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Abstract

In a bilevel decision problem, the leader at the upper level attempts to optimize
his/her objective, the follower at the lower level tries to find an optimized strat-
egy according to each of possible decisions made by the leader. A bilevel decision
problem may involve fuzzy demands which appear either in the objective func-
tions or constraints of the leader or the follower or both. Furthermore, the leader
and the follower may have multiple conflict objectives that should be optimized
simultaneously. This study addresses both issues to propose a fuzzy multi-objective
bilevel programming model. It then develops an approximation branch-and-bound
algorithm to solve fuzzy multi-objective bilevel decision problems. Finally, two case
based examples further illustrate the proposed model and algorithm.
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1 Introduction

Decision making in management has often involved two levels of decision
makers, uncertain information, and multiple conflicting objectives. With the
complex decision making environment, knowledge based intelligent systems,
including fuzzy sets and logic, neural networks, optimization algorithms, etc,
provide effective assistant for decision problem recognition, modeling and solv-
ing.

Bilevel programming (BP) arises where decisions are made in a two level
hierarchical order and each decision maker has no direct control upon the
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decision of the other, but actions taken by one decision maker effect returns
from the other [1–8,10,26,27]. Decision maker at the upper level is termed as
the leader, and at the lower level, the follower. The leader and the follower each
tries to optimize his/her own objective function(s), but the decision affects the
objective values of the other level [12]. As decision environments become more
complex, two issues below need to be considered when model a real-world
bilevel decision problem and find a solution for the problem. This paper will
address both issues.

First, the upper level or the lower level or both of a bilevel decision have mul-
tiple conflicting objectives which should be considered simultaneously by the
decision makers. For example, a coordinator of a multi-division firm considers
three objectives in making an aggregate production plan: maximize net profits,
maximize quality of products, and maximize worker satisfaction. The three ob-
jectives are in conflict with each other, but must be considered simultaneously
by the coordinators. Any improvement in one objective may be achieved only
at the expense of others. One level multi-objective decision-making problem
has been well researched by other researchers such as Hwang & Masud [9].
But in a bilevel model, the selection of a solution for the leader is affected
by his/her followers’ optimal reactions. Therefore, to find a solution for the
leader which has multiple objectives needs to consider both the compromised
solution of the leader and his/her follower’s decision.

Second, decision makers have fuzzy demands. This is expressed as that the
parameters of the objective functions and the constraints of the leader and the
followers cannot be described by precise values. In the problem-formulation
process, the parameters are required to be obtained through some experiments
and/or some experts’ understanding of the nature of the parameters. It has
been observed that, in most real-world situations, for example, power market
and business management, the possible values of these parameters are often
only imprecisely or ambiguously known to the experts. With this observation,
it would be certainly more appropriate to interpret the experts’ understanding
of the parameters as fuzzy numerical data which can be represented by means
of fuzzy sets [28].

Research on fuzzy BP have been reported in literatures. For example, Sakawa
et al. [14–21] formulated cooperative fuzzy BP problems and proposed an
interactive fuzzy programming approach for solving the problem. In their ap-
proach, the concepts of α-bilevel programming was introduced based on the
basis of fuzzy number α-level sets. At the same time, some researches applied
fuzzy set technique to deal with BP problems. For example, Shih [24] applied
fuzzy set theory to overcome the computational difficulties in solving bilevel
problems, and Shina [25] applied fuzzy mathematical programming approach
to obtain the solution of multi-level linear programming problems.
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Our research applies fuzzy sets to deal with fuzzy linear BP (FLBP) problem
when the leader or the follower or both have multiple objectives. Based on
the extended solution concept and related theorems of BP [11,22,23], we have
first solved FLBP problems with a specialized forms of membership functions,
triangular form, in the fuzzy parameters [29–31] and then in the general form
of fuzzy numbers [32]. This paper extends our previous research by allowing
the leader and the follower to have multiple objectives with fuzzy parameters,
called a fuzzy multi-objective linear bilevel programming (FMOLBP) prob-
lem. This paper in particular develops an approximation branch-and-bound
algorithm to solve the FMOLBP problems.

Following the introduction, Section 2 gives some basic concepts and theo-
rems regarding to FMOLBP problems. Section 3 presents a FMOLBP model,
related definitions, theorems and properties. A general fuzzy number based
approximation branch-and-bound algorithm for solving FMOLBP problems
are proposed in Section 4. Two cased based examples are shown in Section
5 for illustrating the proposed model and algorithm. Conclusions and further
study are discussed in Section 6.

2 Preliminaries

In this section, we present some basic concepts, definitions and theorems that
are to be used in the subsequent sections. The work presented in this section
can also be found from our recent papers in [31, 32].

Let R be the set of all real numbers, Rn be n-dimensional Euclidean space,
and x = (x1, x2, · · · , xn)T , y = (y1, y2, · · · , yn)

T ∈ Rn be any two vectors,
where xi, yi ∈ R, i = 1, 2, . . . , n and T denotes the transpose of the vector.
Then we denote the inner product of x and y by 〈x, y〉. For any two vectors
x, y ∈ Rn, we write

x ≧ y iff xi > yi, ∀i = 1, 2, . . . , n;

x ≥ y iff x ≧ y and x 6= y;

x > y iff xi > yi, ∀i = 1, 2, . . . , n.

Definition 1 A fuzzy number ã is defined as a fuzzy set on R, whose mem-
bership function µã satisfies the following conditions:

(1) µã is a mapping from R to the closed interval [0, 1];
(2) it is normal, i.e., there exists x ∈ R such that µã(x) = 1;
(3) for any λ ∈ (0, 1], aλ = {x; µã(x) > λ} is a closed interval, denoted by

[aL
λ , aR

λ ].
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Let F (R) be the set of all fuzzy numbers. By the decomposition theorem of
fuzzy sets, we have

ã =
⋃

λ∈[0,1]

λ[aL
λ , aR

λ ],

for every ã ∈ F (R).

Let F ∗(R) be the set of all finite fuzzy numbers on R.

Theorem 2 Let ã be a fuzzy set on R, then ã ∈ F (R) if and only if µã

satisfies

µã(x) =





1, x ∈ [m, n]

L(x), x < m

R(x), x > n

where L(x) is the right-continuous monotone increasing function, 0 6 L(x) <
1 and limx→−∞ L(x) = 0, R(x) is the left-continuous monotone decreasing
function, 0 6 R(x) < 1 and limx→∞ R(x) = 0. 2

Corollary 3 For every ã ∈ F (R) and λ1, λ2 ∈ [0, 1], if λ1 6 λ2, then aλ2
⊂

aλ1
. 2

Definition 4 For any ã, b̃ ∈ F (R) and 0 6 λ ∈ R, the sum of ã and b̃ and
the scalar product of λ and ã are defined by the membership functions

µã+b̃(t) = sup min
t=u+v

{µã(u), µb̃(v)},
µã−b̃(t) = sup min

t=u−v
{µã(u), µb̃(v)},

µλã(t) = sup
t=λu

µã(u).

Theorem 5 For any ã, b̃ ∈ F (R) and 0 6 α ∈ R,

ã + b̃ =
⋃

λ∈[0,1]

λ[aL
λ + bL

λ , aR
λ + bR

λ ],

ã− b̃ = ã +
(
−b̃
)

=
⋃

λ∈[0,1]

λ[aL
λ − bR

λ , aR
λ − bL

λ ],

αã =
⋃

λ∈[0,1]

λ[αaL
λ , αaR

λ ]. 2

Definition 6 Let ãi ∈ F (R), i = 1, 2, · · · , n. We define ã = (ã1, ã2, · · · , ãn)

µã : Rn → [0, 1]

x 7→
n∧

i=1
µãi

(xi),

where x = (x1, x2, . . . , xn)T ∈ Rn, and ã is called an n-dimensional fuzzy
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number on Rn. If ãi ∈ F ∗(R), i = 1, 2, . . . , n, ã is called an n-dimensional
finite fuzzy number on Rn.

Let F (Rn) and F ∗(Rn) be the set of all n−dimensional fuzzy numbers and
the set of all n-dimensional finite fuzzy numbers on Rn respectively.

Proposition 7 For every ã ∈ F (Rn), ã is normal. 2

Proposition 8 For every ã ∈ F (Rn), the λ-section of ã is an n-dimensional
closed rectangular region for any λ ∈ [0, 1]. 2

Proposition 9 For every ã ∈ F (Rn) and λ1, λ2 ∈ [0, 1], if λ1 6 λ2, then
aλ2
⊂ aλ1

. 2

Definition 10 For any n-dimensional fuzzy numbers ã, b̃ ∈ F (Rn), we define

(1) ã v b̃ iff aL
λ ≧ bL

λ and aR
λ ≧ bR

λ , λ ∈ (0, 1];

(2) ã % b̃ iff aL
λ ≥ bL

λ and aR
λ ≥ bR

λ , λ ∈ (0, 1];

(3) ã ≻ b̃ iff aL
λ > bL

λ and aR
λ > bR

λ , λ ∈ (0, 1].

We call the binary relations v, % and ≻ a fuzzy max order, a strict fuzzy max
order and a strong fuzzy max order, respectively.

3 A Model and Solution Concepts for Fuzzy Multi-Objective Lin-

ear Bilevel Programming Model

Based on our discussion in previous sections, a FMOLBP problem can be
modeled as following:

For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, F : X × Y → F ∗(Rs), and f : X × Y →
F ∗(Rt),

min
x∈X

F (x, y) =
(
c̃11x + d̃11y, c̃21x + d̃21y, · · · , c̃s1x + d̃s1y

)T
(1a)

subject to Ã1x + B̃1y w b̃1 (1b)

min
y∈Y

f(x, y) =
(
c̃12x + d̃12y, c̃22x + d̃22y, · · · , c̃t2x + d̃t2y

)T
(1c)

subject to Ã2x + B̃2y w b̃2 (1d)

where c̃i1, c̃j2 ∈ F ∗(Rn), d̃i1, d̃j2 ∈ F ∗(Rm), i = 1, 2, . . . , s, j = 1, 2, . . . , t,

b̃1 ∈ F ∗(Rp), b̃2 ∈ F ∗(Rq), Ã1 = (ãij)p×n
, ãij ∈ F ∗(R), B̃1 =

(
b̃ij

)
p×m

,

b̃ij ∈ F ∗(R), Ã2 = (ẽij)q×n
, ẽij ∈ F ∗(R), B̃2 = (s̃ij)q×m

, s̃ij ∈ F ∗(R).
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For the sake of simplicity, we set

X̃ × Ỹ =
{
(x, y); Ã1x + B̃1 w b̃1, Ã2x + B̃2y w b̃2

}

and assume that X̃ × Ỹ is compact. In a FMOLBP problem, for each (x, y) ∈
X̃ × Ỹ , the value of the objective functions F (x, y) = (F1(x, y), · · · , Fs(x, y))
and f(x, y) = (f1(x, y), · · · , ft(x, y)) of the leader and the follower are s-
dimensional and t-dimensional fuzzy numbers, respectively. Thus, we intro-
duce the following concepts of optimal solutions to the FMOLBP problems.

Definition 11 A point (x∗, y∗) ∈ X̃ × Ỹ is said to be a complete optimal
solution to the FMOLBP problem if it holds that F (x∗, y∗) w F (x, y) and
f(x∗, y∗) w f(x, y) for all (x, y) ∈ X̃ × Ỹ .

Definition 12 A point (x∗, y∗) ∈ X̃×Ỹ is said to be a Pareto optimal solution
to the FMOLBP problem if there does not exist (x, y) ∈ X̃ × Ỹ such that
F (x∗, y∗) v F (x, y) and f(x∗, y∗) % f(x, y) holds.

Definition 13 A point (x∗, y∗) ∈ X̃ × Ỹ is said to be a weak Pareto optimal
solution to the FMOLBP problem if there is no (x, y) ∈ X̃ × Ỹ such that
F (x∗, y∗) ≻ F (x, y) and f(x∗, y∗) ≻ f(x, y) holds.

Associated with the FMOLBP problem, we now consider the following multi-
objective linear bilevel programming (MOLBP) problem:

For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, F : X × Y → F ∗(Rs), and f : X × Y →
F ∗(Rt),

min
x∈X

(F (x, y))L(R)
λ =

(
(F1(x, y))L

λ , (F1(x, y))R

λ , · · · (Fs(x, y))L

λ , (Fs(x, y))R

λ

)T
,

λ ∈ [0, 1] (2a)

subject to A1
L
λx + B1

L
λy ≦ b1

L
λ , A1

R
λ x + B1

R
λ y ≦ b1

R
λ , λ ∈ [0, 1] (2b)

min
y∈Y

(f(x, y))L(R)
λ =

(
(f1(x, y))L

λ ,

(f1(x, y))R

λ , · · · , (ft(x, y))L

λ , (ft(x, y))R

λ

)T
, λ ∈ [0, 1]

(2c)

subject to A2
L
λx + B2

L
λy ≦ b2

L
λ , A2

R
λ x + B2

R
λ y ≦ b2

R
λ , λ ∈ [0, 1]

(2d)

where (Fi(x, y))L

λ = ci1
L
λx + di1

L
λy, (Fi(x, y))R

λ = ci1
R
λ x + di1

R
λ y, (fj(x, y))L

λ
=

cj2
L
λ
x+dj12

L
λ
y and (fj(x, y))R

λ
= cj2

R
λ
x+dj12

R
λ
y, λ ∈ [0, 1], ci1

L
λ , ci1

R
λ , cj2

L
λ
, cj2

R
λ
∈

Rn, di1
L
λ , di1

R
λ , dj2

L

λ
, dj2

R

λ
∈ Rm, di1

L
λ , di1

R
λ , dj2

L

λ
, dj2

R

λ
∈ Rm, i = 1, 2, · · · , s, j =

1, 2, · · · , t, b1
L
λ , b1

R
λ ∈ Rp, b2

L
λ , b2

R
λ ∈ Rq, A1

L
λ =

(
aij

L
λ

)
, A1

R
λ =

(
aij

R
λ

)
∈ Rp×n,

A2
L
λ =

(
eij

L
λ

)
, A2

R
λ =

(
eij

R
λ

)
∈ Rq×n, B1

L
λ =

(
bij

L
λ

)
, B1

R
λ =

(
bij

R
λ

)
∈ Rp×m,

B2
L
λ =

(
sij

L
λ

)
, B2

R
λ =

(
sij

R
λ

)
∈ Rq×m.
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For the sake of simplicity, we set

X × Y =
{
(x, y) ; A1

L
λx + B1

L
λ ≦ b1

L
λ , A1

R
λ x + B1

R
λ ≦ b1

R
λ ,

A2
L
λx + B2

L
λ ≦ b2

L
λ , A2

R
λ x + B2

R
λ ≦ b2

R
λ

}

and assume that X × Y is compact.

Obviously, X̃ × Ỹ = X × Y .

Definition 14 A point (x∗, y∗) ∈ X × Y is said to be a complete optimal
solution to the MOLBP problem if it holds that

(
(F1(x

∗, y∗))L

λ , (F1(x
∗, y∗))R

λ , · · · , (Fs(x
∗, y∗))L

λ , (Fs(x
∗, y∗))R

λ

)T

≦
(
(F1(x, y))L

λ , (F1(x, y))R

λ , · · · , (Fs(x, y))L

λ , (Fs(x, y))R

λ

)T

and

(
(f1(x

∗, y∗))L

λ , (f1(x
∗, y∗))R

λ , · · · , (ft(x
∗, y∗))L

λ , (ft(x
∗, y∗))R

λ

)T

≦
(
(f1(x, y))L

λ , (f1(x, y))R

λ , · · · , (ft(x, y))L

λ , (ft(x, y))R

λ

)T

for λ ∈ [0, 1] and (x, y) ∈ X × Y .

Definition 15 A point (x∗, y∗) ∈ X×Y is said to be a Pareto optimal solution
to the MOLBP problem if there is no (x, y) ∈ X × Y such that

(
(F1(x

∗, y∗))L

λ , (F1(x
∗, y∗))R

λ , · · · , (Fs(x
∗, y∗))L

λ , (Fs(x
∗, y∗))R

λ

)T

≥
(
(F1(x, y))L

λ , (F1(x, y))R

λ , · · · , (Fs(x, y))L

λ , (Fs(x, y))R

λ

)T

or

(
(f1(x

∗, y∗))L

λ , (f1(x
∗, y∗))R

λ , · · · , (ft(x
∗, y∗))L

λ , (ft(x
∗, y∗))R

λ

)T

≥
(
(f1(x, y))L

λ , (f1(x, y))R

λ , · · · , (ft(x, y))L

λ , (ft(x, y))R

λ

)T

hold.

Definition 16 A point (x∗, y∗) ∈ X × Y is said to be a weak Pareto optimal
solution to the MOLBP problem if there is no (x, y) ∈ X × Y such that

(
(F1(x

∗, y∗))L

λ , (F1(x
∗, y∗))R

λ , · · · , (Fs(x
∗, y∗))L

λ , (Fs(x
∗, y∗))R

λ

)T

>
(
(F1(x, y))L

λ , (F1(x, y))R

λ , · · · , (Fs(x, y))L

λ , (Fs(x, y))R

λ

)T
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or

(
(f1(x

∗, y∗))L

λ , (f1(x
∗, y∗))R

λ , · · · , (ft(x
∗, y∗))L

λ , (ft(x
∗, y∗))R

λ

)T

>
(
(f1(x, y))L

λ , (f1(x, y))R

λ , · · · , (ft(x, y))L

λ , (ft(x, y))R

λ

)T

hold.

Theorem 17 Let (x∗, y∗) be the optimal solution of the MOLBP problem de-
fined by (2). Then it is also an optimal solution of the FMOLBP problem
defined by (1). 2

Theorem 18 For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, if all the fuzzy parameters ãij,
b̃ij, ẽij, s̃ij, c̃ij, b̃1, b̃2 and d̃ij have piecewise trapezoidal membership functions
in the FMOLBP problem (1),

µz̃(t) =





0, t < zL
α0

,

α1−α0

zL
α1

−zL
α0

(t− zL
α0

) + α0, zL
α0

6 t < zL
α1

α1−α0

zL
α2

−zL
α1

(t− zL
α1

) + α1, zL
α1

6 t < zL
α2

...
...

α, zL
αn

6 t < zR
αn

αn−αn−1

zR
αn−1

−zR
αn

(−t + zR
αn−1

) + αn−1, zR
αn

6 t < zR
αn−1

...
...

α0−α1

zR
α1

−zR
α0

(−t + zR
α0

) + α0, zR
α1

6 t 6 zR
α0

0, zR
α0

< t

(3)

where z̃ denotes ãij, b̃ij, ẽij, s̃ij, c̃ij, b̃1, b̃2, and d̃ij respectively, then, (x∗, y∗)
is a complete optimal solution to the problem (1) if and only if (x∗, y∗) is a
complete optimal solution to the MOLBP problem:

min
x∈X

(Fi(x, y))L

αj
= ci1

L
αj

x + di1
L
αj

y, i = 1, 2, . . . , s; j = 0, 1, . . . , n

min
x∈X

(Fi(x, y))R

αj
= ci1

R
αj

x + di1
R
αj

y, i = 1, 2, . . . , s; j = 0, 1, . . . , n

(4a)

subject to A1
L
αj

x + B1
L
αj

y ≦ b1
L
αj

, j = 0, 1, . . . , n

A1
R
αj

x + B1
R
αj

y ≦ b1
R
αj

, j = 0, 1, . . . , n
(4b)

min
y∈Y

(fi(x, y))L

αj
= ci2

L
αj

x + di2
L
αj

y, i = 1, 2, . . . , s; j = 0, 1, . . . , n

min
y∈Y

(fi(x, y))R

αj
= ci2

R
αj

x + di2
R
αj

y, i = 1, 2, . . . , s; j = 0, 1, . . . , n

(4c)
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subject to A2
L
αj

x + B2
L
αj

y ≦ b2
L
αj

, j = 0, 1, . . . , n

A2
R
αj

x + B2
R
αj

y ≦ b2
R
αj

, j = 0, 1, . . . , n.
(4d)

We note

Ā1x + B̄1y ≦ b̄1 (4b′)

Ā2x + B̄2y ≦ b̄2 (4d′)

where

Ā1 =
(
A1

L
α0

, · · · , A1
L
αn

, A1
R
α0

, · · · , A1
R
αn

)T
,

Ā2 =
(
A2

L
α0

, · · · , A2
L
αn

, A2
R
α0

, · · · , A2
R
αn

)T
,

B̄1 =
(
B1

L
α0

, · · · , B1
L
αn

, B1
R
α0

, · · · , B1
R
αn

)T
,

B̄2 =
(
B2

L
α0

, · · · , B2
L
αn

, B2
R
α0

, · · · , B2
R
αn

)T
,

b̄1 =
(
b1

L
α0

, · · · , b1
L
αn

, b1
R
α0

, · · · , b1
R
αn

)T
,

b̄2 =
(
b2

L
α0

, · · · , b2
L
αn

, b2
R
α0

, · · · , b2
R
αn

)T
.

Then we can re-write (4) by using

min
x∈X

(Fi(x, y))L

αj
= ci1

L
αj

x + di1
L
αj

y, i = 1, 2, . . . , s; j = 0, 1, . . . , n

min
x∈X

(Fi(x, y))R

αj
= ci1

R
αj

x + di1
R
αj

y, i = 1, 2, . . . , s; j = 0, 1, . . . , n
(4′a)

subject to Ā1x + B̄1y ≦ b̄1, (4′b)

min
y∈Y

(fi(x, y))L

αj
= ci1

L
αj

x + di1
L
αj

y, i = 1, 2, . . . , s; j = 0, 1, . . . , n

min
y∈Y

(fi(x, y))R

αj
= ci1

R
αj

x + di1
R
αj

y, i = 1, 2, . . . , s; j = 0, 1, . . . , n

(4′c)
subject to Ā2x + B̄2y ≦ b̄2. 2 (4′d)

Theorem 19 For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, if all the fuzzy parameters ãij,
b̃ij, ẽij, s̃ij, c̃ij, and d̃ij have piecewise trapezoidal membership functions (3)
in the FMOLBP problem (1), then (x∗, y∗) is a Pareto optimal solution to the
problem (1) if and only if (x∗, y∗) is a Pareto optimal solution to the MOLBP
problem (4′).

PROOF. Let (x∗, y∗) be a Pareto optimal solution to the FMOLBLP prob-
lem. On the contrary, we suppose that there exists a (x̄, ȳ) ∈ X ×Y such that,
for λ= α, β

(
(F1(x

∗, y∗))L

λ , (F1(x
∗, y∗))R

λ , · · · , (Fs(x
∗, y∗))L

λ , (Fs(x
∗, y∗))R

λ

)T

≥
(
(F1(x̄, ȳ))L

λ , (F1(x̄, ȳ))R

λ , (Fs(x̄, ȳ))L

λ , (Fs(x̄, ȳ))R

λ

)T
.
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Therefore

0 >
(
(F1(x̄, ȳ))L

λ − (F1(x
∗, y∗))L

λ , (F1(x̄, ȳ))R

λ (F1(x
∗, y∗))R

λ , · · · ,
(Fs(x̄, ȳ))L

λ − (Fs(x
∗, y∗))L

λ , (Fs(x̄, ȳ))R

λ − (Fs(x
∗, y∗))R

λ

)T
.

Hence

0 > (Fi(x̄, ȳ))L

λ − (Fi(x
∗, y∗))L

λ , 0 > (Fi(x̄, ȳ))R

λ − (Fi(x
∗, y∗))R

λ , i = 1, 2, · · · , s.

That is

(Fi(x̄, ȳ))L

λ ≤ (Fi(x
∗, y∗))L

λ , (Fi(x̄, ȳ))R

λ ≤ (Fi(x
∗, y∗))R

λ , i = 1, 2, · · · , s.

Consequently, for any λ ∈ [β, α], we have

(Fi(x̄, ȳ))L

λ ≤ (Fi(x
∗, y∗))L

λ , (Fi(x̄, ȳ))R

λ ≤ (Fi(x
∗, y∗))R

λ , i = 1, 2, · · · , s.

that is F (x∗, y∗) � F (x̄, ȳ). However, this contradicts the assumption that
(x∗, y∗) is a Pareto optimal solution to the FMOLBLP problem.

Let (x∗, y∗) be a Pareto optimal solution to the MOLBLP problem. If (x∗, y∗) is
not a Pareto optimal solution to the problem, then there exists (x̄, ȳ) ∈ X×Y
such that F (x∗, y∗) � F (x̄, ȳ). Therefore, for any λ ∈ [β, α], we have

(
(F1(x

∗, y∗))L

λ , (F1(x
∗, y∗))R

λ , · · · , (Fs(x
∗, y∗))L

λ , (Fs(x
∗, y∗))R

λ

)T

≥
(
(F1(x̄, ȳ))L

λ , (F1(x̄, ȳ))R

λ , (Fs(x̄, ȳ))L

λ , (Fs(x̄, ȳ))R

λ

)T
.

that is

(Fi(x̄, ȳ))L

λ ≤ (Fi(x
∗, y∗))L

λ , (Fi(x̄, ȳ))R

λ ≤ (Fi(x
∗, y∗))R

λ , i = 1, 2, · · · , s.

Hence, for λ = α and λ = β, we have

(Fi(x̄, ȳ))L

λ ≤ (Fi(x
∗, y∗))L

λ , (Fi(x̄, ȳ))R

λ ≤ (Fi(x
∗, y∗))R

λ , i = 1, 2, · · · , s.

which contradicts the assumption that (x∗, y∗) is a Pareto optimal solution to
the MOLBLP problem.

Theorem 20 For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, if all the fuzzy parameters ãij,
b̃ij, ẽij, s̃ij, c̃ij, and d̃ij have piecewise trapezoidal membership functions (3)
in the FMOLBP problem (1), then (x∗, y∗) is a weak Pareto optimal solution
to the problem (1) if and only if (x∗, y∗) is a weak Pareto optimal solution to
the MOLBP problem (4′).

PROOF. See Theorem 19.
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Theorem 21 For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, if all the fuzzy parameters ãij,
b̃ij, ẽij, s̃ij, c̃ij, and d̃ij have piecewise trapezoidal membership functions (3)
in the FMOLBP problem (1), then a necessary and sufficient condition that
(x∗, y∗) solves the FMOLBP problem (1) is that there exist (row) vectors u∗,
v∗ and z∗ such that (x∗, y∗, u∗, v∗, z∗) solves:

min
x∈X

=
s∑

j=1

wj1

(
n∑

i=0

(
cj1

L
αi

x + dj1
L

αi
y
)

+
n∑

i=0

(
cj1

R
αi

x + dj1
R

αi
y
))

(5a)

subject to Ā1x + B̄1y ≦ b̄1 (5b)

Ā2x + B̄2y ≦ b̄2 (5c)

u

(
n∑

i=0

B1
L
αi

+
n∑

i=0

B1
R
αi

)
+ v

(
n∑

i=0

B2
L
αi

+
n∑

i=0

B2
R
αi

)
− z

= −
t∑

j=1

wj2

(
n∑

i=0

dj2
L

αi
+

n∑

i=0

dj2
R

αi

) (5d)

u

((
n∑

i=0

b1
L
αi

+
n∑

i=0

b1
R
αi

)
−
(

n∑

i=0

A1
L
αi

+
n∑

i=0

A1
R
αi

)
x

−
(

n∑

i=0

B1
L
αi

+
n∑

i=0

B1
R
αi

)
y

)
+ v

((
n∑

i=0

b2
L
αi

+
n∑

i=0

b2
R
αi

)

−
(

n∑

i=0

A2
L
αi

+
n∑

i=0

A2
R
αi

)
x−

(
n∑

i=0

B2
L
αi

+
n∑

i=0

B2
R
αi

)
y

)

+ zy = 0

(5e)

x ≥ 0, y ≥ 0, u ≥ 0, v ≥ 0, z ≥ 0,
s∑

j=1

wj1 = 1 and
t∑

j=1

wj2 = 1. 2 (5f)

PROOF. We can prove this result by combining Theorem 18 and Theorem
2 of reference [22], and use the weighting method [13].

Obviously, Theorem 21 provides a way to solve FMOLBP problem. Based on
this theorem, we can present an approximation branch-and-bound algorithm
for solving the FMOLBP problem shown in (1).

4 An Approximation Branch-and-Bound Algorithm

This section proposes an approximation branch-and-bound algorithm for solv-
ing the FMOLBP problems.
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We first write all the inequalities (except of the leader’s variables) of (4′a)-
(4′d) as gi(x, y) ≥ 0, i = 1, . . . , p + q + m, and note that complementary
slackness simply means uigi(x, y) = 0(i = 1, . . . , p + q + m). We suppress the
complementary term and solve the resulted linear sub-problem. At each time of
iteration the condition (5e) is checked. If it is satisfied, the corresponding point
is in the inducible region and hence a potential solution to (4′). Otherwise,
a branch-and-bound scheme is used to implicitly examine all combinations of
the complementarities slackness.

Now, we give some notations for describing the details of the approximation
branch-and-bound algorithm.

Let W = {1, . . . , p + q + m} be the index set for the terms in (5e), F̄ be the
incumbent upper bound on the objective function of the leader. At the kth
level of an search tree we define a subset of indices Wk ⊂ W , and a path Pk

corresponding to an assignment of either ui = 0 or gi = 0 for i ∈Wk. Now let

S+
k = {i : i ∈Wk, ui = 0}

S−

k = {i : i ∈Wk, gi = 0}
S0

k = {i : i /∈Wk}.

For i ∈ S0
k , the variables ui or gi are free to assume any nonnegative value

in the solution of (5) with (5e) omitted, so complementary slackness will not
necessarily be satisfied.

By using these notations we give all steps of the approximation branch-and-
bound algorithm in Table 1.

We give some explanations for these steps and their working process as follows.

After initialization, Step 7 is designed to find a new point which is poten-
tially bilevel feasible. If no solution exists, or the solution does not offer an
improvement over the incumbent (Step 8), the algorithm goes to Step 11 and
backtracks.

Step 9 checks the value of uk
i gi(x

k, yk)to determine if the complementary slack-

ness conditions are satisfied. In practice, if
∣∣∣uk

i gi

∣∣∣ < 10−6 it is considered to
be zero. Confirmation indicates that a feasible solution of a bilevel program
has been found and at Step 10 the upper bound on the leader’s objective
function is updated. Alternatively, if the complementary slackness conditions
are not satisfied, the term with the largest product is used at Step 9 to pro-
vide a branching variable. Branching is always completed on the Kuhn-Tucker
multiplier [2].

At Step 11, the backtracking operation is performed. Note that a live node is
one associated with a sub-problem that has not yet been fathomed at either

12



Table 1
An approximation branch-and-bound algorithm for FMOLBP problems

Step 1 Given two sets of weights wj1 (j = 1, 2, . . . , s) and wj2 (j = 1, 2, . . . , t)
to the objectives of the leader and the follower respectively, and let∑s

j=1 wj1 = 1 and
∑t

j=1 wj2 = 1.

Step 2 The problem (1) is transformed to the problem (4′)

Step 3 Set l = 1, a range of errors ǫ > 0, to solve (MOLBP)l2, i.e. (4′) by
using extended branch-and-bound algorithm [23].

Step 4 Let the interval [0, 1] be decomposed into 2l−1 equal sub-intervals with
(2l−1 + 1) nodes λi (i = 0, · · · , 2l−1) which are arranged in the order
of 0 = λ0 < λ1 < · · · < λ2l−1 = 1.

Step 5 Transform the problem (4′) to the linear BP problem (5) by using
Theorem 17 and weighting method [13]

Step 6 (Initialization) Set k = 0, S+
k = φ, S−

k = φ, S0
k = {1, . . . , p + q + m},

and F̄ =∞.

Step 7 (Iteration k) Set ui = 0 for i ∈ S+
k

and gi = 0 for i ∈ S−

k
. It first

attempts to solve (5) without (5e). If the resultant problem is infea-
sible, go to Step 11; otherwise, put k ← k + 1 and label the solution
(xk, yk, uk).

Step 8 (Fathoming) If F (xk, yk) > F̄ , then go to Step 11.

Step 9 (Branching) If uk
i gi(x

k, yk) = 0, i = 1, . . . , p + q + m, then go to Step
10. Otherwise select i for which uk

i gi(x
k, yk) 6= 0 is the largest and

label it i1. Put S+
k
← S+

k
∪ {i1}, S0

k ← S0
k \ {i1}, S−

k
← S−

k
, append

i1 to Pk, and go to Step 7.

Step 10 (Updating) Let F̄ ← F (xk, yk).

Step 11 (Backtracking) If no live node exists, go to Step 12. Otherwise branch
to the newest live vertex and update S+

k
, S−

k
, S0

k and Pk as discussed
below. Go back to Step 7.

Step 12 (Termination) If F̄ =∞, there is not feasible solution to (MOLBP)l2.
Otherwise, declare the feasible point associated with F̄ which is the
optimal solution (x, y)2l to (MOLBP)l2.

Step 13 l = l + 1, repeat Step 4 to Step 12.

Step 14 If ‖(x, y)2l+1 − (x, y)2l‖ < ε, then the solution (x∗, y∗) of the
FMOLBP problem is (x, y)2l+1 Otherwise, go back to Step 13.

Step 15 Show the result of problem (1). Terminates.

Step 7 due to infeasibility or at Step 8 due to bounding, and whose solution
violates at least one complementary slackness condition. To facilitate book
keeping, the path Pk in the branch-and-bound tree is represented by a vector,
its dimension is the current depth of the tree. The order of the components of
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Pk is determined by their level in the tree. Indices only appear in Pk if they are
in either S+

k or S−

k with the entries underlined if they are in S−

k . Because the
algorithm always branches on a Kuhn-Tucker multiplier first, backtracking
is accomplished by finding the rightmost non-underlined component if Pk,
underlining it, and erasing all entries to the right. The erased entries are
deleted from S−

k and added to S0
k .

5 Case Based Examples

We first apply the proposed approximation branch-and-bound algorithm to
solve a simple FMOLBP problem to illustrate how the algorithm is used.

Example 22 Consider the following FMOLBP problem with x ∈ R1, y ∈ R1,
and X = {x ≥ 0}, Y = {y ≥ 0},

min
x∈X

F1(x, y) = −1̃x + 2̃y

min
x∈X

F2(x, y) = 2̃x− 4̃y

subject to − 1̃x + 3̃y ≤ 4̃

min
y∈Y

f1(x, y) = −1̃x + 2̃y

min
y∈Y

f2(x, y) = 2̃x− 1̃y

subject to 1̃x− 1̃y ≤ 0̃

− 1̃x− 1̃y ≤ 0̃

where

µ1̃(t) =





0, t < 0,

t2, 0 ≦ t < 1,

2− t, 1 ≦ t < 2,

0, 2 ≦ t.

µ2̃(t) =





0, t < 1,

t− 1, 1 ≦ t < 2,

3− t, 2 ≦ t < 3,

0, 3 ≦ t.

µ3̃(t) =





0, t < 2,

t− 2, 2 ≦ t < 3,

4− t, 3 ≦ t < 4,

0, 4 ≦ t.

µ4̃(t) =





0, t < 3,

t− 3, 3 ≦ t < 4,

5− t, 4 ≦ t < 5,

0, 5 ≦ t.
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µ0̃(t) =





0, t < −1,

t + 1, −1 ≦ t < 0,

1− t2, 0 ≦ t < 1,

0, 1 ≦ t.

We now solve this problem by using the proposed approximation branch-and-
bound algorithm.

Step 1 given the weights (0.5, 0.5) for the two fuzzy objectives of the leader
and of the follower respectively.

Step 2 The FMOLBP problem is transformed to the following MOLBP prob-
lem by using Theorem 17.

min
x∈X

(F1(x, y))L
λ = (−1̃)L

λx + 2̃L
λy, λ ∈ [0, 1]

min
x∈X

(F1(x, y))R
λ = (−1̃)R

λ x + 2̃R
λ y, λ ∈ [0, 1]

min
x∈X

(F2(x, y))L
λ = 2̃L

λx + (−4̃)L
λy, λ ∈ [0, 1]

min
x∈X

(F2(x, y))R
λ = 2̃R

λ x + (−4̃)R
λ y, λ ∈ [0, 1]

subject to (−1̃)L
λx + 3̃L

λy ≦ 4̃L
λ , (−1̃)R

λ x + 3̃R
λ y ≦ 4̃R

λ , λ ∈ [0, 1]

min
y∈Y

(f1(x, y))L
λ = 2̃L

λx + (−1̃)L
λy, λ ∈ [0, 1]

min
y∈Y

(f1(x, y))R
λ = 2̃R

λ x + (−1̃)R
λ y, λ ∈ [0, 1]

min
y∈Y

(f2(x, y))L
λ = (−1̃)L

λx + 2̃L
λy, λ ∈ [0, 1]

min
y∈Y

(f2(x, y))R
λ = (−1̃)R

λ x + 2̃R
λ y, λ ∈ [0, 1]

subject to 1̃L
λx + (−1̃)L

λy ≦ 0̃L
λ , 1̃R

λ x + (−1̃)R
λ y ≦ 0̃R

λ , λ ∈ [0, 1]

(−1̃)L
λx + (−1̃)L

λy ≦ 0̃L
λ , (−1̃)R

λ x + (−1̃)R
λ y ≦ 0̃R

λ , λ ∈ [0, 1]

Step 3. Let l = 1 and a range of errors ε = 10−6 > 0.

Step 4. Let the interval [0, 1] be decomposed into 2l−1 equal sub-intervals
with (2l−1 + 1) nodes λi, (i = 0, · · · , 2l−1) which is arranged in the order of
0 = λ0 < λ1 < · · · < λ2l−1 = 1. We solve the following MOLBP problem

min
x∈X

(F1(x, y))
L(R)
1 = −1x + 2y

min
x∈X

(F1(x, y))L
0 = −2x + y

min
x∈X

(F1(x, y))R
0 = 0x + 3y
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min
x∈X

(F2(x, y))
L(R)
1 = 2x− 4y

min
x∈X

(F2(x, y))L
0 = 1x− 5y

min
x∈X

(F2(x, y))R
0 = 3x− 3y

subject to − 1x + 3y ≤ 4

− 2x + 2y ≤ 3

0x + 4y ≤ 5

min
y∈Y

(f1(x, y))
L(R)
1 = 2x− 1y

min
y∈Y

(f1(x, y))L
0 = 1x− 2y

min
y∈Y

(f1(x, y))R
0 = 3x− 0y

min
y∈Y

(f2(x, y))
L(R)
1 = −1x + 2y

min
y∈Y

(f2(x, y))L
0 = −2x + 1y

min
y∈Y

(f2(x, y))L
0 = 0x + 3y

subject to 1x− 1y ≤ 0

0x− 2y ≤ −1

2x− 0y ≤ 1

− 1x− 1y ≤ 0

− 2x− 2y ≤ −1.

Step 5. We transform this MOLBP problem to the linear BP problem by using
the method of weighting.

min
x∈X

F (x, y) = 3x− 6y

subject to − 1x + 3y ≤ 4

− 2x + 2y ≤ 3

0x + 4y ≤ 5

min
y∈Y

f(x, y) = 3x + 3y

subject to 1x− 1y ≤ 0

0x− 2y ≤ −1

2x− 0y ≤ 1

− 1x− 1y ≤ 0

− 2x− 2y ≤ −1.

Step 6-12. According to the proposed extended branch-and-bound algorithm,
let us rewrite it as follows in (3), we have
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g1(x, y) = 4− (−1x + 3y) ≥ 0

g2(x, y) = 3− (−2x + 2y) ≥ 0

g3(x, y) = 5− (0x + 4y) ≥ 0

g4(x, y) = −(1x− 1y) ≥ 0

g5(x, y) = −1− (0x− 2y) ≥ 0

g6(x, y) = 1− (2x− 0y) ≥ 0

g7(x, y) = 1x + 1y ≥ 0

g8(x, y) = −1− (−2x− 2y) ≥ 0

g9(x, y) = y ≥ 0

and also have

min
x∈X

F (x, y) = 3x− 6y

subject to− 1x + 3y ≤ 4

− 2x + 2y ≤ 3

0x + 4y ≤ 5

1x− 1y ≤ 0

0x− 2y ≤ −1

2x− 0y ≤ 1

− 1x− 1y ≤ 0

− 2x− 2y ≤ −1

3u1 + 2u2 + 4u3 − u4 − 2u5 − 0u6 − u7 − 2u8 − u9 = −3
9∑

i=1

uigi(x, y) = 0

x > 0, y > 0, u1 > 0, . . . , u9 > 0.

Finally, we get the following linear programming problem with one check con-
dition.

min
x∈X

F (x, y) = 3x− 6y

subject to − 1x + 3y ≤ 4

− 2x + 2y ≤ 3

0x + 4y ≤ 5

1x− 1y ≤ 0

0x− 2y ≤ −1

2x− 0y ≤ 1

− 1x− 1y ≤ 0
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− 2x− 2y ≤ −1

3u1 + 2u2 + 4u3 − u4 − 2u5 − 0u6 − u7 − 2u8 − u9 = −3

x > 0, y > 0, u1 > 0, . . . , u9 > 0.

At each time of iteration, the following condition is checked.

9∑

i=1

uigi(x, y) = 0.

More specifically, after initializing the data, the algorithm finds a feasible
solution to the Kuhn-Tucker representation with the complementary slack-
ness conditions omitted and proceeds to Step 9. The current point, x1 = 0,
y1 = 1.25, u1 = (0, 0, 0, 3, 0, 0, 0, 0, 0), with F (x1, y1) = −7.5 is not satis-
fied complementarities so a branching variable is selected (u4) and the index
sets are updated, giving S+

1 = {4}, S−

1 = φ, S0
1 = {1, 2, 3, 5, 6, 7, 8, 9} and

P1 = {4}.

In the next four iterations, the algorithm branches on u5, u7, u8 and u9, re-
spectively. Now, five levels down in the branch-and-bound search tree (Fig. 1),
the current sub-problem at Step 7 turns out to be infeasible so the algorithm
goes to Step 11 and backtracks. The index sets are S+

5 = {4, 5, 7, 8}, S−

5 = {9},
S0

5 = {1, 2, 3, 6} and P5 = {4, 5, 7, 8, 9}.

So we go to Step 7, and the algorithm turns out to be infeasible, so the
algorithm goes to Step 11 and backtracks. The index sets are S+

6 = {4, 5, 7},
S−

6 = {8}, S0
6 = {1, 2, 3, 6, 9} and P6 = {4, 5, 7, 8}.

Go to Step 7 again, and the algorithm turns out to be infeasible, so the algo-
rithm goes to Step 11 and backtracks. The index sets are now S+

7 = {4, 5},
S0

7 = {1, 2, 3, 6, 8, 9} and P7 = {4, 5, 7}.

Go to Step 7 again, and the algorithm turns out to be infeasible, so the algo-
rithm goes to Step 11 and backtracks. The index sets are S+

8 = {4}, S−

8 = {5},
S0

8 = {1, 2, 3, 6, 7, 8, 9} and P8 = {4, 5}.

Go to Step 7, a feasible solution is found. It passes the test at Step 8 and
satisfied the complementary slackness conditions at Step 9. Continuing at
Step 8, F̄ = −3. The algorithm backtracks at Step 11 and updates the sets,
S+

9 = φ, S−

9 = {4}, S0
9 = {1, 2, 3, 5, 6, 7, 8, 9} and P9 = {4}. Returning to

Step 7, another feasible solution is found, but at Step 8, the value of the
leader’s objective function is greater than the incumbent upper bound, so
it goes to Step 11 and backtracks. However, no live vertices exist. We have
found an optimal solution, occurring at the point (x∗, y∗) = (0, 0.5), (u∗) =
(0, 0, 0, 3, 0, 0, 0, 0, 0) with F ∗ = −3 and f ∗ = 1.5. The branch-and-bound tree
is shown in Fig. 1.
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Fig. 1. Branch-and-bound search tree

By examining above procedure, we found that the optimal solution occurs at
the point (x∗, y∗) = (0, 0.5) with

min
x∈X

(F1(x, y))
L(R)
1 = 1

min
x∈X

(F1(x, y))L
0 = 0.5

min
x∈X

(F1(x, y))R
0 = 1.5

min
x∈X

(F2(x, y))
L(R)
1 = −2

min
x∈X

(F2(x, y))L
0 = −2.5

min
x∈X

(F2(x, y))R
0 = −1.5

min
y∈Y

(f1(x, y))
L(R)
1 = −0.5

min
y∈Y

(f1(x, y))L
0 = −1

min
y∈Y

(f1(x, y))R
0 = 0

min
y∈Y

(f2(x, y))
L(R)
1 = 1

min
y∈Y

(f2(x, y))L
0 = 0.5

min
y∈Y

(f2(x, y))R
0 = 1.5
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Step 13. When l = 2, we solve the following MOLBP problem by Step 4

min
x∈X

(F1(x, y))
L(R)
1 = −1x + 2y

min
x∈X

(F1(x, y))L
1

2

= −3

2
x +

3

2
y

min
x∈X

(F1(x, y))L
0 = −2x + 1y

min
x∈X

(F1(x, y))R
1

2

= −
√

2

2
x +

5

2
y

min
x∈X

(F1(x, y))R
0 = 0x + 3y

min
x∈X

(F2(x, y))
L(R)
1 = 2x− 4y

min
x∈X

(F2(x, y))L
1

2

=
3

2
x− 9

2
y

min
x∈X

(F2(x, y))L
0 = 1x− 5y

min
x∈X

(F2(x, y))L
1

2

=
5

2
x− 7

2
y

min
x∈X

(F2(x, y))R
0 = 3x− 3y

subject to − 1x + 3y ≤ 4

− 3

2
x +

5

2
y ≤ 7

2
− 2x + 2y ≤ 3

−
√

2

2
x +

7

2
y ≤ 9

2
0x + 4y ≤ 5

min
y∈Y

(f1(x, y))
L(R)
1 = 2x− 1y

min
y∈Y

(f1(x, y))L
1

2

=
3

2
x− 3

2
y

min
y∈Y

(f1(x, y))L
0 = 1x− 2y

min
y∈Y

(f1(x, y))R
1

2

=
5

2
x−
√

2

2
y

min
y∈Y

(f1(x, y))R
0 = 3x− 0y

min
y∈Y

(f2(x, y))
L(R)
1 = −1x + 2y

min
y∈Y

(f2(x, y))L
1

2

= −3

2
x +

3

2
y

min
y∈Y

(f2(x, y))L
0 = −2x + 1y

min
y∈Y

(f2(x, y))R
1

2

= −
√

2

2
x +

5

2
y

min
y∈Y

(f2(x, y))R
0 = 0x + 3y
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subject to 1x− 1y ≤ 0√
2

2
x− 3

2
y ≤ −1

2
0x− 2y ≤ −1

3

2
x−
√

2

2
y ≤
√

2

2
2x− 0y ≤ 1

− 3

2
x− 3

2
y ≤ −1

2
− 1x− 1y ≤ 0

−
√

2

2
x−
√

2

2
y ≤
√

2

2
− 2x− 2y ≤ −1.

By Step 5 to Step 12, we have

min
x∈X

F (x, y) =

(
3 +

5−
√

2

2

)
x− 10y

subject to− 1x + 3y ≤ 4

− 3

2
x +

5

2
y ≤ 7

2
− 2x + 2y ≤ 3

−
√

2

2
x +

7

2
y ≤ 9

2
4y ≤ 5

min
y∈Y

f(x, y) =

(
5−
√

2

2
+ 3

)
x +

(
5−
√

2

2
+ 3

)
y

subject to 1x− 1y ≤ 0√
2

2
x− 3

2
y ≤ −1

2
0x− 2y ≤ −1

3

2
x−
√

2

2
y ≤
√

2

2
2x− 0y ≤ 1

− 3

2
x− 3

2
y ≤ −1

2
− 1x− 1y ≤ 0

−
√

2

2
x−
√

2

2
y ≤
√

2

2
− 2x− 2y ≤ −1
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The optimal solution occurs at the point (x∗, y∗) = (0, 0.5) with

min
x∈X

(F1(x, y))
L(R)
1 = 1

min
x∈X

(F1(x, y))L
1

2

= 0.75

min
x∈X

(F1(x, y))L
0 = 0.5

min
x∈X

(F1(x, y))R
1

2

= 1.25

min
x∈X

(F1(x, y))R
0 = 1.5

min
x∈X

(F2(x, y))
L(R)
1 = −2

min
x∈X

(F2(x, y))L
1

2

= −2.25

min
x∈X

(F2(x, y))L
0 = −2.5

min
x∈X

(F2(x, y))L
1

2

= −1.75

min
x∈X

(F2(x, y))R
0 = −1.5

min
y∈Y

(f1(x, y))
L(R)
1 = −0.5

min
y∈Y

(f1(x, y))L
1

2

= −0.75

min
y∈Y

(f1(x, y))L
0 = −1

min
y∈Y

(f1(x, y))R
1

2

= −
√

2

4
min
y∈Y

(f1(x, y))R
0 = 0

min
y∈Y

(f2(x, y))
L(R)
1 = 1

min
y∈Y

(f2(x, y))L
1

2

= 0.75

min
y∈Y

(f2(x, y))L
0 = 0.5

min
y∈Y

(f2(x, y))R
1

2

= 1.25

min
y∈Y

(f2(x, y))R
0 = 1.5.

Step 14. When (x, y) = (0, 0.5), we have ‖(x, y)22 − (x, y)21‖ = 0 < ε.

Step 15. The solution of the problem is (x, y) = (0, 0.5) such that

min
x∈X

F1(x, y) = 0.5× 2̃

min
x∈X

F2(x, y) = −0.5× 4̃

min
y∈Y

f1(x, y) = 0.5× 2̃
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min
y∈Y

f2(x, y) = −0.5× 1̃.

This example shows how the approximation branch-and-bound algorithm is
used to solve a FMOLBP problem. We now present another example for ex-
plain now to build a FMOLBP model.

Example 23 In a company, the CEO is as the leader, and the heads of
branches of the company are as the follower in making an annual budget
for the company. Obviously, the leader (the CEO)’s decision will be affected
by the reactions of the follower (heads of branches). Each of the CEO’s pos-
sible decisions is influenced by the various reactions of the heads. In order to
arrive an optimal solution (better strategies) for the CEO’s decision on the
annual budget, we establish a bilevel decision making model.

The CEO has two main objectives: 1) to maximize the net profits, repre-
sented by F1(x, y) and 2) to maximize the quality of products, by F2(x, y)
but subject to some constraints including the requirements of material, mark-
ing cost, labor cost, working hours and so on. The heads of branches, as the
follower, attempts to 1) maximize their net profit, f1(x, y), and 2) maximize
work satisfactory f2(x, y) The CEO understands that for each policy he may
make, these heads will have a new reaction to deal with by optimizing their
objective maxy∈Y (f1(x, y), f2(x, y)).

When modeling the bilevel decision problem, the main difficulty is to set up
parameters for the objectives and constraints of both the leader and the fol-
lower. We can only estimate some values such as material cost, labor cost,
according to our experience and previous data. For some items, the values can
be only assigned by linguistic terms, such as ’about $1000’. This is a common
case in any organizational decision practice. By using fuzzy numbers to de-
scribe these uncertain values and linguistic terms in parameters, a FMOLBP
model can be established for this decision problem.

Let x = (x1, x2)
T ∈ R2 be the CEO’s decision variables, and y = (x1, x2, x3)

T ∈
R3 be the branch heads’ decision variables, and X = {x > 0}, Y = {y > 0},
we can build the following model for the decision problem:

max
x∈X

F1(x, y) = (1̃, 9̃)(x1, x2)
T + (1̃0, 1̃, 3̃)(y1, y2, y3)

T

max
x∈X

F2(x, y) = (9̃, 2̃)(x1, x2)
T + (2̃, 7̃, 4̃)(y1, y2, y3)

T

subject to (3̃, 9̃)(x1, x2)
T + (9̃, 5̃, 3̃)(y1, y2, y3)

T 6 ˜1039

(−4̃,−1̃)(x1, x2)
T + (3̃,−3̃, 2̃)(y1, y2, y3)

T 6 9̃4

max
y∈Y

f1(x, y) = (4̃, 6̃)(x1, x2)
T + (7̃, 4̃, 8̃)(y1, y2, y3)

T

max
y∈Y

f2(x, y) = (6̃, 4̃)(x1, x2)
T + (8̃, 7̃, 4̃)(y1, y2, y3)

T

subject to (3̃,−9̃)(x1, x2)
T + (−9̃,−4̃, 0̃)(y1, y2, y3)

T 6 6̃1

(6)
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(5̃, 9̃)(x1, x2)
T + (1̃0,−1̃,−2̃)(y1, y2, y3)

T 6 9̃24

(3̃,−3̃)(x1, x2)
T + (0̃, 1̃, 5̃)(y1, y2, y3)

T 6 4̃20

In this model, the unified form for all membership functions of the parameters
of the objective functions and constraints is as follows:

µα̃(x) =





0, x < a or c < x,

(x2 − a2)/(b2 − a2), a 6 x < b,

1, x = b,

(c2 − x2)/(c2 − d2), b < x 6 c.

For simplicity, we only represent the above form of membership function as (a,
b, c). Then, for the example, all membership functions of fuzzy parameters of
the objective functions and constraints are to be represented in the quadruple
pair form and listed in Tables 2, 3, and 4, respectively.

Table 2
Membership functions of fuzzy objective functions’ parameters

c̃ij 1 2 3 4 5

1 (0, 1, 2) (8, 9, 12) (9, 10, 13) (0.5, 1, 2.5) (2, 3, 6)

2 (8, 9, 12) (1, 2, 5) (1, 2, 5) (6, 7, 10) (3, 4, 7)

3 (2, 4, 5) (4, 6, 7) (5, 7, 8) (2, 4, 5) (6, 8, 9)

(4, 6, 7) (2, 4, 5) (6, 8, 9) (5, 7, 8) (2, 4, 5)

Table 3
Membership functions of fuzzy constraints’ parameters

aij 1 2 3 4 5

1 (2, 3, 5) (8, 9, 11) (8, 9, 11) (4, 5, 7) (2, 3, 5)

2 (-6,-4,-3) (-2, -1, -0.5) (2, 3, 5) (-5, -3, -2) (-4, -2, -1)

3 (2, 3, 5) (-11, -9, -8) (-11, -9, -8) (-6, -4, -3) (0, 0, 0)

4 (4, 5, 7) (8, 9, 11) (9, 10, 12) (0.5, 1, 2) (-4, -2, -1)

5 (2, 3, 5) (-5, -3, -2) (0, 0, 0) (0.5, 1, 2) (4, 5, 7)

Now, We first given the weights for the two fuzzy objectives of the leader are
(0.5, 0.5) and of the follower (0.5, 0.5) and the interval [0, 1] be decomposed
into 2l−1 equal sub-intervals with (2l−1 + 1) nodes λi (i = 0, . . . , 2l−1) which
is arranged in the order of 0 = λ0 < λ1 < · · · < λ2l−1 = 1 and a range of
errors ǫ = 10−6 > 0. Then we can solve this problem by using the proposed
approximation branch-and-bound approach. The solution of the problem is
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Table 4
Membership functions of fuzzy right-hand-side’s parameters

b̃ 1

1 (1038, 1039, 1041)

2 (93, 94, 96)

3 (60, 61, 63)

4 (923, 924, 926)

5 (419, 420, 422)

x1 = 146.2955, x2 = 28.9394 and y1 = 0, y2 = 67.9318, y3 = 0 such that

max
x∈X

F1(x, y) = 164.2955× 1̃ + 28.9394× 9̃ + 67.9318× 1̃

max
x∈X

F2(x, y) = 164.2955× 9̃ + 28.9394× 2̃ + 67.9318× 7̃

max
y∈Y

f1(x, y) = 164.2955× 4̃ + 28.9394× 6̃ + 67.9318× 4̃

max
y∈Y

f2(x, y) = 164.2955× 6̃ + 28.9394× 4̃ + 67.9318× 7̃

This problem can be solved by using the proposed approximation branch-and-
bound algorithm. Based on the algorithm, a bilevel decision support system
has been developed for helping get a solution effectively. Fig. 2 shows the
process of the solution.

6 Conclusions and Further Study

A bilevel decision problem may have multiple objective functions and fuzzy
parameters can appear in both the objectives and constraints of the leader and
the follower. The main research issue is how to derive an optimal solution for
such a FMOLBP problem. This paper proposes a fuzzy number based approx-
imation branch-and-bound algorithm to this issue. A cased based example and
a numeral example are then given to illustrate the proposed FMOLBP model
and the approximation branch-and-bound algorithm. Further study on this
study includes the development of models and approaches for fuzzy bilevel
multi-follower programming problems. In such a kind of problems, multiple
followers are involved and the leader’s decision will be affected not only by
those followers’ individual reactions but also by the relationships among these
followers. As uncertain information could occur in the objectives and the con-
straints of both the leader and his/her multiple followers, one of the challenges
is how to get an optimal solution for the leader in the complex environment.
A model-driven decision support system will be developed for implementing
the proposed approaches.
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Set weights (w11; w21) = (0:5; 0:5) and (w12; w22) = (0:5; 0:5) to theobjectives of the leaders and the followers respectivelyTransform problem (6) to the MOLBP (4')

Update l to l + 1

Yes Nok(x; y)2l+1 � (x; y)2lk < " ?
Decompose interval [0; 1] to 2l equal sub-intervals
algorithm and obtain an optimization solution (x; y)2l
Decompose interval [0; 1] to 2l�1 equal sub-intervalsSolve (MOLBP)l2, i.e. (4') by using extended branch-and-bound

l = 1, " = 10�6

Solve (MOLBP)l+12 , i.e. (4') by using extended branch-and-boundalgorithm and obtain an optimization solution (x; y)2l+1
Show result and terminates

Fig. 2. A flowchart of the approximation branch-and-bound algorithm
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