
 1 

 

Biomarker CD46 Detection in Colorectal Cancer Data based on Wavelet 

Feature Extraction and Genetic Algorithm   

Yihui Liu
1
, Uwe Aickelin

1
, Jan Feyereisl

1
, and Lindy G Durrant

2 

 

1
 School of Computer Science, University of Nottingham, UK 

2
 Academic Department of Clinical Oncology, Institute of Immunology, 

Infections and Immunity, City Hospital, 

University of Nottingham, UK 

 

 

Corresponding author:  

Yihui Liu  

Institute of Intelligent Information Processing 

Shandong Polytechnic University, 

Jinan, China, 250013 

 Email: yihui_liu_2005@yahoo.co.uk;  

yxl@spu.edu.cn 

Tel: +86 (0) 53189631256 

 

 

Abstract: 

Biomarkers which predict patient’s survival can play an important role in medical diagnosis and 

treatment. How to select the significant biomarkers from hundreds of protein markers is a key step in 

survival analysis. In this paper a novel method is proposed to detect the prognostic biomarkers of 

survival in colorectal cancer patients using wavelet analysis, genetic algorithm, and Bayes classifier. 

One dimensional discrete wavelet transform (DWT) is normally used to reduce the dimensionality of 

biomedical data. In this study one dimensional continuous wavelet transform (CWT) was proposed to 

extract the features of colorectal cancer data. One dimensional CWT has no ability to reduce 

dimensionality of data, but captures the missing features of DWT, and is complementary part of 

DWT. Genetic algorithm was performed on extracted wavelet coefficients to select the optimized 

features, using Bayes classifier to build its fitness function. The corresponding protein markers were 

located based on the position of optimized features. Kaplan-Meier curve and Cox regression model 
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were used to evaluate the performance of selected biomarkers. Experiments were conducted on 

colorectal cancer dataset and several significant biomarkers were detected. A new protein biomarker 

CD46 was found to significantly associate with survival time.  
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1. Introduction  

Survival analysis involves the estimation of the distribution of time it takes for death to occur 

depending on the biology of the disease. It allows clinicians to plan a suitable treatment and counsel 

patients about their prognosis. In medical domains, survival analysis is mainly based on Kaplan-Meier 

(KM) estimator and Cox proportional hazards regression model [1,2], which are used to evaluate the 

performance of prognostic markers. However how to rank these biomarkers, is a key step in survival 

analysis. Normally, the selection of biomarkers is based on medical knowledge and the diagnosis of 

the clinician [1, 2]. This may ignore potential biomarkers. Machine learning algorithms have been 

widely used in biomarker analysis of high dimensional medical data, such as microarray data [3,4,5] 

or mass spectrometry data [6,7]. Despite the potential advantages over standard statistical methods, 

their applications to survival analysis are rare due to the difficulty in dealing with censored data [8]. 

Recent research has shown that machine learning methods, such as neural network [9,10], Bayesian 

network [11], decision tree and Naïve Bayes classifier [8], are used to improve the survival model. 

However, none of these methods deals with the biomarker selection in survival analysis.  

In this study we propose a novel method of biomarker selection based on one dimensional continuous 

wavelet transform (CWT).  Normally one dimensional discrete wavelet transform (DWT) is used to 

reduce dimensionality in the analysis of high dimensional biomedical data [12,13]. In biomarker 

detection, the feature space must have the corresponding relationship with original data space to 

locate the detected biomarker based on detected features.  One dimensional CWT detects the feature 

of data at every scale and position, and keeps local property of the original data. Wavelet feature 

vector of CWT has the same length as the original data, and can be used to locate the biomarker in 

original data space. 

First we perform one dimensional continuous wavelet transform at different scales on colorectal 

cancer data to extract the discriminant features. Then we use genetic algorithm (GA) and Bayes 

classifier to select the optimized features from extracted wavelet coefficients. Due to the wavelet well-

known property, which reveals the local features of data (or time feature) and does not lose the 

position information of original data, the corresponding protein markers in the original data space are 

obtained based on the position of optimized wavelet features. Finally Kaplan-Meier (KM) estimator 

and Cox regression model were used to evaluate the performance of selected protein markers. A new 

protein biomarker CD46 was found to have independent prognostic significance.  Recent research 
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suggests that “the immune system might be involved in the development and progression of colorectal 

cancer” [1,14]. The detection of CD46 supports their deduction or conclusions. 

The rest of paper is organized as follows. In section 2, we introduce the colorectal cancer data, and 

our proposed method is in section 3. Wavelet feature extraction for colorectal cancer data is described 

in section 4. In section 5, GA based on Bayes classifier is used to select the optimized features. 

Survival models are used to evaluate the selected biomarkers in section 6. The experiments are 

conducted in section 7, followed by discussion and concluding comments in section 8.  

2. Colorectal cancer data 

We use the same dataset, which Professor Lindy Durrant used in their research. It is described in 

Lindy Durrant’s research [1, 2]. The study population cohort comprised a consecutive series of 462 

archived specimens of primary invasive cases of colorectal cancer (CRC) tissue obtained from 

patients undergoing elective surgical resection of a histologically proven primary CRC at Nottingham 

University Hospitals, Nottingham, UK. The samples were collected between January 1994 and 

December 2000 from the established institutional tumour bank and were identified from the hospital 

archives. No cases were excluded unless the relevant clinicopathological material/data were 

unavailable. The mean follow-up period was 42 months (range 1-116) to ensure a sufficient duration 

of follow-up to allow meaningful assessment of the prognostic value of the markers examined. 

Follow-up was calculated from the date of resection of the primary tumour, and all surviving cases 

were censored for data analysis in December 2003. A tissue microarray of 462 colorectal tumours was 

stained by immunohistochemistry for markers which predict immunosurveillance/editing. There are 

totally 210 features. 

The data has 462 samples with 210 attributions and is 462x210 data matrix. We use a simple way to 

do the pre-processing of our data: First, we remove those 70 features for which most patients have 

missing values. Second, we remove those patients, which miss any of the remaining 140 attributions. 

After that, we obtain a (complete) 153x140 matrix. Eighteen patients died for other causes, not related 

to their colorectal cancer and they were excluded from the analysis. Among the remaining135 

patients, 76 patients were dead with survival time ranging from 0 to 65 months, and 59 patients were 

alive with survival time ranging from 38 to 111 months.  

The aim of the research was to find the significant biomarkers in survival analysis. Two groups of 

patients were identified to perform the analyses. Patients who died with survival time of less than 30 

months and patients who were alive with survival time of more than 70 months. For the first group, 

there were 59 dead patients; for the second group, there were 31 alive patients. Among 140 

attributions, only 115 of them are protein markers, others are the description of patients and medical 

diagnosis, such as age, survival time, TNM (Tumor, Node, Metastasis) stage and Duke stage. For this 

research, only protein markers were of interest in survival analysis. 
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Finally, there were 59x115 and 31x115 data matrix groups. Figure 1 shows two groups of data used 

for biomarker selection. Because the value of protein markers has a different scale, preprocessing by 

normalizing each protein marker and then each sample vector was done. 

 

Fig. 1. Two groups of data used to select the significant protein markers. There are 59 dead patients 

with survival time of less than 30 months, and 31 alive patients with survival time of more than 70 

months.  

 

3.  The proposed method 

Figure 2 shows the selection process of significant biomarkers in survival analysis. First the data was 

transformed into wavelet space at different scales to find the most discriminant features between the 

two groups. Genetic algorithm was used to select the best features from extracted wavelet features and 

then the significant protein markers were detected based on the optimized features in wavelet space. 

Finally Kaplan-Meier curve and Cox regression model were performed to evaluate the performance of 

selected significant biomarkers. 

 

Fig. 2. The selection of significant biomarkers in survival analysis. 

Normally we have feature extraction and feature selection methods for data analysis. Feature 

extraction is that the data is transformed into a new data space using a set of new basis, which reflects 

the hidden properties of data in original data space, such as principal component analysis (PCA), 

linear discriminant analysis (LDA), independent component analysis (ICA), and wavelet transform, 

etc. For PCA, the data is transformed into Eigen space, which holds the main components of data. 

Linear discriminant analysis extracts discriminant information by maximizing between-class 

variations and minimizing within-class variations. Instead of transforming uncorrelated components, 

like PCA and LDA, ICA attempts to achieve statistically independent components in the transform for 
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feature extraction. For wavelet transform, the data is transformed into wavelet space, in which a set of 

wavelet vectors hold the different frequency properties of data. The famous property of wavelet 

analysis is to keep the local properties of data. Feature extraction methods of PCA, LDA, and ICA 

have lost the local features of data. In this research, we need select the best discriminant biomarkers, 

and there is no corresponding relationship between the feature space of PCA, LDA, and ICA and the 

biomarkers of original data. So other feature extraction methods such as PCA, LDA, and ICA are not 

suitable for this research. In our research, one dimensional continuous wavelet transform is used to 

extract the features. We first decompose the data into wavelet space of different frequencies. Then GA 

feature selection is used to select the best discriminant biomarkers based on wavelet features of 

different frequencies. 

In the paper [15,16], discrete wavelet transform is used to extract the features of microarray data and 

protein mass spectrometry data. Microarray data and mass spectrometry data are normally of very 

high dimensionality, and each sample includes more than ten thousand dimensions. Wavelet 

coefficients of DWT are extracted to reduce the dimensionality of data, and remove redundant 

information. In the paper [4], in order to find the significant biomarkers, wavelet detail is 

reconstructed to reflect the information of data in original data space, using wavelet coefficients of 

DWT.  

In this research, CWT is used to extract the features of colorectal cancer data.  Discrete wavelet 

transform is non-redundant representation, which is associated with orthonormal basis. Continuous 

wavelet transform is redundant representation, which uses much more scale and position values than 

the orthonormal basis of DWT. Discrete wavelet transform has the property of dimensionality 

reduction, whereas CWT has no such feature and holds the same dimensionality as the original data. 

One dimensional CWT can be useful to detect the features of colorectal cancer data, instead DWT 

using discrete time-scale representation. From the view of feature extraction, CWT is complementary 

part of DWT, and can capture the missing features of DWT. 

Feature selection methods normally have two main streams: open-loop methods and closed-loop 

methods [ 17 ]. The open-loop methods (filter method) select features based on between-class 

separability criterion, which is not involved in classification performance in the process of feature 

selection. The closed-loop methods, called the wrapper methods [ 18 ], select features using 

classification performance as a criterion of feature subset selection. Feature selection methods such as 

Student’s t-test, Wilcoxon test, rough set [19,20], and mutual information [21,22] are open-loop 

methods. Normally the optimal performance means the minimal classification error. In feature 

selection, it has been noticed that the combinations of individual good features based on different 

statistic rules do not necessarily lead to good classification performance. In other words, “the m best 

features are not the best m features” [23]. Wrapper methods have two categories based on search 

strategy: greedy and randomized/stochastic [24]. Sequential backward selection (SBS) and Sequential 

forward selection (SFS) are the two most commonly used wrapper methods, using a greedy hill-
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climbing search strategy. In SBS, once a feature is removed, it is removed permanently; In SFS, once 

a feature is added, it is never removed. This is based on the assumption that prediction accuracy never 

decreases as the number of features increases. The assumption is not reliable because of search space 

dimensionality and overfitting. Both SBS and SFS can easily be trapped into local minima [24]. 

Stochastic wrapper methods, such as genetic algorithm and simulated annealing (SA), are at the 

forefront of research in feature subset selection. Genetic algorithm is widely used in biomarker 

selection [25,3,4]. In this research, genetic algorithm based on Bayes classifier is employed to select 

the optimized subsets of features in order to achieve the best classification performance.  

 

4. Wavelet feature extraction 

A wavelet is a “small wave”, which has its energy concentrated in time. A wavelet system is 

generated from a single scaling function or wavelet by simple scaling and translation. Wavelets have a 

more accurate local description and separation of signal characteristics, and give a tool for the 

analysis of transient or time-varying signal [26]. Wavelets are widely used for image processing and 

feature extraction of data [27,28]. One dimensional continuous wavelet transform of signal or data s is 

the family of wavelet coefficients ),( baC , which depend on two variables of position a and scale b . It 

is defined as follows: 

∫
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where )(tw is the basic wavelet and Rba ∈,  are real continuous variables, which represent position and 

scale parameters of signal. Wavelet coefficients ),( baC are “resemblance degree” between the data 

and the wavelet at position a and at scale b . If the coefficient value is large, the similarity is strong, 

otherwise it is weak.  

One dimensional continuous wavelet transform is a representation of signal using much more scale 

and position values than an orthonormal family. Discrete wavelet transform has a discrete time-scale 

representation which is associated with an orthogonal basis. For DWT, approximation vectors are 

orthogonal to detail vectors, and detail vectors at different scales are orthogonal to each other.  

Discrete wavelet transform is defined as follows: 
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where variable Z is a set of all integers; j  is scale or level parameter; k is the time or space location. 

In this research, Daubechies wavelet db7 [29] was used for wavelet decomposition of colorectal 

cancer data.   

The colorectal cancer data was decomposed based on one dimensional DWT. Figure 3 shows the 

wavelet detail coefficients and reconstructed detail at three levels for colorectal cancer data. Wavelet 
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detail coefficients were a set of orthogonal basis, which characterize the features of colorectal cancer 

data at different scales. After decomposition, the dimensions of detail coefficients are 64, 38, and 25 

at first three levels. The wavelet 25 detail coefficients at third level were observed to lose too much 

information compared to the original data space. Reconstructed detail at third level based on 25 detail 

coefficients may not accurately reflect the features of original data. One important property of DWT 

is to reduce dimensionality of data. Discrete wavelet analysis is suitable for feature extraction of very 

high dimensional data, such as microarray data, mass spectrometry data. But in this research, 

colorectal cancer data only contain 115 dimensions, and its dimensionality is not very high. Our main 

aim was to find the discriminant features between two groups of samples. Thus CWT was used in this 

research to capture the missing features of DWT. 

Continuous wavelet transform extracts the features at every scale and position of data. Discrete 

wavelet transform at level 1, 2, and 3 equals to continuous wavelet transform at scale 2, 4, and 8 

(
12 ,

22 ,
32 ). The features of DWT at third level reflect one of CWT at scale 8. This is the reason that 

detail coefficients of DWT at third level lose too much information compared to the original data 

space.  

Continuous wavelet transform at scale 1 to 5 was performed to extract the features of colorectal 

cancer data. Figure 4 shows the features of CWT at scale 1, 3, and 5 for colorectal cancer data. 

Normally noise exits at first scales of CWT. When the decomposition scale increases, less noise 

remains in the data. Figure 5 shows the wavelet features of DWT at level 1, 2, and 3 for the two 

groups of patients. Figure 6 shows the wavelet features of CWT at scale 1, 3, and 5 for the two groups 

of patients. For clarity, only the first 12 protein markers are shown. From Figure 5 and Figure 6, we 

notice that the coefficients of CWT at scale 3 show the best discriminant features between the two 

groups of patients. The experimental results in section 7.1 also prove that the coefficients of CWT at 

scale 3 achieve the best classification performance. 

The shape of wavelet changes in scales, and reveals the features of signal at different derivatives. 

Wavelet transform can be used to calculate approximation derivatives [30,31,32]. Wavelet derivatives 

enhance the signal-to-noise ratio at higher order derivative calculation and retain all major properties 

of the conventional methods. Wavelet derivatives are much better than numerical derivatives, 

particularly for signals or data with lower signal-to-noise ratio (SNR). This is because SNR decreases 

exponentially with the increase of the derivative order in numerical derivatives. Wavelet derivative 

SNR does not change too much with the increase of derivative order because wavelet transform is of 

multiscale character, which can capture deterministic features and denoise signals or data 

simultaneously [31]. So the resolution of signals or data can be enhanced progressively when wavelet 

derivatives are used instead of numerical derivatives, and the procedure for derivative is simplified 

accordingly since smoothing technique is not required.  
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Fig. 3. Wavelet detail coefficients and reconstructed detail at three levels for colorectal cancer data. 

This analysis is based on DWT. 

 

Fig. 4. Wavelet coefficients at scale 1, 3, and 5 for colorectal cancer data. This analysis is based on 

CWT. 
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Fig. 5. The wavelet features of DWT at three levels for the two groups of patients. In order to see 

clearly, only first 12 features, and their corresponding protein markers are shown in the figure. The 

red line represents the samples for the patients who died with survival time of less than 30 months. 

The green line represents the samples for the patients who were alive with survival time of more than 

70 months. 
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Fig. 6. The wavelet features of CWT at scale 1, 3, and 5 for the two groups of patients. Coefficients at 

scale 3 show the clear difference between the two groups. The red line represents the samples for the 

patients who died with survival time of less than 30 months. The green line represents the samples for 

the patients who were alive with survival time of more than 70 months. 

 

5. Biomarker selection based on genetic algorithm and Bayes classifier 

After wavelet feature extraction, genetic algorithm is employed to select the best features. Floating 

point encoding or real encoding is used in this study. Student’s t-test is performed on wavelet 

coefficients of CWT at scale 3 to select the initialization chromosome. Uniform crossover and 

Gaussian mutation are performed to create next generations. In the fitness function, Bayes classifier is 

used to evaluate the performance of subset features, using a linear combination of the empirical error 

of the Bayes classifier and the a-posteriori probability.  

Support vector machine and Bayes classifier are widely used in pattern recognition. In this research, 

Bayes classifier is used to create the fitness function. On the one hand, Bayes classifier implements 

quickly and simply, and is suitable for large space search using GA method.  On the other hand, a-

posteriori probability based on Bayes classifier is involved the computation of fitness function. When 

GA is running to select the best features, the whole dataset as training dataset and test dataset is used 

in Bayes classifier, in order to reduce the computation load. 

After running GA feature selection, the best feature subsets are input into Bayes classifier to evaluate 

the performance, using K fold cross validation experiments. Because the famous property of wavelet 
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feature extraction that is to keep the local property of data, biomarkers in original data space have the 

same index as wavelet features in wavelet space. So the corresponding significant protein markers in 

original data space can be located using the same index of the optimized features in wavelet space. 

5.1 Bayes classifier 

A Bayes classifier is a simple probabilistic classifier based on applying Bayes' theorem [33]. 

Given lRx∈ and a set of c classes, cii ,...,2,1; =ω , the Bayes theory indicates that  

)()()()( iii PxpxpxP ωωω =
                            (3) 

where    ∑=
=

c

i
ii Pxpxp

1

)()()( ωω  

where )( iP ω is a priori probability of class iω ; )( xP iω is posteriori probability of class iω given the 

vector of x ; )(xp is probability density function (pdf) of x ; and )( ixp ω is the class conditional pdf of 

x given iω . 

Let l
l Rxxxx ∈= ],...,,[ 21 be the features vector, whose class label is unknown. According to the Bayes 

decision theory, x is assigned to the class iω if 

ijxPxP ji ≠∀> ),()( ωω
 

or, 

ijPxpPxp jjii ≠∀> ),()()()( ωωωω
 

One of the most common probability density functions in practice is the Gaussian or normal density 

function. In this study we assume that the class conditional pdf of x given iω follows the general 

multivariate normal density. 
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where [ ]xi Ε=µ  is the mean value of the iω class and ∑i the ll × covariance matrix is defined as  

[ ]Tiii xx ))(( µµ −−Ε=∑
 

i∑ denotes the determinant of i∑ .  In this research the multivariate normal density of each class is 

fitted with a pooled estimate of covariance.  

5.2 Genetic algorithm 

5.2.1 Encoding 

Genetic algorithm is an evolutionary computing technique that can be used to solve problems with a 

vast solution space [34]. For this optimization problem, it is more natural to represent the coding 

variables directly as real numbers [35,36,37,38]. This means there are no differences between the 

coding variables and real search space. Conventionally, binary strings are used to represent the 

decision variables of the optimization problem in the genetic population, irrespective of the nature of 

the decision variables. A major drawback of binary-coded GAs is that they face difficulties when 

applied to problems having large search space and seeking high precision. To overcome these 
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difficulties related to binary encoding, real encoding or floating point representation of chromosomes 

is used. Genetic algorithms which make use of the real encoding of chromosomes are termed as Real 

Coded GAs.  

The use of the real encoding in the GA representation has a number of advantages over binary coding. 

There is no need to convert the solution variables to the binary type, and less memory is required, so 

the efficiency of the GA is increased. There is no loss in precision, and there is greater freedom to use 

different genetic operators. With floating point representation, the evaluation procedure remains the 

same as that in binary-coded GA, but crossover and mutation operation is done variable by variable.  

5.2.2 Solution space 

Genetic algorithms are used to find the best subset features to separate two classes. The feasible 

solution vector of this problem can be represented as ),...,,( 21 lxxxx= ,  each component or gene of 

which is mutually unequal and is a positive integer. Each gene is an index in the original feature set. 

The solution space is the subset that satisfies above constraint conditions.  

We define a chromosome x as a vector consisting of l  variables as follows. 

{ }jiilji xxjiljidxlixxxxx ≠≠≤≤≤≤≤∀≤= :,,1;1:1),...,,...,,...,( max1          

where maxd is the dimension number of wavelet features, i.e. the dimensionality of the original data.  

Because the gene is integer vector, we covert the encoding variable into one of integer formats when 

fitness function is calculated. 

In the experiments, in order to evaluate the performance of the subset features, the chromosome 

length or the number of subset features l is set from 1 to 20, respectively. The population size is set as 

follows. 

l

d
N max=  

where N is population number.   

Student’s t-test is used to select the best l  features to build the initial population.  

5.2.3 Selection  

The selection function chooses parents for the next generation, using roulette wheel and uniform 

sampling based on the expectation of each parent. A roulette wheel with a slot for each parent is 

created based on the probability of the parents, using their scaled values from the fitness function. The 

algorithm moves along the wheel in steps of equal size. At each step, the algorithm allocates a parent 

from the slot it lands on. This mechanism is fast and accurate. 

5.2.4 Crossover 

Uniform crossover is used in this study. A random binary vector is created. The genes where the 

vector is a 1 are selected from the first parent. The genes where the vector is a 0 are selected from the 

second parent. The genes from two parents are combined to form the child. The individuals with the 

best fitness values in the current generation are guaranteed to survive to the next generation. These 
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individuals are called elite children. The default value of elite count is 2. The fraction of individuals in 

the next generation that are created by crossover, are called crossover fraction.  The default value of 

crossover fraction is set to 0.8.   

The numbers of crossover and mutation children and are calculated as follows. 

)( ecc NNRN −=  

cem NNNN −−=  

where N , cN , mN , eN , and cR are the numbers of population size, crossover children, mutation 

children, elite children, and crossover fraction. 

5.2.5 Mutation  

Mutation provides genetic diversity and enables the genetic algorithm to search a wider space. 

Gaussian mutation is used in this study, which adds a random number created by a Gaussian 

distribution with mean 0 to each gene of the parent vector. The standard deviation of this distribution 

is determined by the parameters of scale cP  and shrink sP . Scale parameter cP controls the gene's 

search range. Shrink parameter sP  controls how fast the scale cP is reduced as generations go by. The 

mutation child can be calculated as follows. 

),0( kkk Gxx σ+=′                                 (5) 

)1(1
G

skk
N

k
P−= −σσ , GNk ,...,2=  

)(1
lu

c xxP −⋅=σ  

where kx′ is the muted vector of kx . Variable kσ  is the standard deviation of Gaussian distribution at 

k generation. GN and k are maximum generation and the current generation number.  ux and lx are 

upper and lower bounds of search space of x . The default values of both parameters of scale cP  and 

shrink sP  are 1. 

5.2.6 Fitness function 

We perform a Bayes classifier to design the fitness function to evaluate how well the data gets 

classified. A linear combination of the empirical error of the Bayes classifier or the misclassification 

error rate and the a-posteriori probability is employed to estimate the quality of the feature subset 

under examination.  

The fitness function is defined as follows. 

pc eexf +=)(                            (6) 

where ce  is the empirical classification error rate based on Bayes classifier, using the whole dataset as  

test samples and training samples, in order to save the computation time. 

Variable pe  is the defined as follows. 
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where samn represents the number of training sample vectors and )( ij xP ω is the posteriori probability 

of vector ix belonging to class jω . Assume that two subsets of 1s  and 2s obtain the same empirical 

classification error rate, and the different posteriori probability of  1p  and 2p . When the condition 

1p  > 2p  exits, subset 1s  is getting lower fitness value than subset 2s . It is clear that subset 1s is better 

individual than subset 2s . 

6. Survival analysis 

6.1  Kaplan–Meier estimator 

Kaplan–Meier (KM) analysis is a non-parametric technique for estimating time-related events, 

especially when not all subjects continue in the study [39]. It analyses the distribution of patient 

survival times following the enrolment into a study, including the proportion of alive patients up to a 

given time following enrolment, i.e. “censored data”. “Censored data” means that the survival time 

for the subjects cannot be accurately determined as these patients are still alive at the time of data 

collection. In KM curve, a plot of the proportion of patients surviving against time has a characteristic 

decline (often exponential). The steepness of the curve indicates the efficacy of the treatment. The 

more shallow the survival curve, the more effective the treatment [40]. Log-rank test is normally used 

to test the statistical significance of differences between the survival curves of two different groups. 

The KM estimator is nonparametric estimator of survivor function )(tS . 

C
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
−= 1)(ˆ                (8) 

where it is the duration of study at time point i , id is the number of deaths up to point i  and in is 

number of individuals at risk just prior to it . S is the product of these conditional probabilities ip .  

6.2 Cox regression model 

Cox regression model is the most widely used method of survival analysis, which is not based on any 

assumptions concerning the nature or shape of the survival distribution [41]. Survival modelling 

examines the relationship between survival and one or more predictors, called covariates in survival 

analysis. The examination commonly has the specification of a linear-like model for the log hazard.  

The Cox regression model is given by  

)()...exp( 02211 thxxxh niniii βββ +++=                         (9) 

where )(0 th is called baseline hazard function, iβ are coefficients to be solved, and 

ninii xxx βββ +++ ...2211  is the risk score or linear predictor. niii xxx ,...,, 21  are the values of predictor 

variables at time t for the thi  observation. 

The hazard ratio between different observations is constant and independent of time, 
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where ),...,,( 21 nββββ = is the coefficient vector and β ′ is the transpose of β . Consequently the Cox 

regression model is a proportional-hazards model. 

7. Experiments and results 

In this section, several experiments are conducted. In section 7.1, we compare extracted features using 

CWT with ones using DWT. The experimental results show that our proposed CWT method has the 

ability to catch the information that DWT is missing. In section 7.2, the performance of CWT features 

is compared with one of original data, because other feature extraction methods, such as PCA, LDA, 

etc., are not applicable in biomarker detection.  In section 7.3, several subsets of biomarkers are 

selected by performing GA feature selection on CWT features at scale 3. In section 7.4, survival 

models of KM curve and Cox regression are used to evaluate the performance of selected biomarkers, 

and how the censored data affect the survival models is analysed. 

 

 7.1 The comparison of CWT features and DWT features 

 

 

Fig. 7. The process of testing the performance of CWT features and DWT features. 

In this experiment, the performance of the features of CWT and DWT were compared for the two 

groups of patients. They were 31 alive patients and 59 patients dead from colorectal cancer. After 

wavelet features of CWT and DWT were extracted, the significant features to distinguish the two 

groups of patients were selected based on Student’s t-test [42]. The feature number was set from 1 to 

20 respectively to obtain the best performance. The selected best features were input to SVM [43] 

classifier to evaluate the performance of classification based on 10 fold cross validation experiments 

running 50 times. The experimental process is shown in Figure 7. 

Table 1 shows the performance of wavelet features based on CWT and DWT. For wavelet features of 

DWT, the best performance of 73.2% was obtained at second level based on 6 features. The 10 

features of CWT at scale 3 achieved the best performance of 78.5%, and were better than the features 

of DWT at second level. This is because CWT was able to detect the features of colorectal cancer data 

at every scale and position, and does not lose information of the discriminant features between the two 

groups. This is especially important for the data, which was not of very high dimensionality. 

Table 1.The results of wavelet features of CWT and DWT 

CWT (10 features) DWT (6 features) 
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scale Accuracy 

(10 fold) 

Level Accuracy 

(10 fold) 

1 0.681 1 (CWT=2) 0.675 

2 0.686 2 (CWT=4) 0.732 

3 0.785 3 (CWT=8) 0.667 

4 0.725 4 (CWT=16) 0.581 

5 0.677 5 (CWY=32) 0.651 

 

7.2 The comparison of CWT features and the original data 

Student’s t-test and Wilcoxon test [44] were used to compare the performance of CWT wavelet 

features with one of the original data. The feature number was set from 1 to 20 respectively to 

evaluate the performance of wavelet features and the original data. For Student’s t-test, the best 

performance of 73.3% and 71.9% were obtained for 10 fold and 5 fold cross validation experiments 

running 50 times, when 6 features were selected from the original data. 11 wavelet features of CWT at 

scale 3, achieved 78.4% and 77.3% performance for 10 fold and 5 fold cross validation experiments 

respectively. Experimental results show that the performance of Student’s t-test is better than one of 

Wilcoxon test. Table 2 shows the performance of the selected features based on Student’s t-test and 

Wilcoxon test for CWT features and the original data. 

From the above experiments, it is clear that CWT features obtain better performance than the original 

data. Because in wavelet space, the discriminant features between the two groups of patients are more 

significant than one in the original data space. Wavelet features reveal the properties which can not be 

detected in the original data space. Discrete wavelet transform extracts features and reduces the 

dimensionality of data. DWT extracts features at discrete position-scales ( 12 , 22 , 32 , 42 , 52 ,…), not at 

every scale and position like CWT. The coefficients of CWT do not reduce dimensionality, but detect 

the features at every scale and act as complementary part of DWT. So CWT features achieve better 

performance than the original data or DWT features.  

Table 2. The performance of CWT features and the original data based on Student’s t-test and 

Wilcoxon test. 

 

method 

   t-test Wilcoxon test 

FN AC (10fold) AC 

(5fold) 

FN AC 

(10fold) 

AC 

(5fold) 

Original data 6 0.733 0.719 6 0.714 0.702 

CWT features 11  0.784 0.773 5 0.738 0.738 

FN represents feature number; AC represents accuracy. 

7.3 The performance of the optimized GA features and the protein markers 

From above experiments, it is clear that the CWT coefficients at scale 3 achieve the best 78.5% 

performance. In order to select the significant biomarkers, the optimized features are selected from 
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wavelet coefficients of CWT at scale 3 based on genetic algorithm. Because CWT does not reduce 

dimensionality of data, and extracted features have the same dimensions as the original data, selected 

protein biomarkers can be located using the same index as the optimized CWT features. The 

performance of selected GA features and their corresponding protein markers are shown in Table 3. 

After removing the markers which have the same meaning, 18 protein markers are obtained to 

evaluate the performance based on Kaplan-Meier curve and Cox regression model. 

Table 3. The performance of GA features and the corresponding protein markers. 

FN  Features (GA) Accuracy 

(5 fold) 

5  'nuclear stat1', 'ulbp2 and 3', 'CD46', 'MHC2', 'caspase 3' 0.779 

6 'nuclear stat1', 'mica', ' raetig and ulbp1', 'CD46', 'caspase 3', 'MHC2' 0.786 

6 'vegfc', ''caspase 3', ' raetie and ulbp1', 'CD46', 'ulbp2 and 3', 'MHC2' 0.786 

5 'CD46', 'ulbp1', 'nuclear stat1', 'RAETIG and RAETIE', 'mica and ulbp1' 0.761 

5 'CD46', 'ulbp1', 'nuclear stat1', 'caspase 3', 'mica and ulbp2' 0.776 

6 'b2m', 'CD46', 'MHC2', 'nuclear stat1', 'caspase 3', 'caspase3and p53' 0.771 

5 'CD46', 'MHC2', 'trail', 'caspase 3', 'mica and ulbp3' 0.778 

5 'CD46', 'MHC2', 'trailR2', 'caspase 3', 'raetie and ulbp1' 0.767 

6 'CD46', 'chk1', 'raetie and mica', 'nuclear stat1', 'caspase 3', 'raetie and ulbp1' 0.779 

6 'CD46', 'msi', 'ulbp1', 'nuclear stat1', 'caspase 3', 'tumour IL17' 0.768 

6 'CD46', 'chk1', 'nuclear stat1', 'caspase 3'', 'p53 and trailR2', 'raetie and ulbp1' 0.779 

7 'nuclear stat1', 'CD46', 'CD68', 'ki67', 'FLIP', 'caspase 3', 'ulbp1' 0.766 

 

7.4 Survival analysis based on censored data  

7.4.1 Using censored data 

KM curve and Cox regression model were used to evaluate the performance of 18 selected protein 

markers. After removing the missing values of 18 protein markers, 246 patient samples were obtained.  

Among them, 100 patients died from colorectal cancer, and the other 146 patients were dead from 

post operative complications, or from non cancer related events, or are still alive. Figure 8(a) shows 

the histogram of patients dead from colorectal cancer. Figure 8(b) shows the other 146 patients. The 

patients in Figure 8(b) were separated into alive patients as shown in Figure 8(c), or the patients who 

died from unrelated causes as shown in Figure 8(d). 56 patient samples were removed including 

samples from the patients who died from post operative complications, or who died of other causes. 

There are 90 alive patients left in Figure 8(c), comprising 47% of the whole data. From Figure 8(a) 

and 8(c), it was observed that the patients whose survival time was between 40 and 70 months 

exceeded the number of dead patients from colorectal cancer during this period by a large margin. 

Some patients may die later, and we assumed that this number at it is ix∆ . From formula (8), survival 

function S is the product of the probabilities ip  at it  .  
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where 
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When ix∆ is getting larger, the bias ib of probabilities at it is getting higher. We only keep the patient 

samples surviving longer than 70 months and the censored data reduces to 32%, because most patients 

will survive after 70 months based on the distribution of dead patients in Figure 8(a). 

Figure 9 shows KM curves of protein marker CD46 based on the different proportion of censored 

data. When the 32% censored data of alive patients with survival time of more than 70 months was 

used, CD46 was found to significant for survival (Figure 9(a)). This was consistent with the results of 

our proposed method of biomarker selection. When the 47% censored data of alive patients with 

survival time of more than 40 months were input into KM estimator, the results show that CD46 was 

not significant for survival (Figure 9(b)). This is because the number of censored data exceeds the 

number of complete data (dead patients) during survival time between 40 and 70 months by a larger 

margin, and this causes bias ib . 

 

Fig. 8. The distribution of patients. (a) patients dead from colorectal cancer (b) other patients 

including patients dead from operation and other reasons, or patients are still alive. (c) alive patients. 

(d) patients dead from unrelated causes.  
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Fig. 9. Kaplan-Meier curves for disease-specific survival of CD46. (a) using the 32% censored data of 

alive patients with survival time of more than 70 months. (b) using the 47% censored data of alive 

patients with survival time of more than 40 months. 

 

7.4.2 Survival analysis using Kaplan-Meier curve and multivariate Cox regression model 

Kaplan-Meier curve with log-rank test was performed to evaluate the performance of each protein 

marker.  The results are shown in Table 4. The protein markers CD46, chk1, p53 and trailR2, FLIP-L, 

nuclear stat1, and raet-IG and raet-IE show a significant difference in survival time. Some markers 

such as nuclear stat1, FLIP-L, p53, and mhc, have been found as prognostic biomarkers in colorectal 

cancer [1,2,45]. In [46], it is suggested that inhibition of chk1 kills tetraploid tumor cells through a 

p53-dependent pathway. Protein marker low expression of CD46 showed a mean survival time of 

55.3 months (95% CI 47.2 to 63.4) which was significantly different to the mean survival time of 38.3 

months (95% CI 29.5 to 47.1) for patients whose tumors express with high levels of CD46.  

In order to evaluate the relative influence of CD46 expression with other biomarkers and with TNM 

stage, a multivariate analysis was performed using Cox regression model. The results were shown in 

Table 5. Protein marker CD46 shows independent prognostic significance with a hazard ratio of 1.787 

(95% CI 1.126 to 2.836) for CD46 expression.  

Based on recent research of Professor Lindy Durrant’s group, it is suggested that the immune system 

might be involved in the development and progression of colorectal cancer [1, 14]. Professor Lindy 

Durrant explains that her team were “interested to see if the immune system, and in particular T cells 

and the IFN (interferon) γ pathway, was operational and influenced survival”. Within next 2–3 years, 

the investigators are “planning to trial a new vaccine for colorectal cancer in patients with an intact 

immune system (60% of patients with colorectal cancer)”. The detection of CD46 supports their 

conclusions based on recent research that CD46 is involving in the immune response [47, 48, 49, 50, 

51, 52]. 

In [47], the paper focuses on current understanding of CD46 signaling in T-cell polarity and how this 

might influence disease outcome. It is indicated that the study of CD46 signaling in T cells has 

emerged as an exciting area of research that is shedding new light on how pathogens might 

manipulate the host immune response. A number of studies have shown that many tumors express 
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higher levels of CD46. The expression of CD46 in primary cervical tissue shows a progressive 

increase from normal to malignant cells. An increased level of CD46 expression compared to normal 

tissue is also found in breast, endometrial, lung and hepatoma primary tumors [48]. As CD46 

expression is up-regulated on numerous human cancers, viruses that bind CD46, such as measles virus 

and adenovirus, have been intensively investigated for their oncolytic potential in cancer therapy [47]. 

In [ 49 ], the human cell-surface molecule, CD46, has evolved from ‘just another complement 

regulator’ to a receptor for a striking array of pathogens. CD46 not only protects cells from 

complement-mediated attack and facilitates infection by a large number of pathogens, but also exerts 

complex effects on cellular immune function. In [50], the paper discusses the current knowledge 

about CD46 and its expanding roles in the immune system. In the last 10 years, CD46 is involved in a 

new and somewhat surprising functional aspect of the complement system: the down-modulation of 

adaptive T helper type 1 (Th1) immune responses by regulating the production of interferon (IFN)-γ 

versus interleukin (IL)-10 within these cells. In [51], the authors summarize the latest updates on the 

regulation of CD46 expression and on its effects on T-cell activation. It is indicated that the last 

decade has revealed the role of CD46 in regulating the adaptive immune response, acting as an 

additional costimulatory molecule for human T cells and inducing their differentiation into Tr1 cells, a 

subset of regulatory T cells. In [52], the authors indicate that binding to CD46 can directly alter 

immune function and ligation of CD46 by antibodies or by measles virus can prevent activation of T 

cells by altering T-cell polarity and consequently preventing the formation of an immunological 

synapse. A mechanism by which CD46 reorients T-cell polarity to prevent T-cell receptor signaling in 

response to antigen presentation is defined. 

 

Table 4. The performance of Kaplan-Meier curves for selected markers 

Variable Category Num Mean survival 

month 

95% CI (months) P value 

lower upper 

'CD46' 1  88  55.3  47.2  63.4  

2  58  38.3  29.5  47.1 0.022  

'MICA  ' 1  69  41.0  32.4  49.5  

2  77  55.5  46.9  64.0 0.083  

'chk1' 1 106  43.8  37.0  50.6  

2  40  61.9  49.6  74.2 0.028  

'b2m' 1  26  44.1  28.9  59.3  

2 120  49.8  43.1  56.4 0.702  

'mhc' 1,2  43  39.8  28.7  50.9  

3 103  52.6  45.3  59.8 0.142  

'p53and trailr2' 0,1,2  76  38.6  31.2  45.9  

3  70  59.8  50.4  69.2 0.003  
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'MLH1MSH2' 0,1,2  48  38.7  28.7  48.6  

3  98  53.8  46.3  61.3 0.066  

'FLIP-L' 1 139  50.7  44.4  57.0  

2   7  14.4   2.6  26.3 0.027  

Nuclear Stat1  0 124  45.5  39.0  52.0  

1,2,3  22  67.8  53.3  82.2 0.046  

'MHC-II in stromal cells' 0  82  45.9  37.8  54.1  

1,2,3  64  52.2  43.1  61.3 0.370  

'raetie and mica’ 0,1  43  42.5  31.4  53.7  

2,3 103  51.2  44.0  58.5 0.328  

'RAET-IG 

and RAET-IE' 

0,1 113  44.7  37.9  51.6  

2,3  33  62.9  50.6  75.2 0.038  

'ulbp2 and ulbp3' 0  47  46.2  34.9  57.5  

1,2  99  49.8  42.6  57.0 0.766  

'mica and ulbp2' 0,1  82  49.4  40.8  58.0  

2  64  45.3  37.0  53.7 0.795  

'RAET-IG and ulbp3' 0  78  43.2  34.8  51.5  

1,2  68  55.2  46.5  64.0 0.090  

'caspase 3' 0  81  50.2  42.0  58.3  

1  65  47.1  38.0  56.3 0.728  

'vegfc' 0 103  48.3  41.0  55.6  

1  43  50.2  39.2  61.2 0.718  

'IL17 in tumours ' 0  94  50.9  42.9  58.9  

1,2,3  52  45.2  36.2  54.3 0.568  

The biomarkers in red colour are found to be significant for survival based on p value (<0.05). 

 

Table 5. The performance of Multivariate Cox regression model 

Variable Category Hazard 

ratio 

P value 95.0%CI for HR 

TNM I and II 2.912 

 

0.000 

 

2.175 

 

3.900 

 III and IV 

'CD46' 1 1.787 

 

0.014 

 

1.126 

 

2.836 

 2 

'MICA ' 1 0.761 

 

0.224 

 

0.490 

 

1.182 

 2 

'chk1' 1 0.811 

 

0.452 

 

0.470 

 

1.399 

 2 

'b2m' 1 0.988 

 

0.980 

 

0.406 

 

2.404 

 2 

'mhc' 1,2 0.846 

 

0.395 

 

0.576 

 

1.243 

 3 

'p53and trailr2' 0,1,2 0.869 

 

0.231 

 

0.690 

 

1.094 

 3 

'MLH1MSH2' 0,1,2 0.875 0.205 0.712 1.076 
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3     

'FLIP-L  1 2.348 

 

0.060 

 

0.965 

 

5.712 

 2 

'Nuclear Stat1' 0 0.713 

 

0.021 

 

0.534 

 

0.951 

 1,2,3 

'MHC-II in stromal 

cells' 

0 1.012 

 

0.916 

 

0.815 

 

1.255 

 1,2,3 

'raetie and mica’ 

 

0,1 1.032 

 

0.855 

 

0.735 

 

1.449 

 2,3 

'RAET-IG 

and RAET-IE'  

0,1 0.946 

 

0.832 

 

0.564 

 

1.586 

 2,3 

'ulbp2 and ulbp3' 0 1.243 

 

0.515 

 

0.646 

 

2.392 

 1,2 

'mica and ulbp2' 0,1 0.835 

 

0.546 

 

0.464 

 

1.501 

 2 

'RAET-IG and ulbp3' 0 0.852 

 

0.694 

 

0.385 

 

1.889 

 1,2 

'caspase 3' 0 1.285 

 

0.351 

 

0.759 

 

2.174 

 1 

'vegfc' 0 1.091 

 

0.564 

 

0.812 

 

1.465 

 1 

'IL17 in tumour cells' 0 1.145 0.525 0.754 1.737 

1,2,3 

This table shows the performance of Cox regression model for TNM stage and selected protein 

markers. The protein markers in red colour are independent prognostic biomarkers based on p value 

(<0.05). 

8.  Discussion and Conclusions 

In this study we propose a novel method of biomarker detection in survival analysis. Two groups of 

patients were used to select the biomarkers of colorectal cancer data. One was the patients with 

survival time of less than 30 months, and another was the patients with survival time of more than 70 

months. First continuous wavelet analysis was used to extract the discriminant features between the 

two groups of patients. The best discriminant features were obtained based on CWT at scale 3. 

Genetic algorithm was performed on extracted wavelet coefficients to select the optimized features, 

using Bayes classifier in its fitness function. The best performance of 78.6% was obtained based on 6 

optimized wavelet features, using 5 fold cross validation experiments. After genetic algorithm was 

runing several times to select the best features, several groups of biomarkers were detected. Some of 

the data referred to the same biomarker was removed, and 18 unique biomarkers were selected. 

Kaplan-Meier curve and Cox regression models were used to evaluate the performance of selected 

biomarkers. Protein markers CD46, chk1, p53, FLIP-L, nuclear stat1, RAET-IG and RAET-IE were 

found to be significant for survival using KM estimator with log-rank test. Cox regression model 

showed that CD46 and nuclear stat1 were independent prognostic biomarkers.  

The proportion of censored data affects the selection of biomarkers in survival analysis. Protein 

marker CD46 was found to take an important role in survival analysis for colorectal cancer patients, 

using machine learning methods of wavelet analysis and genetic algorithm. KM curve shows that 
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CD46 was not significant for survival using 47% censored data with survival time above 40 months, 

but was significant using 32% censored data for survival with survival time of more than 70 months. 

In this study the number of censored data with survival time ranging from 40 to 70 months was much 

more than one of uncensored data (dead patients). This causes a bias affecting KM curve and thus 

some significant biomarkers were not detected. Machine learning methods reveal the hidden 

information of colorectal cancer data, which cannot be detected by traditional survival analysis 

methods, in particular using KM curve and Cox regression model with a large proportion of censored 

data.  

One of the primary innate mechanisms to prevent tumor growth is activation of the complement 

cascade. Activation of complement occurs via a cascade of enzyme activity, initiated by either the 

antibody-dependant classical pathway, or the antibody-independent alternative and lectin pathways 

[53]. These lead to a common activation of the C3 component of complement, and in turn to the 

formation and membrane insertion of a terminal C5b-9 membrane attack complex (MAC), causing 

direct lysis of the target cell. To protect themselves from bystander attack by complement cells 

express membrane-bound complement regulatory proteins (mCRP) which act predominately at either 

the C3/C5 convertase level as with membrane cofactor protein (MCP; CD46) and decay accelerating 

factor (DAF; CD55), or act further downstream to inhibit assembly of the MAC as with protectin 

(CD59). Expression of one or more mCRP (frequently at a greater level than the corresponding 

normal tissue) has been demonstrated for most solid tumor types [54] and confers resistance to tumor 

elimination by complement dependent mechanisms.  

The mCRP CD46 has been identified on all human cells exposed to complement except erythrocytes 

[55]. Unlike CD55 and CD59 which are GPI-anchored, the CD46 molecule inserts into the cell 

membrane via a transmembrane domain [56], acting as a cofactor for the factor-I-mediated cleavage 

of C3b and C4b into inactive forms and clearing these molecules from the surface of host cells. 

Previous attempts to characterise CD46 expression in both normal and neoplastic tissues and in tumor 

cell lines have been limited to the analysis of small numbers of cases. In the case of colorectal tissues, 

expression of CD46 by normal colonic epithelium and colonic adenomas has been shown to display a 

predominately basal and baso-lateral membrane staining, with circumferential membrane CD46 

expression seen in colonic adenocarcinomas [57]. Both Koretz et al. [57] and Thorsteinsson et al. [58] 

described consistent membrane expression of CD46 in analyses of 71 and 18 colonic 

adenocarcinomas respectively, with both sets of authors noting a higher antigen density in the 

neoplastic compared with non-neoplastic epithelium leading to the conclusion that CD46 is generally 

upregulated during malignant colorectal tumour progression. Similar findings of ubiquitous CD46 

expression have been reported for tumors of the breast [59] and stomach [60]. 

Experimental results show that our proposed method, which combines machine learning methods of 

wavelet analysis, genetic algorithm, and Bayes classifier with survival analysis methods of KM curve 

and Cox regression model, provides an efficient way to select potentially significant prognosis 
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markers. A new protein marker CD46 was found significant in survival based on our proposed 

method. 
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