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Abstract. A time series consists of a series of values or events obtained over repeated measurements in time. 

Analysis of time series represents an important tool in many application areas, such as stock-market analysis, 

process and quality control, observation of natural phenomena, medical diagnosis, etc. A vital component in many 

types of time-series analyses is the choice of an appropriate distance/similarity measure. Numerous measures 

have been proposed to date, with the most successful ones based on dynamic programming. Being of quadratic 

time complexity, however, global constraints are often employed to limit the search space in the matrix during the 

dynamic programming procedure, in order to speed up computation. Furthermore, it has been reported that such 

constrained measures can also achieve better accuracy. In this paper, we investigate four representative time-

series distance/similarity measures based on dynamic programming, namely Dynamic Time Warping (DTW), 

Longest Common Subsequence (LCS), Edit distance with Real Penalty (ERP) and Edit Distance on Real sequence 

(EDR), and the effects of global constraints on them when applied via the Sakoe-Chiba band. To better understand 

the influence of global constraints and provide deeper insight into their advantages and limitations we explore the 

change of the 1-nearest neighbor graph with respect to the change of the constraint size. Also, we examine how 

these changes reflect on the classes of the nearest neighbors of time series, and evaluate the performance of the 

1-nearest neighbor classifier with respect to different distance measures and constraints. Since we determine that 

constraints introduce qualitative differences in all considered measures, and that different measures are affected 

by constraints in various ways, we expect our results to aid researchers and practitioners in selecting and tuning 

appropriate time-series similarity measures for their respective tasks. 

Keywords: Time Series, Dynamic Time Warping, Longest Common Subsequence, Edit Distance with Real Penalty, 

Edit Distance on Real sequence, Global Constraints 

1. Introduction 

A time series represents the simplest form of temporal data: a series of numbers that describes 

the change of the observed phenomenon over time. Each number in a time series describes the 

phenomenon at one point in time (Das and Gunopulos, 2003). Time series are suitable for 

representing social, economic and natural phenomena, medical observations, and results of 

scientific and engineering experiments. They are used for prediction, anomaly detection, 

clustering and classification, which increased the importance of different research areas of 

temporal data mining and resulted in a large amount of work introducing new methodologies 

(Das and Gunopulos, 2003; Ding et al., 2008; Han and Kamber, 2006). 



The choice of an appropriate time-series similarity measure is a critical point when dealing with 

many tasks in mining temporal data. While working with traditional databases we are 

interested in data that exactly match the given query. However, in the case of similarity-based 

retrieval of time series, we are looking for sequences that most resemble a given series. As 

similarity-based retrieval is explicitly or implicitly used in all above-mentioned tasks of time-

series analysis, it is important to carefully define the similarity measure between time series in 

order to reflect the underlying (dis)similarity of the specific data they represent (Das et al., 

1997; Han and Kamber, 2006). There is a large number of (dis)similarity measures for time-

series data proposed in the literature, e.g., Euclidean distance (ED) (Faloutsos et al., 1994), 

Dynamic Time Warping (DTW) (Keogh and Ratanamahatana, 2004), distance based on Longest 

Common Subsequence (LCS) (Vlachos et al., 2002), Edit Distance with Real Penalty (ERP) (Chen 

and Ng, 2004), Edit Distance on Real sequence (EDR) (Chen et al., 2005), Sequence Weighted 

Alignment model (Swale) (Morse and Patel, 2007). 

Dynamic programming represents the basic technique of implementation for the vast majority 

of similarity measures, but because of its quadratic computational complexity it is often not 

suitable for larger real-world problems. To address this shortage, one can restrict the search 

area using global constraints such as the Sakoe-Chiba band (Sakoe and Chiba, 1978) and the 

Itakura parallelogram (Itakura, 1975). This can significantly speed up the calculation (Kurbalija 

et al., 2011). Apart from speeding up the computation it was also suggested that the usage of 

global constraints can actually improve the accuracy of classification compared to 

unconstrained similarity measures (Ratanamahatana and Keogh, 2005; Xi et al., 2006). The 

accuracy of classification is commonly used as a qualitative assessment of a similarity measure 

(Ratanamahatana and Keogh, 2005). Given all these positive effects of global constraints, it is 

important to carefully investigate their impact on various similarity measures. 

Kurbalija et al. (2011) reported that global constraints can significantly reduce the computation 

time of Dynamic Time Warping and Longest Common Subsequence and that constrained 

measures are qualitatively different than their unconstrained counterparts. In this paper we will 

expand the study of the influence of the Sakoe-Chiba band on DTW and LCS and investigate its 

effect on two extensions of these measures: Edit Distance with Real Penalty (ERP) and Edit 

Distance on Real sequence (EDR). To better understand the influence of global constraints and 

to provide deeper insight into their advantages and limitations we will explore the change of 

the 1-nearest neighbor (1NN) graph with respect to the change of the constraint size. Also, we 

will examine how these changes reflect on the nearest-neighbors’ classes and investigate their 

impact on the accuracy of the 1NN classifier. This choice of classifier was motivated by reports 

of it achieving among the best results compared to many other sophisticated classifiers for 

time-series data (Ding et al., 2008; Keogh, 2002; Radovanović et al., 2010; Tomašev and 



Mladenić, 2012; Xi et al., 2006). In addition, the accuracy of 1NN directly reflects the quality of 

the underlying similarity measure, the investigation of which is our primary goal. 

We expect that our results will aid researchers and practitioners in selecting and tuning 

appropriate time-series similarity measures for their respective tasks since, as we will show, 

constraints introduce qualitative differences in all considered measures. Furthermore, the 

insight into the behavior of similarity measures with respect to changing constraints can be 

beneficial to the design of efficient indexing strategies for fast computation of (approximate) 

nearest neighbors. This statement is supported by the report (Ratanamahatana and Keogh, 

2005) that the measures with the values of constraints around 5% have the same or almost the 

same classification accuracies as unconstrained measures. In addition, the difference of 

computation times between an unconstrained measure and a measure with such a small 

constraints is two and somewhere three orders of magnitude (Kurbalija et al., 2011). 

All experiments presented in this paper are performed using the system FAP (Framework for 

Analysis and Prediction) (Kurbalija et al., 2010). The data for experiments is provided by the 

UCR Time Series Repository (Keogh et al., 2011), which includes the majority of all publicly 

available, labeled time-series data sets in the world. 

The rest of the paper is organized as follows. Section 2 presents the necessary background 

knowledge about similarity measures and time-series classification and provides an overview of 

the related work in this area. Section 3 describes the relevant methods and tools: the Sakoe-

Chiba band and the Itakura parallelogram, and the FAP system used for performing 

experiments. Extensive experiments and their results are given in Section 4. Section 5 concludes 

the paper and presents the directions for further work. 

 

2. Related Work 

2.1 Similarity Measures for Time Series 

A time series of length n is defined as a sequence composed of n real numbers (Chen and Ng, 

2004): Q = (q1,q2,…,qn). Each element of the sequence represents the numerical value of the 

observed phenomena measured at a specific time. Let Q = (q1,q2,…,qn) and C = (c1,c2,…,cn) 

denote time series of the same length n. By interpreting time series as points in n-dimensional 

space, we can define the distance between them using the Lp norm: 

                         
 
   

 
. 



The advantage of such a similarity measure is that it represents a distance metric and can be 

used for indexing time series in databases. A distance metric d: X2→ R on set X is required to 
satisfy the following conditions: 

1. d(x,y) ≥ 0, 

2. d(x,y) = 0 if and only if x = y, 

3. d(x,y) = d(y,x), 

4. d(x,z) ≤ d(x,y) + d(y,z). 

Due to its simplicity and speed of computation, Euclidean distance (L2) has become one of the 

most commonly used measures of similarity between time series (Agrawal et al., 1993; Chan 

and Fu, 1999; Keogh et al., 2001a, 2001b). The distance between two time series is calculated 

based on the sum of distances between corresponding points of the series. One of the 

shortcomings of Euclidean distance is sensitivity to shifting and scaling along the y-axis. This 

deficiency can be avoided in a simple fashion by normalizing the series (Das and Gunopulos, 

2003; Goldin and Kanellakis, 1995). 

Another disadvantage of Euclidean distance is that the time series must be the same length and 

it is also sensitive to distortions and shifting along the time axis (Keogh, 2002; Ratanamahatana 

and Keogh, 2005). An example can be seen in Figure 1 (A) where two sequences have a similar 

overall shape but they are not aligned with respect to the time axis. Euclidean distance aligns 

the i-th point of the first series with the i-th point of the second one and will give a pessimistic 

estimation of their similarity. This problem can be handled using elastic distance measures such 

as Dynamic Time Warping and Longest Common Subsequence. 

  
Figure 1. Euclidian distance and Dynamic Time Warping 

Unlike Euclidean distance, Dynamic Time Warping allows non-linear aligning of the points of 

time series (Berndt and Clifford, 1994; Keogh, 2002; Ratanamahatana and Keogh, 2005; Xi et al., 

2006). This is illustrated by the example in Figure 1 (B). DTW computes the dissimilarity by 

finding the optimal warping path in the matrix of distances between points of the two series as 
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defined by Equation 1 in Figure 2. Euclidean distance represents a special case of DTW when 

the value of the global constraint is equal to 0. 

The Longest Common Subsequence similarity measure is a variation of edit distance – the 

similarity between two time series is calculated as a function of the length of the longest 

matching subsequence (Vlachos et al., 2002). The recursive definition of LCS is given by 

Equation 2 in Figure 2, however the condition qi = cj is usually too strong for time series, so it is 

often replaced with a parameterized condition |qi−cj| ≤ ε, where 0 < ε < 1. 
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(4) EDR 

Figure 2. Definitions of elastic distance measures 

DTW solves the problem of local time shifting of time series (Chen and Ng, 2004; Das and 

Gunopulos, 2003; Keogh, 2002), can work with time series of different lengths (Berndt and 

Clifford, 1994), but since it does not satisfy the triangle inequality it is not a distance metric (Yi 

et al., 1998). Furthermore, like Euclidean distance, it is relatively sensitive to noise (Vlachos et 

al., 2002). The similarity measure Edit distance with Real Penalty is based on L1 and DTW 



measures. It solves the problem of local time shifting and represents a distance metric (Chen 

and Ng, 2004). ERP is defined by Equation 3 in Figure 2. This similarity measure introduces a 

constant value g (with the default value g = 0) as the gap of the edit distance and uses L1 

distance between elements as the penalty to handle local time shifting (Chen and Ng, 2004; 

Chen et al., 2005). The shortage of ERP is that it is also sensitive to noise (Chen et al., 2005). ERP 

was successfully used in solving various problems including classification of pulse waveforms 

(Zhang et al., 2010), clustering trajectories of moving objects (Pelekis et al., 2009), and querying 

time-series streams (Gopalkrishnan, 2008). 

Taking into account only sufficiently similar points, LCS solves the problem of the presence of 

noise (Vlachos et al., 2002), but does not differentiate similar time series consisting of similar 

sub-series with different sizes of gaps between them (Chen et al., 2005) and does not satisfy 

the triangle inequality (Vlachos et al., 2002). The similarity measure Edit Distance on Real 

sequence is based on edit distance like LCS, but unlike LCS, it finds the minimal number of edit 

operations needed to convert one time series to another (Chen et al., 2005). This measure is 

defined by Equation 4 in Figure 2. EDR is robust to noise and is expected to be more accurate 

than LCS because it assigns penalties to gaps between two similar sub-series according to the 

lengths of the gaps, but is not a distance metric (Chen et al., 2005). A novel clustering method 

of trajectories based on EDR is presented in (Abul et al., 2010). 

2.2 Time-Series Classification 

Time-series classification has attracted much attention recently in the time-series community. 

Approaches to classification vary from purely statistical methods such as exponential smoothing 

or ARIMA models, to those based on different data-mining techniques like neural networks, 

genetic algorithms, support vector machines and fuzzy systems. 

Statistical methods usually use Autoregressive (AR) models where the current value of time 

series is generated as a linear combination of the previous values. These methods are more 

appropriate for forecasting, but some interesting works can be found in the area of 

classification. Kini and Sekhar (2013) present the large margin autoregressive (LMAR) method 

that uses an AR model for each class and the large margin method for estimation of parameters 

of AR models. A system which builds groups of time series that share the same forecasting 

model applied to supply chains is presented by Turrado García et al. (2012). The similarity 

between two time series is defined in the following manner: two series will have the same 

associated ARIMA model if and only if the autocorrelation and partial autocorrelation functions 

give similar results in their N first positions. In the paper by Huan and Palaniappan (2004) the 

neural-network classification of autoregressive features is applied on time series of 

electroencephalogram signals extracted during mental tasks. 



An interesting approach for time-series classification is to transform the time series into 

standard feature vectors with a fixed dimensionality. In this case, many well-studied data-

mining techniques can then be adopted for classification or clustering. Zhang et al. (2006) 

proposed an algorithm based on the orthogonal wavelet transform, in which the coefficients of 

the Haar wavelet were extracted as a feature vector for subsequent time-series clustering.  

Eruhimov et al. (2007) use DTW to transform the time axis of each signal in order to decrease 

the Euclidean distance between signals from the same class. Afterwards, a range of attributes 

of both transformed time series and original time series are extracted to form a high-

dimensional feature vector. Another interesting approach is the adaptation of segment-based 

representations to extract features from time series (Geurts and Wehenkel, 2005; Lee et al., 

2008; Megalooikonomou et al., 2005). Recent activities in transformation of time series into 

feature vectors include utilization of segment-base features (Zhang et al., 2012) and the 

extraction of meaningful patterns from original data (Zhang et al., 2009). 

The most widely used approach to time-series classification is to define the distance function 

between two time series and use some of the existing distance-based classifiers. In this 

approach, the key problem is how to define a robust distance or similarity measure that can 

reflect the overall shape of the time series. The most standard distance measures are described 

in the previous subsection. Recently, an alignment-based distance metric called Time Warp Edit 

Distance (TWED) was proposed by Marteau (2009). It has been proved that this metric satisfies 

the triangle inequality. Górecki and Luczak (2013) emphasize the importance of using 

derivatives in time-series distance functions. This approach considers the overall shape of a 

time series rather than individual point-to-point function comparison. A generalization of the 

DTW measure is proposed by Jeong et al. (2011) as a novel distance measure, called Weighted 

DTW (WDTW). This measure penalizes the points according to the phase difference between a 

reference point of the first time series and test point of the second time series. The proposed 

approach can prevent some bad alignments where one point of the first time series maps onto 

a large part of the second time series. 

In this paper we adopt the aforementioned widely used approach to time-series classification of 

using distance measures between time series in conjunction with an existing distance-based 

classifier – 1NN. As was mentioned in the introduction, this choice of classifier was motivated 

by reports of it achieving among the best results (Ding et al., 2008; Keogh, 2002; Radovanović et 

al., 2010; Tomašev and Mladenić, 2012; Xi et al., 2006). The additional upside of 1NN is that its 

accuracy directly reflects the quality of the underlying distance measure, which augments our 

qualitative analysis of the impact of constraints, and also provides a practical demonstration of 

our observations. 

 



3. Methods and Tools 

3.1 Global Constraints of Time-Series Distance Measures 

Each of the above-mentioned elastic similarity measures (DTW, LCS, ERP and EDR) relies on 

dynamic programming for finding the optimal path within the search matrix. Dynamic 

programming requires comparing each element of one time series with each element of the 

other one. This makes the calculation of the similarity measures quite slow and has some 

limitations when dealing with large data sets. To improve the performance of these algorithms 

a number of techniques have been developed. The Sakoe-Chiba band (Sakoe and Chiba, 1978) 

narrows the warping window around the diagonal of the matrix using a constant range r. The 

Itakura parallelogram (Itakura, 1975) uses a similar approach: the range of the restriction is a 

function of i and j coordinates in the matrix. These restrictions of the search path are illustrated 

in Figure 3. Global constraints were originally introduced to prevent some bad alignments, 

where a relatively small part of one time series maps onto a large section of another time 

series. 

 
Sakoe-Chiba band 

 
Itakura parallelogram 

Figure 3. Sakoe-Chiba band and Itakura parallelogram 

Apart from speeding up the computation it was also suggested that the use of global 

constraints can actually improve the accuracy of classification compared to unconstrained 

similarity measures (Ratanamahatana and Keogh, 2005; Xi et al., 2006). Recently, Kurbalija et al. 

(2011) showed that global constraints can significantly reduce the computation time of DTW 

and LCS and that constrained measures are qualitatively different from their unconstrained 

counterparts. In Section 4, we will explore a wide variety of r values and examine their effect on 

DTW, LCS, ERP and EDR distance measures constrained by the Sakoe-Chiba band. 

3.2 The FAP System 

The usefulness of time series in the study of social, economic and natural phenomena has 

resulted in the development of a number of tools which, through different approaches, enable 

A B 



the analysis time series in various ways. Existing software systems for time-series analysis can 

be classified into two main groups: general data-mining and machine-learning systems (like 

WEKA (Hall et al., 2009) and RapidMiner (Rapid-I, 2013)), and statistical systems supporting 

statistical and econometric models of time series (like the SAS software (SAS, 2013) and GRETL 

(Baiocchi and Distaso, 2003)). Besides these two large groups of applications, there are also 

specialized programs for summarization and visualization of time series such as Spiral (Weber 

et al., 2001) and VizTree (Lin et al., 2004). 

The increased importance of studying different research areas of temporal data mining has 

resulted in a large amount of work introducing new methodologies for different task types 

including indexing, classification, clustering, prediction, segmentation, anomaly detection, etc. 

(Das and Gunopulos, 2003; Ding et al., 2008; Han and Kamber, 2006; Vogrinčič and Bosnić, 

2011). When dealing with time series there are several important concepts which need to be 

considered: pre-processing transformation, time-series representation, and similarity 

measures. The task of the pre-processing is to remove different kinds of distortions from raw 

time series. Reducing high dimensionality of time series by preserving its important properties 

is the task of different time-series representations: Discrete Fourier Transformation (DFT), 

Singular Value Decomposition (SVD), Discrete Wavelet Transformation (DWT), Piecewise 

Aggregate Approximation (PAA), Adaptive Piecewise Constant Approximation (APCA), etc. The 

task of the (dis)similarity measure between time series is to reflect the underlying (dis)similarity 

of the specific data they represent. There is a number of distance measures for similarity of 

time-series data: Lp distance, Dynamic Time Warping, distance based on Longest Common 

Subsequence, Edit Distance with Real Penalty, Edit Distance on Real sequence, Sequence 

Weighted Alignment model (Swale), etc. 

All these concepts, when introduced, are usually separately implemented and presented in 

different publications. Every newly-introduced representation method or distance measure has 

claimed a particular superiority (Ding et al., 2008). However, this was usually based on 

comparison with only a few counterparts of the proposed concept. On the other hand, to the 

best of our knowledge there is no freely available system for time-series analysis and mining 

which supports all mentioned concepts, with the exception of the work proposed in (Ding et al., 

2008). 

The motivation behind developing the Framework for Analysis and Prediction (FAP) system 

(Kurbalija et al., 2010) as a multipurpose and multifunctional library which supports the above 

mentioned important concepts of time-series analysis is to integrate these techniques into one 

common framework. The FAP library is designed to be a free, extensible open-source software 

package that implements the main techniques and methods needed for the analysis of time 

series (pre-processing, similarity measures, representation) and for temporal data mining 



(indexing, classification, prediction, etc.). By developing the FAP library in the form of an open 

source, free, and extensible framework we wanted to facilitate and accelerate the exploration 

of various new techniques of time-series analysis and mining, and to help researchers in 

comparing newly introduced and proposed concepts with the existing ones. The framework can 

be also useful to non-professionals from different domains as an assistance tool for choosing 

appropriate methods for their own data sets. 

In the current state of development, all main similarity measures are implemented, as well as 

several classifiers, statistical tests and representations. The implemented similarity measures 

include Lp, Swale, unconstrained and constrained DTW, LCS, ERP and EDR. The constrained 

measures are implemented using the Sakoe-Chiba band and the Itakura parallelogram. The 

system contains the implementation of the 1NN and kNN classifiers, the Holdout, Cross-

Validation and Leave-One-Out testing methods and the following time-series representations: 

PLA, PAA, APCA, SAX and Spline (Kurbalija et al., 2009). 

4. The Impact of the Sakoe-Chiba Band on Time-Series Distance 

Measures 

In our previous work (Kurbalija et al., 2011), we have studied the impact of the Sakoe-Chiba 

band on the speed of computing Dynamic Time Warping and Longest Common Subsequence, 

observing 38 data sets. We have also examined the change of the nearest neighbor graph using 

a small number of different warping window widths (75%, 50%, 25%, 20%, 15%, 10%, 5%, 1% 

and 0% of the length of time series). Based on these preliminary results we concluded that in 

case of DTW and LCS the constrained measures, besides better performance, represent 

qualitatively different measures than the unconstrained ones. 

 

In this section we will report the results of our expanded study of the influence of the Sakoe-

Chiba band on the most widely used elastic similarity measures: DTW, LCS, ERP and EDR. To 

better understand the influence of global constraints we will explore the efficiency and 

behavior of the 1NN classifier for different values of constraints and investigate its accuracy. 

We will report the change of the 1NN graph with regard to the change of the global constraints. 

Our choice of 1NN was mainly motivated by reports that it achieves among the best results 

compared to many other sophisticated classifiers for time-series data (Ding et al., 2008; Keogh, 

2002; Radovanović et al., 2010; Tomašev and Mladenić, 2012; Xi et al., 2006). In addition, the 

accuracy of 1NN directly reflects the quality of the underlying similarity measure. 

In the first phase of the experiments we will explore the change of the 1-nearest neighbor 

graph with respect to the change of the constraint size (Section 4.1). In the second phase we 

will investigate how these changes impact on the 1NN classifier regarding the nearest-



neighbors’ classes (Section 4.2). The examination of the constraint’s impact on classification 

accuracy is discussed in the third part of our study (Section 4.3). For all four considered 

similarity measures we have limited the warping window with the following constraint values 

for r: 90%, 80%, 70%, 60%, 50%, 45%, 40%, 35%, 30%, and all values from 25% to 0% in steps of 

1% of the time-series length. These values were chosen because it is expected that the 

measures with larger constraints behave similarly to the unconstrained measure, while smaller 

constraints have more interesting behavior (Kurbalija et al., 2011; Ratanamahatana and Keogh, 

2005; Xi et al., 2006). Furthermore, we included eight new data sets in the experiments. 

The experiments were conducted on 46 data sets from (Keogh et al., 2011), which includes the 

majority of all publicly available, labeled time-series data sets in the world. The properties of 

these data sets are shown in Table 1. The length of time series varies from 24 to 1882 

depending of the data set. The number of time series per data set varies from 56 to 9236 and 

the number of classes varies from 2 to 50. The data sets originate from a plethora of different 

domains, including medicine, robotics, astronomy, biology, face recognition, handwriting 

recognition, etc. 

 Data set Size Length Classes Data set Size Length Classes Data set Size Length Classes 

50words 905 270 50 fish 350 463 7 sonyaiborobotsurface 621 70 2 

adiac 781 176 37 gun_point 200 150 2 sonyaiborobotsurfaceii 980 65 2 

beef 60 470 5 haptics 463 1092 5 starlightcurves 9236 1024 3 

car 120 577 4 inlineskate 650 1882 7 swedishleaf 1125 128 15 

cbf 930 128 3 italypowerdemand 1096 24 2 symbols 1020 398 6 

chlorineconcentration 4307 166 3 lighting2 121 637 2 synthetic_control 600 60 6 

cinc_ecg_torso 1420 1639 4 lighting7 143 319 7 trace 200 275 4 

coffee 56 286 2 mallat 2400 1024 8 twoleadecg 1162 82 2 

cricket_x 780 300 12 medicalimages 1141 99 10 twopatterns 5000 128 4 

cricket_y 780 300 12 motes 1272 84 2 uwavegesturelibrary_x 4478 315 8 

cricket_z 780 300 12 noninvasivefatalecg_thorax1 3765 750 42 uwavegesturelibrary_y 4478 315 8 

diatomsizereduction 322 345 4 noninvasivefatalecg_thorax2 3765 750 42 uwavegesturelibrary_z 4478 315 8 

ecg200 200 96 2 oliveoil 60 570 4 wafer 7164 152 2 

ecgfivedays 884 136 2 osuleaf 442 427 6 wordssynonyms 905 270 25 

faceall 2250 131 14 plane 210 144 7 yoga 3300 426 2 

facefour 112 350 4         

Table 1. Properties of the data sets 

 

 

 



4.1. Change of the 1NN Graph with Narrowing Constraints 

The nearest-neighbor graph is a directed graph where each time series is connected with its 

nearest neighbor. We calculated this graph for unconstrained measures and for measures with 

the following constraints: 90%, 80%, 70%, 60%, 50%, 45%, 40%, 35%, 30%, and all values from 

25% to 0% in steps of 1% of the time-series length. After that, we observed the change of the 

nearest neighbor graphs as the percentage of time series (nodes in the graph) that changed 

their nearest neighbor compared to the nearest neighbor in the unconstrained measure. The 

graphical representation of results can be seen in Figures 4 through 7 for DTW, LCS, ERP and 

EDR, respectively. Each figure is represented by two charts for the sake of readability. The first 

chart (A) contains the behavior of 10 most representative data sets, illustrating the behavior of 

the   majority of data sets. The second chart (B) shows the general statistics over all data sets: 

minimum values, maximum values, average values and the deviations from the average values. 

The 1NN graphs of the DTW measure (Figure 4) remain the same until the size of the constraint 

is narrowed to approximately 60%–50%, and after that the graphs start to change. As the width 

of the warping window becomes smaller, an increasing number of data sets exhibits bigger 

changes. When the size of the Sakoe-Chiba band falls below 5% of the time-series length, 

changes are present in all of the data sets. For r = 0%, changes higher than 50% have been 

registered for the majority of the data sets (the only exceptions are beef, chlorineconcentration, 

coffee, italypowerdemand, mallat and oliveoil) and for some of them the alteration levels even 

reach values above 90% (50words, cbf, starlightcurves, synthetic_control, twopatterns, 

uwavegesturelibrary_x, wordssynonyms). 

The situation with LCS (Figure 5) is even more drastic: the 1NN graphs remain the same to 

approximately 30%–25%, while for smaller constraints they change more quickly for most of 

the data sets. When r reaches 0%, changes greater than 90% occur in a much larger number of 

data sets than in the case of DTW (17, opposed to 7). However, there are some exceptions. A 

number of data sets (beef, ecgfivedays, mallat, oliveoil, trace) exhibits changes only for very 

small values of the constraint (less than 2%) and in the case of chlorineconcentration there are 

some oscillations. 

 



 

 
Figure 4. Change of 1NN graph for DTW 
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Figure 5. Change of 1NN graph for LCS 
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The 1NN graph of the ERP measure (Figure 6) remains the same until the size of the constraint 

is narrowed to approximately 60%–50%, similarly as in the case of DTW. After that the graph 

starts to change more noticeably. For small values of the constraint (5%–0%) this change 

becomes significant for most of the data sets and in some cases even reaches values above 

70%–90%. It is also evident that the use of the Sakoe-Chiba band does not affect the 1NN graph 

in the same way for each data set: in case of a small number of data sets the changes are subtle 

or there are no changes at all (adiac, chlorineconcentration, coffee, gun_point, mallat, oliveoil, 

trace). 

 

 
Figure 6. Change of 1NN graph for ERP 
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EDR (Figure 7) behaves in a similar manner to LCS, but there are three noticeable differences. 

The changes begin later, only when the value of the constraint drops below 20%. The changes 

do not reach such high values as in the case of LCS – the maximum values are between 60%–

80%. Again, there is a small number of data sets where the changes are subtle (beef, 

chlorineconcentration, ecgfivedays, mallat, oliveoil, trace). 

 

 
Figure 7. Change of 1NN graph for EDR 

From the obtained results we can clearly see that for low values of the constraint the change of 

the 1NN graph becomes significant for most data sets in the case of all four similarity measures. 

A 
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This observation suggests that the constrained measures represent qualitatively different 

measures than the unconstrained ones. It is also clear that the application of the Sakoe-Chiba 

band does not have the same effect on all data sets, and there are noticeable differences in the 

behavior of the similarity measures. By studying the results we can immediately see two quite 

conspicuous characteristics of the Sakoe-Chiba band. First, warping window width of 0% most 

drastically affects LCS: for a significant number of data sets there is a sudden increase in the 

percentage of changed neighbors compared to r = 1% (some examples are: cinc_ecg_torso, 

coffee, diatomsizereduction, noninvasivefatalecg_thorax1, noninvasivefatalecg_thorax2 and 

wafer). Secondly, LCS, ERP and EDR for some data sets (for example, chlorineconcentration, 

mallat, oliveoil, trace) show only tenuous changes (or no changes at all except for the values of 

constraint r = 0%), with appreciably higher changes in the case of DTW. 

The general traits of differences between the similarity measures can be easily seen on the 

charts in Figure 8 and Figure 9. Figure 8 presents the average values of the changes in the 1NN 

graphs across all data sets, and Figure 9 shows the percentages of those data sets for which 

there are changes in the 1-nearest neighbor graph produced by the constrained similarity 

measures, compared to the 1NN graph of the unconstrained ones. It is obvious that the use of 

the Sakoe-Chiba band exhibits the greatest influence on DTW: changes in the 1NN graph arise 

as soon as the size of the constraint is narrowed to 60% and for very narrow warping windows 

they reach (on average) the highest values among the observed similarity measures. The 

smallest influence occurs in the case of EDR: the 1NN graph begins to change only when the 

size of the warping window drops below 20% of the length of time series, and the average 

change for r = 0% is lowest here. For most data sets LCS and ERP behave very similarly:  they are 

situated "between" DTW and EDR. This relationship between the similarity measures can also 

be seen in Figure 10 which shows the highest width of the warping window required to change 

at least 10% of the nodes in the 1NN graph (the first chart again contains 10 most 

representative data sets for the sake of readability, while the second chart shows general 

statistics for all data sets). Changes of this magnitude appear earliest for DTW (with average 

warping window width about 10.18%), followed by ERP (6.33%), then by LCS (4.78%), and at the 

end by EDR (2.54%). Comparisons using the Wilcoxon sign-rank test (García et al., 2009) reveal 

statistical significance of pairwise differences, with p-values shown in Table 2 (where the 

difference between ERP and LCS may be considered the one borderline case). 



 
Figure 8. The average changes in the 1NN graph 

 
Figure 9. The percentage of the data sets with changed 1NN graphs 

 



 

 
Figure 10. The smallest warping windows needed to change at least 10% of the 1NN graph 

 

 
LCS ERP EDR 

DTW 4.63E-07 3.63E-06 9.25E-09 

LCS  0.018192 0.001279 

ERP   2.16E-05 

Table 2. p values for the pairwise Wilcoxon sign-rank test of the differences in the highest width 

of the warping window required to change at least 10% of the nodes in the 1NN graph 
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4.2 Change of Classes with Narrowing Constraints 

The results described in Section 4.1 clearly indicate that the application of the Sakoe-Chiba 

band can significantly change the structure of the 1-nearest neighbor graph, especially for small 

warping-window widths. We have also seen that this influence is not manifested in the same 

way for different similarity measures. In this section we give an overview of how these changes 

in the 1-nearest neighbor graph may affect the behavior of the 1NN classifier. 

Classification denotes the process of grouping time series into predefined classes. The 1NN 

classifier represents a very simple form of classification: the class of the unclassified time series 

is determined as the class of its most similar time series. Despite its simplicity, the 1NN classifier 

often produces better results than other more complex classifiers (Ding et al., 2008; Keogh, 

2002; Radovanović et al., 2010; Xi et al., 2006). 

Since the results of 1NN classification depend entirely on the class of the nearest neighbor, 

changes in the nearest-neighbor graph directly affect the classification. In this section we will 

examine the extent to which nearest neighbors change their classes under the influence of the 

Sakoe-Chiba band. Similarly to the first part of the experiments, we record the percentage of 

those nearest neighbors which have under the influence of global constraints changed their 

classes compared to the nearest neighbors in the unconstrained measure. The graphical 

representation of results can be seen in Figures 11 through 14 for DTW, LCS, ERP and EDR, 

respectively. Each figure is represented by two charts for the sake of readability. The first chart 

(A) contains the behavior of 10 most representative data sets while the second chart (B) shows 

the general statistics over all data sets: minimum values, maximum values, average values and 

the deviation from the average values. 

In Section 4.1 we have seen that major changes to the 1NN graph occur for r < 5%. In this 

section we will examine that particular area in more detail. For easier description of the 

obtained results we rely on the following notation. Let N denote the set of nodes in the 1NN 

graph that changed their nearest neighbor compared to the nearest neighbor in the 

unconstrained measure, and let C denote the set of nodes in the 1NN graph whose nearest 

neighbor changed its class compared to the class of the nearest neighbor in the unconstrained 

measure. Obviously, C is a subset of N. Let δ denote the fraction of those modified nodes that 

have also changed their class: 

  
   

   
 

The values of δ for r < 5% are given in Tables 3 through 6 for DTW, LCS, ERP and EDR. Within 

these tables, data sets with the highest δ values (greater than or equal to 50%) are marked with 



symbol ●, and those with the lowest values (smaller than or equal to 10%) with symbol ○. The 

dash sign among the results in these tables indicates that there are no changes in the nearest 

neighbor graph compared to the unconstrained similarity measure. 

In case of DTW (Figure 11), nearest neighbors with changed classes are beginning to appear 

immediately with the first changes in the structure of the 1NN graph: when the width of the 

warping window drops to about 60% of the length of time series. The percentage of neighbors 

with changed class increases as the width of the Sakoe-Chiba band narrows, and for some data 

sets reaches values higher than 40% of the number of time series in the data set (haptics, 

inlineskate). Looking at Table 3 we can see that for r < 5% on average only about 22% of the 

changed nodes have modified their classes compared to the unconstrained measure. Changes 

greater than 50% are only present for three data sets: adiac, haptics and inlineskate. On the 

other hand, for one fourth of the observed data sets, δ is less than 10%. This is somewhat 

surprising since in the first part of the experiments we have found significant changes in the 

structure of the 1NN graph for r = 0% (about 25%–98%) for all data sets (except 

chlorineconcentration and beef). 

  



 Data set 4% 3% 2% 1% 0%  Data set 4% 3% 2% 1% 0% 

 50words 39.57 38.75 38.88 41.11 43.49 ○ mallat 3.64 3.66 3.68 3.34 3.09 

● adiac 60.00 74.07 58.06 54.85 50.44  medicalimages 31.71 31.91 34.72 34.35 34.35 

 beef 16.67 16.67 25.00 33.33 50.00  motes 15.52 15.51 13.87 13.77 13.77 

 car 50.00 42.00 27.54 28.21 34.12  noninvasivefatalecg_thorax1 37.11 31.88 29.34 27.16 25.26 

○ cbf 0.00 0.13 0.00 0.11 1.02  noninvasivefatalecg_thorax2 28.73 24.56 23.47 20.58 15.87 

○ chlorineconcentration 0.00 0.00 0.00 0.00 0.00  oliveoil 0.00 33.33 28.57 25.00 11.76 

○ cinc_ecg_torso 9.85 7.58 4.68 2.66 1.62  osuleaf 50.00 47.54 46.28 47.06 50.45 

 coffee 25.00 42.86 41.67 46.15 42.86  plane 33.33 20.00 10.00 7.41 4.17 

 cricket_x 32.45 31.62 30.80 31.43 41.69 ○ sonyaiborobotsurface 5.70 5.70 4.05 2.61 2.61 

 cricket_y 31.02 31.02 31.93 34.89 42.66  sonyaiborobotsurfaceii 11.06 8.01 8.01 5.96 5.96 

 cricket_z 31.88 30.82 32.76 32.59 42.60  starlightcurves 9.22 9.19 10.13 11.10 12.49 

 diatomsizereduction 33.33 25.00 8.33 1.52 0.40  swedishleaf 30.24 27.52 28.65 29.00 32.02 

 ecg200 25.00 21.84 21.70 18.52 18.52 ○ symbols 1.45 1.50 1.59 2.56 3.33 

○ ecgfivedays 2.04 1.27 0.90 1.28 1.36 ○ synthetic_control 2.07 2.09 2.09 8.24 8.24 

 faceall 13.53 6.81 5.12 4.88 5.90  trace 0.00 0.00 2.54 5.22 14.77 

 facefour 27.27 16.67 12.90 10.00 8.33 ○ twoleadecg 0.00 0.29 0.35 0.45 0.45 

 fish 41.67 36.75 29.95 28.03 29.62 ○ twopatterns 0.00 0.04 0.10 0.35 1.06 

 gun_point 22.54 17.65 16.00 12.95 12.00  uwavegesturelibrary_x 27.15 27.08 27.14 27.23 27.59 

● haptics 69.06 65.75 67.11 67.33 68.93  uwavegesturelibrary_y 37.83 37.21 36.86 37.06 37.38 

● inlineskate 62.73 64.21 64.53 66.23 64.23  uwavegesturelibrary_z 32.77 32.57 32.55 33.63 34.45 

○ italypowerdemand 5.45 5.45 5.45 5.45 5.45 ○ wafer 3.10 2.57 2.23 1.13 0.70 

 lighting2 12.16 17.95 22.58 23.23 29.13  wordssynonyms 37.71 36.99 36.59 38.89 41.33 

 lighting7 32.94 38.89 36.89 39.29 43.80  yoga 20.44 17.62 13.53 10.79 9.60 

 4% 3% 2% 1% 0% 

Average 23.11% 22.84% 21.29% 21.24% 22.37% 
 

Table 3. δ values for DTW 



 

 
Figure 11. Change of classes for DTW 

In accordance with the structure of the nearest neighbor graph for LCS, neighbors with altered 

classes begin to occur when the width of the warping window reaches 25%, but their number 

starts to grow significantly only when it drops below 10% (Figure 12). For r = 0% the changes are 

more noticeable than with DTW, for a number of data sets they even reach values above 70% 

(cricket_x, cricket_y, cricket_z). For lighting2, starlightcurves, symbols, synthetic_control, and 

yoga major changes in the 1NN graph at r = 0% (greater than 90%) are accompanied by 

significantly smaller changes in terms of classes (smaller than 40%). This indicates that only a 

smaller part of the changed nodes also changed their class. Comparing the results in Table 4 
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and Table 3 we can see that the average δ values for LCS are noticeably higher than for DTW, 

especially for r = 0%, where it is almost twice as high (the Wilcoxon sign-rank test indicates 

significance for r = 1% and r = 0%, with p values of 0.025467 and 3.34E-08, respectively). This 

means that changes in the structure of the LCS 1NN graph induced by applying the Sakoe-Chiba 

band more significantly alter the classes of nodes than for DTW. Another noticeable difference 

between these two similarity measures refers to the presence of greater fluctuations of δ 

values for some data sets using LCS (cbf, coffee, diatomsizereduction, faceall, facefour, 

synthetic_control, and yoga). There is also some resemblance between LCS and DTW: adiac, 

haptics and inlineskate are again among the data sets with the highest δ values, and some of 

the data sets with the lowest δ values are common for these two measures. 

 Data set 4% 3% 2% 1% 0%  Data set 4% 3% 2% 1% 0% 

 50words 43.55 39.66 37.74 35.83 58.88  mallat - - - 0.00 3.33 

● adiac 69.23 76.47 78.26 64.00 60.36  medicalimages 41.44 38.07 37.50 55.18 55.18 

● beef - - - 66.67 84.38  motes 14.29 10.91 7.17 20.05 20.05 

 car 42.86 28.57 23.81 21.25 74.11  noninvasivefatalecg_thorax1 87.50 100.00 72.00 50.50 39.83 

 cbf 0.46 0.52 1.34 2.53 62.66  noninvasivefatalecg_thorax2 85.71 90.00 83.33 54.95 29.94 

 chlorineconcentration - - - 16.78 9.58 ● oliveoil - - - 100.00 64.29 

○ cinc_ecg_torso - - 0.00 2.94 4.81  osuleaf 35.71 36.11 35.13 39.64 64.72 

 coffee - - 50.00 100.00 25.00  plane 11.11 15.38 4.55 2.50 8.64 

 cricket_x 58.82 52.87 42.49 39.52 79.01  sonyaiborobotsurface 0.00 0.00 3.85 14.55 14.55 

 cricket_y 41.96 35.85 31.43 31.99 81.42  sonyaiborobotsurfaceii 23.53 27.12 27.12 17.47 17.47 

 cricket_z 55.08 50.00 45.56 39.83 79.42  starlightcurves 11.34 11.34 11.44 11.34 18.19 

 diatomsizereduction 100.00 66.67 40.00 7.69 9.43  swedishleaf 12.32 11.74 14.16 17.11 35.84 

 ecg200 30.30 26.67 19.74 22.29 22.29  symbols 3.55 3.80 4.24 4.86 39.46 

 ecgfivedays - - - - 23.53  synthetic_control 8.47 7.05 7.05 31.32 31.32 

 faceall 18.31 5.65 4.28 4.05 28.50  trace - - 50.00 45.16 15.38 

 facefour 40.00 12.50 7.41 2.78 51.43 ○ twoleadecg 0.00 0.00 0.00 3.82 3.82 

 fish 46.94 32.58 28.67 27.35 63.16  twopatterns 0.12 0.13 0.26 0.78 70.22 

○ gun_point 0.00 0.00 4.55 3.85 8.40  uwavegesturelibrary_x 44.40 42.21 38.28 34.20 43.11 

● haptics 77.31 66.50 65.53 65.09 71.37  uwavegesturelibrary_y 42.24 37.26 35.55 34.16 53.97 

● inlineskate 51.39 59.50 64.13 63.16 64.94  uwavegesturelibrary_z 38.26 35.57 33.51 34.22 60.30 

○ italypowerdemand 10.00 10.00 10.00 10.00 10.00  wafer 50.00 22.22 12.82 1.34 1.01 

 lighting2 30.00 36.00 22.58 22.22 40.00  wordssynonyms 40.63 36.93 34.48 33.27 61.74 

 lighting7 60.71 60.61 46.34 44.90 66.41  yoga 19.73 10.11 9.97 8.74 31.07 

 4% 3% 2% 1% 0% 

Average 35.46% 31.49% 27.96% 29.11% 40.49% 
 

Table 4. δ values for LCS 



 

 
Figure 12. Change of classes for LCS 

Changes in the case of ERP (Figure 13) start from around r = 60% and are most visible for 

cricket_y in the same manner as for the 1NN graph (Figure 6). Percentage of nodes in the 

nearest neighbor graph whose neighbors changed their classes compared to the unconstrained 

ERP reaches values higher than 50% for a smaller number of data sets (cricket_x, cricket_y, 

cricket_z, and lighting7). There are data sets (cbf, cinc_ecg_torso, ecgfivedays, facefour, 

starlightcurves, twoleadecg, twopatterns, yoga) for which we noticed significant changes in the 

nearest neighbor graph (higher than 60% for r = 0%) but that produce only minor changes of 

classes (less than 8%). The average value of δ decreases as the warping window becomes 
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smaller. Adiac, haptics and inlineskate are still within the group of data sets which have the 

highest percentage of nodes with altered classes among the nodes changed by the Sakoe-Chiba 

band. We can see that several data sets with the lowest δ values reappear also with ERP. 

 Data set 4% 3% 2% 1% 0%  Data set 4% 3% 2% 1% 0% 

 50words 52.96 48.21 44.95 42.12 43.88  mallat - - - 0.00 2.51 

● adiac - 100.00 100.00 80.00 59.54  medicalimages 37.93 37.90 33.67 35.94 35.94 

● beef 57.14 62.50 62.50 60.00 60.00  motes 13.33 13.25 12.37 12.96 12.96 

 car 100.00 33.33 22.22 27.59 29.17  noninvasivefatalecg_thorax1 75.00 64.00 49.15 36.90 22.87 

○ cbf 0.00 0.00 0.00 0.00 2.60  noninvasivefatalecg_thorax2 87.50 87.50 68.75 31.36 15.21 

 chlorineconcentration - - - - 0.00  oliveoil - - - - - 

 cinc_ecg_torso 28.26 28.00 9.20 4.18 7.58  osuleaf 58.23 53.20 51.00 45.64 48.88 

 coffee - - - - -  plane 0.00 50.00 8.33 5.88 4.50 

● cricket_x 72.92 69.85 68.64 66.80 74.34 ○ sonyaiborobotsurface 4.88 4.88 3.55 3.31 3.31 

● cricket_y 89.89 88.43 87.96 88.39 91.02 ○ sonyaiborobotsurfaceii 5.80 4.23 4.23 3.47 3.47 

● cricket_z 68.99 63.83 61.21 61.31 70.30  starlightcurves 13.14 14.01 13.77 12.76 10.56 

 diatomsizereduction 0.00 50.00 33.33 50.00 1.15  swedishleaf 16.28 13.37 13.56 20.60 25.33 

 ecg200 59.26 45.95 29.85 17.65 17.65  symbols 10.89 8.57 5.63 5.01 5.43 

○ ecgfivedays 0.00 0.00 0.98 0.88 0.73 ○ synthetic_control 5.47 5.02 5.02 19.19 19.19 

 faceall 8.59 5.13 3.64 5.62 19.87  trace - - 0.00 8.70 14.75 

 facefour 50.00 20.00 5.88 4.17 4.23 ○ twoleadecg 1.33 1.37 0.30 0.93 0.93 

 fish 50.00 14.29 28.57 28.38 28.65 ○ twopatterns 0.00 0.00 0.16 0.49 2.72 

 gun_point - - 50.00 11.11 7.46  uwavegesturelibrary_x 33.42 30.96 29.41 28.93 29.25 

● haptics 63.64 66.94 63.64 62.71 62.85  uwavegesturelibrary_y 40.48 39.08 38.34 37.82 38.82 

● inlineskate 57.36 54.40 53.79 55.65 59.77  uwavegesturelibrary_z 36.51 36.36 34.44 33.93 34.35 

○ italypowerdemand 8.70 8.70 8.70 8.70 8.70  wafer 63.16 40.48 26.09 4.97 1.60 

 lighting2 50.65 51.76 48.89 45.54 41.03  wordssynonyms 45.29 42.06 37.65 36.02 37.93 

● lighting7 90.63 90.00 88.35 90.16 91.91  yoga 22.73 22.12 16.81 11.03 8.13 

 4% 3% 2% 1% 0% 

Average 37.96% 36.74% 31.54% 28.07% 26.39% 
 

Table 5. δ values for ERP 



 

 
Figure 13. Change of classes for ERP 

In compliance with the results for the EDR measure from Section 4.1, nodes with changed 

classes begin to appear when the width of the warping window is reduced below 20% of the 

length of the time series (Figure 14). Changes greater than one percent arise only for r < 12%. 

For constraint values close to zero, the highest number of nodes with changed classes emerges 

in case of haptics and inlineskate. They are the only two data sets that achieve changes larger 

than 40%. In terms of results obtained for δ, EDR most closely resembles ERP: they have very 

similar values and for both of them δ decreases as we reduce the width of the global constraint 

(the Wilcoxon sign-rank test reveals no significant difference). Adiac, haptics and inlineskate 
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retain their place among the data sets with the highest δ values, and a larger number of data 

sets with very small changes among the classes are repeated for EDR too. Interestingly, only 

EDR generates large δ values for the symbols data set, all the other similarity measures yield 

values less than 11% (the only exception is LCS with r = 0%, which gives almost 40%). 

 Data set 4% 3% 2% 1% 0%  Data set 4% 3% 2% 1% 0% 

 50words 40.95 37.99 34.26 31.91 34.00  mallat - - - - 0.00 

● adiac 75.00 62.50 85.71 66.67 53.26  medicalimages 29.41 32.54 37.43 42.83 42.83 

● beef - 100.00 100.00 66.67 83.33 ○ motes 9.84 9.62 7.77 7.38 7.38 

 car 71.43 31.58 20.51 19.74 31.18  noninvasivefatalecg_thorax1 80.00 85.71 76.92 65.75 28.11 

○ cbf 0.98 0.68 0.71 1.15 3.17  noninvasivefatalecg_thorax2 50.00 66.67 80.00 54.76 17.63 

 chlorineconcentration - - - - 0.00  oliveoil - - - - 66.67 

○ cinc_ecg_torso - - 0.00 0.00 0.20  osuleaf 31.61 31.36 33.08 37.92 48.69 

 coffee - 0.00 0.00 100.00 28.57 ○ plane 0.00 0.00 0.00 0.00 0.93 

 cricket_x 55.56 55.07 44.52 40.96 42.90  sonyaiborobotsurface 25.00 25.00 4.76 5.94 5.94 

 cricket_y 44.83 50.00 41.09 39.22 38.70 ○ sonyaiborobotsurfaceii 0.00 7.14 7.14 7.64 7.64 

 cricket_z 57.50 53.57 44.79 40.82 41.33  starlightcurves 12.80 14.57 14.33 13.17 12.33 

 diatomsizereduction 100.00 50.00 50.00 5.00 1.01  swedishleaf 8.75 9.55 13.25 17.25 26.04 

 ecg200 33.33 37.50 25.00 10.87 10.87  symbols 66.67 42.86 42.86 32.00 28.33 

 ecgfivedays - - - - 0.00  synthetic_control 13.51 18.10 18.10 20.12 20.12 

○ faceall 7.84 5.97 3.60 4.24 5.02  trace - - 0.00 47.83 33.90 

 facefour 50.00 11.11 4.17 2.08 5.00 ○ twoleadecg - 0.00 0.00 1.31 1.31 

 fish 47.62 28.21 27.84 24.88 35.07 ○ twopatterns 0.08 0.21 0.27 0.72 1.71 

○ gun_point 0.00 0.00 10.00 4.92 5.05  uwavegesturelibrary_x 46.82 40.94 34.79 30.56 29.22 

● haptics 70.79 66.43 61.99 65.13 65.14  uwavegesturelibrary_y 37.24 36.27 35.58 33.70 35.52 

● inlineskate 59.76 58.36 56.74 58.89 66.16  uwavegesturelibrary_z 33.84 32.56 30.84 32.08 35.34 

○ italypowerdemand 5.56 5.56 5.56 5.56 5.56  wafer 50.00 50.00 28.57 4.85 0.88 

 lighting2 - 100.00 66.67 50.00 27.03  wordssynonyms 48.05 48.25 45.29 43.28 41.31 

 lighting7 - 50.00 50.00 30.43 40.00  yoga 18.95 17.55 12.27 9.85 9.75 

 4% 3% 2% 1% 0% 

Average 36.68% 34.33% 29.91% 28.05% 24.44% 
 

Table 6. δ values for EDR 



 

 
Figure 14. Change of classes for EDR 

In the second part of the experiments we have seen that the properties identified by analyzing 

the structure of the nearest neighbor graphs are, in general, replicated among the data 

describing the change of classes. The average numbers of changed classes in 1NN graphs are 

presented in Figure 15. We can notice resemblance to the graphs in Figure 8 which shows the 

average number of changed nodes in the nearest neighbor graphs: the biggest changes are 

induced for DTW, the least ones for EDR, while LCS and ERP are in between. However, there are 

some differences, too. LCS and ERP provide similar average number of changed neighbors, but 

the average number of altered classes is higher for ERP. In terms of classes, ERP is closer to 
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DTW and LCS is closer to EDR. The other significant difference is found for small values of r 

(< 2%). In this area the number of nodes for LCS that have changed their classes rapidly grows, 

and for r = 0% LCS overtakes DTW. This confirms that warping window of width r = 0% has a 

special impact on LCS. 

Looking at the percentage of data sets for which there are nodes in the 1NN graph with 

changed classes, as shown in Figure 16, we can conclude that in case of all four measures the 

altered classes are beginning to appear immediately with the first changes in the structure of 

the nearest-neighbor graph. These graphs differ from the graphs shown in Figure 9 only slightly. 

This confirms that the Sakoe-Chiba band affects DTW the most, and that among the discussed 

similarity measures EDR is least affected. 

 
Figure 15. The average changes of classes 

 
Figure 16. The percentage of the data sets with changed classes 

By analyzing the percentage of those nodes in the 1NN graph which have altered their classes 

compared to the unconstrained measures, in relation to the total number of changed nodes 



(regardless of the class), we have seen that (for r < 5%) there are groups of data sets whose 

members exhibit similar characteristics under the influence of the Sakoe-Chiba band 

independent of the similarity measure. The first such group consists of the adiac, haptics and 

inlineskate data sets. Global constraints change their 1NN graphs in such way that a large part 

(over 50%) of the new neighbors have altered classes. The second group includes cbf, 

italypowerdemand, twoleadecg and twopatterns. These data sets give the lowest δ values (up 

to 10%) for each of the four measures (the only exception occurs in cbf and twopatterns with 

LCS for r = 0%). 

In Section 4.1 we have seen that there is a group of data sets (including chlorineconcentration, 

mallat, oliveoil and trace) for which LCS, ERP and EDR show only slight changes in the structure 

of the 1NN graph (or no changes at all) but DTW demonstrates more significant ones. For most 

of these data sets DTW has very low delta values, this could be the explanation why it has 

smaller average δ values than the other measures despite the fact that DTW produces the 

biggest changes in the nearest neighbor graph and among the classes, too. 

4.3 Impact on Classification Accuracy 

The results of Section 4.1 and Section 4.2 clearly confirmed that the use of the Sakoe-Chiba 

global constraint causes recognizable changes in the behavior of the four popular elastic 

similarity measures, especially for small values of the warping window width. The last phase of 

our experiments is devoted to analyzing how these changes affect the accuracy of the 1NN 

classifier. In the first step we will use stratified 9-fold cross-validation (SCV1x9) to find the 

smallest values of parameter r for which 1NN produces the smallest classification errors. In the 

second step, we will discuss to what extent the 1NN graphs that correspond to the values of 

parameter r selected in the first step differ from the 1NN graphs of the unconstrained similarity 

measures. In the third step, we will give a comparative review of the observed similarity 

measures based on the classification accuracies obtained by 10 runs of stratified 10-fold cross-

validation (SCV10x10) using the values of parameter r from the first step. We will conclude our 

analysis in the fourth step by observing some general differences between the studied 

similarity measures. 

The lowest widths of the warping window for which SCV1x9 gives the smallest classification 

error are presented in Table 7 (the same set of r values was searched as in Section 4.1 and 

Section 4.2; in case of ties we report the lowest values of r). On average, this value is lowest in 

the case of DTW (about 4% of the length of time series) and highest for ERP (almost 10% of the 

length of time series). Values greater than 10% were observed only for some of the 46 

investigated data sets. We have found only two such data sets for DTW (lighting2 and motes), 

six for EDR, nine for ERP, and ten for LCS – whereas in case of ERP several data sets have values 

greater than 30% (cinc_ecg_torso, cricket_x, cricket_y, cricket_z, lighting2, lighting7, motes). 



Overall, in most cases the results obtained for different similarity measures are close, but there 

are also data sets for which certain similarity measures differ substantially from the others in 

this respect (cinc_ecg_torso, cricket_z, lighting2, lighting7, osuleaf). 

 Data set DTW LCS ERP EDR  Data set DTW LCS ERP EDR 

 50words 6 8 4 15  mallat 4 1 1 0 

 adiac 1 1 1 1  medicalimages 5 10 7 6 

 beef 2 2 10 4  motes 21 12 35 14 

 car 1 8 5 7  noninvasivefatalecg_thorax1 0 1 2 6 

 cbf 2 8 1 5  noninvasivefatalecg_thorax2 0 1 3 0 

 chlorineconcentration 0 0 0 0  oliveoil 0 2 0 1 

 cinc_ecg_torso 2 2 35 1  osuleaf 5 23 11 14 

 coffee 3 3 0 2  plane 5 5 4 1 

 cricket_x 7 12 40 9  sonyaiborobotsurface 0 3 5 5 

 cricket_y 10 14 70 12  sonyaiborobotsurfaceii 2 2 2 2 

 cricket_z 7 15 35 9  starlightcurves 10 14 2 6 

 diatomsizereduction 0 1 0 1  swedishleaf 3 5 3 8 

 ecg200 0 2 0 4  symbols 7 6 5 6 

 ecgfivedays 1 1 0 0  synthetic_control 9 17 7 7 

 faceall 3 7 6 4  trace 4 4 2 2 

 facefour 3 1 9 4  twoleadecg 3 2 11 2 

 fish 1 5 3 6  twopatterns 4 5 3 5 

 gun_point 4 6 3 5  uwavegesturelibrary_x 6 9 7 12 

 haptics 5 6 4 6  uwavegesturelibrary_y 6 3 3 8 

 inlineskate 6 10 5 9  uwavegesturelibrary_z 3 16 4 15 

 italypowerdemand 0 5 0 0  wafer 0 4 3 0 

 lighting2 13 15 45 1  wordssynonyms 6 12 5 7 

 lighting7 5 5 40 4  yoga 2 7 5 7 

 DTW LCS ERP EDR 

Average 4.07 6.54 9.70 5.28 
 

Table 7. The values of parameter r for which SCV1x9 give the smallest error rate 

In Section 4.1 and Section 4.2 we have shown that application of the Sakoe-Chiba band exerts 

the greatest influence on DTW and the lowest influence on EDR, while the magnitude of its 

effect on LCS and ERP is somewhere between these two boundary cases. This difference can be 

perceived among the data in Table 8, too. Table 8 contains the percentages of those nodes of 

1NN graphs which have changed their classes under the influence of the constraint parameter r 

(whose values are taken from Table 7), compared to the nodes of the 1NN graphs of the 

unconstrained measures. The number of data sets for which SCV1x9 gives lowest classification 

error without changes in the NN graph (regarding the classes of the nodes) is smallest for 

DTW (4) and highest for EDR (25). For LCS and ERP there are 16 such data sets. In order to 



achieve the best classification accuracy, changes over 10% are most frequently required for 

DTW (20 data sets), followed by ERP (7 data sets). In case of LCS and EDR, changes of this 

magnitude are needed only for the adiac data set. 

 Data set DTW LCS ERP EDR  Data set DTW LCS ERP EDR 

 50words 27.96 5.75 19.78 0.00  mallat 0.67 0.00 0.00 0.00 

 adiac 14.47 16.39 3.07 13.06  medicalimages 10.60 2.10 3.59 1.49 

 beef 3.33 0.00 1.67 0.00  motes 1.89 0.08 0.00 0.00 

 car 18.33 0.00 0.00 0.00  noninvasivefatalecg_thorax1 21.70 1.35 0.77 0.03 

 cbf 0.00 0.00 0.00 0.00  noninvasivefatalecg_thorax2 13.25 1.33 0.19 7.92 

 chlorineconcentration 0.00 0.37 0.00 0.00  oliveoil 3.33 0.00 0.00 0.00 

 cinc_ecg_torso 1.41 0.00 0.00 0.00  osuleaf 24.21 0.45 5.20 0.23 

 coffee 5.36 0.00 0.00 0.00  plane 0.00 0.00 0.00 0.00 

 cricket_x 13.21 0.51 0.38 0.00  sonyaiborobotsurface 1.93 0.00 0.81 0.00 

 cricket_y 10.26 0.13 0.00 0.00  sonyaiborobotsurfaceii 2.76 1.63 1.43 0.10 

 cricket_z 13.08 0.13 0.26 0.00  starlightcurves 1.93 0.17 2.45 0.10 

 diatomsizereduction 0.31 0.62 0.31 0.31  swedishleaf 15.29 0.98 2.22 0.00 

 ecg200 12.50 7.50 10.50 1.50  symbols 0.29 0.78 0.39 0.00 

 ecgfivedays 0.68 0.00 0.57 0.00  synthetic_control 0.83 0.00 2.17 0.00 

 faceall 1.73 0.04 0.49 0.18  trace 0.00 0.00 0.00 0.00 

 facefour 2.68 1.79 0.89 0.89  twoleadecg 0.09 0.00 0.00 0.00 

 fish 21.14 3.43 0.29 0.29  twopatterns 0.00 0.00 0.00 0.00 

 gun_point 8.00 0.00 0.00 0.00  uwavegesturelibrary_x 20.12 0.96 10.92 0.00 

 haptics 30.89 8.86 10.58 5.83  uwavegesturelibrary_y 26.66 3.04 16.66 1.25 

 inlineskate 22.46 0.46 8.77 2.62  uwavegesturelibrary_z 26.51 0.76 14.96 0.18 

 italypowerdemand 2.65 0.18 1.09 0.09  wafer 0.57 0.06 0.24 0.11 

 lighting2 4.13 0.00 0.00 7.44  wordssynonyms 26.30 1.33 14.48 0.55 

 lighting7 17.48 6.29 0.00 0.00  yoga 5.06 0.39 0.21 0.03 

 DTW LCS ERP EDR 

Average 9.48% 1.48% 2.94% 0.96% 
 

Table 8. Percentage of nodes in 1NN graph with changed classes for the values of parameter r 

from Table 7, compared to unconstrained measures 

In order to compare the classification performance of the studied similarity measures we 

computed 1NN classification errors with the SCV10x10 evaluation method using the results 

from Table 7 as values for the global constraint parameter r. The lowest average error is 

produced by LCS (11.43%), the largest one by ERP (12.44%), and DTW (11.52%) and EDR 

(11.86%) are in between (Table 9). Looking at individual data sets the lowest classification error 

most often occurs with DTW (21 data sets), then with EDR (12 data sets) followed by LCS (11 

data sets) and ERP (7 data sets). The mean value of the differences between the minimum and 



maximum errors is about 3.82. The biggest differences are with the following data sets: symbols 

(18.65), osuleaf (13.55), car (10.83), lighting2 (8.79) and trace (8.35). 

 Data set DTW  LCS  ERP  EDR   Data set DTW  LCS  ERP  EDR  

 50words 18.63  16.03 ● 21.27 ○ 15.51 ●  mallat 1.20  7.02 ○ 0.63 ● 7.03 ○ 

 adiac 31.42  33.18 ○ 32.24  32.24   medicalimages 18.71  22.76 ○ 18.72  21.81 ○ 

 beef 47.67  43.00  51.17 ○ 43.33   motes 4.51  1.45 ● 2.95 ● 1.71 ● 

 car 18.17  11.42 ● 20.17  9.33 ●  noninvasivefatalecg_thorax1 15.65  18.27 ○ 16.49 ○ 18.14 ○ 

 cbf 0.02  0.02  0.00  0.05   noninvasivefatalecg_thorax2 9.48  11.37 ○ 9.61  10.87 ○ 

 chlorineconcentration 0.27  0.81 ○ 0.60 ○ 0.80 ○  oliveoil 11.17  12.00  12.00  13.00  

 cinc_ecg_torso 0.01  0.01  0.23 ○ 0.07   osuleaf 26.49  12.94 ● 24.89  12.97 ● 

 coffee 4.83  4.47  11.93 ○ 4.57   plane 0.00  0.05  0.10  0.05  

 cricket_x 15.68  18.91 ○ 20.29 ○ 18.92 ○  sonyaiborobotsurface 1.29  1.55  0.90  1.66  

 cricket_y 13.73  15.72 ○ 17.36 ○ 16.88 ○  sonyaiborobotsurfaceii 1.19  1.82 ○ 1.10  1.10  

 cricket_z 14.95  18.01 ○ 20.55 ○ 19.38 ○  starlightcurves 6.28  9.23 ○ 10.03 ○ 9.06 ○ 

 diatomsizereduction 0.06  0.06  0.06  0.06   swedishleaf 11.32  8.54 ● 9.88 ● 7.99 ● 

 ecg200 10.00  9.10  7.35 ● 9.40   symbols 1.62  1.36  1.71  20.01 ○ 

 ecgfivedays 0.17  0.10  0.25  0.15   synthetic_control 0.45  2.18 ○ 1.02 ○ 3.02 ○ 

 faceall 1.45  0.87 ● 0.90 ● 0.71 ●  trace 0.10  0.25  8.45 ○ 1.80 ○ 

 facefour 3.66  1.08 ● 0.98 ● 0.89 ●  twoleadecg 0.03  0.12  0.19 ○ 0.11  

 fish 13.46  9.97 ● 12.77  7.77 ●  twopatterns 0.00  0.01  0.01  0.01  

 gun_point 1.90  0.60 ● 1.75  0.60 ●  uwavegesturelibrary_x 19.16  21.40 ○ 20.68 ○ 21.34 ○ 

 haptics 53.50  51.34  54.14  51.31   uwavegesturelibrary_y 25.66  30.14 ○ 27.97 ○ 26.36 ○ 

 inlineskate 44.18  40.80 ● 36.45 ● 40.31 ●  uwavegesturelibrary_z 25.46  24.72 ● 26.97 ○ 26.63 ○ 

 italypowerdemand 3.41  3.50  3.70  2.79 ●  wafer 0.11  0.13  0.19 ○ 0.12  

 lighting2 9.50  14.54 ○ 12.57  18.29 ○  wordssynonyms 17.43  15.51 ● 19.05 ○ 18.51  

 lighting7 21.17  26.68 ○ 28.37 ○ 26.22 ○  yoga 4.66  2.88 ● 3.60 ● 2.58 ● 

  

 DTW LCS ERP EDR 

Average 11.52% 11.43% 12.44% 11.86% 
 

 

Table 9. Classification errors obtained for SCV10x10 

 with the values of parameter r from Table 7 

Statistically significant differences in error rates are denoted by symbols ● and ○ in Table 9, 

with the former signifying improvement, and the latter degradation of classifier performance 

when comparing LCS, ERP and EDR measures with DTW. For this we employed the corrected 

resampled t-test (Nadeau and Bengio, 2003) which adjusts to the loss in degrees of freedom 

due to repeated runs of cross-validation, at significance level 0.001. We report DTW as the 

baseline method in Table 9 since it is the recommended best choice of distance measure (Ding 

et al., 2008). 



In order to assess whether some distance measure can be said to be better than others in the 

average case, we counted the statistically significant wins and losses according to the corrected 

resampled t-test, for each distance measure, with the results summarized in Table 10. The 

counts suggest that DTW is generally better (despite having slightly higher average error rate 

than LCS), with LCS and EDR tied second, and ERP exhibiting the worst performance. 

 Wins Losses W–L 

DTW 52 33 19 
LCS 41 37 4 

ERP 31 58 –27 

EDR 40 36 4 

Table 10. Statistically significant wins and losses counts for the 1NN classifier with different 

distance measures, across all data sets 

On the other hand, when we compare the average error rates across all data sets using the 

Wilcoxon sign-rank test (as in previous sections), the differences are not particularly strong, as 

shown in Table 11 which contains the corresponding p values. The one possibly significant 

difference when using this test is between DTW and ERP. 

 
LCS ERP EDR 

DTW 0.79738 0.018043 0.4597 

LCS  0.09515 0.93264 

ERP   0.12063 

Table 11. p values for the pairwise Wilcoxon sign-rank test of the differences in average error 

rates across the data sets 

Overall, based on the statistical tests, we can conclude that there is some evidence to consider 

DTW as the generally best distance measure, and ERP as the generally worst, but the evidence 

is not overwhelming. Furthermore, when observing the statistical differences on individual data 

sets (corrected resampled t-test, 0.001 significance level), for every distance measure there are 

at least a couple of data sets where the measure is significantly superior to all others. 

Therefore, the choice of the best distance measure for a particular problem may be different 

for the generally best case. 

Observing the graphs of average classification errors across different values of r (Figure 17), the 

most evident common characteristic of the four discussed similarity measure is that for small 

widths of the warping window (< 6%) the average classification error steeply increases, and in 

all four cases reaches its maximum for r = 0% (DTW: 15.97%, LCS: 33.56%, ERP: 20.67%, EDR: 

17.20%). The largest increase occurs for LCS and the lowest one for DTW. Within the area from 

r = 100% to r = 6% the similarity measures exhibit different behaviors. While in case of DTW the 

average classification error almost monotonously decreases from 14.04% to 12.38%, for ERP it 



almost monotonously increases from 13.03% to 14.63%. While a tendency of growth can also 

be noticed for LCS and EDR, the changes are very subtle: in case of LCS the average error ranges 

between 11.62% and 11.98%, and in case of EDR it ranges between 11.87% and 12.10%. This 

suggests that although DTW can be considered the best general choice according the previous 

analysis, LCS and EDR could be safer choices because of the less pronounced need for tuning 

the r parameter. 

 
Figure 17. Average classification errors for SCV10x10 

5. Conclusions and Future Work 

A suitable choice of similarity measure between time series is an important part of similarity-

based retrieval, and is in some form included in many tasks of time-series analysis. Since 

Euclidean distance is a very simple measure which is calculated quickly and represents a 

distance metric, it has become one of the most commonly used measures of similarity between 

time series (Agrawal et al., 1993; Chan and Fu, 1999; Keogh et al., 2001a, 2001b). However, it 

has two major disadvantages: it can only work with time series of the same length and is 

sensitive to distortions and shifting along the time axis (Keogh, 2002; Ratanamahatana and 

Keogh, 2005). To overcome these weaknesses many elastic measures are proposed in the 

literature (DTW, LCS, ERP, EDR, etc.). These measures have better classification accuracy than 

Euclidean distance (Ding et al., 2008), but they are all based on dynamic programming, which 

means that their computation complexity is quadratic. To decrease the computation time of the 

elastic measures global constraints are introduced, narrowing the search path in the matrix. 



It was suggested that, in the case of DTW, the use of global constraints can actually improve the 

accuracy of classification compared to unconstrained similarity measures (Ratanamahatana and 

Keogh, 2005; Xi et al., 2006). In our previous work (Kurbalija et al., 2011), based on a smaller 

number of different warping window widths, we have determined that the constrained versions 

of the DTW and LCS measures qualitatively differ from their unconstrained counterparts and 

analyzed the speed-up gained by using global constraints. In this paper we have expanded our 

study of the impact of global constraints on the four most widely used elastic similarity 

measures: DTW, LCS, ERP and EDR. Through an extensive set of experiments we have described 

in detail the impact of the Sakoe-Chiba band on the nearest-neighbor graph. We showed that 

the constrained measures are qualitatively different than the unconstrained ones. From the 

obtained results we can clearly see that for low values of the constraint (less than 15%–10%) 

the change of the 1NN graph becomes significant for all of the considered similarity measures. 

In addition to this, the results reveal that there are notable differences in the effects of the 

constraints on different distance measures. DTW was found to be the most sensitive to the 

introduction of global constraints regarding the 1NN graph, while EDR is the least sensitive. The 

behavior of ERP and LCS measures was determined to be somewhere in between. Furthermore, 

comparison of 1NN classifier performance showed that DTW generally has a slight edge over 

other distance measures (especially ERP), but is more sensitive to the choice of the r parameter. 

The findings of our studies have clearly shown that all of the main elastic similarity measures 

(DTW, LCS, ERP and EDR) significantly change their behavior for small values of the global 

constraint. Thus, we expect our results to aid researchers and practitioners in selecting and 

tuning appropriate time-series similarity measures for their respective tasks, making the 

selection/tuning process simpler and faster, at the same time producing more accurate results. 

In addition, the insight into the behavior of similarity measures with respect to changing 

constraints can be beneficial to the design of efficient indexing strategies for fast computation 

of (approximate) nearest neighbors. In future work, we plan to expand the investigation of the 

effects of these changes on the accuracy of a wider range of distance-based classifiers. It would 

also be interesting to explore the influence of the Itakura parallelogram compared to the 

influence of the Sakoe-Chiba band. 
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