness function represents the direction in which the node 
should move to increase the value of the fitness function. Thus, 
this algorithm will move the node to the opposite direction to 
minimize the value of the fitness function. But this method is 
still slow when being applied on large graphs and it has some 
challenges. For example, the fitness function needs to be 
expressed explicitly in terms of coordinates as its derivative 
must be found. Some criteria, such as minimizing edge 
crossings, are discontinuous and not differentiable. 

Genetic algorithms have also been applied to the graph 
layout problem. A genetic algorithm approach for drawing 
graphs under a number of visual constraints was proposed in 
[4, 5]. The proposed algorithm produces graphs with good 
quality in addition to its flexibility. It can be easily adapted to 
take new layout aesthetics into account. However, the major 
problem in this algorithm is its slow rate of convergence. It 
initially makes rapid progress towards a solution, but then it 
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converges very slowly to a global optimum, or at least to a 
good local one.  

A genetic algorithm with local fine tuning based on the 
spring algorithm for the drawing of undirected graphs with 
straight-line edges has been proposed in [6]. According to 
some preliminary results, the algorithm produces layouts with a 
minimal number of edge crossings on all test graphs. The 
algorithm benefits from the combination of the genetic 
algorithm and the spring algorithm to produce good layouts for 
a large class of graphs with implicit symmetry, similar spring 
lengths, and even distribution of nodes. Although the layouts 
found by this algorithm have good general structures, some 
fine tuning might still be needed. Moreover, the comparatively 
long running time of the algorithm is a key disadvantage. One 
reason for the high time complexity of the algorithm comes 
from the chosen crossover operator to solve the competing 
conventions problem which states that a recombination of two 
good parents may yield a very poor offspring.  

Similar work was introduced in [7]. This proposed a genetic 
algorithm that nicely draws undirected graphs of moderate size. 
But the algorithm still suffers from the lack of proper crossover 
operation which would speed up the computations by 
decreasing the number of needed generations.  

Hill climbing is another search based approach that has 
been used in the field of graph drawing. It is one of the 
simplest search based algorithms used in the field of artificial 
intelligence. It is good for finding local optimum but it is not 
guaranteed to find the global optimum out of all possible 
solutions. It works by iteratively improving a given solution, 
which is often selected in a random way, by applying a 
transformation in the current solution or picking any solution in 
its neighborhood. Then, the new solution is compared to the 
old one. If the new solution is better than the old one, the new 
solution substitutes the old one. This process is repeated until a 
maximum number of repetitions is reached.  

Hill climbing has been used to minimize number of edge 
crossings [8]. The experiments conducted on random graphs of 
different sizes showed that stochastic hill climbing outperforms 
efficient and popular search based techniques such as evolution 
strategies and genetic algorithms.  

A hill climbing approach has been used to implement an 
automatic mechanism for drawing metro maps [9]. Metro map 
drawing is a specialized form of graph drawing. A good metro 
map layout has evenly spaced stations, lines at regular angles 
(typically multiples of 45 degrees) and labels placed in 
unambiguous locations. This work applied multi-criteria 
optimization using a fitness function consisting of five different 
metrics in a weighted sum, along with some rules that 
prevented some bad moves for each station (e.g. a station that 
was north of another station could not be moved south of it). A 
hill climbing algorithm was used to reduce the fitness function 
and find improved map layouts. Since hill climbing does not 
guarantee finding the global minimum, a clustering technique 
was applied to the map. The hill climber moves both stations 
and clusters when finding improved layouts. The mechanism 
produces good map layouts and in some cases better than both 
published and distorted layouts. However, the performance of 
the algorithm is slow.  

Search based methods used to solve graph layout problem 
are generally successful in producing graphs with nice layouts 
but just for small or mid-sized graphs. In addition, the 
execution time of these methods is very slow. 

III. OUR APPROACH 
This section describes the basic concepts of our approach. 

We detail the algorithm of tabu search drawer, the criteria 
measured, and the method for combining criteria to produce a 
fitness value.  

In outline, as described in Algorithm 1, our tabu search 
method operates in the following manner: first, we find a 
random initial graph layout such that no two nodes have the 
same position. We compute the fitness value of the initial 
layout. Then the following steps are performed for a predefined 
number of iterations: for each node, we search the points 
around a square centered on the node at a given distance, as 
shown in Fig. 1. Eight points around the square are checked 
(above, below, left, right, and the four corners). The ratio of the 
current solution’s fitness function value with the previous 
solution’s fitness function value is computed at each point 
around the square. Solutions with fitness function ratios above 
or equal to a predefined threshold value (tabuCutOff), are 
considered as tabu moves and will be stored in a tabu list. We 
then move the node to a non-tabu point where the value of the 
fitness function is a minimum compared to all the points of the 
square even if the new point does not improve the current 
value of the fitness function (this is why tabu search does not 
run out of solutions) and the previous solution becomes a tabu 
solution. After an arbitrary chosen number of iterations, as a 
cooling down process, the square size centered around the 
node is reduced and the tabuCutOff value is decreased to 
intensify the searching process. Finally, the tabu list is updated 
by removing old solutions from the list after a number of 
iterations in which a move should remain in tabu list before it 
can be released (tabuDuration) in order to diversify the 
searching space. Fig. 2 presents two examples of graph layouts 
drawn by our approach. 

    
Fig. 1. Example of the points around the square checked by our algorithm on 

each node 

  

  
Fig. 2. Examples of layouts before (left) & after (right) applying our approach 
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Algorithm 1. Tabu Search Drawer 

Given: 
Connected Graph G(V,E): V is a set of nodes and E=(VxV) is a 
set of edges. 

max_iterations: predefined maximum number of iterations of 
the drawer.  

coolDown_iterations: predefined number of iterations in 
which the process starts cooling down  

tabuDuration: predefined number of iterations in which a 
move should remain in the tabu list.   

tabuCutOff: predefined minimum value that determines 
whether a move is tabu or not.  

Algorithm: 
1: InitializeTabuList()  
2: GLayout = RandomizeLayout(G) 
3: iterations = 0 
4: while (iterations < max_iterations) 
5:  for v ∈ V do   
6:  for squarePos ∈ allNonTabuSquarePositions do 
7:  currentPos = vpos 
8:  fitnessCurrent = Fitness(GLayout) 
9:  Update GLayout s.t. vpoS = squarePos 
10:  fitnessNew = Fitness(GLayout) 
11:  if(fitnessNew / fitnessCurrent > tabuCutOff) 
12:  addToTabu(v,squarePos) 
13:  end if 
14:  end for  
15:  vpos = Min_NonTabuPosition() 
16:  addToTabu(v,currentPos) 
17:  end for 
18:  if(iterations mod coolDown_iterations == 0) 
19:   ReduceSquareSize() 
20:   Decrease(tabuCutOff)  
21:  end if  
22:  if(iterations ≥ tabuDuration) 
23:  RemoveTabuSolutions(iterations-tabuDuration) 
24:  end if  
25:  iterations = iterations + 1 
26: end while 

Our fitness function follows the standard approach for 
search based graph drawing methods. We implemented four 
metrics for measuring the quality of the graph [2, 9]. These 
represented the aesthetics of: distributing nodes evenly, making 
uniform edge lengths, minimizing edge crossings, and 
improving angular resolution. All these metrics contribute in 
the graph quality fitness function which is computed as 
follows: 

fitness = w1*m1 + w2*m2 + w3*m3 + w4*m4                (1) 

where wi and mi are the weight and the measure for criteria i 
respectively. The problem in a multiple objective optimization 
function is that the value of a specific measure may dominate 
the others. Therefore, we applied a normalization process to 
ensure that the value of each measure is between 0 and 1. 

 We cannot determine unified weights that work properly 
for any graph. Therefore, the weights should be assigned by 
decision makers according to their preferences on which 
measure they prefer to dominate. We assigned the value 1 to all 

weights in order to avoid domination of one measure over 
another. 

 We realized that re-computing the fitness function at each 
point is a time consuming process. Therefore, we modified the 
way of computing the value of the function by caching the 
results such that the old value of the function is used to 
compute the new value. We just compute the change made in 
the function when a node is moved. When a node moves to a 
new position, the amount of change in the fitness function 
value, between the previous position of the node and its new 
position, is computed. If the change in the value improves the 
fitness function, we subtract the amount of the change made 
by the previous position of the node, and we add the amount 
of the change made by the new position of the node to get the 
new value of the fitness function. This process increased the 
speed of our method. 

To tune the two parameters tabuDuration and 
tabuCutOff, we performed several experiments. We 
generated 100 random graphs (different to those shown in 
Table I and II).  These were divided into 5 sets such that each 
set had different number of nodes and edges. Hence, each set 
consisted of 20 test cases with the same number of nodes and 
edges. The characteristics of the five sets were exactly the same 
of the first five groups of the graphs in the second category as 
will be described in the next section. We tested the drawer on 
the 100 test cases for six different values of tabuDuration 
{5, 6, 7, 8, 9, and 10} and for six different values of 
tabuCutOff {50, 60, 70, 80, 90, and 100}. In most of the 
cases, the best fitness function values and the shortest 
execution time were generated when the values of the two 
parameters were: tabuDuration = 7 and tabuCutOff = 
80. 

IV. EXPERIMENTAL RESULTS
The programming language used in our implementation is 

Java (version 1.7.0; Java HotSpot™ 64-Bit Server VM 21.0-
b17 on Windows 7). We have tested our approach on different 
random graphs of different sizes. The experiments were 
performed using Lenovo Thinkpad T430, Intel® Core™ i7-
3520M CPU processor with frequency of 2.90 GHz and 8 GB 
RAM.  

We generated random graph datasets in two categories. The 
graphs of the first category have the same number of nodes but 
with different densities (i.e. different number of edges), 
whereas the graphs of the second category have different 
number of nodes with varying values of densities.  

Our random graph generator generated random connected 
graphs. The parameters to it were the number of nodes and the 
density of the graph. It generated random locations for the 
nodes based on the size of the window where the graph will be 
displayed. Then, the generator chose random nodes as end 
points of edges. Self-sourcing edges and multiple edges 
between the same pair of nodes were not allowed. Finally, the 
generator tested the connectivity of the generated graph by 
running a breadth first search algorithm. Only connected 
graphs were accepted. 
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There were 200 random graphs in the first category split 
into 10 groups of 20 test cases each. All the graphs in this 
category had 150 nodes, randomly positioned. However each 
group had a differing number of edges than the other groups so 
that the density varied. However, the graphs in each group had 
same number of edges but with different initial layouts. See 
TABLE I for characteristics of the graphs in the first category.  

The second category also had 200 random graphs, again 
split into 10 groups. Number of nodes in each group was 
increased by 50. The value of the density was chosen for each 
group to avoid too dense graphs. A similar random process 
used to generate graphs in the first category was applied to this 
category. See TABLE II for characteristics of the graphs in the 
second category.  

TABLE I  
Characteristics of the graphs in the 1st category 

Group Nodes Edges Density 
1 150 558 0.05 
2 150 1117 0.1 
3 150 1676 0.15 
4 150 2235 0.2 
5 150 2793 0.25 
6 150 3352 0.3 
7 150 3911 0.35 
8 150 4470 0.4 
9 150 5028 0.45 

10 150 5587 0.5 

TABLE II  
Characteristics of the graphs in the 2nd category 

Group Nodes Edges Density 
1 50 153 0.125 
2 100 544 0.11 
3 150 1173 0.105 
4 200 1890 0.095 
5 250 2645 0.085 
6 300 3363 0.075 
7 350 3969 0.065 
8 400 4788 0.06 
9 450 5556 0.055 

10 500 6237 0.05 

We have applied our tabu search based approach and the 
hill climbing approach to the randomly generated graphs. All 
the weights of the metrics in the fitness function were equal. 
The metrics were normalized and therefore, equalizing the 
weights would equalize the effect of each metric on the value 
of the fitness function. 

We note that the hill climbing approach used the same 
optimized fitness function calculations that the tabu search 
applied – only changes to the fitness function from moved 
nodes were recalculated. 

To make a comprehensive comparison between tabu and 
hill climbing, we divided our experiments into three phases. In 
phase I, we applied both methods on the graphs of the two 

categories. The methods executed on the 20 test cases in each 
group of the two categories, and then the average execution 
time and the average fitness function value were computed for 
each group. The hill climbing approach was executed until it 
found the best solution that can be reached by the approach (i.e. 
a solution that cannot be of further improvement). On the other 
hand, our tabu search based approach ran for 50 iterations. A 
cut-off point had to be chosen because tabu search always 
moves to the point with the best fitness value of all the eight 
points around the square on each node even if the new point 
does not improve the current value of the fitness function and 
hence it would not run out of solutions.  

Fig. 3 and Fig. 4 show bar charts of the results obtained 
from phase I. The charts clearly show the difference between 
the two methods in terms of the quality of the produced layouts 
and the execution time. The figures show that both methods 
give similar values for the fitness function with a slight 
advantage to our method. However, the execution time of our 
approach clearly outperforms the execution time of the hill 
climbing approach.  

In phase II, we investigated the performance of approaches 
rather than the quality of the produced layouts. Therefore, the 
following process was performed to test which method has 
faster execution time when they reach similar values for the 
fitness function: 

1. We ran the hill climbing method on the graphs until no 
improvements could be made on the value of the 
fitness function. 

2. We ran our tabu search method until it reached an 
equal or better fitness function value compared to the 
one found by the hill climbing drawer. 

3. We measured the execution time of the methods.  

Fig. 5 shows bar charts of the results obtained from phase 
II. The columns obviously show that our drawer always 
finishes faster than the hill climbing drawer. These results 
indicate that excluding previously visited solutions from further 
investigation for a specific period of time is clearly an effective 
property in tabu search.  

Finally, in phase III, we investigated the quality of the 
layout produced by the drawers rather than the performance. 
The following process was performed to test which method 
produces graph layouts with smaller values of fitness function 
when both drawers execute for the same period of time: 

1. We ran the tabu search method on the graphs for 50 
iterations. The execution time is computed and saved. 

2. We ran the hill climbing method for the same period of 
time spent by the tabu search method. 

3. We measured the value of the fitness function 
produced by the drawers in each of the above steps. 
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Fig. 3. Bar charts of the fitness function and execution time (in seconds) obtained by both methods when applied on the graphs of 1st category (Phase I)

  
Fig. 4. Bar charts of the fitness function and execution time (in seconds) obtained by both methods when applied on the graphs of 2nd category (Phase I)

  
Fig. 5. Bar charts of the average execution time (in seconds) when the methods are applied on the graphs of the 1st and the 2nd categories (Phase II) 

Fig. 6. Bar charts of the average values of the fitness function when the methods are applied on the graphs of the 1st and the 2nd categories (Phase III)

Fig. 6 shows bar charts of the results obtained from phase 
III. The columns look similar with a slight advantage to our 
tabu search based drawer. Therefore, we can conclude that our 
approach produces better graph layouts compared to hill 

climbing or similar layouts in the worst case when both 
drawers run for the same period of time.  

Fig. 7 shows three different examples of graphs drawn by 
hill climbing approach and our approach.
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Fig. 8. Bar chart for the values of the fitness function of the two methods 
when applied on graph datasets in TABLE III 

Fig. 7. Examples of graphs drawn by hill climbing and tabu search 
approaches 

 In terms of threats to validity, the algorithms used were 
deterministic and both used the same starting layout. The main 
internal threat seems to be in the implementation of the 
algorithms. Both methods were implemented by the same 
coder, and were run on the same machine. There is the 
possibility that one of the hill climber or tabu search was 
implemented in a more efficient way, however, the methods 
are sufficiently similar, sharing key code, so permitting some 
confidence that neither was particularly disadvantaged. In 
terms of external threats – that is to the generalizability of the 
results. We tested a number of randomly generated graphs that 
prevents selection bias (except in the parameters of the 
generation algorithm, such as number of nodes and edges). 
However, randomly generated graphs generally do not have the 
same characteristics as real world graphs, and so in the next 
section we explore the method applied to real world datasets 
sourced from the internet, although further real world testing is 
required to fully explore the generality of the results. 

TABLE III  
Real world graph datasets characteristics and sources 

Graph  Nodes Edges Density Source 
1 34 78 0.139 [22] 
2 62 159 0.084 [23] 
3 105 441 0.081 [24] 
4 112 425 0.068 [25] 
5 115 613 0.094 [26] 
6 198 2742 0.141 [27] 
7 277 1918 0.050 [28] 
8 297 2148 0.049 [29] 
9 453 2025 0.020 [30] 

10 500 13038 0.104 [31] 
11 332 2126 0.039 [32] 
12 415 7519 0.088 [33] 
13 128 2075 0.255 [34] 

V. REAL WORLD GRAPH DATASETS 
After performing several experiments on random graphs, 

we tested our system on real world graph datasets. We selected 
13 different datasets from different sources as shown in 
TABLE III that also shows number of nodes, number of edges, 
and density in each graph. The graphs have different sizes with 
different densities. The initial layout of the nodes in each graph 
was generated randomly.  

The results of the experiments are shown in Fig. 8 and 
TABLE IV. In the first two datasets only, the execution time of 
hill climbing is slightly faster than our tabu search based 
approach. This is due to the small size of those graphs. The 
results in the table demonstrate that our approach outperforms 
hill climbing approach in terms of execution time while the 
size of graphs increases. We also note from the figure that the 
values of the fitness function are always better in our approach 
regardless of the size of the graph.  

 Fig. 9 is an example of the layout produced by our drawer 
when applied on the first graph dataset in the list of real world 
datasets described in TABLE III. 

TABLE IV  
Execution time (in seconds) for both methods on graph datasets in TABLE III 

Execution Time (seconds) 

Graph Hill 
Climbing 

Tabu 
Search 

1 0.699 0.931 
2 1.405 1.826 
3 11.822 9.421 
4 16.234 9.671 
5 18.192 15.543 
6 468.838 298.526 
7 258.042 149.060 
8 323.139 185.277 
9 347.227 193.338 

10 14107.292 5968.619 
11 384.990 210.799 
12 4458.639 2190.103 
13 257.392 178.600 

VI. CONCLUSIONS AND FUTURE WORK
We have described an automated tabu search based 

approach for drawing general simple graphs with straight lines 
based on multi-criteria optimization. The method searches for 

Initial Layout Hill Climbing Tabu Search 
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the best positions for the nodes that minimizes the value of the 
fitness function and draws a nice graph layout accordingly. 
Forbidding reverse moves, and the ability to escape local 
optima are two features that make tabu search a more effective 
layout method than hill climbing. Our experimental results on 
random graphs and real world graphs show that tabu search 
approach is faster than hill climbing, and in some cases the 
time is almost half, regardless of the size of the graph in terms 
of number of nodes and edges. On the other hand, both 
approaches produce layouts with good quality and in most 
cases tabu search approach slightly outperforms hill climbing.  

In terms of future work, the definition of a tabu move might 
change. Instead of using absolute node position to determine 
whether a move is tabu or not, we might use its relative 
position. For instance, when a node moves to the left direction, 
its adjacent nodes should not move in the same direction, 
because moving them to the same direction is like shifting the 
whole sub-graph in one direction. Also, a graph clustering 
method can be used to divide the graph into sub-graphs where 

the nodes in each sub-graph would move according to their 
relative positions in their own cluster and each sub-graph 
would move according to its absolute position.  

Also, it may be possible to develop a systematic way for 
choosing the values of the parameters used by our method. 
Several tests have been made with different values for 
tabuDuration and tabuCutOff parameters to come up 
with values that speed up the performance and produce nice 
graph layouts at the same time. More tests on different sets of 
graphs with different characteristics might lead to a clear 
process for choosing the values of the parameters.  

Finally, the performance of our method may be further 
improved by implementing a hybrid of tabu search and other 
search based methods such as scatter search and path relinking. 
An interesting aspect of scatter search is that the approach 
performs a deterministic search instead of a random one. Path 
relinking, on the other hand, has the advantage of using 
previously encountered good solutions to obtain diversification 
and intensification in the search. 

 
Initial Layout Final Layout 

  
Fig. 9. Layout of graph dataset 1 (listed in TABLE III) produced by our method
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