University of

"1l Kent Academic Repository

Haggett, Simon J., Chu, Dominique and Marshall, lan W. (2008) Evolving
a Dynamic Predictive Coding Mechanism for Novelty Detection. Knowledge-Based
Systems, 21 (3). pp. 217-224. ISSN 0950-7051.

Downloaded from
https://kar.kent.ac.uk/23970/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.knosys.2007.11.007

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/23970/
https://doi.org/10.1016/j.knosys.2007.11.007
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Available online at www.sciencedirect.com

ScienceDirect

Knowledge-Based
— SYSTEMS—

ELSEVIER Knowledge-Based Systems 21 (2008) 217-224

www.elsevier.com/locate/knosys

Evolving a dynamic predictive coding mechanism for novelty detection

Simon J. Haggett *, Dominique F. Chu ?, Tan W. Marshall ®

* Computing Laboratory, University of Kent, Canterbury CT2 7NF, UK
® Lancaster Environment Centre, Lancaster University, Lancaster LAI 4YQ, UK

Available online 23 November 2007

Abstract

Novelty detection is a machine learning technique which identifies new or unknown information in data sets. We present our current
work on the construction of a new novelty detector based on a dynamical version of predictive coding. We compare three evolutionary
algorithms, a simple genetic algorithm, NEAT and FS-NEAT, for the task of optimising the structure of an illustrative dynamic predic-
tive coding neural network to improve its performance over stimuli from a number of artificially generated visual environments. We find
that NEAT performs more reliably than the other two algorithms in this task and evolves the network with the highest fitness. However,
both NEAT and FS-NEAT fail to evolve a network with a significantly higher fitness than the best network evolved by the simple genetic
algorithm. The best network evolved demonstrates a more consistent performance over a broader range of inputs than the original net-
work. We also examine the robustness of this network to noise and find that it handles low levels reasonably well, but is outperformed by

the illustrative network when the level of noise is increased.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Novelty detection; Neural networks; Neuroevolution; Evolutionary algorithms

1. Introduction

A novelty detector is a machine learning system that
identifies new or unknown data that it was not aware of
during its training phase [4]. Novelty detection is important
in practical applications where large data sets are being
processed. In a sensor array which continuously monitors
an unpredictable environment, a constant stream of data
is produced by each sensor. A large proportion of this data
will be redundant since it describes information already
known. The crucial information is that which indicates that
change has occurred, since this may require some action to
take place. Novelty detection can be used in this case to
highlight such data.

Because novelty detection is an extremely challenging
task, there are currently a number of different approaches
[3]. A comprehensive survey of approaches using neural

* Corresponding author.
E-mail addresses: simon.haggett@acm.org (S.J. Haggett), D.F.Chu@
kent.ac.uk (D.F. Chu), . W.Marshall@lancaster.ac.uk (I.W. Marshall).

0950-7051/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.knosys.2007.11.007

networks is given by Markou and Singh [4]. Marsland
et al. [5] propose a novelty detector which employs a Habit-
vating Self Organising Map (HSOM). An input layer is
connected to a clustering layer which represents the feature
space. Each input vector is classified by associating it with a
neuron in the clustering layer as follows. The neuron in the
clustering layer with the smallest distance to the input vec-
tor (where distance is defined by the sum of the squared dif-
ference between each element of the input vector and the
value held in the given node in the clustering layer) fires
for that input vector. Each node in the clustering layer is
connected to the output neuron via a habituable synapse,
which not only weakens (habituates) when the correspond-
ing node in the clustering layer fires frequently, but also
strengthens (dishabituates) when the node fires infre-
quently. The value of the output neuron for a given input
vector indicates the novelty of that vector. Habituation
enables the network to learn on-line and cope with chang-
ing environments. However, since the size of the network
remains fixed one limitation is that on-line learning can
cause saturation in the network. This is when all synapses

mailto:simon.haggett@acm.org
mailto:D.F.Chu@ kent.ac.uk
mailto:D.F.Chu@ kent.ac.uk
mailto:I.W.Marshall@lancaster.ac.uk

218 S.J. Haggett et al. | Knowledge-Based Systems 21 (2008) 217-224

habituate, resulting in novel input vectors being misclassi-
fied as normal [6]. Marsland et al. [6,7] extend this work
by proposing the ‘Grow When Required” (GWR) network
as an improvement to the HSOM. The GWR network is a
new type of clustering map that allows new nodes to be cre-
ated as required, thus overcoming the problem of satura-
tion seen in the HSOM.

Predictive coding is a technique used in areas such as
image and speech compression [2]. In image compression,
this technique attempts to predict the value of a given pixel
based on the values of neighbouring pixels. A difference
signal, holding the difference between the predicted and
observed values of the given pixel, is then used to represent
that pixel. When the predicted value is close to the
observed value, this difference signal will have a smaller
magnitude, which means that it can be represented more
compactly. In turn, this allows the image as a whole to
be represented in a compressed form. If we assume that
novel values are likely to be unpredictable, then the differ-
ence signal can be used to determine the novelty of the
observed value.

Hosoya et al. [1] propose a possible neural network
model of circuits in the retina. This model performs a
dynamical version of predictive coding in that it adapts
on-line to the changing visual scene. As animals move
through their environment, they tend to encounter visual
scenes which differ strongly in their statistical properties.
For example, the scene in a woodland environment is likely
to have strong correlation between vertically separated
points and weak correlation between horizontally sepa-
rated points, whilst the scene in a sandy environment, such
as a desert or beach, is likely to have correlation between
points only in small localities. By adapting to the changing
image statistics, a predictive coder is able to maintain its
efficiency as the visual scene changes.

We wish to develop a new novelty detector which is
based on dynamic predictive coding. This form of predic-
tive coding is a promising model to base a novelty detector
on because of its capability to learn on-line the current
norm conditions and adapt to changes in these conditions
over time. Unlike Marslands GWR [6,7], which is also
capable of on-line learning, this method of novelty detec-
tion will learn the statistical relationships between values
and report novelty when those relationships change. Inputs
are classified depending on the statistical relationships
between their elements, as opposed to Euclidean distance
to a feature prototype. Therefore, inputs which are repre-
sented by multiple classes in GWR may be represented
by a single class in our proposed approach.

In this paper, we present our current work on the con-
struction of a new novelty detector based on dynamic pre-
dictive coding. We compare three evolutionary algorithms
for the task of evolving a neural network structure to give
an optimal performance over stimuli from a number of
artificially generated visual environments. We also examine
the robustness of the evolved structure when noise is intro-
duced to its inputs. The remainder of this paper is organ-

ised as follows. In Section 2, we describe a neural
network capable of dynamic predictive coding and identify
a limitation of this network. Section 3 describes three evo-
lutionary algorithms used to search for a neural network
structure which gives an optimal performance according
to two basic criteria. In Section 4, we present experimental
results from using these algorithms and examine the
robustness of the best evolved network to random noise.
Section 5 discusses these results and the comparative per-
formance of the evolutionary algorithms. Finally, Section
6 concludes this paper and briefly outlines how we plan
to continue this work.

2. Novelty detection using dynamic predictive coding

The neural network model proposed by Hosoya et al. [1]
is a feedforward network which represents a neural circuit
found in the retina [11]. In this model, input neurons con-
nect to output neurons via fixed-weight synapses and/or
modifiable synapses. The fixed-weight synapse from input
x; to output y, is represented as b;;, and the modifiable syn-
apse between these neurons is represented as a;;. The out-
put y; of the ith output neuron is given by the following
equation:

V= by +ay)x; (1)
J

At each output neuron, the network attempts to predict the
sum of the inputs received through fixed synapses and sub-
tract this prediction from the neurons input. The modifi-
able synapse weights are modulated according to the
anti-hebbian learning rule shown in Eq. 2 to form this
prediction
% — al] Tﬁ()}zxj> T, ﬁ > 0 (2)
(v;x;) is the time-averaged correlation between input x; and
output y; and is sampled over m previous time steps up to
the current time step ¢

t
bre) = 3 kb)

m

where y,(k) and x;(k) are the values of y; and x;, respec-
tively, at time k. This anti-hebbian learning rule causes
the modifiable synapses to weaken when the activity at
the presynaptic and postsynaptic neurons is correlated
and strengthen when the activity is anti-correlated. The
parameters f§ and t control the networks sensitivity to the
correlation signal and the rates of learning and decay,
respectively.

To illustrate this model, the following single layer exam-
ple neural network was given by Hosoya et al. [1]. Consider
a 4 x 4 pixel greyscale image where each pixel provides a
single input to the network. The network has a single out-
put neuron y which aims to predict the sum of the centre
2 x 2 pixels given the correlational relationships between
those pixels and the neighbouring ‘surround’ pixels. All

S.J. Haggett et al. | Knowledge-Based Systems 21 (2008) 217-224 219

pixels are connected to the output neuron by modifiable
synapses. In addition, the 2 x 2 centre pixels are also con-
nected to the output neuron via fixed-weight synapses with
weight 1. In the networks initial state, each modifiable syn-
apse has a weight of 0, meaning that the output of the net-
work is initially the sum of the centre 2 x 2 pixels. Over
time, the modifiable synapses have their weights updated
by the anti-hebbian learning rule (Eq. (2)) such that a pre-
diction of the sum of the 2 x 2 pixels is formed and sub-
tracted from the observed sum.

Hosoya et al. [1] demonstrate the operation of this
illustrative neural network over a number of artificially
generated visual ‘environments’. Four of these environ-
ments were flickering greyscale images with perfect corre-
lational relationships and one of these environments,
titled “random”, was a flickering environment with no
correlation between pixels. The four environments with
perfect correlational relationships were a flickering uni-
form field, a flickering checkerboard pattern and flicker-
ing vertical and horizontal bars. Each pixel was updated
every u timesteps with an independently drawn value
from a standard normal distribution. Finally, a ‘none’
environment was used which was defined as a steady
grey screen. Fig. 1 illustrates the environments. To ana-
lyse the performance of the network, Hosoya et al. [1]
observed how the sensitivity of the output neuron to
the uniform, checkerboard, vertical bar and horizontal
bar environments varied during the simulation. Sensitiv-
ity of the output neuron y to a given environment FE is
defined by Hosoya et al. [1] as the square root of the
averaged variance of y, taken over stimuli from environ-
ment E (Eq. (5) in Section 3).

We use this network as the basis for a novelty detector
utilising dynamic predictive coding. To improve our under-
standing and identify any limitations, we constructed a
simulation in which we observed how this network
responded when shown a series of visual environments.
In this simulation, each environment was shown for 2500
time steps. After every time step, the weights of the net-
work were frozen and the variance of the output neuron
var(y) sampled for stimuli from each environment. After
every 100 time steps, these variances were averaged and
the sensitivity to each environment calculated. We used a
value of 0.4 for § and a value of 500 for 7, both determined
experimentally. The parameter u was set to 1 to give max-
imum flicker.

We also introduced two new diagonal environments
(shown in Fig. 2) and observed how the network
responded to these. As with the existing environments,

None Random

Uniform

Left Diagonal Right Diagonal

Fig. 2. The new diagonal environments.

each diagonal environment was shown to the network
for 2500 time steps.

To verify our implementation of this example network,
we first tested it with the original environments used in
[1]. Fig. 3 illustrates how the networks sensitivity to the
uniform environment varies during the time course of the
simulation. For this network, sensitivity is scaled such that
a sensitivity of 1 is defined by the sensitivity of the network
to environments in its unadapted state. The network was
shown each environment in the order implied by the hori-
zontal axis.

When the network was shown the “random” environ-
ment, its sensitivity to the uniform environment fell
slightly. This behaviour was observed for all environ-
ments monitored and is also demonstrated in [1]. When
the network adapted to the uniform environment, its sen-
sitivity to that environment fell considerably. In this
state, the network considers the uniform environment
to be known and therefore not novel. When the network
was subsequently shown the checkerboard environment,
its sensitivity to the uniform environment recovered.
The network forgets about the uniform environment
and classifies it as novel again. Fig. 4 illustrates how
the networks sensitivity to the original environments var-
ied through this simulation.

We also performed a simulation using the diagonal envi-
ronments. Fig. 5 shows how the networks sensitivity varied
through the simulation. As the network adapts to the uni-
form, checkerboard, vertical bar and horizontal bar envi-
ronments, its sensitivity to the diagonal environments
falls to approximately 0.75. As the network adapts to one
diagonal environment, the sensitivity to the other diagonal
environment rises above 1. Here, the output of the network
is greater than the sum of the centre 2 x 2 patch. Since the
goal of predictive coding is to compress the observed value,
this behaviour is undesired.

Checker Vertical

Horizontal

Stimuli

|

Fig. 1. The artificial environments specified in [1].

220 S.J. Haggett et al. | Knowledge-Based Systems 21 (2008) 217-224

-

Sensitivity

None | Random | Uniform | Checker | Vertical |Horizonta|| None

Fig. 3. The sensitivity graph produced by the illustrative neural network given in [1]. This shows how sensitivity to the uniform environment varies during
the time course of the simulation. A sensitivity close to zero indicates that the environment is known and that the output of the network is small.
Conversely, a sensitivity close to one indicates that the environment is novel and that the output is close to the sum of the intensities in the centre patch.

(=

Sensitivity

— Uniform
------ Checker
------ Vertical
----- Horizontal

0
None |

Random | Uniform | Checker | Vertical |Horizonial| None

Fig. 4. The sensitivity graph produced by the illustrative neural network given in [1]. This shows how sensitivity to the uniform, checkerboard, vertical bar
and horizontal bar environments vary as the network adapts to each environment during the time course of the simulation.

1.4

(=]

Sensitivity

— Uniform

""" Checker

r - Vertical

-- Horizontal
LDiagonal

- RDiagonal

None | Random |Uniform |I:hecker| Vertical !:' i 1l Lpi '|RIJ' g '| None

Fig. 5. The sensitivity graph produced by the illustrative neural network. In addition to the environments seen in Fig. 4, this graph shows the networks

response to the left diagonal and right diagonal environments.

To explain this result, we considered the original network
when adapted to a non-diagonal environment. In this case,
sensitivity to diagonal environments is reduced because sim-
ilarities between the diagonal and non-diagonal environ-
ments are used to form a partial prediction (this can also

be seen vice versa as the network adapts to the diagonal envi-
ronments). If the original network is adapted to a diagonal
environment, sensitivity to the alternative diagonal environ-
ment rises above 1. This was caused by a limitation of the net-
work in handling symmetry between environments.

S.J. Haggett et al. | Knowledge-Based Systems 21 (2008) 217-224 221

3. Optimising structure using evolution

To optimise the neural network, we searched for a struc-
ture which gave the best performance according to two
basic criteria of novelty detection. We wished to find a
solution which (a) maximises the difference in sensitivity
between known and novel environments and (b) remains
at a similar level of sensitivity for all novel environments.
We first attempted to construct a new structure by hand
but this proved to be time consuming and none of the net-
works developed gave any significant improvement in per-
formance. We then considered a genetic algorithm (GA)
based approach, since such an approach is good in cases
when the search space is not well understood [8]. We com-
pared three GA’s for this task; a simple textbook-based
genetic algorithm, and two neuroevolution methods which
are specifically designed to evolve neural network structure.

The simple genetic algorithm is based on that described
by Mitchell [9]. Each gene is represented by the quadruple
(inID, outlD, weight, type), which is in turn encoded as a 25
character bitstring. A genome holds a collection of these
genes and thus has a connection-centric view of the neural
network. Point mutation and single-point crossover are
both used, as well as a ‘gene-replicate’ and ‘gene-remove’
mutation (to allow the addition or removal of new struc-
tural elements).

The first neuroevolution method used was NeuroEvolu-
tion of Augmenting Topologies (NEAT), proposed by
Stanley [10]. NEAT is specifically designed to evolve neural
networks. New structure is introduced gradually so as min-
imise the dimensionality of the search space. Speciation is
used to encourage diversity and help prevent bloat from
occurring (solutions containing unnecessary elements). In
crossover, NEAT uses historical markings to discover
which genes in two genomes match and which do not, solv-
ing the competing conventions problem (whereby two iden-
tical solutions have different genetic representations). The
competing conventions problem is important to solve
because crossover of similar solutions with different repre-
sentations is likely to produce damaged offspring [10].

We also used a variation of NEAT proposed by White-
son et al. [12], Feature Selective NEAT (FS-NEAT).
Unlike NEAT, which usually starts with a population of
fully connected networks, FS-NEAT starts with a popula-
tion where each network has only a single connection
between a randomly chosen input and output. This allows
FS-NEAT to begin its search in a space of an even lower
dimensionality. FS-NEAT then proceeds in the same man-
ner as NEAT. Experiments conducted in an autonomous
car racing simulation showed that FS-NEAT was capable
of outperforming NEAT in evolving solutions that both
scored higher and were also less complex in terms of their
structure [12].

All three approaches use the same measure of fitness,
based on our performance criteria stated earlier. We define
the following fitness function over N environments (not
including ‘none’ or ‘random’)

PO 5

The sensitivity of a network to a given environment F is
defined as the square root of the variance of the output
neuron y averaged over stimuli from environment E [1]

(var(y)) ()

We then define S..(7, j) as the sensitivity of candidate net-
work ¢ to environment j when adapted to environment i.
Sensitivity is scaled such that a sensitivity of 1 is defined
as the sensitivity of the original neural network (described
in Section 2) to each environment when in an unadapted
state. To encourage sensitivity to novel environments to
remain at a similar level, candidates which allow sensitivity
to any environment to rise above 1 should be punished.
However, such candidates should not simply be awarded
a fitness of zero since they may yet evolve into good solu-
tions. Also, sensitivity values greater than 1 that have a
small distance from 1 should be awarded a higher fitness
than those with a large distance. From experimentation,
we found that the following non-linear adjustment gave
the best results

T

After this adjustment, S.(i, /) may be negative. However,
the lowest fitness the network can achieve when adapted to
a single environment 7 is constrained to 0. Thus, a network
performing badly when adapted to one environment but
not when adapted to another is punished for its poor per-
formance only.

3 sco-,j)) ~ 8.(.1))

=LA

SE:

S.(i,j) > 1.0
otherwise

()

4. Results

Table 1 shows how the sensitivity of the best network
evolved by the simple GA varies when it is unadapted
(shown the “none” environment) and when it is adapted
to the environments with perfect correlational relation-
ships. Tables 2 and 3 show these results for the best net-
works evolved by NEAT and FS-NEAT, respectively.
The highest scoring network overall was that found by
NEAT. Fig. 6 shows the sensitivity graph produced by this
best overall network.

In each experiment, 10 runs of the GA were executed,
with each run performing 500 generations of evolution
and returning the best network evolved during that time.
The best network from the 10 runs was taken to be the best
network for that method. Table 4 shows the average, best
and worst performances of each GA method and Table 5
shows the average hidden node and synapse count of solu-
tions produced by each method.

Comparing the GA approaches, we can see that the fit-
ness of their best networks are all at a similar level. The
average fitness after 500 generations was highest for NEAT

222

Table 1

S.J. Haggett et al. | Knowledge-Based Systems 21 (2008) 217-224

Sensitivity of the best network evolved by the simple GA to the uniform, checkerboard, vertical bar, horizontal bar and diagonal environments as the
network adapts to each environment

Environment adapted

Sensitivity to

Uniform Checker Vertical Horizontal LDiag RDiag
None 0.831 0.829 0.845 0.830 0.835 0.850
Uniform 0.134 0.785 0.884 0.783 0.697 0.976
Checker 0.792 0.129 0.796 0.895 0.996 0.704
Vertical 0.881 0.777 0.134 0.790 0.700 0.974
Horizontal 0.793 0.899 0.796 0.118 0.983 0.700
LDiag 0.697 0.987 0.698 0.970 0.138 0.415
RDiag 0.987 0.692 0.996 0.691 0.390 0.102

The sensitivity to the adapted environment is highlighted in bold.

Table 2

Sensitivity of the best network evolved by NEAT to the uniform, checkerboard, vertical bar, horizontal bar and diagonal environments as the network

adapts to each environment

Environment adapted

Sensitivity to

Uniform Checker Vertical Horizontal LDiag RDiag
None 0.871 0.854 0.873 0.853 0.857 0.854
Uniform 0.127 0.902 0.894 0.896 0.988 0.605
Checker 0.893 0.113 0.897 0.905 0.997 0.592
Vertical 0.895 0.875 0.112 0.891 0.612 0.987
Horizontal 0.900 0.892 0.895 0.117 0.598 1.004
LDiag 0.987 0.999 0.609 0.599 0.125 0.506
RDiag 0.610 0.617 0.996 1.006 0.510 0.120

The sensitivity to the adapted environment is highlighted in bold.

Table 3

Sensitivity of the best network evolved by FS-NEAT to the uniform, checkerboard, vertical bar, horizontal bar and diagonal environments as the network

adapts to each environment

Environment adapted

Sensitivity to

Uniform Checker Vertical Horizontal LDiag RDiag
None 0.684 0.687 0.682 0.686 0.683 0.675
Uniform 0.041 1.026 0.661 1.023 0.673 1.005
Checker 1.031 0.063 1.046 0.675 0.319 0.690
Vertical 0.669 1.002 0.045 0.993 0.683 0.351
Horizontal 1.009 0.678 1.013 0.042 0.993 0.658
LDiag 0.672 0.340 0.682 0.990 0.031 0.350
RDiag 1.013 0.669 0.341 0.663 0.342 0.044

The sensitivity to the adapted environment is highlighted in bold.

Sensitivity

— Uniform
----=-- Checker

Vertical
Horizontal
LDiagonal

None

[Random | Uniform | Checker | Vertical [Hori

I RDiag

1|

None

Fig. 6. The sensitivity graph produced by the best network found by NEAT.

S.J. Haggett et al. | Knowledge-Based Systems 21 (2008) 217-224 223

Table 4

Average, best and worst fitness observed for each GA method over 10,500-generation runs

Method Average fitness Standard deviation Best fitness Worst fitness
Simple GA 3.537 0.220 4.122 3.405

NEAT 4.169 0.032 4.208 4.096
FS-NEAT 3.708 0.201 4.167 3.532

Table 5

Average hidden node, synapse and ineffective/unstimulated node counts for solutions produced by each GA method over 10,500-generation runs

Method Average hidden nodes Average modifiable synapses Average fixed-weight synapses Unstimulated nodes Ineffective hidden nodes
Simple GA 7.7 (9.76) 16.5 (1.9) 4.6 (1.07) 3.1 (4.51) 6.8 (9.17)

NEAT 3.6 (2.84) 18 (2.87) 8.2 (4.02) 0.0 (0.0) 0.0 (0.0)

FS-NEAT 8.1 (4.01) 9.7 (4.69) 14.1 (5.34) 0.0 (0.0) 0.0 (0.0)

Numbers in brackets represent standard deviation. Unstimulated nodes are those which do not receive any input. Ineffective hidden nodes are those which

do not influence the output neuron.

(4.169) with a standard deviation of 0.032, demonstrating a
more consistent performance. Looking at the complexity of
networks evolved, NEAT tended to evolve networks with
fewer hidden nodes, but with a similar average synapse
count to that seen for the simple GA. FS-NEAT tended
to evolve networks with more fixed-weight synapses. The
networks evolved by the simple GA also showed evidence
of bloat in that they had both nodes with no inputs
(unstimulated nodes) and hidden nodes which did not con-
nect to, or influence in any way, the output neuron. How-
ever, such obsolete structure can easily be pruned from
these networks.

In most practical applications, data is likely to contain a
noise component. Therefore, a novelty detector used in
such applications should be resilient to noise. To investi-
gate this, we tested the performance of the best evolved net-
work when independent noise was introduced to each
input. The noise component was a value drawn indepen-
dently from a standard normal distribution and scaled by
a constant factor k. We varied k from 0.0 to 5.0, with a step
size of 0.2. Fig. 7 shows how the fitness of both the original
illustrative neural network and the best evolved network
varies as noise is introduced. This reduces in a non-linear

fashion for both networks as the noise factor k is increased.
The best evolved network is able to distinguish between
novel and known environments until £ = 0.8, after which
it struggles to reliably differentiate between the diagonal
environments. At k= 1.6, the best evolved network is
unable to distinguish between any of the environments.
The original network is unable to distinguish between envi-
ronments at k = 2.2.

5. Discussion

The networks evolved by the GA methods show a more
consistent handling of a broader range of environments
than either the example neural network given by Hosoya
et al. [1] or any of the networks we designed by hand.
The network with the highest fitness, found using NEAT,
has a complexity similar to that of the example network.
For most novel environments, this networks sensitivity
remains at a similar level throughout the simulation.
Unlike the example network, this network does not see a
dramatic increase in sensitivity to one diagonal environ-
ment when adapted to the alternative diagonal environ-
ment. This is important as it ensures a more consistent

Fitness

Best Network ——
Original Network -

Noise Factor (k)

Fig. 7. Fitness of the best evolved network as noise is applied to its inputs, with noise factor &k varied from 0.0 to 5.0.

224 S.J. Haggett et al. | Knowledge-Based Systems 21 (2008) 217-224

separation between novel and known environments. How-
ever, a drop in sensitivity to the diagonal environments is
still observed when the network is adapted to non-diagonal
environments, and vice versa. This is again caused by the
network being able to form partial predictions of stimuli
due to similarities between environments.

Interestingly, the structure of the best network has dem-
onstrated, from a predictive coding standpoint, a change in
function. The fixed-weight synapses between the centre
patch inputs and the output neuron have been removed
and a new fixed-weight synapse introduced connecting a
single peripheral input to the output neuron. Thus, the net-
work has changed from predicting the sum of the centre
patch to predicting the selected periphery input. However,
from a novelty detection perspective this network retains
the intended function of indicating the novelty of a given
input vector. The high-scoring candidates from all three
GA approaches demonstrate similar changes in network
structure. This may indicate that a network which pre-
serves the function of predicting the sum of the centre
patch does not exist.

A surprising result is the comparatively high best fitness
score achieved by the simple GA. For this problem, the
best network evolved by the simple GA was of a similar fit-
ness to the best networks evolved by both NEAT and FS-
NEAT. This is despite the relative complexity of these two
neuroevolution techniques, compared to the simple GA.
Improvements can easily be made to the simple GA, such
as adding new nodes using a similar method to that used
by NEAT to reduce the observed bloating of networks.
Whilst NEAT has been demonstrated to give a more reli-
able performance, investigating the effect of such improve-
ments to the performance of the simple GA would be
instructive.

The best network presented in Section 4 has been shown
to cope reasonably well with noise. At k£ = 0.8, the variance
of the noise component was 0.64 times the variance of the
signal component. Despite this, the network was still capa-
ble of distinguishing between known (adapted) and novel
(unadapted) environments. However, with increasing
noise, the network is shown to perform worse than the ori-
ginal network in terms of the fitness criteria defined in Sec-
tion 3. This demonstrates that performance over noisy data
should be considered by the GA approaches when search-
ing for new neural network structures.

6. Conclusions and future work
We have described a neural network used by Hosoya

et al. [1] to illustrate dynamic predictive coding and identi-
fied a limitation of this network. For the task of optimising

the structure of the network, we have demonstrated that
whilst NEAT outperforms two other evolutionary algo-
rithms, it does not produce a solution which is significantly
better than that produced by a simple genetic algorithm.
The optimised network evolved by NEAT distinguishes
more consistently between a broader range of environ-
ments than either the original neural network or any of
the networks we designed by hand. It also performs well
when a low level of noise is introduced but its performance
degrades quickly as this noise increases. This is because
noise sensitivity was not part of the fitness criteria used
by the GA approaches. Since we plan to test this approach
to novelty detection on data that is inherently noisy, this
will need to be addressed in future work.

In order to extend this work, we plan to investigate
using a neural network, capable of dynamic predictive
coding, for novelty detection over recorded weather data.
A vector of metrics would be passed to the network, which
would then learn the correlational relationships between
those metrics and detect novelty when these relationships
change. We consider it likely that the structure of the
neural network used will need to be evolved to give optimal
performance in this task, and this process of evolution will
need to take into consideration noise applied to the data.

References

[1] T. Hosoya, S.A. Baccus, M. Meister, Dynamic predictive coding by
the retina, Nature 436 (2005) 71-77.

[2] J. Jiang, Image compression with neural networks — a survey, Signal
Process, Image Commun. 14 (1999) 737-760.

[3] M. Markou, S. Singh, Novelty detection: a review part 1: statistical
approaches, Signal Process. 83 (12) (2003) 2481-2497.

[4] M. Markou, S. Singh, Novelty detection: a review part 2: neural
network based approaches, Signal Process. 83 (12) (2003) 2499-2521.

[5] S. Marsland, U. Nehmzow, J. Shapiro, Detecting novel features of an
environment using habiutation, in: Proceedings of the Simulation of
Adaptive Behaviour, MIT Press, Cambridge, MA, 2000.

[6] S. Marsland, U. Nehmzow, J. Shapiro, On-line novelty detection for
autonomous mobile robots, Robo. Auto. Syst. 51 (2-3) (2005) 191—
206.

[7] S. Marsland, J. Shapiro, U. Nehmzow, A self-organising network that
grows when required, Neural Netw. 15 (8-9) (2002) 1041-1058.

[8] M. Mitchell, An Introduction to Genetic Algorithms, 6th ed., MIT
Press, Cambridge, MA, 1999.

[9] T. Mitchell, Machine Learning, int. ed., McGraw-Hill Higher
Education, 1997.

[10] K.O. Stanley, Efficient evolution of neural networks through
complexification, Ph.D. thesis, University of Texas at Austin, August
2004.

[11] P. Stirling, The Synaptic Organization of the Brain, chap. Retina, 3rd
ed., Oxford University Press, Oxford, 1990, 170-213.

[12] S. Whiteson, P. Stone, K.O. Stanley, R. Miikkulainen, N. Kohl,
Automatic feature selection in neuroevolution, in: Proceedings of the
Genetic and Evolutionary Computation, ACM Press, 2005.

