
Dib, Fadi and Rodgers, Peter (2014) A Tabu Search Based Approach for Graph
Layout. Journal of Visual Languages and Computing, 25 (6). pp. 912-923. ISSN
1045-926X.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/43502/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.jvlc.2014.10.019

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Work first published at DMS2014. Extended for JVLC Journal

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/43502/
https://doi.org/10.1016/j.jvlc.2014.10.019
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Tabu Search Based Approach for Graph Layout

Fadi K. Dib
Computer Science Department

Gulf University for Science and Technology
Kuwait, Kuwait

deeb.f@gust.edu.kw

Peter Rodgers
School of Computing

University of Kent
Canterbury, UK

P.J.Rodgers@kent.ac.uk

Abstract—This paper describes an automated tabu search
based method for drawing general simple graph layouts with
straight lines. To our knowledge, this is the first time tabu
methods have been applied to graph drawing. We formulated the
task as a multi-criteria optimization problem with a number of
metrics which are used in a weighted fitness function to measure
the aesthetic quality of the graph layout. The main goal of this
work is speeding up the graph layout process without sacrificing
the layout quality. To achieve this we used a tabu search based
method that goes through a predefined number of iterations to
minimize the value of the fitness function. Tabu search always
chooses the best solution in the neighborhood. This may lead to
cycling, so a tabu list is used to store moves that are not
permitted so that the algorithm does not choose previous
solutions for a set period of time. We give experimental results
applied on random graphs and we provide statistical evidence
that our method outperforms one of the fast search-based
drawing methods (hill climbing) in execution time while it
produces comparably good graph layouts. We also demonstrate
the method on real world graph datasets.

Keywords—Information visualization; graph drawing; graph
layout; tabu search

I. INTRODUCTION
In this work we address the research area of graph drawing.

Here, the goal is to lay out a network diagram so that it can be
analyzed and examined by users. There are several multi-
criteria approaches to graph drawing which are based on
explicit cost functions that combine several metrics of graph
layout quality. This approach has the advantage of allowing
explicit, tunable combinations of metrics to meet user
preferences. However, such methods work slowly, typically
taking a considerable time to lay out the graph. The
contribution of this paper is to improve the performance of
such systems by introducing tabu search features. To our
knowledge, this is the first time tabu methods have been
applied to drawing general simple graph layouts with straight
lines.

Search based methods typically measure a number of
metrics and combine them to form a fitness measure. When a
new solution is found (perhaps by moving a node) the metrics
are calculated again and a new fitness measure is found. This
process happens a large number of times during the search, and
so the process of finding a good layout is slow. Many drawers
in the literature used search based methods, such as simulated
annealing [2, 3], genetic algorithms [4, 5, 6, 7] and hill

climbing [8, 9]. These produce good layouts, but they have
great potential for improvement. For example, simulated
annealing adds an element of non-determinism in order to
escape from local minima in the search space. This slows down
the performance of the algorithm since this stochastic behavior
means that a larger number of iterations would be necessary to
reach a minimum in the search space. Genetic algorithms, on
the other hand, typically have an even slower rate of
convergence compared to simulated annealing and hill
climbing as it makes a wider search of the problem space. The
main problem with hill climbing is that it gets trapped in local
optima.

Our main goal in this work is concerned with improving the
drawer’s efficiency by speeding up the drawing process, using
a search based method known as tabu search, without
sacrificing the layout quality. We are not looking for the global
optimum solution, but aim to obtain a good optimal solution
quickly. Therefore, we compare our approach with hill
climbing. In addition to its simple implementation, hill
climbing has proven its efficiency in graph drawing
applications [8, 9]. The main disadvantage of hill climbing is
the likelihood of finding a sub-optimal local minimum in the
search space. However, as the method is completely
deterministic, comparison against hill climbing is more reliable
than against the non-deterministic approaches of simulated
annealing and genetic algorithms.

Tabu search is a general search based technique proposed
by Glover [10, 11, 12] for finding good solutions to
combinatorial optimization problems. It is considered to be a
neighborhood search method (like simulated annealing) but it
takes a more aggressive approach. It proceeds on the
assumption that there is little benefit in choosing an inferior
solution unless it is necessary, as in the case of escaping from a
local optimum [13]. In other words, tabu search improves the
efficiency of exploration process by keeping track of local
information (like the current value of the objective function)
along with information related to the exploration process. This
systematic use of memory is an essential property of this
searching technique. Tabu search keeps information on the
itinerary through the last solutions visited. The role of this is to
restrict the choice of some subsets in the neighborhood by
forbidding moves to some neighbor solutions that have already
been visited [14]. This constrains the direction of the search
process by preventing the algorithm from going back to a
previously reached state. At each iteration of the exploration
process, it selects the best solution in the neighborhood. This is

283

unlike hill-climbing as it might make a down-hill move.
Therefore, this technique does not run out of choices for the
next move. However, this might lead to cycling by trapping the
algorithm at locally optimal solutions. This problem can be
resolved by introducing two structures called tabu lists and
aspiration functions which are used to keep information about
past moves in order to respectively constrain and diversify the
search for good solutions [13].

Tabu search has shown good results and comparably fast
solutions for some graph theory applications such as graph
partitioning [13], graph coloring [15] and straight line crossing
minimization [16, 17, 18]. It has also been used to solve
different multiple objective optimization problems. The
algorithm was used to solve four different applications in
different areas [19]. In every application, the solutions were at
least as good as, if not better than, the reported results using
different search based techniques. Tabu search has been
applied to the problem of routing school buses [20]. This
algorithm was shown to be competitive in a set of problem
instances for which a scatter search method was applied. Other
researchers [21] proposed a tabu search algorithm as meta-
heuristic method for network reconfiguration of multiple
objectives problems in a radial distribution system. The work
concluded that tabu search can quite easily handle the
complicated constraints that are typically found in real-life
applications. However, it failed in some circumstances for the
following two reasons: an insufficient understanding of
fundamental concepts of the tabu search method; and a lack of
understanding of the problem in hand.

Our paper describes an approach for drawing general
simple graphs with straight lines. This is achieved with a tabu
search based method which draws general graphs with multiple
aesthetic criteria that include node-node occlusion, edges
length, edge crossings, and angular resolution. These criteria
are used in a weighted fitness function to measure the quality
of the graph layout. Whilst there have been empirical studies
of what may be the most effective criteria for layout [1], we are
not overly concerned with the particular criteria or their
weights: our method would work effectively with other criteria
or weightings.

The method goes through predefined number of iterations
to minimize the value of the fitness function and it uses a tabu
list to store tabu moves in order to prevent the algorithm from
choosing previously reached moves for particular nodes for a
period of time. We have tested our method on random graphs
of different sizes and we describe the experiments and
statistical analysis that brought us to the conclusion that our
tabu search based method produces graph layouts as good as, if
not better than, layouts drawn with a hill climbing method with
a clear improvement in the time spent to draw the graph. We
have also recognized improvements in both quality and time
over hill climbing when the method is applied to real world
graphs.

The rest of this paper is organized as follows: Section II
describes some background in using search based techniques in
graph layout; Section III describes our approach; Section IV
describes experimental results on random graphs; Section V
describes the results of applying our approach to real world

graph datasets; finally, Section VI gives our conclusions and
suggests future work.

II. RELATED WORK IN GRAPH LAYOUT
Multi-criteria graph layout can be modelled as a multiple

objective optimization problem. When an algorithm attempts to
draw a graph layout according to several graph aesthetic
criteria, some of these criteria might conflict with each other.
Hence, a fitness function that linearly combines all criteria is
formulated. The optimizer attempts to minimize this function.

The problem with using general fitness functions is that it is
usually computationally expensive to find a minimum fitness
value. Since the overall fitness function might include both
continuous and discrete measures, general search based
approaches, such as simulated annealing, genetic algorithms,
and hill climbing, have been used in order to find a minimum
fitness value [35, 36].

Simulated annealing was the first general search method to
be applied to the graph layout problem [2]. It was used to draw
undirected graphs with straight line edges, taking into account
several drawing aesthetics: distributing nodes evenly, making
edge lengths uniform, minimizing edge crossings, and placing
nodes not too close to edges. All these criteria were combined
into a function that could be subject to a general optimization
fitness function. This search based approach models the
physical process of heating a material and then slowly cooling
the temperature to decrease defects, so minimizing the system
energy. It is often used for large-scale combinatorial
optimization problems and implemented in a way that tries to
escape from local minimum to global minimum by applying
uphill moves (moves that worsen, rather than improve, the
temporary solution). This allows the approach to escape from
some local minimal solutions but with no guarantee that a
global minimum can be reached eventually. The algorithm
produces nice graph layouts for small sized graphs. However, it
does not perform well for larger graphs.

An adjustment to simulated annealing approach was made
in the algorithm proposed in [3]. Here, the fitness function is
minimized using gradient descent. The gradient vector of the
fitness function represents the direction in which the node
should move to increase the value of the fitness function. Thus,
this algorithm will move the node to the opposite direction to
minimize the value of the fitness function. But this method is
still slow when being applied on large graphs and it has some
challenges. For example, the fitness function needs to be
expressed explicitly in terms of coordinates as its derivative
must be found. Some criteria, such as minimizing edge
crossings, are discontinuous and not differentiable.

Genetic algorithms have also been applied to the graph
layout problem. A genetic algorithm approach for drawing
graphs under a number of visual constraints was proposed in
[4, 5]. The proposed algorithm produces graphs with good
quality in addition to its flexibility. It can be easily adapted to
take new layout aesthetics into account. However, the major
problem in this algorithm is its slow rate of convergence. It
initially makes rapid progress towards a solution, but then it

284

converges very slowly to a global optimum, or at least to a
good local one.

A genetic algorithm with local fine tuning based on the
spring algorithm for the drawing of undirected graphs with
straight-line edges has been proposed in [6]. According to
some preliminary results, the algorithm produces layouts with a
minimal number of edge crossings on all test graphs. The
algorithm benefits from the combination of the genetic
algorithm and the spring algorithm to produce good layouts for
a large class of graphs with implicit symmetry, similar spring
lengths, and even distribution of nodes. Although the layouts
found by this algorithm have good general structures, some
fine tuning might still be needed. Moreover, the comparatively
long running time of the algorithm is a key disadvantage. One
reason for the high time complexity of the algorithm comes
from the chosen crossover operator to solve the competing
conventions problem which states that a recombination of two
good parents may yield a very poor offspring.

Similar work was introduced in [7]. This proposed a genetic
algorithm that nicely draws undirected graphs of moderate size.
But the algorithm still suffers from the lack of proper crossover
operation which would speed up the computations by
decreasing the number of needed generations.

Hill climbing is another search based approach that has
been used in the field of graph drawing. It is one of the
simplest search based algorithms used in the field of artificial
intelligence. It is good for finding local optimum but it is not
guaranteed to find the global optimum out of all possible
solutions. It works by iteratively improving a given solution,
which is often selected in a random way, by applying a
transformation in the current solution or picking any solution in
its neighborhood. Then, the new solution is compared to the
old one. If the new solution is better than the old one, the new
solution substitutes the old one. This process is repeated until a
maximum number of repetitions is reached.

Hill climbing has been used to minimize number of edge
crossings [8]. The experiments conducted on random graphs of
different sizes showed that stochastic hill climbing outperforms
efficient and popular search based techniques such as evolution
strategies and genetic algorithms.

A hill climbing approach has been used to implement an
automatic mechanism for drawing metro maps [9]. Metro map
drawing is a specialized form of graph drawing. A good metro
map layout has evenly spaced stations, lines at regular angles
(typically multiples of 45 degrees) and labels placed in
unambiguous locations. This work applied multi-criteria
optimization using a fitness function consisting of five different
metrics in a weighted sum, along with some rules that
prevented some bad moves for each station (e.g. a station that
was north of another station could not be moved south of it). A
hill climbing algorithm was used to reduce the fitness function
and find improved map layouts. Since hill climbing does not
guarantee finding the global minimum, a clustering technique
was applied to the map. The hill climber moves both stations
and clusters when finding improved layouts. The mechanism
produces good map layouts and in some cases better than both
published and distorted layouts. However, the performance of
the algorithm is slow.

Search based methods used to solve graph layout problem
are generally successful in producing graphs with nice layouts
but just for small or mid-sized graphs. In addition, the
execution time of these methods is very slow.

III. OUR APPROACH
This section describes the basic concepts of our approach.

We detail the algorithm of tabu search drawer, the criteria
measured, and the method for combining criteria to produce a
fitness value.

In outline, as described in Algorithm 1, our tabu search
method operates in the following manner: first, we find a
random initial graph layout such that no two nodes have the
same position. We compute the fitness value of the initial
layout. Then the following steps are performed for a predefined
number of iterations: for each node, we search the points
around a square centered on the node at a given distance, as
shown in Fig. 1. Eight points around the square are checked
(above, below, left, right, and the four corners). The ratio of the
current solution’s fitness function value with the previous
solution’s fitness function value is computed at each point
around the square. Solutions with fitness function ratios above
or equal to a predefined threshold value (tabuCutOff), are
considered as tabu moves and will be stored in a tabu list. We
then move the node to a non-tabu point where the value of the
fitness function is a minimum compared to all the points of the
square even if the new point does not improve the current
value of the fitness function (this is why tabu search does not
run out of solutions) and the previous solution becomes a tabu
solution. After an arbitrary chosen number of iterations, as a
cooling down process, the square size centered around the
node is reduced and the tabuCutOff value is decreased to
intensify the searching process. Finally, the tabu list is updated
by removing old solutions from the list after a number of
iterations in which a move should remain in tabu list before it
can be released (tabuDuration) in order to diversify the
searching space. Fig. 2 presents two examples of graph layouts
drawn by our approach.

Fig. 1. Example of the points around the square checked by our algorithm on

each node

Fig. 2. Examples of layouts before (left) & after (right) applying our approach

285

Algorithm 1. Tabu Search Drawer

Given:
Connected Graph G(V,E): V is a set of nodes and E=(VxV) is a
set of edges.

max_iterations: predefined maximum number of iterations of
the drawer.

coolDown_iterations: predefined number of iterations in
which the process starts cooling down

tabuDuration: predefined number of iterations in which a
move should remain in the tabu list.

tabuCutOff: predefined minimum value that determines
whether a move is tabu or not.

Algorithm:
1: InitializeTabuList()
2: GLayout = RandomizeLayout(G)
3: iterations = 0
4: while (iterations < max_iterations)
5: for v ∈ V do
6: for squarePos ∈ allNonTabuSquarePositions do
7: currentPos = vpos
8: fitnessCurrent = Fitness(GLayout)
9: Update GLayout s.t. vpoS = squarePos
10: fitnessNew = Fitness(GLayout)
11: if(fitnessNew / fitnessCurrent > tabuCutOff)
12: addToTabu(v,squarePos)
13: end if
14: end for
15: vpos = Min_NonTabuPosition()
16: addToTabu(v,currentPos)
17: end for
18: if(iterations mod coolDown_iterations == 0)
19: ReduceSquareSize()
20: Decrease(tabuCutOff)
21: end if
22: if(iterations ≥ tabuDuration)
23: RemoveTabuSolutions(iterations-tabuDuration)
24: end if
25: iterations = iterations + 1
26: end while

Our fitness function follows the standard approach for
search based graph drawing methods. We implemented four
metrics for measuring the quality of the graph [2, 9]. These
represented the aesthetics of: distributing nodes evenly, making
uniform edge lengths, minimizing edge crossings, and
improving angular resolution. All these metrics contribute in
the graph quality fitness function which is computed as
follows:

fitness = w1*m1 + w2*m2 + w3*m3 + w4*m4 (1)

where wi and mi are the weight and the measure for criteria i
respectively. The problem in a multiple objective optimization
function is that the value of a specific measure may dominate
the others. Therefore, we applied a normalization process to
ensure that the value of each measure is between 0 and 1.

 We cannot determine unified weights that work properly
for any graph. Therefore, the weights should be assigned by
decision makers according to their preferences on which
measure they prefer to dominate. We assigned the value 1 to all

weights in order to avoid domination of one measure over
another.

 We realized that re-computing the fitness function at each
point is a time consuming process. Therefore, we modified the
way of computing the value of the function by caching the
results such that the old value of the function is used to
compute the new value. We just compute the change made in
the function when a node is moved. When a node moves to a
new position, the amount of change in the fitness function
value, between the previous position of the node and its new
position, is computed. If the change in the value improves the
fitness function, we subtract the amount of the change made
by the previous position of the node, and we add the amount
of the change made by the new position of the node to get the
new value of the fitness function. This process increased the
speed of our method.

To tune the two parameters tabuDuration and
tabuCutOff, we performed several experiments. We
generated 100 random graphs (different to those shown in
Table I and II). These were divided into 5 sets such that each
set had different number of nodes and edges. Hence, each set
consisted of 20 test cases with the same number of nodes and
edges. The characteristics of the five sets were exactly the same
of the first five groups of the graphs in the second category as
will be described in the next section. We tested the drawer on
the 100 test cases for six different values of tabuDuration
{5, 6, 7, 8, 9, and 10} and for six different values of
tabuCutOff {50, 60, 70, 80, 90, and 100}. In most of the
cases, the best fitness function values and the shortest
execution time were generated when the values of the two
parameters were: tabuDuration = 7 and tabuCutOff =
80.

IV. EXPERIMENTAL RESULTS
The programming language used in our implementation is

Java (version 1.7.0; Java HotSpot™ 64-Bit Server VM 21.0-
b17 on Windows 7). We have tested our approach on different
random graphs of different sizes. The experiments were
performed using Lenovo Thinkpad T430, Intel® Core™ i7-
3520M CPU processor with frequency of 2.90 GHz and 8 GB
RAM.

We generated random graph datasets in two categories. The
graphs of the first category have the same number of nodes but
with different densities (i.e. different number of edges),
whereas the graphs of the second category have different
number of nodes with varying values of densities.

Our random graph generator generated random connected
graphs. The parameters to it were the number of nodes and the
density of the graph. It generated random locations for the
nodes based on the size of the window where the graph will be
displayed. Then, the generator chose random nodes as end
points of edges. Self-sourcing edges and multiple edges
between the same pair of nodes were not allowed. Finally, the
generator tested the connectivity of the generated graph by
running a breadth first search algorithm. Only connected
graphs were accepted.

286

There were 200 random graphs in the first category split
into 10 groups of 20 test cases each. All the graphs in this
category had 150 nodes, randomly positioned. However each
group had a differing number of edges than the other groups so
that the density varied. However, the graphs in each group had
same number of edges but with different initial layouts. See
TABLE I for characteristics of the graphs in the first category.

The second category also had 200 random graphs, again
split into 10 groups. Number of nodes in each group was
increased by 50. The value of the density was chosen for each
group to avoid too dense graphs. A similar random process
used to generate graphs in the first category was applied to this
category. See TABLE II for characteristics of the graphs in the
second category.

TABLE I
Characteristics of the graphs in the 1st category

Group Nodes Edges Density
1 150 558 0.05
2 150 1117 0.1
3 150 1676 0.15
4 150 2235 0.2
5 150 2793 0.25
6 150 3352 0.3
7 150 3911 0.35
8 150 4470 0.4
9 150 5028 0.45

10 150 5587 0.5

TABLE II
Characteristics of the graphs in the 2nd category

Group Nodes Edges Density
1 50 153 0.125
2 100 544 0.11
3 150 1173 0.105
4 200 1890 0.095
5 250 2645 0.085
6 300 3363 0.075
7 350 3969 0.065
8 400 4788 0.06
9 450 5556 0.055

10 500 6237 0.05

We have applied our tabu search based approach and the
hill climbing approach to the randomly generated graphs. All
the weights of the metrics in the fitness function were equal.
The metrics were normalized and therefore, equalizing the
weights would equalize the effect of each metric on the value
of the fitness function.

We note that the hill climbing approach used the same
optimized fitness function calculations that the tabu search
applied – only changes to the fitness function from moved
nodes were recalculated.

To make a comprehensive comparison between tabu and
hill climbing, we divided our experiments into three phases. In
phase I, we applied both methods on the graphs of the two

categories. The methods executed on the 20 test cases in each
group of the two categories, and then the average execution
time and the average fitness function value were computed for
each group. The hill climbing approach was executed until it
found the best solution that can be reached by the approach (i.e.
a solution that cannot be of further improvement). On the other
hand, our tabu search based approach ran for 50 iterations. A
cut-off point had to be chosen because tabu search always
moves to the point with the best fitness value of all the eight
points around the square on each node even if the new point
does not improve the current value of the fitness function and
hence it would not run out of solutions.

Fig. 3 and Fig. 4 show bar charts of the results obtained
from phase I. The charts clearly show the difference between
the two methods in terms of the quality of the produced layouts
and the execution time. The figures show that both methods
give similar values for the fitness function with a slight
advantage to our method. However, the execution time of our
approach clearly outperforms the execution time of the hill
climbing approach.

In phase II, we investigated the performance of approaches
rather than the quality of the produced layouts. Therefore, the
following process was performed to test which method has
faster execution time when they reach similar values for the
fitness function:

1. We ran the hill climbing method on the graphs until no
improvements could be made on the value of the
fitness function.

2. We ran our tabu search method until it reached an
equal or better fitness function value compared to the
one found by the hill climbing drawer.

3. We measured the execution time of the methods.

Fig. 5 shows bar charts of the results obtained from phase
II. The columns obviously show that our drawer always
finishes faster than the hill climbing drawer. These results
indicate that excluding previously visited solutions from further
investigation for a specific period of time is clearly an effective
property in tabu search.

Finally, in phase III, we investigated the quality of the
layout produced by the drawers rather than the performance.
The following process was performed to test which method
produces graph layouts with smaller values of fitness function
when both drawers execute for the same period of time:

1. We ran the tabu search method on the graphs for 50
iterations. The execution time is computed and saved.

2. We ran the hill climbing method for the same period of
time spent by the tabu search method.

3. We measured the value of the fitness function
produced by the drawers in each of the above steps.

287

Fig. 3. Bar charts of the fitness function and execution time (in seconds) obtained by both methods when applied on the graphs of 1st category (Phase I)

Fig. 4. Bar charts of the fitness function and execution time (in seconds) obtained by both methods when applied on the graphs of 2nd category (Phase I)

Fig. 5. Bar charts of the average execution time (in seconds) when the methods are applied on the graphs of the 1st and the 2nd categories (Phase II)

Fig. 6. Bar charts of the average values of the fitness function when the methods are applied on the graphs of the 1st and the 2nd categories (Phase III)

Fig. 6 shows bar charts of the results obtained from phase
III. The columns look similar with a slight advantage to our
tabu search based drawer. Therefore, we can conclude that our
approach produces better graph layouts compared to hill

climbing or similar layouts in the worst case when both
drawers run for the same period of time.

Fig. 7 shows three different examples of graphs drawn by
hill climbing approach and our approach.

288

Fig. 8. Bar chart for the values of the fitness function of the two methods
when applied on graph datasets in TABLE III

Fig. 7. Examples of graphs drawn by hill climbing and tabu search
approaches

 In terms of threats to validity, the algorithms used were
deterministic and both used the same starting layout. The main
internal threat seems to be in the implementation of the
algorithms. Both methods were implemented by the same
coder, and were run on the same machine. There is the
possibility that one of the hill climber or tabu search was
implemented in a more efficient way, however, the methods
are sufficiently similar, sharing key code, so permitting some
confidence that neither was particularly disadvantaged. In
terms of external threats – that is to the generalizability of the
results. We tested a number of randomly generated graphs that
prevents selection bias (except in the parameters of the
generation algorithm, such as number of nodes and edges).
However, randomly generated graphs generally do not have the
same characteristics as real world graphs, and so in the next
section we explore the method applied to real world datasets
sourced from the internet, although further real world testing is
required to fully explore the generality of the results.

TABLE III
Real world graph datasets characteristics and sources

Graph Nodes Edges Density Source
1 34 78 0.139 [22]
2 62 159 0.084 [23]
3 105 441 0.081 [24]
4 112 425 0.068 [25]
5 115 613 0.094 [26]
6 198 2742 0.141 [27]
7 277 1918 0.050 [28]
8 297 2148 0.049 [29]
9 453 2025 0.020 [30]

10 500 13038 0.104 [31]
11 332 2126 0.039 [32]
12 415 7519 0.088 [33]
13 128 2075 0.255 [34]

V. REAL WORLD GRAPH DATASETS
After performing several experiments on random graphs,

we tested our system on real world graph datasets. We selected
13 different datasets from different sources as shown in
TABLE III that also shows number of nodes, number of edges,
and density in each graph. The graphs have different sizes with
different densities. The initial layout of the nodes in each graph
was generated randomly.

The results of the experiments are shown in Fig. 8 and
TABLE IV. In the first two datasets only, the execution time of
hill climbing is slightly faster than our tabu search based
approach. This is due to the small size of those graphs. The
results in the table demonstrate that our approach outperforms
hill climbing approach in terms of execution time while the
size of graphs increases. We also note from the figure that the
values of the fitness function are always better in our approach
regardless of the size of the graph.

 Fig. 9 is an example of the layout produced by our drawer
when applied on the first graph dataset in the list of real world
datasets described in TABLE III.

TABLE IV
Execution time (in seconds) for both methods on graph datasets in TABLE III

Execution Time (seconds)

Graph Hill
Climbing

Tabu
Search

1 0.699 0.931
2 1.405 1.826
3 11.822 9.421
4 16.234 9.671
5 18.192 15.543
6 468.838 298.526
7 258.042 149.060
8 323.139 185.277
9 347.227 193.338

10 14107.292 5968.619
11 384.990 210.799
12 4458.639 2190.103
13 257.392 178.600

VI. CONCLUSIONS AND FUTURE WORK
We have described an automated tabu search based

approach for drawing general simple graphs with straight lines
based on multi-criteria optimization. The method searches for

Initial Layout Hill Climbing Tabu Search

289

the best positions for the nodes that minimizes the value of the
fitness function and draws a nice graph layout accordingly.
Forbidding reverse moves, and the ability to escape local
optima are two features that make tabu search a more effective
layout method than hill climbing. Our experimental results on
random graphs and real world graphs show that tabu search
approach is faster than hill climbing, and in some cases the
time is almost half, regardless of the size of the graph in terms
of number of nodes and edges. On the other hand, both
approaches produce layouts with good quality and in most
cases tabu search approach slightly outperforms hill climbing.

In terms of future work, the definition of a tabu move might
change. Instead of using absolute node position to determine
whether a move is tabu or not, we might use its relative
position. For instance, when a node moves to the left direction,
its adjacent nodes should not move in the same direction,
because moving them to the same direction is like shifting the
whole sub-graph in one direction. Also, a graph clustering
method can be used to divide the graph into sub-graphs where

the nodes in each sub-graph would move according to their
relative positions in their own cluster and each sub-graph
would move according to its absolute position.

Also, it may be possible to develop a systematic way for
choosing the values of the parameters used by our method.
Several tests have been made with different values for
tabuDuration and tabuCutOff parameters to come up
with values that speed up the performance and produce nice
graph layouts at the same time. More tests on different sets of
graphs with different characteristics might lead to a clear
process for choosing the values of the parameters.

Finally, the performance of our method may be further
improved by implementing a hybrid of tabu search and other
search based methods such as scatter search and path relinking.
An interesting aspect of scatter search is that the approach
performs a deterministic search instead of a random one. Path
relinking, on the other hand, has the advantage of using
previously encountered good solutions to obtain diversification
and intensification in the search.

Initial Layout Final Layout

Fig. 9. Layout of graph dataset 1 (listed in TABLE III) produced by our method

REFERENCES
[1] H. C. Purchase, "Metrics for graph drawing aesthetics," Journal of Visual

Languages and Computing, vol. 13, no. 5, pp. 501-516, 2002.
[2] R. Davidson and D. Harel, "Drawing graphs nicely using simulated

annealing," ACM Transactions on Graphics, vol. 15, no. 4, pp. 301-331,
1996.

[3] J. Brank, "Drawing graphs using simulated annealing and gradient
descent," Zbornik C 7. mednarodne multikonference Informacijska
družba, pp. 67-70, 2004.

[4] C. Kosak, J. Marks and S. Shieber, "A parallel genetic algorithm for
network diagram layout," San Diego, CA, USA, 1991.

[5] C. Kosak, J. Marks and S. Shieber, "Automating the layout of network
diagrams with specified visual organization," IEEE Transactions on
Systems, Man, and Cybernetics, vol. 24, no. 3, pp. 440-454, 1994.

[6] J. Branke, F. Bucher and H. Schmeck, "Using genetic algorithms for
drawing undirected graphs," Proceedings of Third Nordic Workshop on
Genetic Algorithms and their Applications, pp.193-206, 1996.

[7] T. Eloranta and M. Erkki, "TimGA: A genetic algorithm for drawing
undirected graphs," Divulgaciones Matematicas, vol. 9, no. 2, pp. 155-
171, 2001.

[8] A. Rosete-Suárez, A. Ochoa-Rodrıguez and M. Sebag, "Automatic graph
drawing and stochastic hill climbing," In Proceedings of the Genetic and

Evolutionary Computation Conference, vol. 2, pp. 1699-1706, 1999.
[9] J. Stott, P. Rodgers, J. C. Martinez-Ovando and S. G. Walker,

"Automatic metro map layout using multicriteria optimization," IEEE
Transactions on Visualization and Computer Graphics, vol. 17, no. 1, pp.
101-114, 2011.

[10] F. Glover, "Future paths for integer programming and links to artificial
intelligence," Computer and Operations Research, vol. 13, no. 5, pp. 533-
549, 1986.

[11] F. Glover and H. J. Greenberg, "New approaches for heuristic search: A
bilateral linkage with artificial intelligence," European Journal of
Operational Research, vol. 39, pp. 119-130, 1989.

[12] F. Glover, "Tabu search - part I," ORSA Journal on Computing, vol. 1,
no. 3, pp. 190-206, 1989.

[13] A. Lim and Y. M. Chee, "Graph partitioning using tabu search," IEEE
International Symposium on Circuits and Systems, vol. 2, pp. 1164-1167,
1991.

[14] A. Hertz, E. Taillard and D. De Werra, "A tutorial on tabu search," In
Proceedings of Giornate di Lavoro AIRO, vol. 95, pp. 13-24, 1995.

[15] A. Hertz and D. De Werra, "Using tabu search techniques for graph
coloring," Computing, vol. 39, no. 4, pp. 345-351, 1989.

[16] M. Laguna, R. Marti and V. Valls, "Arc crossing minimization in
hierarchical digraphs with tabu search," Computers and Operations
Research, vol. 24, no. 12, pp. 1175-1186, 1997.

[17] R. Marti, "A tabu search algorithm for the bipartite drawing problem,"

290

European Journal of Operational Research, vol. 106, no. 2, pp. 558-569,
1998.

[18] R. Marti and M. Laguna, "Heuristics and meta-heuristics for 2-layer
straight line crossing minimization," Discrete Applied Mathematics, vol.
127, no. 3, pp. 665-678, 2003.

[19] A. BAYKASOGLU, S. OWEN and N. GINDY, "A taboo search based
approach to find the pareto optimal set in multiple objective
optimization," Engineering Optimization, vol. 31, no. 6, pp. 731-748,
1999.

[20] J. Pacheco and R. Martí, "Tabu search for a multi-objective routing
problem," Journal of the Operational Research Society, vol. 57, no. 1, pp.
29-37, 2005.

[21] T. Thakur and J. Dhiman, "A tabu search algorithm for multi-objective
purpose of feeder reconfiguration," Journal of Electrical and Electronics
Engineering Research, vol. 3, no. 4, pp. 71-79, 2011.

[22] W. Zachary, "An information flow modelfor conflict and fission in small
groups1," Journal of Anthropological Research, vol. 33, no. 4, pp. 452-
473, 1977.

[23] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten and S. M.
Dawson, "The bottlenose dolphin community of Doubtful Sound features
a large proportion of long-lasting associations," Behavioral Ecology and
Sociobiology, vol. 54, no. 4, pp. 396-405, 2003.

[24] V. Krebs, "http://www.orgnet.com,", unpublished. Retrieved March 1,
2014.

[25] M. E. Newman, "Finding community structure in networks using the
eigenvectors of matrices," Physical review E, vol. 74, no. 3, p. 036104,
2006.

[26] M. Girvan and M. E. Newman, "Community structure in social and
biological networks," Proceedings of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821-7826, 2002.

[27] P. M. Gleiser and L. Danon, "Community structure in jazz," Advances in
complex systems, vol. 6, no. 04, pp. 565-573, 2003.

[28] Y. Choe, B. H. McCormick and W. Koh, "Network connectivity analysis
on the temporally augmented C. elegans web: A pilot study," In Soc
Neurosci Abstr , vol. 30, no. 921.9, 2004.

[29] J. G. White, E. Southgate, J. N. Thomson and S. Brenner, "The structure
of the nervous system of the nematode Caenorhabditis elegans,"
Philosophical Transactions of the Royal Society of London. B,
Biological Sciences, vol. 314, no. 1165, pp. 1-340, 1986.

[30] J. Duch and A. Arenas, "Community detection in complex networks
using extremal optimization," Physical review E, vol. 72, no. 2, p.
027104, 2005.

[31] J. Marcelino and M. Kaiser, "Critical paths in a metapopulation model of
H1N1: Efficiently delaying influenza spreading through flight
cancellation," PLoS currents, vol. 4, 2012.

[32] V. Batagelj and A. Mrvar, "Pajek datasets. Web page http://vlado. fmf.
uni-lj. si/pub/networks/data," 2006.

[33] P. J. Taylor, World city network: a global urban analysis, Routledge,
2003.

[34] C. J. Melián and J. Bascompte, "Food web cohesion," Ecology, vol. 85,
no. 2, pp. 352-358, 2004.

[35] M. G. Resende and C. C. Ribeiro, "GRASP: greedy randomized adaptive
search procedures," in Search Methodologies , Springer US, pp. 287-312,
2014.

[36]

R. Tamassia, Handbook of graph drawing and visualization, AMC, 10,
12, 2011.

291

