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Abstract

In this paper a novel tracking approach based on fuzzy concepts is introduced. A methodology for both single and multiple object
tracking is presented. The aim of this methodology is to use these concepts as a tool to, while maintaining the needed accuracy,
reduce the complexity usually involved in object tracking problems. Several dynamic fuzzy sets are constructed according to both
kinematic and non kinematic properties that distinguish the object to be tracked. Meanwhile kinematic related fuzzy sets model
the object’s motion pattern, the non kinematic fuzzy sets model the object’s appearance. The tracking task is performed through
the fusion of these fuzzy models by means of an inference engine. This way, object detection and matching steps are performed
exclusively using inference rules on fuzzy sets. In the multiple object methodology, each object is associated with a confidence
degree and a hierarchical implementation is performed based on that confidence degree.
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1. Introduction

Object tracking plays an important role in computer vision.
During the last years, extensive research has been conducted
in this field and many types and applications of object tracking
systems have been proposed in the literature such as automated
surveillance, vehicle navigation, human computer interaction
and traffic analysis [1, 2, 3, 4, 5, 6, 7]. Tracking is essential
to many applications and robust tracking algorithms are still a
huge challenge. Difficulties can arise due to noise presence in
images, quick changes in lighting conditions, abrupt or com-
plex object motion, changing appearance patterns of the object
and the scene, non-rigid object structures, object-to-object and
object-to-scene occlusions, camera motion and real time pro-
cessing requirements. Typically, assumptions are made to con-
strain the tracking problem in the context of particular applica-
tions. For instance, almost all tracking algorithms assume that
the object motion is smooth or impose constrains on the object
motion to be constant in velocity or acceleration. Multiple view
image tracking or prior knowledge about objects, such as size,
number or shape, can also be used to simplify the process. In
this work, the word ”object” refers to the template image pat-
tern being tracked (e.g. person’s hair, briefcase, etc.).

Normally, tracking is seen as a main task involving several
subtasks such as image segmentation for object detection, ob-
ject matching and object position estimation. A myriad of algo-
rithms has been developed to implement this subtasks but each
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one have their strengths and weaknesses and, over the last years,
extensive research has been made in this field to find optimal
tracking systems for specific applications. Many approaches of
tracking techniques have been proposed in the literature, how-
ever, they are not completely accurate for all kind of scenarios
and just provide good results when a certain number of assump-
tions are verified. Moreover, tracking methodologies that are
not designed for particular applications, where specific and well
established assumptions or constrains can easily be imposed,
tend to be very complex. These reasons are the motivation to
study and implement new tracking approaches where the intro-
duction of soft computing techniques, such as fuzzy logic, is
intended for:

• Reducing the tracking task complexity by endowing the
methodology with the capability of incorporating reason-
ing in the same sense that human reasoning simplifies real
tracking problems (e.g. most tracking problems are not
complex for humans, they are indeed trivial in most situa-
tions).

• Endowing the methodology with the needed scalability in
order to cope with the specific needs of different tracking
problems by easily adding, changing or adapting the used
fuzzy sets while maintaining its general framework.

The presented methodology intents to be an ease and feasible
general framework for object tracking that can easily be adapted
to specific applications or problems.

The remainder of this paper is organized as follows. In Sec-
tion 2 the definition and a review of object tracking is presented.
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A general description of fuzzy set theory is presented in Sec-
tion 3. The proposed approach is presented in Section 4. A
possible implementation of the proposed approach is given at
Section 5. Section 6 shows the experimental results to illustrate
the effectiveness of the proposed approach and a comparative
study with well known tracking approaches is performed. Fi-
nally Section 7 presents the final conclusions and future direc-
tions.

2. Object Tracking

Object tracking can be described as the problem of estimat-
ing the trajectory of an object as it moves around a scene.
Although this general concept is almost consensual, the spe-
cific definition of tracking can change in the literature. Nev-
ertheless, tracking systems must address two basic processes:
figure-ground segmentation and temporal correspondences [8].
Figure-ground segmentation is the process of extracting the ob-
jects of interest from the video frame. Segmentation methods
are applied as the first step in many tracking systems and there-
fore they are a crucial task. Object detection can be based on
motion [9, 10], appearance [11, 12, 13], etc. Temporal corre-
spondence concerns to the association of the detected objects
in the current frame with those in the previous frames defining
temporal trajectories [14, 15].

In [16], tracking is described as a motion problem and a
matching problem. In this work, the motion problem is related
with the prediction of the object location in the next frame. The
second step is similar to the explained above. However, [1]
and [17] present a wider description of tracking with three
steps: detection of interesting objects, tracking such objects and
analysis of object tracks to recognize their behavior. In [18] this
behavior analysis is seen as a further interpretation of tracking
results.

The selection of the most suitable feature to track is a critical
role in tracking systems. The uniqueness of such feature pro-
vides an easy way to distinguish the object in the scene along
time. Properties as intensity, color, gradient, texture or motion
are commonly used to perform object tracking.

According to its properties, object tracking could be cate-
gorized in three groups: point, kernel and motion based ap-
proaches.

2.1. Point based tracking
Point based tracking approaches are suitable for tracking ob-

jects that occupy small regions in an image or they can be rep-
resented by several distinctive points. These points must be
representative of the object and invariant to changes in illumi-
nation, object orientation and camera viewpoint. Points denot-
ing significant gradient in intensity are preferred and commonly
used by different detectors such as Harris [19], KLT [20] and
SIFT [21]. To deal with the point correspondence problem be-
tween frames, deterministic constraints such as proximity, max-
imum velocity and small velocity change could be used. An al-
ternative is to use statistical methods such as Kalman or particle
filters. KLT and SIFT approaches provide internal methodolo-
gies to address the correspondence problem. Scale-invariant

feature transform (or SIFT) is a well-known algorithm for ob-
ject recognition and tracking. Interesting points are extracted
from the object to provide a set of descriptors. These descrip-
tors must be detected on the new image even among clutter, par-
tial occlusion and uniform object scaling and rotation. In order
to reduce computational time consumption, a research region in
the next frame is defined according the last known location or
based in a motion model of the object. However this method
would typically not work with deformable or articulated ob-
jects since the relative positions between the descriptors differ
from the original representation. To overcome this limitation
an update scheme could be used and the object descriptors are
recomputed after a predefined elapsed time.

2.2. Kernel based tracking

In this approach it is required a template or an appearance
model of the object. Template tracking consists of searching
in the current image for a region similar to the object tem-
plate. The position and, consequently, the object matching
between two consecutive frames is achieved by computing a
similarity measure such as the cross-correlation. The cross-
correlation concept is presented in [13]. Instead of templates,
other object representations can be used for matching, for in-
stance, color, color statistics, texture or histogram based infor-
mation. The mean shift tracking algorithm is an efficient ap-
proach to tracking objects whose appearance can be described
using histograms [22]. This iterative method maximizes the ap-
pearance similarity by comparing the histograms of the object
and the region around the predicted object location. The Bhat-
tacharya and Kullback-Leibler distances are commonly em-
ployed to measure the similarity between the template and the
current target region. It fails in the case of occlusions and quick
appearance changes.

2.3. Motion based tracking

This group of approaches perform tracking based on dis-
placement or optical flow of image pixels. The optical flow of a
pixel is a motion vector represented by the translation between
a pixel in one frame and its corresponding pixel in the follow-
ing frame. This computation has been proved to be difficult
to achieve due to issues such as the brightness constancy as-
sumption and the aperture problem. The classic tracking algo-
rithm Kanade-Lucas-Tomasi (KLT) was firstly proposed by Lu-
cas and Kanade in 1981, being perfected by Tomasi and Kanade
in 1991 and explained in detail by Shi and Tomasi in 1994 [20].
The method proposed by Lucas and Kanade computes the opti-
cal flow for each pixel of an image, while the method proposed
by Tomasi and Kanade known as KLT, extracts optimal points
in the image and then computes the optical flow on the subse-
quent images to only this subset of points. The KLT is a com-
plete method that provides a solution for two problems in com-
puter vision: the problem of optimal selection of suitable points
in an image and the problem of determining the correspondence
between points in consecutive frames. It has little tolerance in
image brightness variation and difficulty in detecting rapid ob-
ject movements. Tracking moving objects can also be achieved
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by constructing a reference representation of the environment
called background model and then finding deviations between
this model and each incoming frame. A significant change be-
tween the background model and an image region denotes a
moving object. This process is referred as background sub-
traction and represents a popular method especially under those
situations with a relatively static background. An alternative
approach to detect changes and, consequently the movement,
between two consecutive intensity image frames I(x, y, t) and
I(x, y, t − 1) taken at times t and t − 1, respectively, is to per-
form a pixelwise difference operation. Frame differencing is
very adaptive to dynamic environments, but generally does a
poor job of extracting all the relevant pixels, i. e., there may be
holes left inside slowly moving objects.

Since the arise of fuzzy logic theory, it has been success-
fully applied in a large range of areas such as process con-
trol systems, automotive navigation systems, information re-
trieval systems and image processing. As presented before-
hand, a tracking system can be seen as a multi-stage process
that comprise figure-ground segmentation and temporal corre-
spondences. Hence, fuzzy logic can be used in these two differ-
ent stages. [23] assigned a membership degree to the pixel us-
ing the relationship between its grey value and mean grey value
of the region to which it belongs. For each grey level a fuzzy
set is constructed and the optimal threshold value is the level
of grey associated with the fuzzy set with lowest entropy. [24]
proposed a segmentation approach using an extension of fuzzy
sets theory, so called the Atanassov’s Intuitionistic Fuzzy Sets,
for representing the uncertainty of the expert in determining if
a pixel belongs to the background or to the object. The optimal
threshold value is associated with the intuitionistic fuzzy set of
lowest entropy. In [25, 26] an automatic histogram threshold
approach based on a fuzziness measures is presented. In [27]
an active sonar system to track submarines using a Kalman fil-
ter and a posterior fuzzy rule logic association is presented. A
fuzzy approach to assign one or several blobs to a track for au-
tomatic surveillance in airport areas is described in [28]. The
previous work presented in [29, 30, 31], a multi feature tracking
approach using dynamic fuzzy sets were introduced, however,
no hierarchial scheme was implemented.

3. Fuzzy Sets Theory

In 1965, fuzzy sets were introduced by Zadeh [32] to repre-
sent or manipulate data and information containing nonstatisti-
cal uncertainties. This theory was specifically created to math-
ematically represent uncertainty and vagueness and to provide
tools for dealing with the imprecision intrinsic to many prob-
lems.

A classical (crisp) set is defined as a collection of elements
x ∈ X where each single element can either belong to or not be-
long to a set A, A ⊆ X. However, fuzzy sets have more flexible
membership requirements allowing the elements to have partial
memberships between 0 and 1 rather than the unique member-
ships 0 and 1 like in classical sets.

Let X = {x1, ..., xn} be an ordinary finite non-empty set. A
fuzzy set Ã in X is as set of ordered pairs Ã = {(x, µÃ(x))|x ∈ X},
where µÃ : X → [0, 1] represents the membership function.

A fuzzy set Ã is said to be empty, written Ã = ∅, if and only
if

µÃ(x) = 0,∀x ∈ X (1)

Two fuzzy sets Ã and B̃ in X are equal, written Ã = B̃, if and
only if

µÃ(x) = µB̃(x),∀x ∈ X (2)

Instead of writing µÃ(x) = µB̃(x),∀x ∈ X, it can be written,
more simply, µÃ = µB̃,∀x ∈ X.

The membership function µÃ is also called grade of member-
ship, degree of compatibility or degree of truth. The range of
this function is a subset of the nonnegative real numbers whose
supremum is finite, normally 1. The basic operations in fuzzy
set theory are the complement, intersection and union. Since
the membership function is the crucial component of a fuzzy
set, it is therefore not surprising that operations with fuzzy sets
are defined via their membership functions. These concepts,
firstly suggested in [32], constitute a consistent framework for
the theory of fuzzy sets. However, they are not unique since
Zadeh and other authors have suggested consistent alternative
or additional definitions for fuzzy set operations. The comple-
ment of a fuzzy set Ã in X, written ¬Ã, is the fuzzy set

¬Ã = {(x, µ¬Ã(x) = 1 − µÃ(x))|x ∈ X}. (3)

The intersection of two fuzzy sets Ã and B̃ in X, written Ã∩B̃,
is the fuzzy set

Ã ∩ B̃ = {(x, µÃ∩B̃(x) = ∧(µÃ(x), µB̃(x)))|x ∈ X}, (4)

where ∧ is the minimum operator.
The union of two fuzzy sets Ã and B̃ in X, written Ã ∪ B̃, is

the fuzzy set

Ã ∪ B̃ = {(x, µÃ∪B̃(x) = ∨(µÃ(x), µB̃(x)))|x ∈ X}, (5)

where ∨ is the maximum operator.
When dealing exclusively with fuzzy sets, the symbol ∼

could be omitted.
General operators for the intersection and union of fuzzy

sets are referred as triangular norms (t-norms) and triangular
conorms (t-conorms or s-norms), respectively. A function

t : [0, 1] × [0, 1]→ [0, 1], (6)

satisfying, for each a, b, c, d ∈ [0, 1], the following properties:

P1. it has 1 as the unit element: t(a, 1) = a;
P2. it is monotone: t(a, b) ≤ t(c, d) if a ≤ c and b ≤ d;
P3. it is commutative: t(a, b) = t(b, a);
P4. it is associative: t[t(a, b), c] = t[a, t(b, c)].

is called a t-norm.
Some relevant examples of t-norms are referred in [33]:

1. the minimum: t(a, b) = a ∧ b = min(a, b). Which was
proposed by [32].
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2. the algebraic product: t(a, b) = a · b
3. the Lukasiewicz t-norm: t(a, b) = max(0, a + b − 1)

A function
s : [0, 1] × [0, 1]→ [0, 1], (7)

satisfying, for each a, b, c, d ∈ [0, 1], the following properties:

P1. it has 0 as the unit element: s(a, 0) = a;
P2. it is monotone: s(a, b) ≤ s(c, d) if a ≤ c and b ≤ d;
P3. it is commutative: s(a, b) = s(b, a);
P4. it is associative: s[s(a, b), c] = s[a, s(b, c)].

is called a t-conorm or s-norm.
Some relevant examples of t-conorms are also referred

in [33]:

1. the maximum: t(a, b) = a ∨ b = max(a, b). Which was
proposed by [32].

2. the probabilistic product: s(a, b) = a + b − ab
3. the Lukasiewicz s-norm: s(a, b) = min(a + b, 1)

Note that a t-norm is dual to an s-norm in that:

s(a, b) = 1 − t(1 − a, 1 − b). (8)

4. Proposed Methodology

The implementation of this approach is based in some under-
lying assumptions. These assumptions are commonly used in
most tracking systems:

1. The object has constancy of grey levels intensity;
2. The object presents smooth motion;
3. For sake of simplicity, the motion between two consecu-

tive frames can be described using a linear motion model;
4. The area occupied by the object is small when compared

with the total image area;
5. The size of the object is preserved during the sequence.

In this approach object brightness constancy is assumed.
This situation can be described as

I(x, y, t) ≈ I(x + δx, y + δy, t + δt), (9)

where δx and δy are the displacement of the local region at
(x, y, t) after time δt.

Nevertheless, small changes in illumination, camera sensor
noise, among other factors that cause variations in the intensity
of the object, are tolerated.

The smoothness of the movement concerns the continuity of
the object movement. The object movement is assumed to be
continuous and, therefore, using a typical acquisition frame rate
and assuming there are no occlusions or misdetections, the next
position of the object lies inside a neighborhood of its previous
position.

It is also assumed that the object movement between two con-
secutive frames can be represented by a linear motion model
with constant acceleration. The object can move along both the
x and y axis and, therefore, the position p(t) can be obtained

from the previous position p(t − 1) using the following equa-
tion:

p(t) = p(t − 1) + v∆t +
1
2

a∆t2, (10)

where p(t) = [x, y]′ is the object position at instant t, p(t − 1) =

[x0, y0]′ is the object position at instant t − 1, ∆t is the elapsed
time from instant t− 1 to instant t, v = [vx, vy]′ and a = [ax, ay]′

are, respectively, the observed velocity and acceleration in both
axis during ∆t.

The size of the object is considerably small when compared
with the total image area. Assuming this, the object can be
represented as a point or by a small A × B matrix and, similar
strategies to the ones used in point correspondence can be de-
veloped for object matching. In the examples presented in this
work, for simplicity sake, we take A = B = 3.

4.1. Single-object Tracking
In this methodology, the visual descriptors used to track ob-

jects are divided in two distinct groups: kinematic and non
kinematic descriptors. Non kinematic descriptors are used to
describe the object’s appearance and kinematic properties used
to describe the object’s motion. At the beginning of the process,
both these sources of information are treated separately. At the
final stage of the process these sources are combined by a fuzzy
inference engine that will ultimately provide the estimated po-
sition of the tracked object (Fig. 1).

Figure 1: Single-object tracking methodology scheme.

The methodology scheme presented in Fig. 1 can be divided
into three main stages:

• Fuzzification of all used descriptors. This way the method-
ology is able to better deal with the uncertainty and im-
precision present in the images (and consequently in the
descriptors).

• A fuzzy operations stage where descriptors can be com-
bined according to their precision (higher memberships
are more likely to prevail over weaker memberships).
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• An inference engine that’s responsible for fusing the in-
formation provided by all used descriptors (both kine-
matic and non kinematic). Through this inference engine,
the methodology is able to incorporate reasoning, in the
same sense as human reasoning, in the tracking process by
providing answers based on the existing knowledge base
(fuzzified descriptors).

The non kinematic properties used can be chosen according
to the specificity of the problem in hand. There’s a myriad of
possibilities such as color, shape, texture, size, among others,
that can be used as visual descriptors of the object appearance.
A fuzzy set is constructed to model each one of the chosen prop-
erties. These fuzzy sets will represent the membership of all the
candidate image positions to the object been tracked. The set
of fuzzy operations performed on these fuzzy sets (in their sim-
plest form, fuzzy unions and intersections) are used to combine
them and, as a consequence, reduce their number. This dimen-
sionality reduction is an additional advantage since the lower
the number of fuzzy sets on the output of this fuzzy operations
block (Fig. 1), the less complex the inference engine block will
be (i.e. less rules will be necessary).

The kinematic properties will undergo a similar process in
the methodology (Fig. 1). As for the non kinematic properties
also the kinematic properties can be chosen according to the
problem at hand. Kinematic properties such as object velocity,
acceleration and other motion patterns can be used as kinematic
properties.

The final processing block of the methodology consists in an
inference engine which complexity (number of rules) depends
on the number of inputs. The design of the inference engine
should able the process to model the system in order to achieve
a good balance between the information provided by the objects
kinematic and non kinematic properties. This way, depending
on the problem at hand, through the design of this inference
engine, the method is able to incorporate some reasoning valu-
ing either the kinematic or the non kinematic object descriptors
depending on their importance. Also, the certainty one has re-
garding the information provided by each one of these sources
(kinematic and non kinematic) can be incorporated in the de-
sign of this engine (human reasoning).

The inference engine will present as its output must always
be a single fuzzy set. The position of the tracked object is then
obtained by maximizing the membership function of this fuzzy
set.

4.2. Multi-object Tracking

Based on the previous depicted methodology for single ob-
ject tracking, a multiple object tracking was developed. For
each tracked object, the methodology presented in Fig. 1 is ap-
plied and its results (a fuzzy set for each object) are the input of
a hierarchical matching system responsible for establishing the
correspondences between objects from frame to frame. This hi-
erarchical matching system (Fig. 2) is mainly constituted by a
confidence assessment scheme that assigns objects with con-
fidence degrees according the correspondence situation from

which the object’s position is estimated. To correctly estab-
lish these correspondences, there are situations where the in-
put fuzzy set is not sufficient and it is crucial to know the rule
used to create this fuzzy set (dashed arrows in Fig. 2). These
correspondence situations are depicted in the remainder of this
section.

Figure 2: Multi-object tracking methodology scheme.

In multiple object tracking several correspondence situations
can occur. Fig. 3 depicts these situations, where ◦ denotes the
object position at frame t − 1 and × denotes the object posi-
tion at frame t. The question mark (?) represents the absence
of matching at frame t. The first situation depicted in Fig. 3a
indicates that each object is matched with a different candidate
position in the next frame and the current position, at frame t,
of the object will be the position of the corresponding candi-
date position. Sometimes different objects in frame t − 1 will
be assigned to the same point in frame t. When two moving
objects pass close each other or even when one object occludes
another, or also due to the representation of a 3D world in a
2D plane, they can appear as being just one region in the im-
age. This situation could be seen as a merging of objects or a
inter object occlusion case (Fig. 3b). The opposite situation is
also considered, i. e., several united objects could have different
motion directions and one single region, representing multiple
objects, could result in multiple matching positions. It could be
seen as a split of objects (Fig. 3c). Finally, if at some instant,
the situation depicted at Fig. 3d occurs, i.e., there is no candi-
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Figure 3: Correspondence situations in multi-object tracking

date position for the object, a predicted position based on the
object motion pattern is assumed (Section 5.2). It is a typical
case of background occlusion. All these situations must be con-
sidered in the tracking algorithm and correct procedures must
be applied in each case.

This way, it’s possible to discern between inter object oc-
clusion and background occlusion and different actions can be
taken for each case.

In this multiple object tracking methodology, the user selects
the objects to be tracked and each one of them is associated with
a confidence degree that, at the beginning (first frame), assumes
its maximum value. This means that the position of each object
is known with the highest certainty or confidence. When the
algorithm doesn’t have reliable information about the object, its
confidence degree will decrease. It is considered that situations
of inter object or background occlusion and misdetections are
examples of such situations. Inter object occlusion occurs when
the distance between the objects location is less than the size of
one object (a small A × B matrix with A = B).

To deal with all the situations previously described, the fol-
lowing set of rules are defined:

1. When only one object is matched with a single candidate
position, its confidence degree increases (Fig. 3a);

2. When several objects are matched with the same candidate
position, the object assigned first with that candidate will
have its confidence degree increased and all the other will
have their confidence degree slowly decreased (Fig. 3b);

3. When there is no candidate position to be matched with
an object, the confidence degree of this object decreases
(Fig. 3d);

4. Objects with low confidence degree are removed from the
list of tracked objects.

All the procedures indicated previously are first applied to
objects with higher confidence level and this way a hierarchical
matching system is performed. The situation depicted in Fig. 3c
falls in the first case since one single object is matched with a
candidate and, in this situation, the confidence degree for all
the objects increases. To perform the fourth case, a minimum

confidence degree is defined and objects denoting a confidence
degree below this minimum value will not be tracked.

In inter object occlusion situations there exists one visible
region in the frame that represents at least one visible object.
Some objects could have disappeared at this moment but at least
one visible object is present and continues to be tracked. The
object with higher confidence degree continues to be tracked
without decreasing its confidence degree but the occluded ob-
jects suffer a slow decrease in their confidence degree. When
background occlusion occurs, there is no candidate present in
the frame and the object suffers a higher decrease on its confi-
dence degree. The slow decay in confidence degree when inter
object occlusion situation occurs ensures that inter occluded ob-
jects continue to be tracked over a sufficient number of frames,
giving the opportunity to some inter occluded objects to leave
the common region before being deleted.

5. Implementation example

5.1. Fuzzy Sets and Fuzzy operations

In this implementation, the constructed fuzzy sets are derived
from the initial considerations presented beforehand. Three
fuzzy sets related with the first three enumerated assumptions
are constructed. Two kinematic related fuzzy sets (Section 5.1.2
and Section 5.1.3) and one non kinematic related fuzzy set (Sec-
tion 5.1.1). As previously commented, other fuzzy sets could
be incorporated in the algorithm but, for the sake of simplicity,
to minimize the computational resources and to increase speed,
the algorithm is constructed based only on these three funda-
mental and generic assumptions.

5.1.1. Brightness Constancy
The bright constancy assumed earlier ensures that the ob-

ject’s intensity level remains stable, or approximately stable,
during the sequence. Hence, the initial grey level of the object
is considered unchangeable over time meaning that pixels de-
noting similar grey levels regarding the initial object grey level
are more likely to belong to the object.

Under these conditions, a fuzzy set G is constructed in order
to access the certainty of a pixel belonging to the object in such
a way that higher similarity in grey levels intensity higher the
membership degree to that fuzzy set.

Let I be an image with dimensions M × N, I(x, y) the grey
level of the pixel (x, y) so that 0 ≤ I(x, y) ≤ L and I f (i, j) an
intensity matrix of dimensions A × B representing the original
object’s grey levels, where A = 2a+1, B = 2b+1 and {a, b} ∈ N.

For all (x, y) such that a ≤ x ≤ M − a and b ≤ y ≤ N − b, the
membership function µG(x, y) is defined as

µG(x, y) = 1 − dg, (11)

with

dg =

∑a
i=−a
∑b

j=−b |I(x + i, y + j) − I f (i + a, j + b)|

A × B × L
. (12)
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(a) Original image.

(b) Fuzzy set G. (c) 3D view.

Figure 4: Construction of fuzzy set G.

All pixels (x, y) of the image, such that 0 ≤ x ≤ a ∨ M − a ≤
x ≤ M and 0 ≤ y ≤ b ∨ N − b ≤ y ≤ N have zero member-
ship values. This set of pixels are located at the boundaries of
the image and, since a and b are small positive integers, this dis-
continuity do not change the global performance of the method.

Assuming a dark object, the resulting fuzzy set G using a test
image is illustrated in Fig. 4.

In order to reduce processing time and increase computa-
tional speed, this membership function is applied locally in a
neighborhood centered in the previous position of the object.
The interest area (ROI: region of interest) can be seen as a
square region whose sides have a length l defined as

l = 2KG.d2, (13)

where KG is a positive constant and d2 is the parameter de-
fined in Equation 17.

5.1.2. Smooth Motion
Assuming the smoothness of the object movement, i. e., as-

suming that the object position do not drastically change be-
tween two consecutive frames, it is plausible to consider that
the next location of the object lies in a neighborhood centered
in its previous location.

Therefore, a fuzzy set S associated with each image pixel
(x, y) by means of this proximity assumption related to the ob-
ject position in the previous frame is constructed. The member-
ship function µS (x, y) ∈ [0, α] can be graphically depicted as il-
lustrated in Fig. 5a, where the horizontal axis represents the Eu-
clidian distance between the image pixels position and the pre-
vious location of the object. In Fig. 5b, a pictorial description of
the fuzzy set S assuming a previous position (x, y) = (100, 100),
with d1 = 40, d2 = 50 and a maximum value α = 0.9, is de-
picted.

Three distinct zones of certainty are present in the defini-
tion of the membership function µS (x, y). For distances lower
than d1 the membership degree is maximum, defining a circu-
lar region centered in the object previous position, where the

ψ

ψ

µs(x,y)

d1 d2 distance

α

0

(a) Membership function µS (x, y).

(b) Fuzzy set S . (c) 3D view.

Figure 5: Membership function µS (x, y).

new object location is expectable with equal certainty. For dis-
tances greater than d1 the membership degree decreases in a
linear way until it reaches the zero value at distance d2. For
distances greater than d2 the membership degree is zero. This
behavior can be explained due to the fact that, for distances
greater than d1, the certainty of finding the object lowers as the
distance increases. The new position is not expected for dis-
tances greater than d2 and the membership degree is zero for all
these positions. This two controlling parameters d1 and d2 are
variable over time. Both values are directly proportional to the
observed object displacement fd(t). This displacement is based
in the Euclidian distance defined as

fd(t) =

√
(p(t) − p(t − 1))2, (14)

where p(t) = (x(t), y(t)) and p(t − 1) = (x(t − 1), y(t − 1)) are,
respectively, the current and previous positions of the object.

To avoid abrupt changes in this parameter, a weighted sum is
performed, using the previous displacement information and an
updating factor A f . This reasoning can be represented as

∆d = A f fd(t) + (1 − A f ) fd(t − 1), (15)

where A f is a constant within the interval [0, 1], fd(t − 1)
is the previous displacement and fd(t) is the current observed
displacement. Then, the parameters d1 and d2 of µS (x, y) are
defined as

d1 = M1 +
∆d
2
, (16)

d2 = d1 + M2 +
∆d
2
, (17)

where M1 and M2 are two positive constants in order to deal
with objects denoting zero velocity. The values of M1 and M2
are directly proportional to the dimensions of the object. Pa-
rameter d1 has a minimum value of M1 and parameter d2 has a
minimum value of M1 + M2.
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5.1.3. Linear Motion Model
Another membership function is constructed based on the

assumption that the object motion between two consecutive
frames can be described using a linear motion model with con-
stant acceleration. An object can increase/decrease its veloc-
ity between two consecutive frames. Several motion models
are discussed in the literature, however, the selected motion
model is a compromise between the proximity with the real mo-
tion performed by the object and computer processing require-
ments. The used motion model follows the restrictions imposed
by Equation 10.

The Kalman filter is a powerful tool to predict the object po-
sition during the image sequence. Using information from pre-
vious frames, it is possible to predict the object location in the
current frame. The Kalman filter is used based on the assump-
tion that velocity and direction of the object don’t suffer drastic
changes from frame to frame, i. e., the object follows a linear
motion model with constant acceleration.

In a Kalman filter the motion model is introduced in state
space representation. Using state space representation, a system
can be defined by

x(t) = Ax(t − 1) + Bu(t),
y(t) = Cx(t), (18)

x(t) represents the state vector in the current time, A repre-
sents the motion model, B represents the state vector depen-
dency matrix with respect the input u(t), y(t) represents the sys-
tem output and C is called the output matrix.

For this particular motion model, the state vector x(t) can be
written as

x(t) =
[

x vx ax y vy ay

]′
, (19)

where x and y are the location coordinates of the object, vx

and vy the velocities, ax and ay are the acceleration values.
Matrix A is defined as

A =



1 taq
t2
aq

2 0 0 0
0 1 taq 0 0 0
0 0 1 0 0 0

0 0 0 1 taq
t2
aq

2
0 0 0 0 1 taq

0 0 0 0 0 1


, (20)

where taq is the elapsed time between two consecutive
frames.

Matrix C is defined as follows

C =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
. (21)

The Kalman filter is used to estimate the state vector of the
object, i. e., its position, velocity and acceleration. Using in-
formation provided by the state vector of the object it is possi-
ble to predict the object position (x, y) in the next frame. The
estimated position leads to the development of another mem-
bership function, µK(x, y). This membership function assigns
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(b) Fuzzy set K. (c) 3D view.

Figure 6: Membership function µK (x, y).

a higher membership degree to pixels near the predicted loca-
tion and its value decreases for locations far from this predicted
point. To implement such behavior, a gaussian shape function
is used (Fig. 6a) to ensure a higher decay in the membership de-
grees and, this way, to give more prominence for locations near
the predicted one. The gaussian function shape can be changed
through the standard deviation parameter σ defined as follows

σ =
3Mσ + ∆d

3
, (22)

where Mσ is a minimum value to deal with still objects and
∆d is the previous observed displacement of the object. This
parameter is changed according to the velocity of the object
where higher velocities give rise to higher standard deviation
values.

This membership function µK(x, y) is applied in a circular
neighborhood with radius equal to 3σ. For locations whose
distance to the predicted position is greater than 3σ the mem-
bership degree is zero. In Fig. 6b, the resulting fuzzy set K
assuming a predicted position (x, y) = (100, 100) and σ = 15
is depicted. The corresponding 3D view is also illustrated in
Fig. 6c.

5.1.4. Fuzzy operations
Finally, the motion is modeled by a fuzzy set M constructed

from the fuzzy union between fuzzy sets K and S , using the
maximum operator as follows:

µM(x, y) = ∨(µK(x, y), µS (x, y)) (23)

5.2. Inference engine
An inference engine with the following set of rules is con-

structed. The output of the engine is a fuzzy set E that will
ultimately lead us to the object position which will be the pixel
(x, y) that corresponds to the higher µE(x, y) value.

RULE 1: IF, within the area defined by membership values
of the fuzzy set M, such that µM(x, y) > 0,∀(x, y), there is one
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and only one local maxima of µG(x, y) > α, THEN, fuzzy set
E is the union between fuzzy sets S and G. This fuzzy set is
constructed using the maximum operator in the following way:

µE(x, y) = ∨(µG(x, y), µS (x, y)). (24)

RULE 2: IF, within the area defined by membership values
of the fuzzy set M such that µM(x, y) > 0,∀(x, y), there are
n ≥ 2 local maxima of µG(x, y), located at position (xi, yi),∀i =

1, . . . , n that satisfy the condition µG(xi, yi) > α, THEN, fuzzy
set E is the union between fuzzy sets S and G′i ,∀i = 1, . . . , n.

The fuzzy sets G′i are constructed using fuzzy set G in the
following way:

µG′i (x, y) = ψiµG(x, y),∀i = 1, . . . , n, (25)

with
ψi = 1 −

di

dMAX
,∀i = 1, . . . , n, (26)

and

di =

√
(xi − xK)2 + (yi − yK)2,∀i = 1, . . . , n, (27)

dMAX = max{di},∀i = 1, . . . , n, (28)

where (xK , yK) is the location of the maximum value of fuzzy
set K.

Finally, fuzzy set E is constructed using the maximum oper-
ator

µE(x, y) = ∨(µG′1 (x, y), . . . , µG′n (x, y), µS (x, y)). (29)

RULE 3: IF, within the area defined by membership values
of the fuzzy set M, such that µM(x, y) > 0,∀(x, y), there is no
local maxima of µG(x, y) > α, THEN, fuzzy set E is to be equal
to fuzzy set K.

µE(x, y) = µK(x, y). (30)

The design of this inference engine and its rules is inspired
by human reasoning. People expect to find an object in its last
known location or at locations lying in its neighborhood. This
kind of human reasoning is modeled by fuzzy set S . When deal-
ing with fast moving objects, people are capable to understand
the object motion pattern and consequently anticipate its next
position. This thought is also valid when the object is occluded.
Consequently, the fuzzy set K tries to incorporate this reason-
ing. According to these two behavioral attributes, the area de-
fined by fuzzy set M, i. e., the image area where µM(x, y) > 0,
can be seen as the first area of search to locate an object. Look-
ing for this region, if a person sees an identical object as ex-
pected, then it is plausible to consider this object as the one that
is being tracked. From RULE 1, the object position will be the
pixel, with coordinates (x, y), that denotes the maximum value
of µG(x, y).

If multiple identical objects are present in that region then, it
is reasonable, based on the previous acquired motion pattern, to
choose the object near the predicted object position (RULE 2).

In situations when the object is not visible, the location can
be only estimated by the understanding of the behavior of the

motion observed until that moment (RULE 3). In this case, the
object position will be the pixel, with coordinates (x, y) with the
maximum value of µK(x, y).

When the object is not detected, the search area increases
due to the uncertainty of the movement described by the object
and the used motion model. Furthermore, if the output of the
engine results from RULE 3 then, since all the µG(x, y) values
in the considered image area are below than α, probably due
to an occlusion, the membership functions of fuzzy sets S and
K change in such a way that the region where µM(x, y) > 0
becomes bigger, allowing the tracked object to be searched in a
wider area.

5.3. Hierarchical matching system
At the beginning of the process, several steps are performed

in order to define and initialize all the variables, matrixes and
structures. A maximum and minimum confidence degrees
equal to 16 and 6, respectively, are defined. The user must select
the objects to track on the first frame of the sequence. Objects
properties, such as grey level intensity and initial position val-
ues are recorded for further use. Over the sequence, objects are
sorted according to their confidence degree and, objects with
higher confidence degree are processed first by the algorithm.
The fuzzy logic algorithm performs the suitable matching for
that object and returns the current position. If that current posi-
tion has not been assigned to previous processed objects and if
such position was not predicted using motion model and vector
state information then the confidence degree increases. How-
ever, if the current position is predicted due to an occlusion
situation, the confidence level decreases. Moreover, if the cur-
rent position of this object lies in a circular neighborhood of
3 pixels from a previously processed object (with more confi-
dence degree), this object is considered occluded by that ob-
ject. It’s the case when these two objects appear in the image
together forming one single region. When this situation occurs,
the object with lower confidence degree suffers a reduction on
its confidence degree. These steps are repeated for the remain-
ing objects. After all objects had been processed by the fuzzy
algorithm, an update stage is needed to update the Kalman fil-
ter and to remove objects with lower confidence degree. If there
exists more image frames to process, the next frame is analyzed
and the cycle is repeated until it reaches the end of the sequence.

6. Results

In order to assess its performance, the proposed method was
applied in two sequences. These sequences were used be-
cause they denote difficult tracking situations such as occlu-
sions, rapid object motion and appearance and/or illumination
variations. The first sequence is a test case scenario used in
CAVIAR1 project. The second was obtained from PETS2. The
first tested sequence comprises 150 frames starting at frame
number 420. At this starting frame, three people are present

1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
2http://www.cvg.rdg.ac.uk/PETS2010/a.html
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in the scene: one person will walk straight on the corridor, one
will go inside a store and the other will wait outside. The se-
lected objects to track are the heads of the people. The result
of the proposed methodology is illustrated in Fig. 7. In this se-
quence there are no occlusions or misdetections and therefore
the confidence level of each object remains at its maximum.

In the second sequence, the white pixels of a mark of con-
crete placed in the floor and the white paper sheets carried by a
person are selected to be tracked. In this sequence both objects
suffer occlusions and their confidence level change accordingly.
The result of the proposed methodology between frames 50 and
150 is illustrated in Fig. 8. Despite of the static behavior of the
concrete mark it suffers occlusions by the pedestrians in such
a way that its confidence level decreases below the predefined
minimum value of 6. When it happens this object is no longer
tracked. To ensure that objects that don’t provide information
to the method are still tracked for a long period of time, the
difference between the maximum and minimum values of the
confidence level must be higher.

Experimental positions of each object in the sequences com-
puted by the proposed methodology are compared with a
ground-truth position generated manually. The evolution of
the Euclidian distance between them, for all frames of the se-
quence, can be observed in Figs. 9 and 10, respectively, for
CAVIAR and PETS sequences.
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Figure 9: Distance between experimental and ground-truth positions. (Object
number 1, 2 and 3 represented, respectively, by solid, dotted and dashed lines)
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Figure 10: Distance between experimental and ground-truth positions. (Object
number 1 and 2 represented, respectively, by solid and dotted lines)

The average and standard deviation of the Euclidian distance
between experimental and ground-truth positions for all objects
presented in these two sequences are presented in Table 1.

In the sequence obtained from CAVIAR, the distance error
for object number 1, depicted in Fig. 9, assumes higher values

Table 1: Average distance error and standard deviation.

Sequence Object Mean Standard Deviation

CAVIAR 1 2.3208 1.6405

2 1.5577 0.6460

3 1.8297 0.7723

PETS 1 2.2577 1.7355

2 1.2716 0.6595

at the end of the sequence. This fact is explained since the
long hair of the woman becomes more exposed in the image
plane and it also suffers changes in intensity. These two factors
lead the method to provide positions not equal to the ground-
truth. The error values observed in the other two objects are
considerable lower and don’t denote a clear variation.

In object number 1, related with the sequence obtained from
PETS, higher error values at the beginning of the sequence
could be explained by the large size, intensity changes and the
swinging pattern of the object observed in the image plane.
Another issue is related with occlusion situations that increase
the errors between the ground-truth positions since the method
doesn’t have any new information about the location of the ob-
ject. An interesting analysis concerning object number 2 can be
made: since it is a landmark and the camera is static, its position
should remain constant along time, but, observing Fig. 10, the
error between experimental and ground-truth positions changes
over the sequence. Moreover, after frame number 96 the ap-
proach stops to track this object. Error variations are explained
by partial occlusions made by pedestrians passing across the
concrete mark that introduce an apparent displacement. After
frame 96 the confidence degree of this object becomes lower
than the established minimum value and it is removed from the
tracking process because this object suffers several consecutive
total occlusions leading a fast decreasing on its confidence de-
gree.

Despite these errors, object tracking is performed success-
fully for all objects in both sequences. Having in mind that
tracking is performed successfully, the error values presented
in Figs. 9 and 10, are considered not significant since they only
occur because they are calculated as the distance between the
tracked objects computed position and the center of the objects
(depending on the homogeneity of the objects grey levels, the
computed position may not coincide with the objects center).

A comparative study was also performed by applying the
same sequences to other commonly used object tracking ap-
proaches such as SIFT with descriptors updating, mean shift
and KLT.

After the selection of the features is done, as illustrated in
Fig. 11, application of the SIFT approach to both sequences al-
low to verified that the features could not be tracked properly.
The selected regions to be tracked don’t provide any or enough
descriptors necessary for this method. After one or two frames,
no features are tracked due to the lack of descriptor matching
because some features became occluded, changed its shape or
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Figure 7: Estimated trajectories between frames 420 and 570.

no similar descriptors were found due to illumination variation.
The update rate is very important to deal with object shape vari-
ations, but the higher the update frequency the higher the com-
putational time. However, even with higher update rates, this
approach did not perform correctly.

Using the mean shift method the observed results were dif-
ferent for each sequence. This approach is not suitable to track
any selected features in the CAVIAR sequence. The reduced
size of the selected regions results in a non discriminative fea-
ture histogram area leads the method to converge to background
regions with similar histograms. An example is depicted in
Fig. 12: at frame number 420 a region is selected to be tracked
but after seven frames the method fails.

A different region initialization was performed by increas-
ing the selected area in order to generate a more representa-
tive histogram. Therefore, the torso of the third person was
selected and the person is correctly tracked during 31 frames,
as observed in Fig. 13. After frame number 451 the tracking
fails since the background denotes higher histogram similarity
than the feature histogram due to illumination and object pose
changes.

Using the PETS sequence with the same method we obtained
better results. The selected feature was successfully tracked
until the occlusion since this approach don’t take into account
the kinematic information and therefore is unable to deal with
feature occlusions or multi feature crossings. These results are

Figure 13: Results at frame number 451.

depicted in Fig. 14.
KLT method also performs dissimilarly for these two test se-

quences. As presented in Fig. 15, in the CAVIAR sequence the
selected feature is tracked until the tracked region became sim-
ilar with the background. At this moment the approach, desti-
tuted from any kinematic information, assumes the background
region as being the feature.

A better response is given with the PETS sequence. The
method performs a correct feature tracking until the feature dis-
appears. The problem is the same as previously.

In order to be able to present a comparison with a quantitative
performance measure, the average and standard deviation of the
Euclidian distance between ground-truth and experimental po-
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Figure 8: Estimated trajectories between frames 50 and 150.

sitions given by the methods is presented in Fig. 2. To ensure re-
liable conclusions, the comparative study does not incorporate
the SIFT method because experimental results showed that it
was incapable to track any features and the remaining methods
were applied from frame number 50 to frame 88 of the PETS
sequence because they were functional in this frame interval.
These methods were implemented in MATLAB R© and tested in
a laptop computer equipped with a 1.8GHz Intel R© CPU and
1.5GB of RAM under Windows R© XP. The elapsed computa-
tional time to process the tracking task within this interval is
also indicated.

Table 2: Tracking performance and computational costs.

Method Elapsed time Mean error Standard deviation

Mean shift 11.9660 10.3596 12.7284

KLT 14.7197 14.6424 7.9479

Proposed 42.5574 3.3723 1.8244

It is clearly verified a tradeoff between tracking accuracy
and computational time. The proposed methodology incorpo-
rates hierarchical matching schemes to deal with multi feature

tracking and Kalman filters to incorporate the kinematic fea-
ture model that increase the processing time. Moreover, the
code is not optimized for real time purposes. However, with
an optimized algorithm, real time processing requirements are
expected to be achieved.

7. Conclusion

In this work, a new fuzzy tracking system is introduced.
Both single and multiple tracking methodologies are presented.
Possible implementations of such methodologies are presented.
Trough the construction of three fuzzy sets related either with
kinematic and non kinematic properties of the object and with
a construction of an inference engine with three rules the
proposed fuzzy single object tracking methodology is imple-
mented. For multiple object tracking, is presented a hierarchical
implementation where objects that provided more information
to the method are assigned first than objects with low confi-
dence degree. Experimental and comparative tests to evaluate
the performance of the approach are also presented. Although
the presented hierarchical matching approach for multiple ob-
ject tracking has provided encouraging results, these results
lead us to further work with intend to improve robustness, in-
troduce new capabilities and achieve computational efficiency
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(a) (b)

Figure 11: Selected features for SIFT tracking. Descriptors are represented by a × mark.

(a) Selected feature in the initial frame. (b) Estimated trajectory between frames 420 and 427.

Figure 12: Selected feature for mean shift tracking.

over different image sequences. Further work is intended on
the introduction and performance evaluation of different dis-
tinctive object properties such as shape, texture and other ob-
ject descriptors, in order to construct suitable fuzzy sets and
introduce new rules in the inference engine. Since the proposed
methodology is intended to be a general framework, SIFT, KLT
or mean shift based methodologies could be incorporated and
used as inputs. This way, it’s expectable an increase on the ro-
bustness of the estimated trajectories. The introduction of an
automatic capability to deal with entries and exits of objects
over the sequence is also an important issue to be studied and
tested.
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(a) Selected feature in the initial frame. (b) Estimated trajectory between frames 50 and 94.

Figure 16: Selected feature for KLT tracking.
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