
A State-based Knowledge Representation Approach for Information Logical
Inconsistency Detection in Warning Systems

Jun Ma, Guangquan Zhang, Jie Lu

Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS)
P.O. Box 123, Broadway, NSW 2007, Australia

{junm, zhangg, jielu}@it.uts.edu.au

Abstract

Detecting logical inconsistency in collected information is a vital function when deploying a knowledge-based warning

system to monitor a specific application domain for the reason that logical inconsistency is often hidden from seemingly

consistent information and may lead to unexpected results. Existing logical inconsistency detection methods usually

focus on information stored in a knowledge base by using a well-defined general purpose knowledge representation

approach, and therefore cannot fulfill the demands of a domain-specific situation. This paper first proposes a state-based

knowledge representation approach, in which domain-specific knowledge is expressed by combinations of the relevant

objects’ states. Based on this approach, a method for information logical inconsistency detection (ILID) is developed

which can flexibly handle the demands of various domain-specific situations through reducing some restrictions in existing

methods. Finally, two real-case based examples are presented to illustrate the ILID method and its advantages.

Key words: Knowledge representation, Knowledge base verification, Decision support systems, Warning systems

1. Introduction

Emergency management and warning systems histori-

cally have focused on the immediate and urgent aspects of

disasters such as prediction, response and post-disaster re-

covery. Currently, practices have brought growing aware-

ness of people-centered warning system frameworks for in-

formation integration and emergency response [2]. Devel-

oping a decision model for a people-centered warning sys-

tem requires effectively analysis, integration, and utiliza-

tion of information collected from various sources, because

the cost of decision-making errors in a warning system can

be very large. Due to the continuous changes in the appli-

cation environment and higher uncertainty in information

sources and information itself, keeping information consis-

tency is an essential and challenged issue for deploying a

warning system.

Information inconsistency is ubiquitous, which may lead

to conflicts and cause difficulty in decision making [14].

Two fundamental forms of information inconsistency are

generally encountered, i.e., data inconsistency and logical

inconsistency. Data inconsistency is usually manifested in

errors or incorrectness of certain of facts, such as the as-

sertion of “Sydney, the capital of Australia,” which often

exists in a single assertion or statement. Logical inconsis-

tency is not easily recognized in an isolated fact or asser-

tion; however, it can be disclosed through paradoxes re-

sulted from several seemingly correct facts. For instance,

the two pieces of information that “a veteran of World

War I died in 2006” and “the veteran was aged 95 when

he died” will deduce an absurd conclusion that “the vet-

eran took part in World War I when he was an infant.”

This is a typical case of logical inconsistency in informa-

tion in a real application. In this paper, we mainly focus

Preprint submitted to Elsevier May 25, 2009

1 INTRODUCTION 2

on the detection of logical inconsistency.

Logical inconsistency in information arises for various

reasons [14] such as the topicality of information gathering,

the technique of information collecting, and the distribu-

tion of information sources. Studies of logical inconsis-

tency are often conducted on the syntactic level and the

semantic level [14]. On the syntactic level, each piece of

information is treated as a logical formula, and thus logical

inconsistency is described as there being no interpretation

model for a set of formulae. On the semantic level, each

piece of information is linked to a concrete context and is

embedded with some facts; therefore, the logical inconsis-

tency in a set of information is recognized when paradoxes

are inferred from given facts. Corresponding to these two

study levels, detection methods such as using fuzzy sets,

matrix, binary diagrams, as well as unification are pre-

sented [4, 10, 12, 15, 23, 24, 25].

Information logical inconsistency deduction methods

are widely used to deal with logical inconsistency at the

syntactic level [1, 7, 10, 19, 23, 25]. These methods are

mainly based on designed logic systems and their reasoning

mechanisms. The primary procedure of logical inconsis-

tency detection is implemented through logical reasoning.

Hence, they are reasoning-based. For example, Hunter

[8, 9] used weakly-negative logic, four-valued logic, quasi-

logical logic, to implement logical inconsistency detection.

Since a logical inconsistency at the syntactic level is de-

rived when there is no model for a set of formulae which

are used to represent information or knowledge, resolution

strategies for the satisfiability problem [6, 21] are intro-

duced to check existence of possible model. For instance,

Polat [19] applied a unification strategy for logical inconsis-

tency; and Mazure et al. [10] used the bounded resolution

technique and the local searching method for inconsistency

in non-monotonic knowledge bases. Zhang et al. [25] pre-

sented a set of analysis models for describing and detecting

inconsistency, redundancy, circularity, and incompleteness

by using the first-order predicate logic.

Information logical inconsistency detection methods at

the semantic level are mainly developed on the basis of

well-defined graphs, such as Petri nets [24], binary directed

graph [12], and their extensions. These methods take the

objects and their relationships in a real world into account

and disclose inconsistency through searching conflict cases

along possible paths in a graph. Hence these methods are

graph-based. For example, Park and Seong [15] reported a

knowledge base detecting method based on extended col-

ored Petri nets and used this method in nuclear power

plant dynamic alarms analysis. Yang et al. [24] also pro-

posed a high-level Petri nets formalization model for de-

tecting inconsistency in rule bases, in which each rule is

represented by a Horn clause. Furthermore, Botten [4]

used a matrix to describe the rules in a knowledge base,

which is similar to the incident matrix in Petri nets the-

ory. Similarly, Mues et al. [12, 13] developed a logical

consistency detection method by applying binary decision

diagrams.

However, both the reasoning-based and graph-based

methods have drawbacks when applied to logical inconsis-

tency detection in real applications such as warning sys-

tems. Firstly, these methods mainly focus on logical in-

consistency in knowledge [4, 10, 12, 22, 23] stored in a

knowledge-base and very few of them are able to apply

for real-time information which is most concerned in real

applications. Secondly, these methods lack the ability to

identify and classify models which may never occur from

those exising in theory. Therefore, they deal with all possi-

ble cases no matter whether they are meaningful or not in

a given context. For example, suppose {A → B, B → C,

C → ¬A} is a set of information. Obviously, A = 0, B = 1

and C = 1 is a model for these three rules in the conven-

tional two-valued first-order logic. However, A→ ¬A as a

logical consequence of A→ B, B → C, and C → ¬A, can

be deduced without difficulties. Unfortunately, this con-

clusion cannot be accepted in a real situation. Hence, the

cost to check all possible models is time-consuming and

2 STATE-BASED KNOWLEDGE REPRESENTATION AND CONSISTENCY 3

uneffective.

The main reasons for these drawbacks are: (1) cur-

rent methods are usually based on well-defined knowledge

representation techniques for general purpose knowledge

rather than for domain-specific knowledge; (2) they take

two-valued first-order logic as the main logic basis of them

which is unsuitable for a domain-specific situation where

the underlying logic is often of multiple-valued features;

(3) these methods mainly focus on stored knowledge rather

than real-time information which is the case for warning

systems. Stored knowledge is static information, while

real-time information is dynamic information. In real ap-

plications, both static and dynamic information are needed

[19] when applying an application system in an uncertain

and changeable environment where the processing for dy-

namic information is more crucial than that for static in-

formation.

Literature has shown that domain-specific knowledge

and information can be represented by a set of objects,

their states, and their classifications [11, 16, 17, 18]. There-

fore, with regard to the characteristic of knowledge pro-

cessed in a warning system, this paper proposes a state-

based domain knowledge representation approach and then

applies it to detect logical inconsistency for real-time in-

formation. A method for information logical inconsistency

detection (ILID) is then proposed, which can efficiently

deal with domain-specific knowledge and information in

warning or other information systems. The rest of the pa-

per is organized as follows. The approach for representing

domain knowledge by the states of objects is proposed in

Section 2. Section 3 presents the ILID method which uses

the proposed knowledge representation approach to detect

information logical inconsistency in the real-time informa-

tion. Two case-based examples illustrate the application

of the ILID method in Section 4. Finally, our future study

is discussed in Section 5.

2. State-based knowledge representation and con-

sistency

This section will present a state-based knowledge rep-

resentation approach.

2.1. State-based knowledge representation

Usually, domain-specific knowledge has close relation

with pertinent objects. First of all, a piece of domain-

specific knowledge can be recognized through the special

states of relevant objects. Secondly, domain-specific knowl-

edge may vary when states of those objects change. Hence,

states of objects are used to establish knowledge represen-

tation approach in this section.

An object may have lots of states in different domains.

However, it is only in a finite normal states in a specific do-

main. These normal states of different objects often form

some regular combinations in a stable condition. These

state combinations are formed at two levels. At the first

level, a combination includes the states of different ob-

jects, which reflects the interaction between different ob-

jects. At the second level, a combination includes the mul-

tiple states of the same object which reflects the linkage be-

tween a piece of knowledge and an object’s states. People’s

domain-specific knowledge may be established on those

regular combinations. Based on this consideration, we

treat domain-specific knowledge as combinations of states

of related objects.

Suppose D is a domain, the knowledge in D is related

to a set of objects denoted by O1, O2, . . ., On. Each object

Oi has several possible states s(i)1 , s(i)2 , . . ., s(i)im (denoted

by Si) in domain D. At a given time t (t ∈ T), the normal

states of the object Oi are denoted by Si(t) (Si(t) ⊆ Si),

i = 1, 2, . . . , n. These normal states can be obtained from

many sources such as historical records and relevant the-

ories. In the following, each Si(t) is supposed to be a

non-empty set.

Remark 2.1. It is difficult to clearly assert which state of

an object is in some situations although an object should

2 STATE-BASED KNOWLEDGE REPRESENTATION AND CONSISTENCY 4

be in a unique state in a given time t by intuition. In

those situations, people always use uncertain expression to

depict knowledge. For instance, people often say “a young

person is more energetic than an old person” where both

“young” and “old” are often used to express possible ages

of a person but they are not corresponding to any particular

value, e.g. 25 or 55. Without other specification, the states

of objects in this paper are assumed to be distinguishable.

Thus an object taking state s1 is definitely different from

that it taking state s2.

Before given the definition of domain-specific knowl-

edge, we first introduce the notion of unordered n-tuples.

An unordered n-tuples, here, means a set of states of ob-

jects such that each element belongs to an individual ob-

ject’s state set. Formally, let X1, X2, . . ., Xn be n non-

empty sets. That (x1, x2, . . ., xn) is an unordered n-tuples

means xi ∈ Xi and xi 6∈ Xj if i 6= j, i, j = 1, 2, . . . , n. For

convenience, we use X1 ⊗X2 ⊗ · · · ⊗Xn to denote the set

of all unordered n-tuples obtained from X1, . . ., Xn.

Definition 2.1. A piece of domain-specific knowledge ω(t)

of D at time t is composed of a set of unordered p-tuples,

i.e.,

ω(t) ⊆
⊗

j∈J(ω(t))

Sj , (1)

where J(ω(t)) (⊆ {1, 2, . . . , n}) is the index set of relevant

objects of the knowledge ω(t), and p = |J(ω(t))|.

In the following, we use “knowledge” representing “domain-

specific knowledge” without other specification and use

S
(ω(t))
j to denote the states of object Oi with respect to the

knowledge ω(t). A piece of knowledge ω(t) is called empty

knowledge if for some j ∈ J(ω(t)), S(ω(t))
j is an empty

set. Empty knowledge indicates a kind of impossible state

combination. Thus empty knowledge is not unique.

Definition 2.1 can be used to explain some typical re-

lationships between objects. In general, there are three

kinds of relationships between two objects, i.e., A ⇒ B,

B ⇒ A, and A ⇔ B. When A ⇒ B, this means from a

given state of A, some states of B can be obtained. This

relationship can be expressed by a piece of knowledge com-

posed 2-tuples

ω = {(a, b)|b ∈ SB}. (2)

Similarly, relation B ⇒ A can be expressed by a piece of

knowledge

ω = {(a, b)|a ∈ SA}. (3)

As relation A ⇔ B often indicates the corresponding be-

tween particular states of A and B, such as

ω = {(ai, bi)|ai ∈ SA, bi ∈ SB , i = 1, . . . , q}, (4)

each pair of those states forms a combination between

states of A and B. Hence, all these pairs (combinations)

form a piece of knowledge given by Definition 2.1.

Definition 2.2. The knowledge base (Ω) of the domain D

before time tc is a non-empty set of domain-specific knowl-

edge ω(t) such that

Ω =
⋃

t<tc,t∈T
Ω(t), (5)

and Ω(t) is the set of knowledge at the time t.

Definition 2.2 indicates that the knowledge base of do-

main D is composed of a set of state combinations of rel-

evant objects. Moreover, it is predictable that the knowl-

edge base is incomplete in most situations because it con-

sists of knowledge known to the end of a particular time

slot. This feature is in accordance with people’s cognitive

experience. Secondly, the knowledge base may includes

duplicate knowledge because some knowledge is correct in

multiple times. Furthermore, the knowledge base may in-

clude both consistent and inconsistent knowledge because

some knowledge is only applicable to some special circum-

stances.

By Definitions 2.1 and 2.2, it is known that there are

three kinds of relationship between a state combination c

of objects and a knowledge base, i.e.,

2 STATE-BASED KNOWLEDGE REPRESENTATION AND CONSISTENCY 5

• c is an existed combination. In this case, c occurs in

some pieces of knowledge in Ω.

• c can be a potential combination. In this case, c does

not occur in any piece of knowledge in Ω but any of

its component (i.e., the state of an particular object)

is a normal state.

• c can never be a potential combination. In this case,

c does not occur in any piece of knowledge in Ω and

at least one of its components is an abnormal state.

Since a piece of real-time information obtained through

observation can be expressed by a state combination of

related objects, the above three relations indicate possi-

ble process strategy for detecting the information logical

consistency of real-time information. The first case means

that the obtained state combination has been recognized.

It is not needed to check the consistency of such informa-

tion provided that the knowledge base is consistent. The

second case shows that the obtained state combination has

not been observed previously but it may exist. Hence, it

is needed to check the consistency of such information on

the basis of the domain-specific knowledge base. Once it is

known that the new state combination is consistent with

the knowledge base, the state combination can be added

to the knowledge base as a piece of new knowledge. As for

the third case, the obtained state combination is bound to

be inconsistent with the knowledge base. Therefore, it is

not needed to check the consistency of such information.

2.2. State-based knowledge consistency

State-based knowledge consistency refers to two lev-

els of meanings. On the first level, knowledge consistency

means the consistency in a knowledge base at a given time,

i.e., no paradox can be derived from each Ω(t). On the sec-

ond level, knowledge consistency refers to the consistency

of the whole knowledge base, i.e., no contradiction can be

obtained from Ω. Existing information detection methods

mainly focus on the consistency of the whole knowledge

base and the consistency of knowledge at each time is pre-

sumed implicitly. Because those techniques do not con-

sider the influence of time change, the knowledge set at

each time is the same. Obviously, such a knowledge base

is smaller than the one given in Definition 2.2 on the one

hand. On the other hand, the smaller knowledge base may

exclude some consistent information by mistake.

In this paper, we mainly focus on the consistency at

a given time, i.e., the consistency between real-time infor-

mation and the knowledge base Ω(t), where t ∈ T . To do

this, we suppose Ω is consistent.

Definition 2.3. Let ω(t) be a piece of knowledge, J = {i1,
. . ., iq} ⊆ J(ω(t)) a non-empty set. Then the J-part of

ω(t) is denoted by ω(t)|J such that:

ω(t)|J = {(s(i1)k1
, . . . , s

(iq)
kq

)|∃(s(i1)k1
, . . . , s

(iq)
kq

,

s
(l1)
kl1

, . . . , s
(lp)
klp

) ∈ ω(t)}. (6)

Definition 2.3 indicates a J-part of a piece of knowl-

edge is the set of J-part of each state combination in the

knowledge.

By Definition 2.1, a J-part of a piece of knowledge ω(t)

is also a piece of knowledge. This knowledge can be seen

as a logical consequence of knowledge ω(t). Therefore, we

can use this property to define the consistency between

two pieces of knowledge.

Suppose ω(t) and φ(t) are two pieces of knowledge, and

J is the intersection of J(ω(t)) and J(φ(t)), and J is not

empty set. Then ω(t)|J and φ(t)|J have three possible

relationships, i.e.,

(1) ω(t)|J = φ(t)|J . In this case, the same conclusion is

derived from two different pieces of knowledge. This

means these two pieces of knowledge are consistent.

(2) ω(t)|J ∩ φ(t)|J 6= ∅ but ω(t)|J 6= φ(t)|J . In this

case, there is a common part between the logical

consequences from two different pieces of knowledge.

This means these two pieces of knowledge are partly

consistent although the consequences from them may

not completely coincide.

2 STATE-BASED KNOWLEDGE REPRESENTATION AND CONSISTENCY 6

(3) ω(t)|J ∩ φ(t)|J = ∅. In this case, no common part

between logical consequences of two different pieces

of knowledge exists. This indicates potential incon-

sistency between those knowledge.

However, sometimes the intersection of J(ω(t)) and J(φ(t))

is an empty set. In this case, to judge the consistency be-

tween ω(t) and φ(t), we need to find a possible combina-

tion which links ω(t) and φ(t) through some intermediate

knowledge. Suppose ψ(t) is a piece of knowledge and both

J(ω(t))∩J(ψ(t)) and J(φ(t))∩J(ψ(t)) are not empty sets.

We hope to find such a state combination c

(sω(t)
1 , · · · , sω(t)

i1
, · · · , sω(t)

im
, s
ψ(t)
im+1, · · · , sψ(t)

j1−1,

s
ψ(t)
j1

, · · · , sφ(t)
jm

, · · · , sφ(t)
jn

)
(7)

such that

(sω(t)
1 , · · · , sω(t)

i1
, · · · , sω(t)

im
) ∈ ω(t)

(sω(t)
i1

, · · · , sω(t)
im

, s
ψ(t)
im+1, · · · , sψ(t)

j1−1, s
ψ(t)
j1

, · · · , sφ(t)
jm

) ∈ ψ(t)

(sψ(t)
j1

, · · · , sφ(t)
jm

, · · · , sφ(t)
jn

) ∈ φ(t).

If such a combination exists, a potential consistent obser-

vation can be obtained from ω(t) and φ(t). Hence, they are

consistent to some extent. (In the following, we say ψ(t)

connects between ω(t) and φ(t) and such a combination c

is called a string linking ω(t) and φ(t).)

Based on the above analysis, the following definitions

about consistency between two pieces of knowledge are

given.

In the following, we use J∗ to denote the intersection

of Jω(t) and Jφ(t).

Definition 2.4. Suppose ω(t), φ(t) ∈ Ω(t) are two pieces

of knowledge.

When J∗ is a non-empty set, ω(t) and φ(t) are said to

be strict consistent if S(ω(t))
j = S

(φ(t))
j for any j ∈ J∗; ω(t)

and φ(t) are said to be partial consistent if S(ω(t))
j 6= S

(φ(t))
j

for some j ∈ J∗ and S(ω(t))
j ∩ S(φ(t))

j 6= ∅ for any j ∈ J∗;
and ω(t) and φ(t) are said to be inconsistent if for some

j ∈ J∗, S(ω(t))
j ∩ S(φ(t))

j = ∅.

When J∗ is an empty set, ω(t) and φ(t) are said to be

strict consistent if there is a sequence of knowledge ψ1(t),

ψ2(t), . . ., ψn(t) which connect between ω(t) and φ(t) such

that any two consequent pieces of knowledge are strict con-

sistent; ω(t) and φ(t) are said to be partial consistent if

there is a sequence of knowledge ψ1(t), ψ2(t), . . ., ψn(t)

which connect between ω(t) and φ(t) and there is at lest

one string linking ω(t) and φ(t); ω(t) and φ(t) are said

to be inconsistent if no string linking ω(t) and φ(t) can be

found.

By Definition 2.4, it is known that the operations of ex-

tracting the J∗-part of two pieces of knowledge and finding

a string linking them are very important for detecting the

consistency of two pieces of knowledge. Here, we formally

define the first operation by E(ω, φ) and the second opera-

tion by C(ω, φ). These two operations serve as knowledge

generalization and knowledge specification.

Definition 2.5 (extracting). Let ω(t), φ(t) ∈ Ω(t) be

two pieces of knowledge and J(ω(t)) ∩ J(φ(t)) 6= ∅. Then

E(ω, φ) is obtained by:

E(ω(t), φ(t)) = ω(t)|J∗ ∩ φ(t)|J∗ , (8)

where J∗ = J(ω(t)) ∩ J(φ(t)) 6= ∅.

Definition 2.6 (coupling). Let ω(t), φ(t) ∈ Ω(t) be two

pieces of knowledge and J∗ 6= ∅. Then C(ω, φ) is obtained

by:

C(ω(t), φ(t)) = {c|c is a string linking ω(t) and φ(t)}.
(9)

Proposition 2.1. Let ω(t) and φ(t) be two pieces of strict

(partial) consistent knowledge and J∗ 6= ∅, then

E(ω(t), φ(t)) = C(ω(t), φ(t))|J∗ . (10)

Proof: For any c ∈ E(ω(t), φ(t)), we have c1 ∈ ω(t)

and c2 ∈ φ(t) such that c is the common section of c1

and c2. Then, there is a string c̃ linking ω(t) and φ(t).

2 STATE-BASED KNOWLEDGE REPRESENTATION AND CONSISTENCY 7

Hence, c̃ ∈ C(ω(t), φ(t)). By Definition 2.3, we have c|J∗ =

c. Obviously, c ∈ C(ω(t), φ(t))|J∗ and E(ω(t), φ(t)) ⊆
C(ω(t), φ(t))|J∗ .

For any c̃ ∈ C(ω(t), φ(t))|J∗ , there exists c1 ∈ ω(t)

and c2 ∈ φ(t) such that c̃ is the common section of them.

Notice that c̃ = ω(t)|J∗ and c̃ = φ(t)|J∗ , c̃ ∈ E(ω(t), φ(t)).

Therefore, C(ω(t), φ(t))|J∗ ⊆ E(ω(t), φ(t)). ¤
Definition 2.5 and Definition 2.6 are two methods of

obtaining new knowledge from existed knowledge base be-

cause E(ω(t), φ(t)) and C(ω(t), φ(t)) themselves are two

pieces of knowledge by Definition 2.1. In the following,

the fact that a piece of knowledge ψ(t) is obtained from a

set of knowledge Ψ(t) by the two methods is denoted by

Ψ(t) |=D ψ(t). Hence, {ω(t), φ(t)} |=D E(ω(t), φ(t)) and

{ω(t), φ(t)} |=D C(ω(t), φ(t)). Moreover, these two meth-

ods have close relation with the consistency of two pieces

of knowledge seen from Definition 2.4. The relation can

be expressed by the following proposition.

Proposition 2.2. Let ω(t) and φ(t) be two pieces of in-

consistent knowledge, then either E(ω, φ) or C(ω, φ) is

empty sets.

Proof: We consider two possible situations. Firstly,

suppose J∗ is a non-empty set. In this case, ω(t) and φ(t)

are inconsistent if for some j ∈ J∗, S(ω(t))
j ∩ S(φ(t))

j = ∅.
This means for any c1 ∈ ω(t) and any c2 ∈ φ(t), c1|J∗ 6=
c2|J∗ . Hence, c1|J∗ 6∈ φ(t)|J∗ and then ω(t)|J∗ ∩ φ(t)|J∗ =

∅. Therefore, E(ω(t), φ(t)) is an empty set. By Proposi-

tion 2.1, C(ω(t), φ(t)) is an empty set. Secondly, suppose

J∗ is an empty set. In this case, there is not a string

c which links ω(t) and φ(t). Hence, C(ω(t), φ(t)) is an

empty set. ¤
Proposition 2.2 and Definition 2.4 indicate that the

consistency between two pieces of knowledge can be imple-

mented through checking whether empty knowledge can be

derived from them. Next, we extend this idea to a set of

knowledge.

As C(ω, φ) is a consequence of the knowledge ω and φ,

and ω (or φ) is a consequence of E(ω, φ). In the following,

C(ω, φ) and E(ω, φ) will be denoted by ω u φ and ω t φ
respectively.

Based on Definition 2.6, let Ω∗(t) ⊆ Ω(t), and define

C(Ω∗(t)) as follows

• Ω∗(t) ∈ C(Ω∗(t));

• for any ω(t), φ(t) ∈ C(Ω∗(t)), ω(t)uφ(t) ∈ C(Ω∗(t));

• for any ω(t), φ(t) ∈ C(Ω∗(t)), ω(t)tφ(t) ∈ C(Ω∗(t)).

Definition 2.7. A set of knowledge Ω∗(t) is called con-

sistent if C(Ω∗i (t)) does not include empty knowledge; oth-

erwise, it is called inconsistent.

Generally speaking, that checking a set of knowledge is

consistent or not is a time-consuming task. However, we

have a simplified strategy here.

First, we introduce the concept of knowledge covering

to illustrate the relationship between two pieces of knowl-

edge.

Definition 2.8. Two pieces of knowledge ω(t) and φ(t)

are said to be equivalent and denoted by ω(t) ≡ φ(t) if

J(ω(t)) = J(φ(t)) and S(ω(t))
j = S

(φ(t))
j for any j ∈ J(ω(t))(=

J(φ(t))).

Definition 2.8 depicts the phenomena when a piece

of knowledge can be expressed in many ways. For in-

stance, both “2000 Sydney Olympic Game” and “the 26th

Olympic Game” refer to the same Game hold in Sydney

in October, 2000.

Definition 2.9. A piece of knowledge ω(t) is said to be a

logical consequence of knowledge φ(t) if the following con-

ditions hold:

(1) J(ω(t)) ⊆ J(φ(t)),

(2) ω(t) = φ(t)|J(ω(t)).

In the following, we shall denote φ(t) |= ω(t) if knowl-

edge ω(t) is a logical consequence of knowledge φ(t). Ob-

viously, two equivalent knowledge ω and φ are logical con-

sequence of each other.

3 AN INFORMATION LOGICAL INCONSISTENCY DETECTION METHOD 8

By Definition 2.4 and Definition 2.9, if two pieces of

knowledge ω(t) and φ(t) are strict consistent, then the

following conclusion holds.

Proposition 2.3. If ω(t) and φ(t) are two pieces of strict

consistent knowledge, then

• ω(t) |= E(ω(t), φ(t)) and φ(t) |= E(ω(t), φ(t)); or

• C(ω(t), φ(t)) |= ω(t) and C(ω(t), φ(t)) |= φ(t).

It is easy to verify that the following conclusions hold.

Proposition 2.4. Let ω(t), φ(t) ∈ Ω(t) and ω(t), φ(t) 6∈
f

(1) ω(t) |= ω(t) for any ω(t) ∈ Ω(t).

(2) ω(t) ≡ φ(t) if ω(t) |= φ(t) and φ(t) |= ω(t).

(3) ω(t) |= ψ(t) if ω(t) |= φ(t) and φ(t) |= ψ(t). ¤

The logical consequence relationship |= gives a hierar-

chical structure among a set of knowledge at time t. We

draw the hierarchical structure in a graph according to the

following principle:

ω(t) 4 φ(t) if and only if φ(t) |= ω(t), (11)

where ω(t) 4 φ(t) means that φ(t) covers ω(t). The re-

lationship 4 is a partial order, which is called knowledge

covering relationship. The knowledge covering relation-

ship among C(ω, φ), ω(t), φ(t), and E(ω, φ) is shown in

Figure 1.

)
(
t
ω
)
(
t
ϕ

)
,
(
 ϕ
ω
C

)
,
(
 ϕ
ω
E

Figure 1: Covering among knowledge pieces

Notice from Definition 2.9 and Fig. 1, the length of

state combinations in C(Ω∗(t)) is increasing but the num-

ber of those combinations is decreasing. By this feature,

we can simplify the search of empty knowledge from C(Ω∗(t)).

We call a set of knowledge Ω is indivisible if there

doesn’t exist a division of J(Ω) = J1 ∪ J2 ∪ · · · ∪ Jm such

that

• Ji ∩ Jk = ∅ if i 6= k, and

• for any ω ∈ Ω, there exists unique l, J(ω(t)) ⊆ Jl,

where i, k, l ∈ {1, 2, . . . ,m}.
Suppose Ω∗(t) is divided intom indivisible parts, Ω∗1(t),

· · · , Ω∗m(t). We have

Proposition 2.5. Let Ω∗(t) be a set of knowledge, then

C(Ω∗(t)) =
m⋃

i=1

C(Ω∗i (t)). (12)

Proposition 2.5 indicates the empty knowledge will oc-

curs in some C(Ω∗i (t))s. Thus, the searching space is re-

duced.

Remark 2.2. That coupling a set of knowledge aims at

finding out all possible combinations of states of the re-

lated objects. This operation depicts the inner dependen-

cies among objects which exactly are the knowledge we have

about a specific domain. Hence, we can use these combina-

tions to detect inconsistency in the real-time information.

3. An information logical inconsistency detection

method

Based on the knowledge representation approach pro-

posed, we give an LID method in this section.

First, the problem of information logical inconsistency

detection for real-time information is:

In a situation, related knowledge Ω = ∪t∈TΩ(t) has

been stored, which involves in a set of objects O = {O1,

. . ., On}. At a given time t, we collect a set of observa-

tions (i.e., real-time information), S∗ = {S∗j | j ∈ J} about

some objects O∗ = {O∗j | j ∈ J} ⊆ O, J ⊆ {1, 2, . . . , n}.
Then, we shall know if these observations are information

logical inconsistent with the knowledge stored in a knowl-

edge base.

4 ILLUSTRATION EXAMPLES 9

To deal with this problem, we suppose the stored knowl-

edge Ω(t) at time t is consistent. Therefore, a potential

information logical inconsistency must be introduced by

S∗.

The LID method is composed of five steps as follows.

Step 0: Check C(S∗). If C(S∗) is empty knowledge,

then these observations are logical inconsistent and this

method stops; otherwise, go to Step 1. Step 0 aims at

finding information logical inconsistency in these observa-

tions themselves.

Step 1: Compare J(S∗) and J(C(Ω(t))). If J(C(Ω(t)))

⊇ J(S∗), then go to Step 2; otherwise, go to Step 3.

This step aims to determine whether the stored knowl-

edge adapts to the needs of a logical inconsistency detec-

tion task. If the stored knowledge and these observations

involve the same objects, then the stored knowledge meets

the requirements of the detecting task. Otherwise, some

observations cannot be detected by the stored knowledge.

Step 2: Check whether S∗ ∩ (C(Ω(t)))|J(S∗) 6= ∅. If

S∗ ∩ (C(Ω(t)))|J(S∗) 6= ∅, then these observations are logi-

cal consistent; otherwise, they are logical inconsistent and

the detecting is ended. This step aims at identifying in-

formation logical inconsistency in these observations when

the stored knowledge is sufficient enough.

Step 3: Divide S∗ into two parts S∗1 and S∗2 such that

S∗1 = {ω|J(C(Ω(t))) | ω ∈ S∗}
S∗2 = {ω|J(ω(t))\J(C(Ω(t))) | ω ∈ S∗}

For S∗1 , let S∗ = S∗1 , go to Step 2. For S∗2 , we cannot

use the stored knowledge to detect logical inconsistency

of observations in it. Hence, these observations in S∗2 are

treated as new data and detected by the related data in-

consistency methods as presented in [5, 21, 3]. For each

observation s ∈ S∗2 , if there exists an observation in S∗2

which is inconsistent, then the observations S∗ is incon-

sistent. Go to Step 4. When the stored knowledge is in-

sufficient for detecting all observations, current process is

applied. This step is used on the basis that if a part of

these observations are logical inconsistent, then all of them

as a whole must be logical inconsistent.

Step 4: For any consistent observation s ∈ S∗2 , con-

struct C(C(Ω(t)), s) and add it to Ω(t). This step is an ad-

ditional work on the consideration of updating the stored

knowledge in order to preserve the completeness and effec-

tiveness of a knowledge base in a real warning system. No-

tice that the added new knowledge is consistent with itself

and the stored knowledge; hence, the obtained knowledge

base is still consistent after updating.

Step 5: Explain conclusion and end.

By above steps, we can implement the information log-

ical inconsistency detection for real-time information.

4. Illustration examples

In this section, the effectiveness and possible applica-

tions of the proposed ILID method are illustrated through

two examples.

First, we use the ILID method for single object with

boolean states, i.e., the object has two opposite states.

Example 4.1. A power station is an important industrial

department for emergency response. Its function is always

under monitoring. Suppose a power station has a moni-

toring system which has 14 lookouts distributed in different

places. Each lookout will report the states of its local place

every hour. Let a knowledge base Ω(t) about the power sta-

tion’s function shown in Table 1, where ωi, i = 1, 2, . . . , 10,

is a piece of knowledge, and pj (j = 1, 2, . . . , 14) is the i-th

lookout and each of them reports two possible states 1 (for

abnormal function) and 0 (for normal function).

Let S∗ = {(p1 = 1, p2 = 1, p3 = 1, p4 = 1)} be a set

of observations.

Using the presented ILID method, we have:

Step 0: Obviously, C(S∗) isn’t empty. Goto Step 1.

Step 1: By coupling the knowledge bases C(Ω(t)), we

4 ILLUSTRATION EXAMPLES 10

Table 1: A knowledge base Ω(t).

No. Knowledge

ω1 {(p1 = 1, p2 = 1, p5 = 1, p6 = 1)}
ω2 {(p2 = 1, p14 = 1)}
ω3 {(p6 = 1, p10 = 1)}
ω4 {(p3 = 1, p4 = 1, p7 = 1)}
ω5 {(p10 = 1, p14 = 1)}
ω6 {(p7 = 1, p10 = 1, p11 = 1)}
ω7 {(p8 = 1, p11 = 1)}
ω8 {(p8 = 1, p7 = 1)}
ω9 {(p10 = 1, p12 = 1)}
ω10 {(p10 = 1, p13 = 1)}

have a piece of knowledge:

{(p1 = 1, p2 = 1, p3 = 1, p4 = 1,

p5 = 1, p6 = 1, p7 = 1, p8 = 1,

p10 = 1, p11 = 1, p12 = 1, p13 = 1, p14 = 1)}.

As J(S∗) ⊆ J(C(Ω(t))), then goto Step 2.

Step 2: By Definition 2.3, we have

(C(Ω(t)))|{1,2,3,4} = {(p1 = 1,

p2 = 1, p3 = 1, p4 = 1)}.
(13)

So, S∗ = C(Ω(t))|{1,2,3,4}. The observations are consis-

tent, which means the power station is functioning abnor-

mally. Stop.

Now, let S∗ = {(p1 = 1, p2 = 1, p3 = 1, p9 = 1)}. By

the proposed ILID method, we have

Step 1: J(S∗) * J(C(Ω(t))). Then goto Step 3.

Step 3: Dividing S∗ into S∗1 = {(p1 = 1, p2 = 1, p3 =

1)} and S∗2 = {(p9 = 1)}. For S∗1 , goto Step 2. For S∗2 ,

without loss of generality, suppose it is consistent by the

rule map technique, then goto Step 4.

Step 2: For S∗1 , we know it is consistent.

Step 4: Because the S∗ is a set of consistent observa-

tions, we shall update our knowledge by coupling {(p9 =

1)} and C(C(Ω(t))) and have

{(p1 = 1, p2 = 1, p3 = 1, p4 = 1, p5 = 1,

p6 = 1, p7 = 1, p8 = 1, p9 = 1, p10 = 1, (14)

p11 = 1, p12 = 1, p13 = 1, p14 = 1)}.

Step 5. End.

From this example, we can see that the presented ILID

method is very effective as it only needs to detect a subset

of possible combinations of states of related objects. This

feature is suitable for a real problem since it can reduce the

searching space and save the searching time by avoiding

detection for insignificant combinations.

Second, we use the ILID method for objects with mul-

tiple states. In this situation, a piece of knowledge may

cover multiple combinations of states.

Example 4.2. Suppose another warning system monitor-

ing the changes of three objects, A, B, and C. Each object

can take observation values from {slow (1), medium (2),

fast (3)}. Let r(A,B) be the knowledge “A’s change is

greater than B’s change.” Now we have a knowledge base

Ω = {ω = r(A,B), φ = r(B,C)} and a set of real-time

observations S∗ = {(A = 2, B = 2, C = 1)}. Hence we

have

ω = {(A = 2, B = 1),

(A = 3, B = 1),

(A = 3, B = 2)}
φ = {(B = 2, C = 1),

(B = 3, C = 1),

(B = 3, C = 2)}.

Using the ILID method, we have the following steps to

detect logical inconsistency for the real-time information.

Step 1: By coupling these two pieces of knowledge, we

have

C(Ω(t)) = {(A = 3, B = 2, C = 1)}. (15)

Because J(S∗) = J(C(Ω(t))), goto Step 2.

REFERENCES 11

Step 2: Notice that (C(Ω(t)))|{A,B,C} = {(A = 3, B =

2, C = 1)} and S∗ * (C(Ω(t)))|{A,B,C}, therefore, the ob-

servations are logical inconsistent. Then goto Step 5 and

stop.

The presented ILID method is not only be used for the

real-time observations but also be used for detecting logical

inconsistency in knowledge bases. By taking knowledge in

a knowledge base as a set of observations, we can treat the

knowledge base as being generated from an empty knowl-

edge base. Hence, applying the proposed method, we can

detect the logical inconsistency of the knowledge in the

knowledge base.

Continuing Example 4.2, suppose we have the third

piece of knowledge ψ = r(C,A). We have

ψ = {(C = 2, A = 1),

(C = 3, A = 2),

(C = 3, A = 1)}.

(16)

Now C(Ω) = f, which means the knowledge base is incon-

sistent.

By taking this advantage, we can use the ILID method

to detect logical inconsistency in both real-time and stored

knowledge for a warning system. Obviously, this can im-

prove the facility and function of a warning system.

5. Conclusion

Detecting logical inconsistency in information is an im-

portant aspect to develop real applications in a people-

centered warning system. Since these applications are

always applied in specific domains, detection approaches

should be domain-oriented and should be based on domain

knowledge which is ad hoc, decentralized, and contextual-

ized [20]. Considering domain knowledge is object-state

related, this paper first presented a state-based domain

knowledge representation approach, and then proposed the

ILID method for domain-specific information.

In the state-based domain knowledge representation

approach, a piece of domain knowledge is represented by

some state combinations of relevant objects. Thus, logical

relationship between knowledge is defined through those

state combinations. Furthermore, the strict and partial

consistency of domain knowledge base is also defined on

those state combinations. This knowledge representation

approach has flexibility to depict domain-specific knowl-

edge.

The developed ILID method can be seen as an ap-

plication of the state-based domain knowledge represen-

tation approach. The ILID method includes five main

steps which are implemented through the coupling and ex-

tracting operations on state combinations in the relevant

knowledge. This implementation combines the merits of

reasoning-based and graph-based inconsistency detection

approaches. To test and illustrate the efficiency of the

ILID method, two examples are described. Results indi-

cate that the ILID method can be used to detect logical

inconsistency of real-time observations, and can also be

used to detect logical inconsistency of a stored knowledge

base. This is important because both situations exist in

warning systems.

Based on current results, our future study includes in-

tegrating and applying the proposed ILID method to infor-

mation process tasks in a people-centered warning system

in specific domains.

Acknowledgement

The work presented in this paper was supported by

Australian Research Council (ARC) under Discovery Project

DP0880739.

References

[1] Amgoud, L., Kaci, S., 2007. An argumentation framework for

merging conflicting knowledge bases. International Jounral of

Approximate Reasoning 45, 321–340.

[2] Basher, R., 2006. Global early warning systems for natural

hazards: systematic and people-centred. Philosophical Trans-

actions of the Royal Society A 364, 2167–2182.

REFERENCES 12

[3] Beliakov, G., Warren, J., 2001. Appropriate choice of aggrega-

tion operators in fuzzy decision support systems. IEEE Trans.

on Fuzzy Systems 9 (6), 773–784.

[4] Botten, N., 1992. Complex knowledge-base verification using

matrices. Lecture Notes in Artificial Intelligence 604, 225–235.

[5] Bruni, R., 2004. Discrete models for data imputation. Discrete

Applied Mathematics 144, 59–69.

[6] Chang, C. L., Lee, R. C. T., 1973. Symbolic and Mechanical

Theorem Proving. Academic Press, Inc., Orlando, FL, USA.

[7] de Amo, S., Pais, M. S., 2007. A paraconsistent logic pro-

gramming approach for querying inconsistent databases. Inter-

national Jounral of Approximate Reasoning 46, 366–386.

[8] Hunter, A., 1998. Paraconsisten logics. In: Gabbay, D., Smets,

P. (Eds.), Handbook of Defeasible Reasoning and uncertain In-

formation. Kluwer Academic Publishers, pp. 13–43.

[9] Hunter, A., 2003. Evaluating the significance of inconsistencies.

In: Proceedings of the 2003 International Joint Conference on

AI (IJCAI03). pp. 468–473.

[10] Mazure, B., Säıs, L., Grégoire, E., June 1997. Checking sev-

eral forms of consistency in nonmonotonic knowledge-bases.

In: Gabbay, D. M., Kruse, R., Nonnengard, A., Ohlbach,

H. J. (Eds.), Qualitative and Quantitative Practical Reasoning,

First International Joint Conference on Qualitative and Quanti-

taitve Practical Reasoning ECSQARU-FAPR’97, Bad Honnef,

Germany. Vol. 1244 of Lecture Notes in Computer Sciences.

Springer, pp. 122–130.

[11] Molodtsov, D., 1999. Soft set theory – first results. Computers

and Mathematics with Applications, An International Journal

37, 19–31.

[12] Mues, C., Vanthienen, J., 2004. Efficient rule base verification

using binary decision diagrams. In: Proc. of Database and Ex-

pert Systems Application. Vol. 3180 of Lecture Notes in Com-

puter Science. pp. 445–454.

[13] Mues, C., Vanthienen, J., 2004. Improving the scalability of rule

base verification using binary decision diagrams: an empirical

study. In: Proc. of Advances in Artificial Intelligence. Vol. 3238

of Lecture Notes in Computer Science. pp. 381–395.

[14] Nguyen, N. T., feb 2005. Processing inconsistency of knowledge

on semantic level. Journal of Universal Computer Science 11 (2),

285–302.

[15] Park, J. H., Seong, P. H., 2002. An integrated knowledge base

development tool for knowledge acquisition and verification for

NPP dynamic alarm processing systems. Annals of Nuclear En-

ergy 29 (4), 447–463.

[16] Pawlak, Z., Grzymala-Busse, J., Slowinski, R., Ziarko, W.,

1995. Rough sets. Communications of the ACM 38 (11), 89–

95.

[17] Pawlak, Z., Skowron, A., 2006. Rough sets and Boolean reason-

ing. Information Sciences 177 (1), 41–73.

[18] Pawlak, Z., Skowron, A., 2006. Rudiments of rough sets. Infor-

mation Sciences 177 (1), 3–27.

[19] Polat, F., 1993. UVT: A unification-based toold for knowledge

base verification. IEEE Expert–Intelligent Systems & Their Ap-

plications 8 (3), 69–75.

[20] Raman, M., Ryan, T., Olfman, L., 2006. Knowledge manage-

ment system for emergency preparedness: An action research

study. In: HICSS’06: Proceedings of the 39th Annual Hawaii In-

ternational Conference on System Sciences. Vol. 2. IEEE Com-

puter Society, Washington, DC, USA, p. 37b.

[21] Russell, S. J., Norvig, P., 1995. Artificial Intelligence: A Modern

Approach, 1st Edition. Prentice Hall, NJ.

[22] Scarpelli, H., Gomide, F., 1994. A high level net approach for

discovering potential inconsistencies in fuzzy knowledge bases.

Fuzzy Sets and Systems 64, 175–193.

[23] Wu, P., Su, S. Y. W., 1993. Rule validation based on logical de-

duction. In: Proc. 2nd International Conference on Information

and Knowledge Management. pp. 164–173.

[24] Yang, S. J. H., Tsai, J. J. P., Chen, C.-C., 2003. Fuzzy rule base

systems verification using high-level Petri Nets. IEEE Transac-

tions on Knowledge and Data Englineering 15 (2), 457–473.

[25] Zhang, D., Luqi, 1999. Approximate declarative semantics for

rule base anomalies. Knowledge-Based Systems 12, 341–353.

