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Abstract

This paper presents a set of experiments we carried out with, Divago, a system that is an attempt to implement our ideas towards a
computational model of creativity. It is expected to be able to generate novel concepts out of previous knowledge. Here we show its
behaviour with a large dataset constructed independently by other researchers consisting of over 170 nouns (for a project named C3).
Each noun is represented with a syntax that is equivalent to the one adopted for Divago. We apply a two step experimentation procedure,
which starts by ‘‘training’’ the system with ‘‘preferred outcomes’’ and then allowing it to do free generation, constrained by the pragmatic
goal of a given query. We evaluate the results and make a short discussion regarding well-defined criteria of novelty and usefulness. We
also present a comparison with a similar experiment done with C3.
� 2006 Elsevier B.V. All rights reserved.
1. Introduction

Divago aims to implement a set of principles suggested
by our model of computational creativity (see [11]). It is
expected to be able to generate new and useful concepts
out of its knowledge base composed, among other things,
of previously known concepts. Those newly generated
concepts should not consist simply of the composition of
previous concepts, instead it is desirable that they have
an emergent structure of their own. In other publications,
we have been focusing on several aspects of the model,
by defining it formally [12,11], discussing its applicability
to creativity [11,14], demonstrating its performance with
specific pairs of domains [11,13,15]. In this paper, we focus
the experimentation phase,1 with particular validation con-
cerns, namely by using a much larger dataset with concepts
made by others, and evaluating the results according to
0950-7051/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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novelty and usefulness. For both of these evaluating crite-
ria, we propose fairly simple yes/no criteria. A concept is
novel if it is not equal to any from the knowledge base
and it is useful if it accomplishes a set of pragmatic condi-
tions that may be specific to a situation (e.g. it should be a
solid blue object that serves to make food) or a generic
demand for an application (it should be an object with a
single color and a single shape).

The dataset we use was borrowed from Fintan Costel-
lo’s [1] validation work for the C3 model of noun–noun
conceptual combination and it contains over 170 different
concepts. C3 was capable of generating interpretations for
noun–noun combinations, and we also had access to data
from an experiment analogous to the one presented in this
paper.

As we will discuss, our mapping mechanism based on
structure alignment constrains the resulting concepts to
the hybrid and property types of noun–noun combination.
This means, for example, that it can generate ‘‘vegetable
person’’ to be the concept of ‘‘person’’ (the head) modified
by the concept of ‘‘vegetable’’ (the modifier), which could
be an ‘‘inanimate, static person’’. A different interpretation
(that our mapping is not allowing yet) could be that a
‘‘vegetable person’’ is a ‘‘person that sells vegetables’’, or
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2 The predicates stats identify the input domains, rel (A,A, shape,X)
identifies the shape relations in domain A, the findall serves to construct a
list with the shape predicates expected to exist in the result.
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‘‘someone that really likes vegetables’’. These interpreta-
tions (classified as relational because constituent concepts
do not merge or transfer properties, rather there is a
specific relation between them) would demand a different
mapping mechanism.

In the experiments, we seek to understand the behaviour
of the system with regard to our parameters of novelty and
usefulness as well as assessing aspects like predictability
and consistency of the results. Moreover, we want to
observe the role that a specific kind of structures, the
frames, have in the achievement of the results. In general
terms, we think that the applicability of Divago can take
several forms, namely in situations where divergent solu-
tions are welcome. Examples of such are applications in
the domains of arts and games. In fact, we are currently
developing a game environment that applies Divago as
an object generator.

In the second section, the reader will hopefully become
familiar with the aspects of Divago that are important
for the experiments. In Section 3, we will give an overview
of the dataset used. The experiments are the core of this
paper and are presented in Section 4 and the paper is fin-
ished with some conclusions and further work.

We assume that the reader has some familiarity with
Conceptual Blending. This does not mean that we do not
explain the concepts involved, but it may become helpful
to inspect some Conceptual Blending references [3,4,14].

2. The Divago system

The Divago system always works with two input
domains (normally called input domains 1 and 2) and a
generic space domain. Each of these are part of its knowl-
edge base. It starts by establishing a mapping between the
input domains (normally also recurring to knowledge of
the generic domain) and then, with these domains and
the mapping, it tries to generate a fourth domain, called
‘‘blend’’. Domains are our formal realization of
Fauconnier and Turner’s mental spaces [3]. The module
that generates the blend is called Factory and it uses a par-
allel search method to explore the (usually large) search
space. In order to guide itself, the Factory is supported
by the Constraints module, which provides a set of
evaluation criteria. A module dedicated to the Elaboration
of blends, which is fundamental for the emergence of novel
structure, will be present in next developments.

2.1. Knowledge base

The knowledge base is divided into domains. Each
domain has several different types of knowledge: a Concept
Map; a set of Instances; a set of Rules; a set of Integrity
Constraints and a set of Frames. A concept map is a
semantic network that declares the relationships that exist
between specific concepts of the domain (elements of the
mental space, in Fauconnier and Turner’s literature). An
instance corresponds to specific examples of the domain
(e.g. in the domain of ‘‘house’’, a specific description of a
house would be an instance). A rule represents procedural
knowledge that is valid within the domain (e.g. If X has
wings, then it can fly). Integrity constraints are rules with
a false conclusion, i.e., if the premisses are satisfied, then
we say that ‘‘an integrity constraint was violated’’. These
are used to state facts that are not expected to happen
simultaneously (e.g. an object X cannot be solid and liquid
at the same time). Finally, frames are the more complex
structures we use in the knowledge base. A frame
corresponds to a set of conditions associated to a given
meta-concept (this may recall the notion of Image Schemas
[6], well known in the field of Cognitive Linguistics). A
frame can be as concrete as a set of characteristics to iden-
tify a physical object (e.g. ‘‘something made of plastic, with
a roller ball point, used to write’’ can be associated to the
(meta-)concept of pen) or as abstract as a set of directives
for self organization during the blend construction in the
Factory module (e.g. ‘‘a new blend should maintain the
same set of relations that exist in the first input concept’’).
Thus, these sets of conditions may describe specific
patterns that the result should have (e.g. X should have a
specific property), general patterns (e.g. every concept
should have a color, a shape, a name) or abstract guidelines
for the construction of the result (e.g. the result should
have the structure of the first input concept and the ele-
ments of the second). When all conditions of a frame are
satisfied in a concept map, then we say that it accomplishes

the frame.
Frames allow the use of a general purpose programming

language (in our case, Prolog) as well as the language of the
concept maps (binary predicates), projections (in ternary
predicates) and special operators (e.g. op(exists(L)) checks
if the relations or projections in list L are present in the con-
cept map). Below, we show two simple frames. The first one,
‘‘haunted’’, says that something is haunted if it contains
something that causes fear and is magic or mysterious,
i.e., it identifies whether a concept X is haunted.

haunted : propertyðhaunted;X Þ
 containðX ; Y Þ ^ cause effectðY ; fearÞ
^ attributeðX ; ½magic; unknown�Þ

Differently, the frame for ‘‘shape transfer’’ is an abstract
guideline that, if satisfied, transfers the shape of input do-
main 1 to input domain 2, in the result (e.g. in ‘‘necklace
paper’’, the result will be a paper with the circular shape
of the necklace).2

shape transfer : shape transferðA;B;X Þ
 fstatsðdomain1;AÞ; statsðdomain2;BÞ; findall

ðshape=B=X ; relðA;A; shape;X Þ; LÞg ^ fopðexistsðLÞÞg



Table 1
The frames used in the experiments

Frame Description

bframe The blend has the same relations of head noun (although the arguments may differ)
bcore The blend has the same relations and arguments (except those related to function) of head noun
analogy_transfer Transfer all neighbor elements and relations of an element of modifier to the mapping correspondent of head
function_substitution A function from head is substituted by a function of modifier
single_differentiating_feature Head and modifier differ only on one feature, which is transferred to head
function_transfer The head gains a function that was part of the modifier
shape_transfer The head gains the shape of the modifier
structure_transfer The head gains the structure of the modifier
slot_set_completion The slots in head that did not have a value are filled with modifier’s corresponding values
feature_set_contrast The feature-set in the head are replaced by the feature-set of the modifier

4 This maximum is calculated for the largest possible 1-to-1 mapping.
When there is no mapping (e.g. simple copy + paste of the inputs into the
blend), the size of space will correspond to the minimum of 2l different
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Frames end up being a meta-language for conceptual
integration we may use for specifying our intentions in
the results. As we will show below, if no such specification
is given, the frames function as attractor structures that
may compete or cooperate until reaching stability.
Although frames are essential to the present experiments,
there is no place to explain them in higher detail, so we pro-
vide the reader the superficial description for the used
frames (in Table 1). Notice that these frames are generic
in the sense that they may be (and actually have been) used
in other completely different experiments (see [16,17]).

2.2. Mapping engine

The mapping engine establishes a correspondence
between elements of the input domains. Currently, this cor-
respondence is found by a structure alignment algorithm
that is very similar (although simpler) to the one used by
Tony Veale in his Sapper framework [18]. Sapper proposes
metaphor interpretations through the establishment of
cross-domain mappings (e.g. ‘‘If Surgeon is Butcher, then
scalpel is cleaver, etc.’’). In [19], the reader can find a
comparison of Sapper with other structure alignment
algorithms. To understand the present paper, the reader
should retain that we find a partial 1-to-1 mapping corre-
spondence between elements of the input domains and that
this mapping is based on identity of relational structure
(i.e. if A, from input domain 1, is mapped to B, from input
domain 2, and A has a relation R to C and B has a relation
R to D, then C can be mapped to D).

In order to find these correspondences, the mapping
engine may need to use knowledge from the generic
domain, which contains an ontological ‘‘isa’’ hierarchy as
well as many other knowledge structures (such as its own
concept map).

The mappings are used later, in the concept generation,
to constrain the possible projections a specific element can
have in the result. More specifically, if x is mapped to y, it
can be projected to x, y or nil in the result.3 If x has no
3 In [12], we allow a fourth alternative – the compound – represented as
x|y, but currently we are not applying this possibility, since it raises
problems of ambiguity in interpretation.
mapping counterpart, it can only be projected to x or nil.
For example, if ‘‘necklace’’ is mapped to ‘‘paper’’, the
result may contain a ‘‘paper’’ that is the projection of
‘‘necklace’’ and so it may bring all its surrounding elements
(like being ‘‘circular’’) to the concept of ‘‘paper’’. On the
other hand, if ‘‘paper’’ is projected to ‘‘paper’’, then the
concept of ‘‘paper’’ will maintain its original features. In
Fig. 1, we show a very simplified diagram that includes
these projections.

The projections are selective, which means some ele-
ments get projected, some do not (i.e. their projection is
nil). The ones that are projected can also have many choic-
es (as shown in the preceding paragraph). The selection of
the projection obeys very strict rules and methods, a task
undertaken by the Factory and Constraints modules.

2.3. Factory

The factory is the module that takes most of the process-
ing time of the system. Its goal is to explore the space of all
possible combinations of projections of the input domains.
We say elsewhere [15] that the size of this space may reach
a maximum of 42k · 2l�2k different combinations,4 with
l = m + n and k = min (m,n) and m and n the number of
concept map elements belonging to input domains 1 and
2, respectively. But, since we are allowing three projections
instead of four (thus leaving out x|y), the maximum is
reduced to 32k · 2l�2k. This means that, for example if
m = 5 and n = 7 (two very small concept maps), we may
have 60466176 different solutions to evaluate.5 This
evaluation is achieved by a set of criteria provided by the
Constraints module.

Given the size of the search space and the absence of any
algorithm able to get the ‘‘best solution’’ through a
sequence of deterministic steps, we decided to build a
combinations.
5 For very simple situations, like in Fig. 1, the space is considerably

smaller, since we have only two mappings and m = 5 and n = 4, yielding
34 · 25 = 2592 different combinations. However, this is a very simplistic
diagram.
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Fig. 1. Blending ‘‘necklace’’ and ‘‘paper’’.
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genetic algorithm (GA). A GA makes a parallel search in
the space and does not guarantee the achievement of global

maxima, but, when its parameters are correctly chosen, it
may be able to cover a wide area and obtain satisfactory
results. Generally, a GA generates sets of individuals (the
possible solutions to the problem being solved), each set
being called a generation. From each generation, it selects
some individuals (there are many methods to achieve this)
and applies operators (e.g. crossover, mutation and others)
to obtain the subsequent generation. It repeats these steps
until achieving a stopping condition (e.g. a fixed number
of generations, a threshold value). It is outside the scope
of this paper to describe further details of GA’s. For those
interested, we advise the reading of a specialised book on
the subject (e.g. [5]).

In our GA, we evolve projection combinations, thus
each individual is described by a set of projections, one
for each element of the input domain. With the projection
of all elements of both input domains, it is straightforward
to obtain the concept map of the blend.6 The evaluation
function we use (also called fitness function) consists of a
weighted sum of the eight optimality principles enunciated
in the Conceptual Blending framework [4] and is applied to
the concept map of the blend. In [16], we formalize our
implementation of these principles, which are the subject
of the Constraints module. The algorithm stops after
reaching one of three conditions: being at the nth
generation (n is equal to 500, currently); achieving an
6 In GA literature, one could see the projections as the genotype of the
individual and the corresponding concept map as the phenotype.
individual with the value of 1 (the fitness function is nor-
malized to fall within the 0..1 interval); not being able to
improve results for more than m generations (m currently
equal to 30). The latter means the algorithm has stabilized
around a specific individual (or set of individuals with the
same value). Thus, when we say that ‘‘the evolution stabi-
lized at the ith generation’’, we mean that in generation
i + 30 the value of the best individual remains the same
since the ith generation.7

2.4. Constraints

In this module, we implemented the optimality princi-
ples (also called optimality constraints) according to our
own formalization [16,11]. These constraints serve to eval-
uate a blend according to several aspects, from specific
structural (like maximizing the number of specific rela-
tions) and pragmatic conditions (like respecting a query)
to general guidelines (maintaining topology). Currently,
our optimality constraints are applied solely to the concept
map (of the blend) and we hope to extend them to evaluate
other aspects of the blend (e.g. the instances), in future
developments. Three of the eight optimality constraints
suggested in [4] were not applied in these experiments:
Web (because it is not an independent constraint); Pattern
Completion (because we are not applying the completion
and elaboration phases) and Intensification of Vital Rela-
tions (because we are only applying one kind of mapping
– it would always yield the same value). We give now an
informal description of the implementation of the optimal-
ity principles we use in the Constraints module:

• Integration. The Integration value of a blend depends
on its accomplishment of frames. For example, if a sin-
gle frame contains all relations and elements found in
the blend, it will have the highest Integration value (1).
The intuition behind this is that one recognizes a frame
as a whole, meta-level concept. For example, a blend
that has exactly the three relations of the frame ‘‘haunt-
ed’’ is considered as being totally integrated around the
concept of ‘‘haunted thing’’ (or in other words, it fits the
pattern of what a ‘‘haunted thing’’ should consist of).
The same reasoning could be applied for the
‘‘shape_transfer’’ frame (a blend exactly integrating this
frame would correspond to the redefinition of the
‘‘shape’’ of the target concept). On the other side, we
penalize the multiplicity of frames, i.e., when a blend
accomplishes several different frames (each one having
different conditions), it will have less Integration value
than if it were a single frame with the same conditions.
Our Integration measure also penalizes ‘‘free’’ relations
7 When the evolution stabilizes in this way, and after a given set of non-
changing generations (currently m/2) Divago increases the number of
random individual generations. This process occasionally allows sudden
jumps, although generally rare.



F.C. Pereira, A. Cardoso / Knowledge-Based Systems 19 (2006) 459–470 463
(relations that do not fit in any frame) and integrity con-
straint violations. Given its importance, Integration has
a weight of 30% in the fitness function.

• Topology. Topology is the main principle that brings
inertia to the process because it is centered on main-
taining the original relationships between elements.
Its measurement is fairly simple and consists on finding
the ratio of elements in the blend that maintain the
(exact) same neighborhood relations. Its weight in the
experiments is 5%.

• Maximization of Vital Relations. Fauconnier and Turn-
er propose a set of vital relations, which have a special
role within the domains (called inner-space relations)
and in establishing inter-connections (outer-space rela-
tions). In our case, we allow the customization of these
relations. In the present experiments, these correspond
to the relations property, shape, pw, made_of, found, col-

or and connects, which we may find in the dataset config-
uration. The Maximization of Vital Relations constraint
measures the ratio of vital relations that exist w.r.t. to
the input domains. Its weight in the experiments is 5%.

• Unpacking. The ability to unpack the blend, i.e., to
reconstruct its connections with the input domains and
mappings, is measured in our model by finding subparts
of the blend that are identical to subparts of one of the
input domains. The intuition is that we are more able to
make the reconstruction if we identify patterns that
explicitly connect the blend with the input.8 We are
aware that this identification is not simply based on rep-
etition of patterns, a fact we wish to consider in future
developments. Unpacking takes 15% of the weight on
the fitness function.

• Relevance. Relevance measures whether the blend
respects a given query. This query is what specifies the
usefulness of the results. A query consists of a set of rela-
tions the blend is expected to have and/or a set of frames
it is expected to accomplish. As in the Integration
measure, Relevance is penalized by integrity constraint
violations. The Relevance constraint is the most impor-
tant for our experiments (it has a weight of 45% on the
fitness function) since it favours the accomplishment of
the established goal.

As we could see, apart from the concept maps and map-
pings, there are two fundamental structures we apply in
evaluating a blend: the frames and the integrity constraints.
The former stimulates some interconnections of elements,
the latter penalizes them.

It is important to add that the choice of the weights for
the fitness function was decided taking into account two
aspects: the intuitive importance of each measure, as
described above; the empirical results we have been observ-
ing from many experiments (e.g. the ones presented in [15]).
8 This is particularly important in situations like advertising or humor,
in which one must find the connections to the subject to understand the
message correctly.
Finally, the reader should retain the strong connection
between Relevance and Usefulness. The Relevance con-
straint allows the system to be configured towards specif-
ic goals and, from our point of view, the accomplishment
of these goals will determine whether a blend is useful or
not.
3. The dataset

The correct functioning of Divago highly depends on
Knowledge richness of its inputs and generic space. Our
first direction was towards the freely available ontologies
such as WordNet [10] or CYC [8], however the former is
rich in quantity of nouns, but extremely poor in terms of
their interrelations (there are essentially taxonomical rela-
tionships) while the latter demands great effort to process.
With the obvious relationships between C3 and Divago, we
found its own database as a perfect choice, as it has many
different kinds of relations for each noun, and the represen-
tation is very simple.

The dataset comprises 179 noun descriptions bor-
rowed from Fintan Costello’s PhD thesis [1] on
noun–noun conceptual combination. In this thesis (and
in subsequent publications [2]), the author describes each
noun by a set of attribute-value pairs, as shown below
(for ‘‘necklace’’).

Necklace
name:
 (necklace)

feature-set:
 (solid inanimate static)

color:
 (silver gold)

shape:
 (small circular)

structure:

made_of:
 metal

parts:
 (pendant)

found:

function:
 ((wears person3 necklace neck)

(decorates necklace person3))
The conversion to our concept maps is straightfor-
ward: each of the ‘‘features’’ becomes a property

relation; the attributes ‘‘color’’, ‘‘shape’’ and ‘‘made_of’’
become relations with the respective name; each of the
‘‘parts’’ is converted into a ‘‘pw’’ (part whole) relation;
each ‘‘function’’ is converted into a set of ‘‘actor’’ and
‘‘actee’’ (with third arguments, such as ‘‘place’’ or
‘‘instrument’’). The ‘‘actor’’ is expected to be the first
argument of the function, while ‘‘actee’’ is the second.
Therefore, our concept map representation for
‘‘necklace’’ is as follows:

property(necklace, solid) made_of(necklace, metal)

property(necklace, inanimate)
 pw(pendant, necklace)

property(necklace, static)
 actor(wears, person3)

color(necklace, silver)
 actee(wears, necklace)

color(necklace, gold)
 place(wears, neck)

shape(necklace, small)
 actor(decorate, necklace)

shape(necklace, circular)
 actee(decorate, person3)
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In the original dataset, there are interrelationships

between nouns. For example, there is also a representation
for ‘‘pendant’’, ‘‘person3’’ and ‘‘neck’’ so, along with
‘‘necklace’’, these nouns can be seen as a small graph
representing the knowledge about people and necklaces.
Within this small graph, there is normally no repetition
of function specifications (e.g. in ‘‘neck’’ or ‘‘person3’’ rep-
resentation, there is no ‘‘wears’’ function, although it exists
implicitly). We converted directly and separately each noun
to a concept map, and there is no communication between
our concept maps, which means that many nouns in our
knowledge bases lose their original implicit data. Another
aspect of the dataset is that some concepts have several
different instantiations (e.g. ‘‘person3’’ is the third repre-
sentation of the noun ‘‘person’’). We also converted these
directly and separately to our knowledge base, without
merging them.

4. Experiments with free-concept generation

The main goal of these experiments was to observe
how Divago behaves with respect to criteria of novelty
and usefulness. An important condition we put for
these tests was that data should not be constructed
by anyone involved in the project, so that the results
were not in any way influenced by unconscious biasing
or tailoring. The C3 dataset seemed to us a perfect
choice, given that we could not find easily a relatively
big database with knowledge coded in such a compat-
ible representation.

The noun–noun interpretations we consider in the
experiments are either hybrid interpretations, in which
the resulting concept is a blend of both concepts being
combined (as in ‘‘a drill screwdriver is a two-in-one tool
with features of both a drill and a screwdriver’’ [20]9) or
property interpretations, in which the head gains one (or
more) property of the modifier (as in ‘‘an elephant pencil
is a very large pencil’’). In some tests we made prior to
the ones presented here, the mapping we use (based on
structure alignment) was clearly unable to allow other
types of interpretations such as relational and
known-concept interpretations, which corroborates the
thesis that conceptual combination is not structure
alignment [7].

In order to provide a pragmatic background for the
experiments, we invite the reader to consider a game, in
which its elements (objects and characters) are defined by
scripts with the same syntax of the nouns described above.
In this context, a useful concept must have specific values
for the slots of the script and respect a set of integrity
constraints. The slots and values required can thus be
grouped together in a query. In all experiments (except in
the training set), this query consisted of:
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9 Cited in [2].
property(A,[animate, inanimate]),
property(A,[liquid, solid]),
property(A,[static, mobile]),
made_of(A,_),
shape(A,_), color(A,_),
actor(F,_), actee(F,_)
Square brackets mean disjunction (e.g. the concept
A must be ‘‘animate’’ or ‘‘inanimate’’) and under-
scores mean ‘‘anything’’ (e.g. the concept A must
have a ‘‘color’’). The presence of ‘‘actor’’ and ‘‘actee’’
relations means that the concept should have a
function.

Integrity constraints specify impossibilities within the
game (e.g. a concept cannot have two ‘‘shapes’’ at the same
time). A novel concept is a concept that is not present in the
knowledge base.

Beforehand, we could not know exactly what kinds of
frames were needed to build ‘‘good’’ combinations, leading
to the need of a supervised training phase that helped us
find a set of appropriate frames. Only after this training,
we were able to test the system, leaving it to construct its
own concepts.

About the configuration of the GA, we must say that
each population has 100 individuals and we are applying
the crossover (for 80% of the new individuals) and
mutation (14%) operators. The (5%) top best individuals
are also kept for the next generation and the rest is
stochastically selected favoring fitness value and diversity.
One (1%) random new individual is generated for each
population.

The weights are as described above and were chosen
after an extensive set of tests, some of which described
in [15].
4.1. Training

The training set we used consisted of 30 pairs of
randomly selected nouns from the list. For each one,
we constructed a solution (called the training target)
correspondent to our own interpretation of the noun–
noun combination. This hybrid interpretation
considered exclusively the knowledge contained within
the selected noun representations and was centered on
the head noun, which means that, in any pair A–B
of nouns, the interpretation was that ‘‘an A–B is a B
with such and such A characteristics’’. In other words,
the concept B is always the focal concept in our
interpretations.

Each experiment consisted of making 30 runs for each
pair (each run with the exact same starting conditions),
having in the query the set of frames we expect could
achieve the target. When the results differed from the
target more than acceptable, we either selected other
frames or designed new ones and made the 30 runs
again. More specifically, this happened when there was



Table 2
Excerpt of the training set (average error to target = 0, 67)

Combination Target interpretation Error Frames

bullet potato Small and cylindrical potato 2 bcore, shape_transfer, slot_set_completion
cow vehicle_body Black and white vehicle that eats grass 0 bcore, function_transfer, slot_set_completion
eagle shirt Brown, bird-shaped shirt 1 bcore, structure_transfer, shape_transfer
engine ball Self-mobile ball 0 bcore, feature_set_contrast
head hammer_handle1 Mobile and animate (living) hammer handle 2 bframe, feature_set_contrast
flower_bloom plant Spherical plant 0 bframe, shape_transfer
fruit1 paper1 Paper with fruit-seeds that humans eat 0 bcore, structure_transfer, function_transfer
neck instrument A small and straight instrument 0 bcore, shape_transfer
necklace paper Circular paper that people use in the neck for decoration 1 bcore, function_transfer
patient paper1 Paper that has illness 0 bcore, function_transfer
pen person Thin, long person, that is used (by others) to write on paper 2 bcore, function_transfer
pencil pendant Thin, long pendant, used to write on paper 0 bcore, shape_transfer, function_transfer
potato acorn Brown, spherical acorn that 1 bframe, function_trasnfer
potato herring tail Spherical herring tail 2 bcore, shape_transfer
pottery spoon Spoon made of clay 1 analogy_transfer
skin stem Thin stem 0 bcore, shape_transfer
spoon1 frame Brown, spoon-shaped frame 1 bframe, single_differentiating_feature
spoon1_handle lens Straight and long lens 0 bcore, shape_transfer
thorns hammer1 Small and sharp hammer 0 bcore, shape_transfer
tool boxcar A boxcar used to make other objects 2 bcore, function_transfer
torso pencil1 Small, animate and mobile (living) pencil 0 bcore, feature_set_contrast
utensil web A metal web, used to make food 0 feature_set_contrast, function_transfer
vegetable person3 Static, inanimate person 0 feature_set_contrast
vegetable spoon A thing with spoon shape that grows on earth 1 bcore, function_transfer
vehicle_body vessel1 Vessel made of metal 1 bcore, slot_set_completion
vessel1 food Concave-shaped food in which one can put something 0 bcore, function_transfer, shape_transfer
victim projectionist Projectionist that was damaged by a gun 0 bcore, function_transfer
wheel sitting_room Circular sitting room 0 bcore, shape_transfer
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an error of more than 2 relations10 to the target or when
this error was due to fundamental relations (i.e. without
them, the result would not be novel or satisfy the useful-
ness criteria). In Table 2, we show a sample with the
training combinations, target descriptions, resulting error
to the target and frames used in the query. It is impor-
tant to remember that the target interpretations are
obtained using only the existing knowledge representa-
tion of both nouns, which justifies the appearance of
awkward interpretations (e.g. ‘‘head hammer_handle’’,
‘‘pen person’’). We can also see that the frames were ini-
tially tailored to fit the target interpretations and reused
later when effective (e.g. the ‘‘shape_transfer’’ was creat-
ed for ‘‘bullet potato’’, and used often in the succeeding
experiments).

It is clear though that both the target interpretations and
the frames were made by us, so introducing a subjective-
ness component in these experiments. Since there does
not seem to be any simple automatic frame generation
mechanism and given that the language itself demands
some expertise, the frames had to be constructed with the
method described (constructing the frame that intuitively
would lead to the target). On the other hand, it would be
possible to use other people’s interpretations of the random
generated pairs, requiring a reasonably large set of partic-
10 This error is calculated by the sum of relations (from the target) that do
not exist in the result with the ones that are present in the result although
absent in the target.
ipants with some expertise to understand the constraints
(interpretations are confined to the specific representation).
Not having done this, we tried to follow our intuition and
imagination in each case. At the worst, the experiments will
reflect our specific ways of noun combination on the train-
ing set applied to the other set.

The mappings used in all the experiments were automat-
ically generated by our structure alignment algorithm,
starting the alignment with the individual identifier symbol
of the nouns and then finding systematic correspondences
along both structures (for example, in ‘‘necklace paper’’,
it establishes a mapping between ‘‘necklace’’ and ‘‘paper’’,
then goes to the ‘‘made_of’’ relations, establishing a map-
ping between ‘‘metal’’ and ‘‘paper’’ and so on). It typically
established mappings between elements with the same role
in both nouns (color value with color value, made_of value
with made_of value, etc.)

4.2. Results and discussion

The free generation of noun–noun combinations con-
sisted of selecting randomly a set of 33 pairs of nouns
and using the above described query (with the slots for
the game script) to generate new blended concepts. Every
frame shown in Table 1 was available to the system so that
it could find itself the selection of frames that suited the
highest scores of the fitness function. We also added an
integrity constraint for having at least two frames being
accomplished so to stimulate knowledge transfer. Apart
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from these, parameters were equal to those used for
training.

Below, we show examples of the generation of the
‘‘fish_tail1 desk’’ and ‘‘fish_spider’’ blends, with input
domains (‘‘fish_tail1’’, ‘‘desk’’, ‘‘fish’’ and ‘‘spider’’) and
the frames that were applied.

In Table 3, we show the results achieved. For each pair
of nouns, we show the best result (in terms of the fitness
function) of the 30 runs and describe textually the result
by comparison to the head and the modifier. The Useful-
ness value corresponds exactly to the resulting Relevance
value. Therefore, a 100% means that every condition of
the query was satisfied and no integrity constraints were
violated. Other values indicate that either some condition
was not satisfied or integrity constraints were violated (or
both).
Table 3
Results (average usefulness = 78%)

Combination Interpretation U

barrel spoon1 Spoon 10
bed pips Oblong pips 5
bird1 sea A bird-shaped sea, with wings,

and head and made of flesh
10

bird_head clothes Curve-shaped clothes 8

cow_head torso Conical torso 6
desk ornament Brown, wooden, ornament

one can put paper on
10

desk1 spoon_bowl Spoon bowl besides which one puts
a chair (and is not used to put food in)

10

engine apple_tree Oblong, long and large apple tree 4
fish spider Spider with fish tail that lives in sea,

but does not make webs
10

fish_tail1 desk Thin, triangular desk 10
flower_bloom hammer A spherical hammer 10
food body_part A body part that serves to be eaten 3
herring instrument A silver, fish-shaped (with fin and tail)

instrument that lives on sea and
is not used to play music

10

horse_head insect Insect
insect rodent A small rodent 10
mattress knife1 A long knife that is on a frame
oak horse A horse that grows on earth, it has

a trunk and a crown, but keeps its horse shape
10

paper1 chair_seat White chair seat 5
patient fruit Human-shaped, skin-colored fruit that is ill 10
patient plant Human-shaped, skin-colored plant 10

person5 paper Paper that sleeps in bed 10
person5 stem Stem that sleeps in bed 10
person2 paper Paper with a torso 6
potters_wheel desk A flat and circular desk 10
pottery neck A neck made by a human 10
rose_bloom desk1 Desk 10
sole bird1 A black bird 10
spider_legs carriage Carriage 6
stem vehicle A straight, green vehicle 10
train building1 A building with the shape and structure

of a train, and which serves to transport people
10

utensil pottery Pottery 3,5
victim potters_wheel Potters wheel
wheel machine Black and circular machine 10
For example, in Fig. 2, we can observe that both
blends satisfy all requirements of the query (therefore
scoring 100%). If, say, there were no values for
‘‘made_of’’ and ‘‘color’’, then the usefulness would be
75% since two (in eight) conditions were not satisfied.
Another situation could be an integrity constraint viola-
tion (e.g. ‘‘Something cannot be black and made of flesh

at the same time’’), which would lead to a penalty (e.g.
supposing integrity constraint violation penalty was 20%,
‘‘fish spider’’ usefulness value would be 80%). For the
novelty, we decided for a simple yes/no decision (‘‘no’’
meaning the result is a copy of other nouns in the
knowledge base). The frames listed correspond to the
frames found in the construction of the best result for
each combination.
sefulness (%) Novelty Frames

0 No bcore
3 Yes bcore, shape_transfer
0 Yes bcore, shape_transfer structure_transfer,

slot_set_completion
1 Yes bcore, bframe, slot_set_completion,

shape_transfer
0 Yes bcore, shape_transfer
0 Yes bcore, function_transfer slot_set_completion

0 Yes bcore, function_substitution

3 Yes bcore, shape_transfer
0 Yes bcore, function_substitution, structure_transfer

0 Yes bcore, shape_transfer
0 Yes bcore, shape_transfer
5 Yes bcore, function_transfer
0 Yes bcore, shape_transfer, function_substitution,

structure_transfer

4 No bcore
0 Yes bcore, shape_transfer
0 Yes bcore, shape_transfer, function_substitution
0 Yes bcore, structure_transfer, function_transfer

7 Yes bcore, slot_set_completion
0 Yes bcore, shape_transfer, function_substitution
0 Yes bcore, bframe, shape_transfer,

slot_set_completion
0 Yes bcore, function_substitution
0 Yes bcore, function_substitution
0 Yes bcore, structure_transfer
0 Yes bcore, shape_transfer
0 Yes bcore, function_transfer
0 No bcore
0 Yes bcore, slot_set_completion
7 No bcore, bframe
0 Yes bcore, shape_transfer, slot_set_completion
0 Yes bcore, function_transfer, structure_transfer,

shape_transfer
0 No bcore
5 No bcore
0 Yes bcore, shape_transfer, slot_set_completion



name: (fish_tail)
feature-set: (animate solid mobile)
shape: (triangular thin)
made_of: flesh

name: (desk)
property: (inanimate solid static)
color: (brown)
shape: (triangular thin)
made_of: (wood)
parts: (desk_top desk_legs)
function: (on paper1 desk)

name: (desk)
property: (inanimate solid static)
color: (brown)
shape: (oblong long)
made_of: (wood)
parts: (desk_top desk_legs)
function: ((on paper1 desk)

(writes_on human
paper1 pen))

bcore

shape_transfer

Input Domain 1 Input Domain 2 Blend

name: (fish)
feature-set: (animate solid mobile)
color: silver
shape: fish_shaped
made_of: flesh
structure:   ((connects fin fish)
                   (connects fish fish_tail))
parts: (fin fish_tail)
function: (lives_in fish sea)

name: (spider)
property: (animate solid mobile)
color: black
shape: (spherical small)
made_of: flesh
structure: ((connects spider_legs

spider)
(connects spider fish_tail))

parts: (fish_tail spider_legs)
function: (lives_in spider sea)

name: (spider)
property: (animate solid mobile)
color: black
shape: (small spherical)
made_of: flesh
structure: (connects spider_legs

spider)
parts: (spider_legs)
function: ((makes spider web

spider_legs) (on
something web))

bcore

function_substitutionstructure_transfer

Input Domain 1 Input Domain 2 Blend

a

b

Fig. 2. Frames used in the construction of (a) ‘‘fish_tail1 desk’’ and (b) ‘‘fish_spider’’.
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A first remark to notice is that every experiment ended
satisfying a ‘‘bcore’’ frame. This is not surprising considering
the query we used, which comprises a set of relations that
coincides almost with the ‘‘bcore’’ frame relations. Still with
regard to frames, we can also see that the results used essen-
tially 6 different frames (‘‘bcore’’, ‘‘slot_set_completion’’,
‘‘shape_transfer’’, ‘‘structure_transfer’’, ‘‘function_trans-
fer’’ and ‘‘function_substitution’’). A possible hypothesis is
that the other 4 were either too specific (e.g. ‘‘single_modify-
ing_feature’’) or too generic (e.g. ‘‘bframe’’) to achieve
stability in the runs.

Results show that there is no correlation between the
values of Novelty and Usefulness, which seems intuitively
plausible. Yet, Usefulness may contrast with our intuition
in some examples (e.g. there is no apparent reason why
an ‘‘horse_head insect’’ is so less useful than a ‘‘rodent
insect’’) and its explanation is simply that, for the context
we are dealing with (a game with objects defined by a
script), the new object may lack some fundamental
conditions.

Another aspect we would like to invite the reader to
observe is that the influence of modifiers seems predictable
in some degree. Using the same modifier with two different
heads tends to add the same features, with slight variations
(see ‘‘person5 paper’’ and ‘‘person5 stem’’11) and using
different instances of the same modifier (e.g. desk in ‘‘desk
ornament’’ and ‘‘desk1 spoon_bowl’’) leads to different fea-
11 person5 specified a person with a relation to the concept of bed.
tures. This indicates that to some extent the outputs are
predictable, a fact that may go against Divago as a creativ-
ity model. A balance must be found that still maintains
some level of surprise and expectation but still generates
useful results (for more on measuring surprise and expecta-
tion, see [9]).

Probably because the query is too much centered on the
‘‘core’’ of the object (every aspect except its function), it
may loose its function during the blend generation, even
when it is vital. For example, in blending ‘‘herring’’ and
‘‘instrument’’, the result says it is an instrument, but it lost
its musical function, so leading to an empty concept. We
also point out to the blends ‘‘train building1’’ and ‘‘bird1
sea’’. Both reveal inconsistencies (‘‘a train building1 is a
building that serves to transport people’’ and ‘‘a bird1
sea is a sea with wings. . .it is made of flesh’’). On one side,
these inconsistencies may reveal creative if explored from a
metaphoric perspective, a very complex computational
challenge. But literally, they lead to a void concept in our
game environment. Preventing the existence of these
extreme examples depends on adding integrity constraints
(e.g. ‘‘something that serves for transport cannot be made
of bricks’’) but will once again go against the creative
potential of the system. In this case, it seems, improving
Usefulness would go against Novelty.

A final remark on the results regards the observation
of the Usefulness values. It should be clear that the
average value of 78% obtained is highly dependent on
the specific query and on the specific knowledge con-
tained in the dataset. If the query was less constrained



12 We point out that the combinations, as modelled in C3, are specific to a
set of human languages (English, German, Dutch. . .). Others, like
Portuguese and French, are less ambiguous because of the obligatory
use of prepositions.
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(e.g. having just half of the conditions), the value would
certainly improve, whereas if we added conditions that
could not be satisfied within the dataset, the values
would never achieve 100%. These numbers show that
the system is able to satisfy the query when it is (the
knowledge base, query and the factory) properly config-
ured, thus providing useful outcomes to the pragmatic
context in question.

5. Comparison to C3

We had access to a set of analogous experiments that
Costello and Keane did with C3. In these experiments,
the authors randomly generated 10 pairs of nouns
(e.g. ‘‘eagle’’ and ‘‘tulip’’) and, for each pair, generated
interpretations for the two possible combinations (e.g.
‘‘eagle tulip’’ and ‘‘tulip eagle’’). This gives 20 combina-
tions, for which C3 provided interpretations (e.g. ‘‘An
eagle tulip is a tulip that grows on an eagle’’). These
experiments intended to model the creativity of concept
combination and therefore it makes sense to compare
with Divago. However, we cannot do a comparison that
survives subjectivity because the values both referred
here (of novelty and usefulness) and by C3 output
(plausibility, informativeness and diagnosticity) are not
aligned in the same perspectives. Surely, C3 interpreta-
tions would many times fail in the use measure suggest-
ed by our script, and Divago would not necessarily do
well with C3 constraints, and any of these conclusions
would lead nowhere in terms of saying which one is
more creative. We can do a different, perhaps more
interesting, experiment: check if Divago can arrive to
the same results of C3 (thus proving possible to achieve
the same creativity, whatever it is); and determine which
frames would be needed (would they have to be differ-
ent?). First of all, to level both systems in terms of rep-
resentation, we had to allow Divago access to the
implicit relations with other concepts.

In order to check if Divago could find the same results
as C3, we applied the process described above as tuning

phase and found that Divago is able to achieve the same
results with an average error of 2.4 and median 1. This
means that the normal error was either 0 or 1 and so the
average was strongly affected by two outliers, of errors 8
and 10. These latter cases, in which Divago failed, were
interpretations that included knowledge from third nouns,
i.e. when there are attributes that do not belong to any of
the inputs and come from other elements in the knowledge
base. In the rest, it normally achieved the same results of
C3. Another remark is that it tended to include knowledge
(e.g. that ‘‘an eagle tulip is solid’’) that C3 had excluded via
the informativeness constraint. Whatever which one is
more correct in this issue, it was also clear that, by
declaring the diagnostic features of each noun, the features
that differentiate the noun in relation to other nouns (an
information that is actually available in C3), Divago could
reduce drastically this extra knowledge.
Perhaps the more striking conclusion from this experi-
ment was that Divago could achieve the same results of
C3 (with the error just described) with a very small set of
frames. Indeed, only two frames were needed in about
85% of the times: acore (or bcore, depending on
whether the focus was the modifier or the head) and
analogy_transfer. This means that, essentially, C3

picked one of the nouns (head or modifier), built the
combination centered on it – which means it has the same
structure and the same ‘‘core’’ attributes –, and transferred
also the attributes directly related to the other noun. By
directly related we mean attributes with distance 1 in its
graph representation. This seems to indicate that combina-
tions generated in C3 were essentially of the property type.
The other 15% of the results used also the bframe (or
aframe, depending on the focus). The results, representa-
tions and C3 results are listed in [11].

To sum up, Divago is able to achieve the same results of
C3 by using a proper set of frames (aframe, bframe,
acore, bcore and analogy_transfer) as goals in
the search. This means that, if wanting to configure it as
a noun–noun combination interpretation system, only a
smaller set of frame combinations should be considered,
at least for hybrid and property types, and attention to
other factors should be payed, namely to diagnostic
features. On the other hand, considering the other experi-
ments in this book, we conclude that Divago offers a much
larger set of possibilities, without focusing specifically on
the linguistics of combinations. In other words, C3 models
noun combinations12 and Divago deals with concept
combinations, being more open to other problem solving
situations. We cannot answer the doubt about the limits
of C3 (could it achieve also the same results of Divago, with
a proper configuration?), but it is clear that these are inter-
nally very different systems that tackle the same cognitive
problem from different perspectives.

6. Conclusions and further work

The experiments we showed in this paper present the
behaviour of our system, Divago, while making blends of
pairs of nouns. A straightforward conclusion is its ability
to comply with the parameters of novelty and usefulness
used. These parameters, while being too simplistic in terms
of human creativity, are easily applicable for a computation-

al creativity, the latter demanding a more formal, explicit
and systematic methodology. We argue that Divago
provides a set of mechanisms and structures (that generally
follow those of Conceptual Blending [3]) that allow prob-
lems that involve creativity. One of those is the integration
of pairs of nouns into a new noun, which shares a selected
set of features and functionalities from both its inputs. In
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this paper, experiments were made towards this problem,
which was approached before [2], although integrated in
a more specific model (the C3 model of noun–noun combi-
nation interpretation).

Using the same dataset of C3, we made a relatively large
set of experiments, which we tried to show in a clear
fashion.

As far as our experience and complexity analysis goes,
the search space for blends grows worse than exponential
with the size of input domains (see [15] for a more detailed
analysis) so Divago would hardly be more efficient than C3

in retrieving the ‘‘best’’ results.13 This is understandable
since Divago is not focussed on specific kinds of conceptual
combinations and therefore considers many possibilities
that would be deemed wrong for C3. On the other hand,
it was empirically demonstrated that Divago is able to
achieve approximately the same results achieved by C3 in
similar experiments, in which randomly selected noun–
noun pairs were given to the system. We also suggest that,
with a proper configuration and the inclusion of diagnos-
ticity knowledge, Divago would achieve the exact same
results. Of course, we must remember that the mappings
automatically generated by Divago only allow hybrid and
property interpretations, thus a further study would be nec-
essary for other types of interpretations.

Another aspect we could compare Divago and C3 is
their internal search mechanisms. While in C3 the authors
use a step-by-step algorithm (applying each constraint in
order), Divago makes use of a parallel search method, a
genetic algorithm. By its own, this difference does not say
anything fundamental about the two systems, but the size
of the space and the complexity brought by the presence
of the frames seem to provide Divago with a much more
flexible and varied behaviour: Divago looks for alternatives
that are not considered by C3.

A final remark on C3 and Divago regards the creativity
evaluation. Although Costel-lo and Keane provide argu-
ments for C3 as a model that considers the full creativity
of conceptual combination [2], they do not make any spe-
cific validation for its outcome as being creative. Essential-
ly, it seems that the notion of creativity in question is
reduced to the diversity of possible conceptual combina-
tions considered and so, in the sense that C3 considers a
large range of solutions in a computationally efficient
way, they argue it simulates human efficient creativity in
noun–noun combination interpretation. From our point
of view, deeper analysis should be taken, namely with
regard to the results. In the present paper, we propose an
assessment of the creativity of Divago exclusively based
on the two criteria of novelty and usefulness. While the
choices for these may be considered too simplistic, we give
an idea for the evaluation of the creative potential of such a
system.
13 In the context of C3, a ‘‘best’’ result would be the one that coincides
with human interpretation.
Frames provide a generic mechanism that may be
used systematically to generate combinations, each one
with its own underlying rationale. A challenging develop-
ment will be to find frames that produce results closer to
human intuitions. These would possibly be very complex
frames and would necessarily demand other mapping
algorithms. More specific and immediate further evolu-
tions in this work (in noun–noun combination) may be
the inclusion of a mechanism of diagnostic features and
interrelation among nouns. More generally and with
respect to the Divago system, a more powerful mapping
algorithm and an elaboration mechanism would certainly
improve considerably its creativity potential. The latter is
fundamental to the Conceptual Blending framework,
since it brings the possibility of running the blend, i.e.,
to give rise to novel emergent structure. Possible ideas
to follow are the direct writing of domain-dependent
rules and, a more challenging possibility, the mining of
the knowledge base in search for patterns (e.g. when A
and B exist, there is a big chance that C also happens).
This emergent structure would give an independent exis-
tence to the blend, not ‘‘just’’ attached to the original
input domains.
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