Resource-aware Policies™

Paolo Bottoni®*, Andrew Fish?** Alexander Heufner®**,
Francesco Parisi Presicce?

% Dipartimento di Informatica, “Sapienza” Universita di Roma, Italy.
bSchool of Computing, Engineering and Mathematics, University of Brighton, UK.
¢ Otto-Friedrich- Universitit Bamberg, Germany.

Abstract

In previous papers, we proposed an extension of Spider Diagrams to object-
oriented modeling, called Modelling Spider Diagrams (MSDs), as a visual nota-
tion for specifying admissible states of instances of types, and for verifying the
conformance of configurations of instances with such specifications. Based on
this formalisation, we developed a notion of transformation of MSDs, modeling
admissible evolutions of configurations. In the original version of MSD, individ-
ual instances evolve independently, but in reality evolutions often occur in the
context of available resources, so transformations must be extended to take this
into account. In this paper we provide an abstract syntax for MSDs, in terms of
typed attributed graphs, and a semantics for the specification of policies based
on notions from the theory of graph transformations, and we associate with
them a notion of resources. We also introduce a synchronisation mechanism,
based on annotation of instances with resources, so that the transformations
required by a policy occur with respect to available resources. In particular,
resources can be atomically produced or consumed or can change their state
consistently with the evolution of the spiders subject to the policy.

1. Introduction

In the context of requirements engineering, the expression and understanding
of policy specifications by various, possibly non-technical, stakeholders, may be

*We are happy to contribute to an homage to S.-K.Chang celebrating his achievements
in the foundation and conduction of the Journal of Visual Languages and Computing, for
many years together with the late Stefano Levialdi, and in the establishing the whole area of
research of Visual Languages. This work brings together two areas of research, diagrammatic
reasoning and graph transformations, which, although never directly investigated by S.-K., fit
very well with his vision that “cooperative and interdisciplinary research can lead to a better
understanding of the visual communication process for developing an effective methodology
to design the next generation of visual languages” (from the preface to the groundbreaking
1986 volume on Visual Languages curated by him). Thanks, S.-K., for starting the field!

*Principal corresponding author

**Corresponding author

Preprint submitted to Elsevier May 26, 2016

favoured by the adoption of diagrammatic, intuitive representations. In [1] we
presented a framework for expressing temporal policies that restrict admissible
evolutions of the state of instances of types, based on an underlying extension
of Spider Diagrams for representing types or their instances. In this framework,
in contrast to classical Spider Diagrams, curves represent admissible states,
and additional temporal information is provided by suitable annotations of the
graphical elements. A temporal policy then specifies over which periods an
instance of a given type can be in some given state. However, these extensions
may not be sufficient in practice, if the evolution of an instance, hence the
viability of a policy, depends essentially on the (un-)availability of some resource.
We use, as running examples, a number of scenarios derived from actual
parking policies, along the lines of the examples that we have used as testbed
for our definition of policies [1, 2] and which permit a number of variations.

Running Example. The Fiumicino airport in Rome has recently put in place
a policy to constrain the time during which a private car collecting passengers
can stay in the arrival area. The car’s registration plate is photographed when
entering the area. If the car does not leave within 15 minutes, a fine will be
issued to the owner. To avoid this penalty, the owner can: (1) park in a special
‘free parking’ zone, where the car is allowed to park for 15 minutes. (2) leave
the restricted area, or (8) enter a ‘toll parking’ zone, where the car can stay
indefinitely (actually, no longer than 24 hours). When entering a parking zone,
the owner must collect a ticket while the plate is photographed again, and the
car is recognised to have left the area when the ticket associated with that plate
1s discharged at the exit. If the car stays in the free parking zone for more than
15 minutes, a fee must be paid, and registered on the ticket, otherwise the car
will be subject to a fine when it is recognised as leaving the arrival area. In
either case, if the duration of the stay exceeds the time that has been paid for, a
fine will be issued. No car will be admitted to any parking zone which does not
offer available parking spaces, so that the possibility for a car to comply with the
policy by staying in a parking place is ultimately subject to the availability of the
space. Buses can only load and discharge in suitable spaces, while taxis have to
enter a reserved area. Payment can be performed in different ways, e.g. cash,
credit card, company subscriptions, or through a mobile application.

We do not consider here the timing aspect, as it has been extensively treated
in [1], but we focus on two important features of policy modelling:

(1) A policy (implicitly or explicitly) defines admissible sequences of operations
or states. For example, a car having enjoyed a free parking period must
either leave the area or buy some time before leaving the area anyway. A
car cannot enjoy a free parking period after paying a ticket unless it exits
and re-enters the controlled area.

(2) In order to comply with a policy, resources of some kind must be available.
For example if the driver wants to buy some parking time he or she must
have some paying instrument available, and the airport system must provide

suitable devices to collect the payment, e.g. parking meters, or connection
with the application database. On the parking side, a car which cannot
find a parking space, of any type, must necessarily leave the controlled
area. The state of these resources change either as a consequence of an
action executed by some car following the policy, e.g. a parking place is
occupied or abandoned by a car, or for independent reasons, e.g. a set of
parking places is excluded from usage due to roadworks or security reasons
on special occasions.

Running Example (contd.). Parking regulations in the City of Rome distin-
guish between three types of public parking places alongside streets: completely
free places, short-term free parking places, and toll parking places where parking
time must be paid in advance. Short-term parking places cannot be continually
occupied by the same car for more than three hours, and no extra time can be
bought for these places, but the car can leave the place and reoccupy it, placing
an indication of the time at which the new occupation starts. Compliance to
this policy is mot controlled by automatic means but inspectors can check it at
any time (looking for cars which have overstayed their free or paid period). In
order for this policy not to be repelled by courts, as appellants can lament the
lack of free spaces, the city council must guarantee that in each neighbourhood
a certain ratio of (completely or short-term) free to toll places is respected.

We use this example as an indication of the fact that policies may have
conditions of wvalidity, out of which they cannot be enforced. These conditions
may refer to availability of resources, as well as to specific events which acti-
vate them or not. We also remark that policies apply to well-defined types of
elements, e.g. ambulances, police, or firefighter cars are not subject to parking
restrictions, and that individual instances start being subjected to a policy only
when some trigger event occurs, e.g. a car enters the Fiumicino controlled area.

Running Example (contd.). Garages of commercial malls offer free parking
to all customers, but customers may have to provide evidence of a purchase at
the mall (upon leaving) to qualify for the use of the free parking. Internally,
the mall can reserve spaces closer to the shopping area for pregnant women or
families with children, as well as for disabled people, all states which can be
easily demonstrated. Multi-storey car parks can reserve different areas for long
vehicles and for rental cars, and they do not admit methane-propelled cars in
covered zones. In all these cases, availability of a resource is constrained by some
property of the car (or of its owner), or some combination of properties. Other
similar cases include private car-parks which can only be entered by customers
who possess a parking permit or membership card.

The above are cases where access conditions may differ for elements with
specific properties (which can be assessed before or after using the resource).
Conformance to a policy may then depend on such properties and on synchro-
nisation of the changes in state dictated by the policy with changes in the
availability of multiple resources at the same time.

The formal model for resource-aware policies presented here extends our
previous policy framework along two directions: On the one hand, we provide
a more general notion of policy in see Section 2, of which temporal policies are
a special case. On the other hand, after introducing our notion of resources in
Section 3, we consider, in Section 4, how (un-)availability of resources affects
conformance to a policy. Discussion of related work is postponed until Section 5,
after which Section 6 concludes the paper.

Three recent lines of research concur in this work: (1) the extension of Spi-
der Diagrams to the world of OO modelling, in particular through the definition
of policies; (2) the definition of an abstract representation of Spider Diagrams in
terms of Spider Graphs [3], from which we derive a formal notion of conformance
of an instance to a policy; (3) the notion of annotation as a flexible way for con-
necting different domains. In addition, we introduce a generic notion of resource
and consequently enrich the notion of policy. We use annotations to relate el-
ements of the domain for which the policy is defined with resources needed for
being conformant to the policy, as expressed by global constraints. We define
a process of synchronisation between elements and resources in transformations
which ensures conformity to the policy.

In particular, we adopt a simplified version of the notion of Spider Graphs,
which we have developed to set the logical formalism of Spider Diagrams within
the framework of attributed typed graphs and we provide a number of constructs
for expressing and reasoning on policies. We introduce an original notion of
synchronisation of elements subject to a policy with the needed resources, via
the annotation mechanisms presented in [4]. In the resulting setting, systems,
modeled as Spider Graphs, can evolve according to a policy under constraints
represented by resource availability, while considering resource evolution only in
the context of system evolution. Annotations are used both in the representa-
tion of constraints and in the construction of synchronised rules, modelling the
concurrent evolution of systems and resources. System evolution is modelled
through transformation rules ensuring conformity with a policy. Rules can be
derived from the policy specification following a procedure described in [2].

The idea of constraining transformations on resources presented in Section 4
is general and could be used in any domain in which policies determine admis-
sible transitions. We point the reader to [3] for detailed motivations for the use
of Modelling Spider Diagrams, and on the introduction of Spider Graphs.

2. Formal setting: Modelling Spider Diagrams, Graphs & Policies

Graphs and typed graphs. Following [5], a graph is a tuple (V, E, s,t), with V
and F finite sets of nodes and edges, and functions s : £ — V, t: E — V
mapping an edge to its source and target. A graph morphism m : G — H is
given by a pair of functions my : Vg — Vg and mg : Egq — Ep preserving
sources and targets of edges. Morphism composition is denoted by o, where
my o mo indicates that m; is applied to the result of the application of ms.

A graph transformation rule is a span of graph morphisms L LKL R, and
is applied following the Double Pushout (DPO) Approach. Figure 1 (left) shows

a DPO direct derivation diagram. Square (1) is a pushout (i.e. G is the union
of L and D through their common elements in K), modelling the deletion of
the elements of L not in K, while pushout (2) adds to D the new elements, i.e.
those present in R but not in K, to obtain H as the result of the rule application
via the matching morphism myp : L — G, through the comatching morphism
m* : R — H. The image mp (L) is called the match of L in G.

NAC <ac— L <1+—K —r— R AC <ac— L<—1— K —r—R
Xsﬁ %L &) % 2 W x "J % 2) %
S~G<i—D-—9-H G\Gef— D—o>H

Figure 1: DPO Direct Derivation Diagram for rules with NACs (left) and ACs (right).

An atomic graph constraint (or simply constraint) is a morphism ¢ : P — C,
satisfied by a graph G (denoted with G = ¢) if for each morphism m,, : P — G,
a morphism m. : C' = G exists, with m. oc=m,,.

In the simplified definition adopted here an atomic application condition (or
simply application condition) for L LK S Risa morphism ac : L — AC, such
that the rule is applicable on a match my (L) if a morphism myg,. : AC — G exists
such that (mge o ac)(L) = my (L) (see Figure 1 (right)). A negative application
condition requires that no such m,,. exists (see Figure 1 (left)).

In a type graph TG = (Vr,Er,sT,tT), Vr and Er are sets of node and
edge types, with s”: Er — Vp and t7: Er — Vi defining source and target
node types for each edge type. A graph G = (V,E,s,t), with VN Vp =
and EN Er = 0, is typed on TG if equipped with a (total) graph morphism
tp: G — TG, where tpy: V — Vp and tpg: E — Er preserves the typing of the
images for s and t i.e. tpy(s(e)) = s (tpr(e)) and tpy (t(e)) = tT (tpr(e)).

Attributed typed graphs. As far as attributes are concerned, we partition V into
Vi and Vp (D for data), the sets of graph and value nodes, respectively, and E
into Eg and E4 (A for attribute). Graph edges in Eq are equivalent to those
for non-attributed graphs, while an attribute edge in E 4 defines the assignment
of a value to an attribute of a node. Moreover, s = sg US4, with sg: Eq — Vg
and sg: Ey = Vg, and t =tgUty, withtg: EFg > Vg and ta: E4 — Vp. In
a similar way, the type graph TG has distinct sets VTG and V2 of graph and
value node types respectively, as well as distinct sets qu and E{} for graph and
attribute edge types. Given t € VTG , all nodes of type t are associated with
the same subset A(t) C E{} of edge types, corresponding to the set of attribute
names for ¢. Values in Vp range over the disjoint union of the set of sorts in
a data signature DSIG. All morphisms are partial on the edges in F4 and
extended with a collection of identities on Vp (a morphism may change the
assignment of a value to an attribute, but value elements cannot change). In
this paper, we consider all values to be strings. Moreover, we informally exploit
the notion of node type inheritance from [6], whereby a node of a supertype
in a graph can be substituted with a node of any subtype preserving all the

edges (both graph and attribute ones) touching the original node, to refer to
commonalities among subtypes.

A (graph) domain D(TG,C, DSIG) is defined as the set of graphs typed on
a type graph TG, complying with a set of constraints C' and a data signature
DSIG. In the following we adopt a UML-like representation of attributed nodes,
presenting attributes and their values in a separate compartment.

Spider Diagrams. A Spider Diagram (SD) permits the representation of pred-
icates (represented by curves) on elements (represented by spiders) of some
universe of discourse (represented by the universe curve) by placing spiders’
feet in zones (intuitively, the region inside a set of curves, and outside the re-
maining curves) on an underlying Euler diagram (see Figure 2(a)). Each curve
and spider is uniquely identified by its label. Intuitively, a spider with a foot in
a zone (i.e. inhabiting the zone) indicates that the element represented by the
spider can belong to the intersection of all the sets represented by the curves
that the zone is inside. A shaded zone indicates that no elements can be in the
corresponding set intersection except for those with an explicit representation
as a spider inhabiting the zone (a spider represents an element in exactly one of
the zones that it inhabits). Disjoint non-overlapping curves represent disjoint
sets and the nesting of curves represents the subset relation. In this paper we
consider only unitary SDs (i.e. we do not consider diagrams joined with logical
connectives) and we provide a simplified definition, ignoring relations among
spiders, to streamline the approach without unnecessary details. See [3] for a
detailed formal definition of SD. We denote the class of all SDs by SD.

Spider Graphs. Figure 2(b) presents the type graph SG, a simplified version of
the one introduced in [3] to define a semantics for SDs in terms of graph trans-
formations, which characterises, together with a set of constraints, the family
of Spider Graphs (SGs). This version corresponds to the presentation of SDs
above, not including relations between spiders. In SGs, curves, spiders and zones
are modelled as nodes of the corresponding types, the first two characterised by
a name attribute. The modelling of spiders inhabiting a zone and of zones be-
ing inside a curve is realised with edges of the, suitably named, inhabits and
inside types, while the properties of being shaded for a zone and of being the
unique universe curve are modelled by the shading and universe edge types.
Figure 2(c) shows the SG equivalent to the SD in Figure 2(a).

Modelling Spider Diagrams and Graphs. The extension of SDs to object-oriented
modelling, called Modelling Spider Diagrams (MSDs), permits the expression
of type versus instance information, thus providing a closer link to the object-
oriented modelling paradigm than standard SDs [1]. To this end, one refers to a
name domain, Np, as resulting from a collection of names of types, Nr, names
of states, Ng, names of attributes, N4, string representation of attribute values
Ny, and identifiers of instances (of the types in Nr), N, associated with proper
specifications of each name. Syntactically, in a type-SD d’, all spiders have
names in N7 and all curves have names (labeled either with the name of a state

shading

U 0.1
w1 " 0.*|Spider
Zone 4= - -
A B inhahits [String name
1.*
universe inside
0.1 wyl.>
1 |Surve
String name
(a) A Spider Diagram d. (b) The type graph SG.
Curve inside inside
nam:e="A" (et | -
) Spider i ide [inside
inside name="s" \—[—l inside
Zone shading
o Guniverse
Zone W inside Curve inside Zone
name="U"

(c) The Spider Graph G4, corresponding to d.

Figure 2: From Spider Diagrams to Spider Graphs

or with the name of an attribute followed by its value) in Ng U (N4-‘@-Ny),
whilst in an instance-SD d, spiders have names in Ny, curves have names in
Ng U (N4-‘@Q-Ny), no zone is shaded and every spider inhabits exactly one
zone. From the semantical point of view, interpretations of an MSD are consis-
tent with the specifications in Ap for the corresponding names.

A type-SD places constraints over the admissible states for instances of a set
of types (represented by spiders), while instance-SDs present configurations of
instances in some states; intuitively, an instance-SD d conforms to a type-SD
d' if the set of curves C(d) in d is a subset of the set C'(d’) of curves in d’, each
spider s in d is named by an instance of a type providing a name for a type-
spider s’ in d’, and s inhabits a zone z which corresponds to a zone z’ inhabited
by s, in the sense that, given the set I’ of curves 2’ is inside, z is inside the set
I' N C(d). For a formal definition see [1].

Example 1. The SD in Figure 2(c) cannot be an instance-SD since it has a
spider with two feet, whilst it cannot be a type-SD without an additional mapping
of labels to relevant domain names.

In order to accommodate the restriction of SDs to MSDs, hence defining
MSGs, we put the following constraints on the composition of the name attribute
for Curve and Spider, which can be easily verified by a suitable parser.

1. For a type-MSG:

(a) For a Spider, the value of the attribute name starts with the prefix
‘TYPE’, followed by the actual name of the type (an element in Nt),
separated by ‘:’. The function typT Nm : String — String extracts

the actual name of the type (i.e. the part of the string after ‘:’) given
a well-formed value of the name attribute for a spider.

(b) For a Curve, the value of the attribute name starts with a prefix in-
dicating the family of the curve (i.e. one of ‘STATE’ or ‘ATTRIBUTE’),
followed by ‘:’. In the first case, the prefix is followed by the ac-
tual name of the state (an element in Ng). In the second case,
an infix string reports the name of the attribute (an element in
N4) and the final suffix, separated by ‘@, is a representation of
the actual value of the attribute (an element in Ny). The func-
tions fmlyNm : String — String, attr Nm : String — String, and
vlueNm : String — String extract the corresponding components,
given a well-formed value of the name attribute for a curve.

2. For an instance-MSG:

(a) For a Spider, the name is composed of the prefix ‘INSTANCE’, followed
by the name of a type (an element in Np), followed by a string
uniquely identifying the instance (an element in N;), each separated
by ‘:’. The functions typI Nm : String — String and instNm :
String — String extract the corresponding parts (i.e. the two parts
separated by ‘:’) after dropping the prefix ‘“INSTANCE:’), given a
well-formed value of the name attribute for a spider.

(b) For a Curve, the name is constructed in the same way as above.

Notice that a type-MSG can present more than one spider with the same type
label, indicating that the policy refers to configurations of as many instances, as
there are spiders with the same type name, while names for curves are unique.
In an instance-MSG, all names are unique. In the following, we will consider
policies concerning the evolution of single instances for any type.

We can now provide an adequate notion of conformance of an instance-MSG
to a type-MSG in terms of graph morphisms between graphs typed on the type
graph for §G, with the additional constraints on the valuation of the name
attributed discussed above.

Definition 1 (Conformance of instance-MSGs to type-MSGs). We say that an
instance-MSG G conforms to a type-MSG G’ iff there exists a total conformance
morphism gc: G — G’ such that:

e for each instance spideris in G, gc(is) = ts is a type spider and typl Nm(is)
= typT Nm(ts).

e gc is surjective on the set of type spiders in G’.

e for each curve spider ic in G, gc(ic) = tc is a curve with ic.name =
tc.name.

e for each zone node iz in G, gc(iz) = tz is a zone such that for each edge
ie which is incident with iz, if ie is incident with node n (representing a
curve or spider) then ge(ie) is also incident with ge(n).

Informally, Definition 1 requires that each spider node in the instance-SG,
G, inhabits a zone which is the projection, according to the curves present in G
of one of the zones that the corresponding spider inhabits in the type-MSG, G'.

Running Example (contd.). For the type-MSG G’ in Figure 3(top) a Car
can be in state either Running or TollParking. The instance-MSG Gy (bottom-
left) conforms to G', while G (bottom-right) does not, as there is no possible
conformance morphism providing a suitable image in G’ for the inhabits edge,
as this should touch a zone inside a curve named ‘STATE:TollParking’, accord-
ing to Definition 1, but such a zone does not exist in G'. Note that G1 does
not have a ‘STATE:TollParking’ curve or, a fortiori, a zone inside it, while G2
does. In either case, this is irrelevant to establishing (or not) the conformance
morphism, since no spider in Gy or Go inhabits a zone inside this curve.

[cune | inhabits [spider
[name="STATE:TollParking" | [name="TYPE.Car'|

name="STATE:Running"

(a) Type-MSG G'.

[spider | [curve | [spider
[name="INSTANCE:Car.CD263NK | [name="STATE TollParking" | [name="INSTANCE:Car.CD263NK" |

inside . universe

inside

Cure
name="STATE FreeParking"

(b) Instance-MSG G1. (¢) Instance-MSG Ga.

Figure 3: A type-MSG G’ (top) and two instance-MSGs, one conforming to G’ and one not.

As depicted in Figure 4, the SD families are considered as a front-end visual
language, utilised for modelling the evolution of some system and the presen-
tation to the end-users, whilst the SG families are considered as the back-end
underlying model which can utilise the advanced graph based machinery for
analysis purposes. In this paper, we adapt and extend the machinery of SGs to
develop and use Modelling Spider Graphs (MSGs).

Representing Policies. In [1], MSDs were extended with temporal information
to Timed MSDs (TMSDs) in the context of the definition of temporal policies.
We give here a more general definition of policy, which preserves an implicit
notion of step progression.

Definition 2 (Policy). A policy on MSDs is a triple I1 = (Val,Trg,T') where:

User Perspective Machine Perspective

Spider Diagram (SD) Spider Graph (SG)

‘ Modelling Spider Diagram (MSD) ‘ ‘ Modelling Spider Graph (MSG) ‘

|

?

‘ Timed Modelling Spider Diagram (TMSD) ‘ ‘ Timed Modelling Spider Graph (TMSG) ‘

Figure 4: A conceptual view of the relations between the formalisms discussed above: the SD
families are considered as front-end user-facing visual languages whilst the SG families are
considered as a back-end underlying formalism allowing reasoning based on the theoretical
and practical tools developed for graph transformations.

e Val is a validity constraint, indicating the invariant context in which the
policy must hold.

e Trg is a type-SD, called the trigger, which establishes the applicability of
the policy.

o T is a collection of constraints composed of a set I, expressing local con-
ditions on the admissible state transitions for an instance subject to the
policy, and a disjoint set 'Y, expressing global constraints on the relations
between elements in different states.

In this paper, we express Val using the Object Constraint Language (OCL)
syntax [7] and I by sequences of type-SDs, where each pair of consecutive
diagrams depicts admissible state transitions in the application domain.

When type-MSDs are put in a sequence (df,...,d.,), the difference between
two consecutive type-MSDs d; and d;, ; describes the admissible evolutions of a
sequence of conforming instance-SDs, which is called a story. Moreover, if the
habitat of a type-spider s’ in d} comprises more than one zone, also evolutions are
admissible in which the habitat of an instance-spider s for that type alternates
between any zone in the habitat of s’. Hence, a subsequence o of instance-SDs,
in which spiders change states in consecutive diagrams but continue to occupy
states within the habitats of the corresponding spiders in dj}, can be part of an
admissible evolution, with all of the instance-SDs in o conforming to d}. Note
that if the habitat of a type-spider s; in dj,; extends the habitat of s; in dj,
when checking admissibility, we consider the maximal subsequence of instance
SDs that conform to d;, only checking conformance to d;» 41 When a spider of an
instance-SD inhabits a new zone (i.e. one in its habitat in d’; but not in d}).

Definition 3 (Conformance to a Policy). A sequence (di,...,d,) of instance-
SDs conforms to a policy II if: (1) the constraint Val is satisfied during the

10

whole sequence; (2) each d; satisfies all of the constraints inT'9; (3) dy conforms
to Trg; (4) each diy1 differs from d; in the habitat of some spider, in a way that
complies with the conditions in T'. Such a sequence of instance-SDs is called a
story for the policy.

In [1], a policy’s Val was given as temporal interval over which the policy
was in place, the trigger was additionally annotated with a temporal variable
(WHEN) which recorded the point in time at which an instance started being
subject to the policy, and conditions were expressed as sequences of MSDs, each
annotated with temporal constraints indicating the time intervals at which the
instance could/must conform to that specific MSD. In this paper, in order to
focus on the relation between resources and policies, we dispense with time
annotations. The timed version of the theory can be immediately recovered and
integrated with the resource perspective.

Figure 5 provides an informal overview of the general notion of policy adopted
in this paper. We view a policy as a collection of constraints: (i) a validity con-
straint which determines when the policy should be enforced, within a wider
context of the system as a whole; (ii) an activation constraint which specifies
the conditions under which an instance triggers the activation of the policy; (iii)
a set of global constraints which specifies constraints on all instances within the
system; (iv) a set of local constraints that specify the permissible evolutions of
instances. In [1] we realised the specific instance of policies for MSDs, with a
notion of conformance of sequences of instance-SDs to sequences of type-SDs
established, whilst in this paper, we realise the analogues with MSGs.

Policy On MSDs ‘ ‘ On MSGs ‘

Each
instance [-» Validity (contextual invariant) oCL ocL ‘
conforms Activation (activation state Type-SD Type-SG
[constraint) —
expresses
|~ Global (constraints on permissible Instance-SD Type graph for
states of instances) meta-model instance-SG
Initial Evolution (constraints on Sequences Sequences of
instance permissible evolutions from initial of Type-SDs Type-SGs
conforms activation state)
Each -
instance Entire
conforms sequence conforms conforms
conforms
Instance evolution as a — Sequence of Sequence of
sequence of state transitions expresses | Instance-SDs Instance-SGs

Figure 5: An informal overview of the general notion of policy adopted, the idea of instance
evolution conformance to a policy, and their expressions as MSDs or MSGs.

Running Example (contd.). Figure 6 shows a simple parking lot policy,

11

<

validity= FreePlace.alllnstances()->size()>=0.3*TolIPlace.allInstances()->size()

FreeParking

Freelar!ing Running Running ToIIPas';lng Running

Figure 6: A policy defining admissible transitions between parking or running states of a car.

ch

adapted from [1]. A car becomes subject to a policy when it enters the state
of FreeParking, from which it can only transition into the Running state. It
can then transition to the TollParking state, and alternate between the latter
two states. Finally, the car will be in the Running state again, from which a new
transition to the FreeParking state will activate the policy again. The policy
implicitly states that a car cannot enjoy free parking again if it has not transited
through toll parking, and that no direct change of state from FreeParking to
TollParking (or vice versa) is possible. In the version of [1], temporal anno-
tations constrained the duration of free parking, and the amount of time before
being able to return to it. The validity constraint indicates that this policy is in
place only if there are sufficient number of free parking places, with respect to
the number of toll parking places.

In the MSG setting, we describe I'" as a series of partial morphisms between
the type-MSGs corresponding to the type-MSDs in I'!, where each morphism
preserves Spider nodes, maps Curve nodes to Curve nodes with equal names
and preserves the inside relation for the images of Zone nodes, as expressed
in Definition 4, where SP(G), CV(G) and ZN(G) denote the sets of Spider,
Curve and Zone nodes in a type-MSG G, INS(G) denotes the sets of inside
edges, and spNms(G) denotes the set of names for spiders in a MSG G.

Definition 4 (Policies in MSGs). Let GSEQ = {G!,...,G.} be an ordered
collection of type-MSG's (possibly with repetitions, but such that G # G, for
i=1,...,n—1), where spNms(G}) = spNms(Gj ;) fori=1,...,n—1. Let
MSEQ = {m' : G} —» Gb,....m""' : G/,_, — G | Gi € GSEQ} be an
ordered collection of partial morphisms between consecutive elements of GSEQ.
Then, MSEQ defines a collection T' of local constraints in a policy II iff the
following hold for alli € {1,...,n—1}:

1. Vsp € SP(G}) [(mi,(sp)) # 0) A (m? (sp)).name = sp.name].
2. Vev € CV(GS) [mi,(cv) # 0 = mi,(cv).name = cv.name)].

3. Vzn € ZN(G3) ‘
[m},(zn) # 0 = Ve € INS(G})[zn = src(e) = miy(e) # 0]].

The elements Val, Trg, and I'Y in the definition of Il are direct representations
in terms of graphs of the corresponding elements for MSDs.

12

Note that, due to the definition of morphism, the images of edges have their
sources or targets in the corresponding images for zones and nodes.

Conformance of a sequence of instance-MSGs to the local constraints in a
policy, as defined by a series of morphisms between type-MSG, requires that each
square composed with the corresponding conformance morphisms for individual
MSGs commutes, as expressed in Definition 5.

Definition 5 (Conformance of instance-MSGs to a policy). Let GSTOR =
{G1,...,Gn} be an ordered collection of instance-MSGs (possibly with repeti-
tions, but such that G; # Giy1 fori=1,...,m—1). Let MSTOR = {k' : G; —
Goy... ., k™1 Gy — Gy | Gi € GSTORY} be a collection of partial mor-
phisms between elements of GSTOR with the same preservation properties as in
Definition 4, but such that for each morphism there is at least one spider whose
inhabits edge is not preserved. Let ' be a collection of local constraints in a
policy 11 as per Definition 4. We say that MSTOR conforms to I (or defines
a story for I1) iff Gy = T'rg and the following hold for alli € {1,...,m}:

1. G; EVal and G; = for each v € T'9.

2. 3G’ € GSEQ such that G; conforms to G via a morphism gf and G;_1 (if
it exists) conforms either to G'; or to G’y and Gyy1 (if it exists) conforms
either to G; or to G;‘+1' Furthermore, with reference to Figure 7:

(a) If Giy1 conforms to G then the triangle given by the morphisms
g{,ki7gg+1 commutes.
(b) If Git1 conforms to G’ then the square given by the morphisms

e
gl k', ggil ,m; commutes.

and similarly for the triangles or squares formed with the morphisms be-
tween G;_1, Gj, G; and G;-_l,

/ mi 1
G —— J+1

/
G ‘
j J
gi Jit1 ; i1
g; Tit1
i

) k
k' Gi+1 G —— Gi+1

Gi
Figure 7: Relations between conformance matches and morphisms in a story.

The above material enables us to present allows us to present an abstract
syntax for a specific version of SDs, whose concrete syntax was presented in [8],
where zones and curves are necessary to define possible states and conformance
is neatly expressed via Definitions 1, 4, and 5, rather than through the previous
definition of an ad hoc morphism.

13

3. Resource Model

We refer to a meta-model of resources, expressed as the UML Class Di-
agram of Figure 8, where the meta-type Resource, with attribute name, has
subtypes AtomicResource, EvolvingResource and BulkResource. Types de-
rived from AtomicResource do not show any inner structure, types derived from
EvolvingResource are associated with some attribute to specify the state of
their instances, while types derived from BulkResource have a numeric attribute
quantity, to reflect the amount available for consumption. The meta-model
states the possibility of relations among resources through the meta-association
related. Specific domains of resources are represented as type graphs where
node types are instances of the meta-types above and edge types are instances
of related. Resources are modelled as shareable among different elements or
not, with isShareable () testing this property.

related

. <<metaciass>> 1.7 =<=metaclass>>
EvolvingResource <> StructuralFeatura
<<metaclass>>
uanti 1
Resource <<metaclass>> Quantily
name : string < AtomicResource ishlumeric
+isSharaable() | boolaan
>> | H
BulkResource

Figure 8: The UML metamodel for the definition of resource domains.

Atomic resources are those which are produced or consumed in a transforma-
tion, and cannot be shared within transformations. However, if several copies
of the same resource exist, then a number of transformations can occur in par-
allel as permitted by the number of resources. An example of modelling based
on atomic resources is that of an assembly line where individual components
are assembled into some piece [9]. In this case, one would not be interested in
the properties of the components but only in their availability for the assem-
bling process, and, conversely, only in the fact that some piece is produced.
Evolving resources can be created or consumed by some processes, in the same
way as atomic resources are, but their usage in a process can depend on their
state. Also, they can be involved in processes which preserve their existence, but
change their state. We will use resources of this type to model the availability
of parking places, also considering additional attributes for special applications.
Bulk resources are concentrated in space and a fraction of their total number can
be consumed or produced during a transformation. An example is the supply
of nutrients available in bulk.

4. Resource-aware Transformations

Annotations. To connect MSGs with resources, we use annotations [4]: first-
class entities enriching an application domain AD with nodes from a contextual

14

domain X. In [4], we used annotations to express contextual constraints on
elements of the application domain and provided a number of constructions for
deriving application conditions on transformations in the application domain.
Annotations can be flexibly added and removed. Here, we use annotations to
model relations between elements subject to a policy (i.e. from the application
domain) with the resources (from the contextual domain) needed to conform to
the policy. An annotation gives rise to a pattern of the form o = d +— a — x,
with: d a node in AD, a a node of an annotation sort, and x a node in X, with
+— and — suitably typed edges. In this paper we use the annotates With edge
type for a« — x and domain-dependent types for d «— a.

To simplify the presentation, we slightly abuse typing and encode the two
orthogonal type systems (of SGs in general and of the typing induced by type-
MSGs) into one by introducing subtypes of Spider and Curve, according to
the prefixes of the names for their instances. For example, CarSpider will be
used to refer to nodes, s, of type Spider such that typT Nm(s.name) = ‘Car’
(and correspondingly for instances, typI Nm(s.name) = ‘Car’) and StateCurve
will be used to refer to nodes, ¢, of type Curve such that fmlyNm(c.name) =
‘STATE’, adapting the notion of conformance accordingly. We provide a new
construction integrating annotation (and de-annotation) processes in applica-
tion domain transformations, keeping the evolution of resources synchronised
with that of the annotated element.

Resource-aware Transformations. We model the relation between spiders in
MSGs and resources using annotated graphs, and their synchronisation via a
combination of graph transformations and (de-)annotation processes. Given
an application domain AD (the domain subject to the policy), a domain of re-
sources R, and an annotation sort A4, an MSG with resources is a construct
MSGR = (V,E,s,t) where each Z € {V, E,s,t} is the union of components
Z., with ¢ € {AD,R, A}. In particular, (Vap, Eap,Sap,tap) defines an
MSG over AD, Vg is a collection of nodes' from R, and sy : B4 — Vi,
ta: Eqa— Vap UV (so that R plays the role of the contextual domain X).
An edge e € E4 with t(e) € Vg is of type annotates With, while an edge e € E 4
with t(e) € Vap is of some domain-dependent type. Let MSGR denote the
class of all MSGRs. We define specialised versions of the notions of constraints
and rules. An atomic constraint on resources is a morphism ac : P — C, where
P e MSG and C € MSGR.

Running Example (contd.). Figure 9 presents the type graph on which to
type the MSGRs modeling the synchronisation of the evolution of MSGs repre-
senting the state of cars conforming to the parking policy of Figure 6 with the
state of availability of parking places (seen as evolving resources). We rename
node types along the lines indicated above to indicate their admissible interpre-
tations and use inheritance from the abstract type ParkingPlace to indicate
aspects common to each type of parking place resource. The relation between

n this paper we are not interested in relations among resources.

15

the state of the car (as represented by a CarSpider, which inhabits a Zone that
is inside a StateCurve) and the usage of resources is defined via the two con-
straints of the form presented in Figure 10. Parking places are considered as
non-shareable resources and we constrain each car to use only one parking place
at a time, as per the two forbidden graphs in Figure 11.

carPlace — annotatesWith
StateCurve T PlaceAnnotation - .

String name ! {ParkingPiace}
1., Y boolean available

TollPlace”

=
FreePlace

Figure 9: The type graph for the policy example with synchronisation on parking resources.

5]
. - —1 o |FreePlace
TCarSpider |1.CarSplderc|1—|arplacPelaceAnnotatlon| » o ailable=ralse
#inhabits ‘inhabits annotatesyyith
acy - _> 2:Zone
Sinside Alinside
Y
3:StateCurve J:StateCurve
name="FreeParking" name="FreeParking"
P [
1:CarSpider 1:CarSpider C2P ._LTDII.PIace_
car_C2P ple_C2P available=false
4:inhabits 4:inhabits
acy : Y — A 4
2:Zone 2:Zone
Slinside 5inside
J:StateCunve 3:5tateCunve
name="TollParking" name="TollParking"

Figure 10: The two constraints relating the state of a car with the usage of parking resources.

As discussed in [2], rules can be derived from a policy II to model the trans-
formations which bring to the creation of stories conformant to II. Basically,
one creates two types of rules: (1) for each graph G; in GSEQ and for each
spider sp in SP(G;) a set of rules to allow a spider of type tpT Nm(sp) to
alternate its habitat between all states inhabited by sp, and (2) for each mor-
phism m; : G; — G,;+1 in MSEQ and for each spider sp in SP(G;), a set of
rules to allow a spider of type tpT'Nm(sp) to transition from any of the states
sp inhabits in G; to each of the states that m;(sp) inhabits in G;41. For ex-
ample, Figure 12 shows two rules derived from the policy of Figure 6, namely
that allowing the transition from the free parking to the running state (derived
from the first morphism) and that for transitioning from running to toll parking
(derived from both the second morphism and the third graph).

16

CarSpider CarSpider ParkingFlace ParkingFlace
Y Y

carAlace carPlace annolatesWith annotate sWith

PlaceAnnotation PlaceAnnotation

FlaceAnnotation

PlaceAnnotation

annotatesWith annotalesWith

ParkingFlace

Figure 11: Two forbidden graphs for the annotation of cars with parking places.

inhahit

2.carSpider—#1:zane] 2-CarSpider
Tiinside
Y inhahits

4:StateCunve

FalalRulllie 4:5tateCurve
name="FreeParking" %

name="FreeParking"

Binside Binside
: o | SiStateCurve 5:5tateCurve
3Zone » m — e e
name="Running name="Running
Tiinside [Tinside [4°
27one > 3.Stat??uwe __ |:2:Zone > 3.Stat??uwe &
pFEbits name="Running name="Running
1:.CarSpider > 1:CarSpider
inhabits
Sinside Y 2ing
47one §:5tateCurve 4'Zon_e| Ny 5:stateCurve
- name="TollParking" . e name="TollParking"

Figure 12: Two rules for allowing transitions conforming to the policy of Figure 6.

An MSGR transformation rule is a DPO rule (L LKL R) for which pro-
jections on AD, R, and A provide, respectively, an MSG transformation rule
(Lp + Kp — Rp) and a resource transformation rule (Lg + Kgr — Rg), with
additional annotation components L4, K4 and D4, while the components
la, 74 of the morphisms [and r restricted to the domains and images of s 4,t4
relate to annotation processes. In particular, annotations in L4 and not in
K 4 define a de-annotation process, while annotations in R4 and not in K4
define an annotation process. All in all, an MSGR transformation rule mod-
els the synchronised evolution of the application and resource domains?, with
synchronisation expressed through annotations.

The construction is such that if the synchronised rule is applied to a “cor-
rectly annotated” configuration, i.e. one satisfying some resource constraint,
then the resulting configuration has annotations which were only valid in the

2In this paper we use Spider Graphs only for modelling the application domain, with states
of resources modeled through attributes, rather than via state curves.

17

source graph removed, and annotations which become valid in the target graph
added. We need to indicate the transformation of the state of availability for
the parking place in the rule for two reasons: (1) since parking places (and in
general resources) can have an evolution which is independent from their use
with respect to a policy, a parking place may be unavailable even if there is no
car currently parked in that place, for example due to works in the area it is
located, so that we need to make sure that a place in the correct state is used;
(2) the change of state in the parking place must be contextual with the change
of state of the car, either for acquiring or for releasing the resource.

Figure 13 shows the construction of a synchronised rule out of a single ap-
plication domain rule, L4p + Kap — Rap, and a collection of relevant con-
straints and resource rules, ensuring that the application of the rule preserves
conformance to the policy. We identify left-synchronisation (left of Figure 13)
and right-synchronisation (right of Figure 13) processes, based on the obser-
vation that application domain rules concern changes of zone of single-footed
spiders, constraints refer to the presence of feet in a zone and the consequent
annotation with a resource, while resource rules concern change of state or cre-
ation or deletion of resources. Intuitively, a left process is concerned with a
constraint whose premise has to be present in a graph to which the application
domain rule can be applied, but which ceases to be present after rule applica-
tion. Conversely, a right process is concerned with a premise which must be
present after the rule application, but which was not present before.

~ Each left process involves a constrainst ¢; : P; — C; and a resource rule
Ly, + K% — R7,, such that: (1) P; has a non-empty maximal intersection®
X} with the left-hand side, L 4p, of the application domain rule; (2) C; has a
non-empty intersection X? with the left-hand side of a resource rule, L;z; and
(3) there is a replica of the annotation pattern « relating the images of X! and
X2 in O, via ¢; o 2l and x2, respectively. In particular, due to the structure
of rules and constraints, where rules contain only elements from the application
domain and resources can only appear in the conclusion of a constraint, X}
consists of a graph specifying that some types of spider can be in certain states,
while X? concerns the properties of some resource. Then, the left-hand side of
the synchronised rule is constructed as colimit of L 4p, C; and L;a via X} and
X? (informally, this is the union of all the elements present in these graphs, up
to identification of elements present in their intersections). Then K7 and R} are
constructed as pushouts of the corresponding components through their empty
intersections and the rule is completed via the morphisms from K deriving
from the universal property of the pushout.

Symmetrically, in a right process, one looks for non-empty maximal intersec-
tions Y1 and Y;2 of the premise and conclusion of some constraint ¢, : P, — C,,
with R4p and the right-hand side R% of some rule in the resource domain, re-

3By intersection Gg of two graphs G and Gz, we mean here that Gg is such that there
are two injective total morphisms i1 : Go — G and i3 : Go — G2. By mazimal we mean
here that any other G with this property has an injective total morphism i : G — Gp.

18

spectively, under conditions analogous to those above. The right-hand side of
the resulting rule, R]" is obtained again via a colimit construction and the
rest of the rule is obtained by the pushouts of the L and K components along
their empty intersections, component-wise. All the resulting rules (i.e. those
produced by all the left and right processes) are then composed via a colimit
construction along the original application domain rule.

«t Lap < KAD — Rup Lap<——Kup = Rup 4!

TR T T,

N

PEC—ILl<<K/po®) Rro0 O roL™ § pOK"—=>R"<C,<P
22\ 2\
| T/ 1/ \ \T P
% Yr m

2\ /
w L <— K ——> R Ly <~——Kp — Rp

Figure 13: Left and right synchronisation of rules through constraints.

Running Example (contd.). Considering the two rules of Figure 12, in rule
(a) the evolution of the car must be synchronised with the evolution of the free
parking place which was occupied by the car and which becomes available to other
cars following the application of the rule.

In order to ensure synchronisation for the first rule, we follow the left-
synchronisation process, as shown in Figure 14, where the constraint on free
parking (acy from Figure 10), the rule for modifying the car state (Figure 12(a)),
and the rule for changing the availability status of a free parking space from oc-
cupied to available are placed in positions corresponding to those of Figure 13.
We have omitted to represent the empty intersections. As a result, in the
first rule, the previously occupied place becomes available so that the existing
PlaceAnnotation is deleted, together with its adjoining edges.

On the contrary, in rule (b) from Figure 12, the car was not originally associ-
ated with any parking resource (a negative application condition could be used to
ensure this), so an annotation node must be created and the resource part must
only describe the evolution of the toll parking resource. This is achieved by ap-
plying to rule (b) a right synchronisation process (not shown here) with the rule
for the evolution of a toll parking place from available to occupied, considering
the constraint ace from Figure 10 on toll parking.

The resulting rules are shown in Figure 15.

Running Example (contd.). In the Fiumicino policy, a different policy exists
for the departure area, differing from that for the arrival area discussed in Sec-
tion 1 on the management of free parking. In the policy for the arrival area, the
ticket for overstaying the free period has to be paid when leaving the zone (and
the area), with the car having already left the parking place. In the departure
area a ‘Kiss €9 Go’ zone is established, where extra time can be bought at any
moment during the allowed fifteen minutes. In this case, the car’s registration
plate is manually entered by the owner, with the car already occupying a space.

19

JSujuuny ssuey|

BE|EJ=8|QENEAE)

L

SUjuun =S wey|

BpISUIT L

Pupyedee)d,=swey|

BPISULLL

Lumuny =ausey

UL

uppsegodg =awey

BAINJEEIS G

#5IE=A19 E

TN

DUMIE B8 sELEY

Figure 14: Derivation of the synchronised rule for the transition from free parking to running.

20

[3:CarSpider]a—{PlaceAnnotation 3CarSpider A Ll

tarPlace available=true
inhabits annotatesiit inhabits
Y 11:inside 11:inside
1.Zone 2:FreePlace
availahle=false

6:StateCunve G:5tateCurve
name="FreeParking" % v name="FreeParking"
12inside @lﬁm:inside
7:StateCunve 7:5tateCunve
name="Running" name="Running"

(a) The rule for transition from free parking to running.

> 3:Stale?ur\fe — 27one > 3.State?ur\re __
ginsige ~ |name="Running' | 2zone e rameRuniing |

inhghits >

carPlace annotatesWith
1:CarSpider |1'CarSpiderk—'PlaceAnnDtatiDnI—
inhahits v
Sinside F Yinside
17 o |5:State Curve B:TollPlace 4'Z‘0n_e| . [5:statecune | [eTolPlace |
Zone *name="TollParking" available=true I_—l "|name="TollParking'| |available=false|

(b) The rule for transition from running to toll parking.

Figure 15: Rules for synchronising evolution of parking state with parking place availability.

As a consequence, the car performs a transition from free parking to toll parking,
while the parking place retains its state of being occupied, acquired when the car
had stopped running to start free parking. To model this policy, the type graph
of Figure 9 is refined to include a Kiss€GoParkingPlace and the states for the
car are differentiated to express whether the car is in the departure or in the
arrival area. The Tt component of the policy for the departure area is therefore
defined by a sequence which allows a transition from free to toll parking. The
rule expressing this transition is synchronised with the identity rule preserving
the state of being occupied for a KisséGoParkingPlace, since in both the left
and right synchronisations the same state for the place appears in the conclusion
of the relevant constraint, irrespective of the car’s parking state (free or toll).

Synchronisation over Properties of Spiders. Since attributes, beyond state spec-
ifications, may be relevant for resource allocation, we consider now curves, c,
for which fmlyNm(c).name = ‘ATTRIBUTE’ and adopt an analogous convention
for subtyping attribute curves with an indication of the represented attribute,
as extracted by attr Nm. Hence, we only report in the name attribute the rep-
resentation of the value component (as would be obtained via attr Nm) for that
attribute. However, we maintain the state as the designated feature with which
the policy is concerned.

Running Example (contd.). Figure 16(a) presents the type graph for situa-
tions where parking places can be allocated only to cars not exceeding a certain

21

length. In this case, attribute curves represent car lengths, while parking re-
sources are endowed with a property describing the mazimum admissible length
for a car occupying that place. Figure 16(b) shows how the constraints relat-
ing parking states with parking resources are extended when considering lengths.
The extension is twofold: (1) we represent the length attribute curve in the
premise and the mazLength property of the parking resource in the conclusion;
(2) we state conditions on the attribute values. The constraint states that if a
car of length Float.parseFloat (Z) is in a parking state (i.e. one which is not
‘Running’) 4, then its length must be compatible with (i.e. less than) the value
Y of the maxzimum length for the occupied parking place. Due to inheritance, this
represents two constraints, one for each type of parking place. Rules analogous
to those of Figure 15 are then built by extending the construction of Figure 13 to
incorporate the condition on length. In Figure 16(c), we show the extended ver-
sion of the rule in Figure 15(b). Note that the construction includes a condition
on the mazximum length of the toll parking place that becomes occupied.

The example can be extended to take into account other types of constraints
on resource usage. For example a car could have a property describing the type
of fuel (e.g. petrol or propane); then propane or methane fueled cars are
allowed to park only in parking places with no roof above them, for which a
boolean covered property can be provided when describing parking resources.

Synchronisation over Multiple Resources. Conformance to a policy could de-
pend on more than one type of resource. We identify three cases in which such
a dependence can occur: (i) a state transition changes the availability of more
than one type of resource; (i7) a state transition uses some resource, but requires
the availability of some other resource of a different type; (éiz) the usage of some
resource is constrained by the availability of some other type of resource.

As an example of the first case, consider a variant of the classical prob-
lem of the dining philosophers, where each philosopher can be either tranquil,
thirsty, hungry, drinking or eating, and resources are represented by bottles (for
drinking) and forks (for eating). In order to move from drinking to eating a
philosopher must release the bottle (de-annotation process) and grab a fork
(annotation process). The two processes are sequentially independent so that
the order in which they are executed is irrelevant (see Theorem 2 of [4]) and
require simultaneous synchronisation with the two rules modelling the changes
in availability of the two resources.

The parking policy provides an example of the second case: moving to the
running state for a car would require that the Petrol bulk resource associated
with it had a non-zero value for the quantity property. By abstracting from the
negligeable consumption associated with starting the engine no synchronisation
is needed with respect to the Petrol resource.

The third, and more complex, case typically occurs when access to the re-
sources of a given kind is constrained by the availability of resources of a different

4We use an abstract version, to be specialised for the possible values of X

22

* carPlace .
LengthAttribute Curve PlaceAnnotation™ annotatesWith
T 0.1 o1]

StateCurve °| [AttibuteCurve v! {ParkingFlace}

- - P boolean available|
String name | |String name CarSpider float maxLength

0.7
J? nhabhits
Finside Ty FreePlace "
S [FresPiace "]

[Zone ™

TollPlace™

String narne [11%*

(a) The type graph for the policy example with constraints on length.

FarkingFlace
| 1:CarSpider |-1—| PlaceAnnotation I—P available=false
Ginhhbits tarPlace annotatesWith |MaxLength=¥

1:.CarSpider

fiinhabits

Ginside Finside B inside Tinside
Y : v
3:StateCurve | |4:LengthAttributeCurve I StateCumve 4 LengthAtiribute Curve
rame=X Name=2 name=x name=Z

X!=‘Running’ && Float.parseFloat(Z)<=Y

(b) The abstract version of the constraint for parking with conditions on length.

TTollPlace TTolPlace
2:CarSpider ava|lfbleT:}A$ |2'CarSp|derHP\aceAnnmatlnn }—F available=false
inhabits max sngh inhabits i L annotatMaxLength=Y
11:inside e inside 1Zinside T Zone 10inside
one ;

&:LengthAttribute Curve
nam

1Zinside

11inside
10inside

5.StateCurve
name="TollParking" name="Running"
Float.parseFloat(Z)<=Y1 && Float.parseFloat (Z)<=Y2

(c) A rule for transitioning from running to toll parking with conditions on length.

Figure 16: Synchronisation over spiders’ properties: conditions on lengths.

kind, so that one annotation process is dependent on the other. We model such
situations by multiple sequential annotation processes. Due to the dependency
relation between these resources, each annotation process is considered as oc-
curring on the domain resulting from the previous annotations.

For example, a place could be used only by cars whose owners have some
privileges. Figure 17(a) shows the type graph on which to model such a policy,
where Privilege is a type of atomic resource, whose instances are specifically
created for a given entity. The isPremium property is inherited by all special-
isations of ParkingPlace. A constraint, not shown here, states that premium
places (for which isPremium is set to true) are only available to cars with
Member privileges. Figure 17(b) shows the abstract version of the rules mod-
elling transitions from the running state to the state of occupying a premium
place (be it free or toll). The positive application condition, denoted with PAC
(of which we show only the projection concerning privileges), requires that a

23

car moving to occupy a premium place is already annotated with the suitable
privilege, as required by the constraint.

annotatesWith

PrivilegeAnnotation ™ PlaceAnnotation ™

1 0.1 0.1
annatatesWith carPrivilege carPlace
'y + Zone'}‘- 0¥ 1 {ParkingPlace}
Privilege TF 1 A [boolean available [
String privilegeKind '”Szdii |nhab|ts|—|CarSp|der boolean isPremium
w

StateCurve ~ +
String name TollPlace

(a) The type graph for the policy example with privileges.

PAC

|Prwi|egeAnnUtat\un I—P{Q:CarSpider‘
carPrivilege
annatatesWith

Privilege
privilegekind="Member'

RHS o
Binside T
L name="Running
inhabits 6-ParkingPlace % PrivilegeAnnotation
available=true - \ 8:FarkingFlace
2-CarSpider isPremium=true 2.CarSpider carPlac —Wavailable=false
inhdbits nnotateswitn | =
A . isPremium=true
Sinside inside

@ o |4:StateCurve

4:StateCurve
= name="PremiumParking" name="FremiumParking"

(b) The abstract version of rules for parking with privileges.
Figure 17: Synchronisation over multiple resources: parking with privileges.

As in the case of a bulk resource, not resulting in a state transition, no syn-
chronisation is needed for atomic resources which do not get created or destroyed
as a consequence of a state transition. In these cases, we can use a construc-
tion from [4] where a constraint on the annotations required by the new graph
resulting from the application of a rule induces an application condition to be
checked on the L component of the domain rule. Conditions on attributes can
be orthogonally integrated with any of the three cases described above.

5. Related Work

Forms of synchronisation between different domains are typically expressed,
in the graph transformation field, via Triple Graph Grammars (TGGs) [10],
where two different graphs (called source and target graphs) are related by a
correspondence graph, through graph morphisms.

With respect to triple graphs, annotations offer the possibility of dealing with
multiple domains, and to dynamically change the connections between elements,
which is not considered as the trace of a transformation, but as additional
information associated with an element. A recent proposal extends TGGs to

24

graph diagram grammars, in which multiple domains can be made to correspond
in different ways, taking care of the overall consistency of the relations [11].

Addressing a similar problem, the Query-View-Transform (QVT) approach
to model-to-model transformation uses trace elements to maintain the corre-
spondence between elements of different domains [12], making TGGs a suitable
candidate for implementing the QVT specification.

These approaches focus on managing correspondences between related ele-
ments, whereas a distinguishing feature of annotations is the possibility of dy-
namically creating and deleting relations between elements in different domains.
Moreover, they distinguish between correspondence and application domains,
but not between elements and resources.

Synchronisation of the evolution of related models via TGGs has been stud-
ied by Hermann et al. [13, 14], also with reference to conflicts between trans-
formations in the two domains and constraint propagation across models. A
novel feature of our approach is the possibility of expressing constraints and
synchronisation across an arbitrary number of domains.

In the context of graph transformation based modelling, other different ap-
proaches for policy modelling were proposed. Aspect-oriented graph grammars
permit the implementation of global policies on the application of graph trans-
formation systems given by DPO rules [15]. Aspects, expressed as second-order
transformations or flattened into AGG models [16], can use attributes of graph
elements to influence the application of grammar rules, but there is no explicit
resource modelling or evolution of resources independent of other graph entities.

In [17], graph constraints and rules model policies in the context of roles
and action, allowing their construction, refinement and abstraction and a sim-
ple verification framework on Boolean formulas with a previous-time operator.
Resources are not explicitly modelled. Lastly, [18] provides a thorough coverage
of the use of constraints to generate application conditions on graph transfor-
mations, but it does not address the use of constraints for process synchronisa-
tion. Our use of constraints distinguishing between application and contextual
domains, matches some particular cases from [18] and facilitates analysis of
decidability and conflicts.

In the UML world [19], two types of diagrams can be used to represent infor-
mation analogous to that given by MSGRs. Statecharts (in particular in the pro-
tocol version) are the formalism of choice to model state evolution, and guards
on transitions could be extended to integrate information on resource availabil-
ity. However, our approach provides three major advantages: (1) graphs in
a policy can refer to configurations of elements (spiders), whereas UML Stat-
echarts refer to single model elements; (2) synchronised evolution of resources
can be represented together with evolution of elements subject to the policy,
which would require the use of explicit mechanisms of communication between
diagrams, or between concurrent regions; (3) an element in a state can undergo
the same evolution, irrespective of how it reached the state. On the contrary,
in a policy the same state can occur several times, each time with different pos-
sible evolutions, depending on the currently active constraint from I'!. Timing
diagrams mitigate the last problem, by showing possible evolutions along time

25

in a single diagram, and they allow multiple lifelines in the same diagram, with
explicit indications for synchronisation. However, they do not support a distinc-
tion between elements subject to a policy and resources. Modeling the evolution
of several elements in a single diagram may may lead to unwieldy results, while
MSGRs localise the information relevant to each given step in a policy.

6. Conclusions

We have presented an approach to modeling resource-aware policies, in which
the ability of a system to conform to a policy depends on the availability of
resources. We have modelled the domain of elements subject to a policy as
Modeling Spider Graphs (MSGs), a novel abstract representation of the dia-
grammatic language of Modeling Spider Diagrams, allowing the integration of
diagrammatic reasoning and model transformation, while resources are repre-
sented as nodes in some domain. The allocation of a resource to an element from
the policy domain is realised via annotations. In this setting, we have shown
how to synchronise evolutions of elements and policies exploiting constraints
modeling the policy/resource dependency, based on a formal construction, and
we have considered the case of synchronisation on multiple resources.

Spider Diagrams are a straightforward enough notation to be usable as a
front end notation for stakeholders, whilst at the same time being entirely for-
mal objects with precise semantics. At the back end, we consider the natural
abstract representation of Spider Diagrams as attributed typed graphs, thereby
permitting access to all of the associated facilities and tools already available.
The extension of the Modelling Spider Diagrams framework to account for re-
sources is an important step forward in providing sufficiently robust machin-
ery. Whilst the basic underlying approach brings together the diagrammatic
logic world of Spider Diagrams with the graph transformation world via Spi-
der Graphs, we extend this further into the modelling context, developing the
required theory for the extension to policy specification, and providing an inte-
gration of the approach with the framework for annotations bringing together
for the first time the three different strands of research. We have presented the
new integration with the notation of annotations at an abstract level, which
can then be realised in different ways at the concrete level. How to most ef-
fectively realise notational extensions incorporating the annotation concepts is
the subject of orthogonal ongoing work; for instance, we have proposed the
use of different forms of colouring to clearly differentiate between states and
attributes [20], or of annotation edges in [20, 8].

The treatment has considered only the evolution of resources as related to
the domain policy. Future work will consider also independent evolution of
resource policies, so that they have to be represented via MSGs as well. In
particular, repair actions must be activated when a resource is destroyed, or its
allocation removed. Moreover, the synchronisation machinery will have to be
extended to consider the case of simultaneous evolution of different resources,
as well as the case of more complex constraints.

26

[1]

[10]

[11]

[13]

[14]

[15]

P. Bottoni, A. Fish, Extending Spider Diagrams for policy definition, JVLC
24 (3) (2013) 169-191.

P. Bottoni, A. Fish, Policy enforcement and verification with Timed Mod-
eling Spider Diagrams, in: VL/HCC, 27-34, 2013.

P. Bottoni, A. Fish, F. Parisi-Presicce, Spider Graphs: a graph transfor-
mation system for spider diagrams, Software and System Modeling 14 (4)
(2015) 1421-1453.

P. Bottoni, F. Parisi Presicce, Annotation processes for flexible manage-
ment of contextual information, JVLC 24 (6) (2013) 421-440.

H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic
Graph Transformation, Springer, 2006.

J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, At-
tributed graph transformation with node type inheritance, TCS 376 (3)
(2007) 139-163.

OMG, Object Constraint Language Version 2.4, Tech. Rep. formal/2014-
02-03, OMG, 2014.

P. Bottoni, A. Fish, A. Heuiner, Annotating Spiders with Resource Infor-
mation, in: Proc. VL/HCC 2014, IEEE Computer Society, 33—40, 2014.

J. de Lara, H. Vangheluwe, Automating the transformation-based analysis
of visual languages, Formal Asp. Comput. 22 (3-4) (2010) 297-326.

A. Schiirr, Specification of Graph Translators with Triple Graph Gram-
mars, in: WG’94, vol. 903 of LNCS, 151-163, 1994.

F. Trollmann, S. Albayrak, Extending Model to Model Transformation
Results from Triple Graph Grammars to Multiple Models, in: Proc. ICMT
2015, vol. 9152 of LNCS, Springer, 214-229, 2015.

Object Management Group, Meta Object Facil-
ity (MOF) 2.0 Query/View /Transformation (QVT),
http://www.omg.org/spec/QVT/1.1, 2011.

F. Hermann, H. Ehrig, C. Ermel, F. Orejas, Concurrent Model Synchro-
nization with Conflict Resolution Based on Triple Graph Grammars, in:
FASE 2012, vol. 7212 of LNCS, 178-193, 2012.

H. Ehrig, F. Hermann, H. Schélzel, C. Brandt, Propagation of constraints
along model transformations using triple graph grammars and borrowed
context, JVLC 24 (5) (2013) 365-388.

R. Machado, L. Foss, L. Ribeiro, Aspects for Graph Grammars, ECEASST
18.

27

[16] R. Machado, R. Heckel, L. Ribeiro, Modeling and Reasoning over Dis-
tributed Systems using Aspect-Oriented Graph Grammars, in: RULE’09,
vol. 21 of EPTCS, 39-50, 2009.

[17] M. Koch, F. Parisi Presicce, Describing Policies with Graph Constraints
and Rules, in: ICGT’02, vol. 2505 of LNCS, 223238, 2002.

[18] A. Habel, K.-H. Pennemann, Correctness of high-level transformation sys-
tems relative to nested conditions, MSCS 19 (2) (2009) 245-296.

[19] OMG, OMG Unified Modeling Language (OMG UML) Version 2.5 FTF -
Beta 1, Tech. Rep. ptc/2012-10-24, OMG, 2012.

[20] P. Bottoni, A. Fish, A. Heufiner, Coloured Modelling Spider Diagrams, in:
Proc. Diagrams 2014, vol. 8578 of LNCS, Springer, 45-47, 2014.

28

