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ABSTRACT

We consider a multicriteria decision-making context in which the decision-maker's preferences are represented by a multi-attribute additive value
function. We account for imprecision concerning the per-formance of alternatives, value functions and weights, which represent the relative importance
of criteria, We propose two new methods based on dominance intensity measures aimed at ranking alternatives. Both methods can be applied to
different representations of imprecision about weights. Their perfor-mance is compared with other existing approaches when ordinal weight
information represents impre-cision concerning weights. Monte Carlo simulation is used for the comparison in terms of a hit ratio and a rank-order

correlation.

1. Introduction

A key concept in Multi-Attribute Value Theory (MAVT) refers to
preferential independence conditions, see Keeney and Raiffa [7].
For reasons described in Raiffa [14] and Stewart [21], the additive
model is considered a valid approach in many practical situations
and is widely used. The functional form of the additive model is

v(a) =Y Wui(xy), (1)
=

where x; is the performance over the attribute (or criterion)
X;, i=1,...,n, for the alternative a;,i = 1,...,m; and v; is the value
function and wj; is the weight, respectively, for attribute X;. Note
that 337 ,w;=1and w; > 0.

However, it is often not easy to elicit precise value functions
and/or values for scaling weights. They are often described within
prescribed bounds or as just satisfying certain relations. Different
authors refer to this situation as decision-making with imprecise
information, incomplete information or partial information [15,16].

Several reasons are given in the literature that justify why a
decision maker (DM) may wish to provide imprecise information
[23,20]. For instance, regarding alternative performances, some
parameters of the model may be intangible as they reflect social
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or environmental impacts. Also, performance may be taken from
statistics or measurements, and the information that would set
the value of some parameters may be incomplete, contradictory
or controversial. Regarding weights, DMs may find it difficult to
compare criteria or may not want to reveal their preferences in
public. Moreover, the decision could be taken in a group deci-
sion-making situation, where imprecise information, such as
weight rankings or weight intervals, is usually derived from a
negotiation process [6,11].

Many papers on MAVT have dealt with imprecise information.
Sage and White [17] proposed the model of Imprecisely Specified
Multi-Attribute Utility Theory (ISMAUT), where preference infor-
mation about both weights and utilities is not assumed to be pre-
cise. Malakooti [10] suggested an efficient algorithm for ranking
alternatives when there exists imprecise information about pref-
erences and alternative values. Ahn [1] extended Malakooti’s
work. Lee et al. [9] extended the approach to hierarchical struc-
tures, and Park [12] developed the concepts of weak potential
optimality and strong potential optimality. More recently, the TOP-
SIS method has been extended to uncertain linguistic environ-
ments [25,26] or used for determining DM weights with
interval numbers [27]. Dias [19] provide a brief overview of ap-
proaches proposed by different authors within the MAUT (Mul-
ti-Attribute Utility Theory) and MAVT framework to deal with
imprecise information.

A recent approach to deal with imprecise information is com-
puting different measures of dominance to derive a ranking of
alternatives, known as dominance measuring methods. Ahn and Park
[2] compute both dominating and dominated measures to derive
net dominance. This is used as a measure of the strength of prefer-
ence in the sense that a greater net value is better. However, the



results of simulation experiments suggest that surrogate weighting
methods, specifically the rank-order centroid weights (ROC) method,
perform best in terms of selecting the best alternative and ranking
alternatives.

In this paper we consider a decision-making problem with n
attributes, X = {Xj,...,X,}, and m alternatives, A = {a1,...,0n},
where W (W= (wy,...,w,) e W) and V; (vi = (vi(Xi1), ..., vi(Xin))
€ V;) define the feasible region for scaling weights and values
associated with the alternative g; over each attribute, respectively,
representing imprecise information. Therefore, Eq. (1) can be
rewritten as

v() = {(Wvilw e W,v; e Vi

We analyze two new dominance measuring methods based on a
dominance intensity that we will denote from now on as domi-
nance intensity methods. The first method computes dominating
and dominated measures in the manner of Ahn and Park [2], but
these measures are combined into a dominance intensity rather
than a net dominance measure. In the second method, a global
dominance intensity measure is derived to rank alternatives. A sim-
ulation study is performed to compare the proposed methods with
Ahn and Park [2] and with surrogate weighting methods and mod-
ified decision rules.

The paper is organized as follows. Section 2 reviews earlier
methods for dealing with imprecise information within MCDM.
Section 3 introduces two dominance intensity measuring methods.
Section 4 illustrates the proposed methods with an example. Sec-
tion 5 uses Monte Carlo simulation to compare the performance
of the proposed methods with the approaches reviewed in Sec-
tion 2. We outline the conclusions in Section 6.

2. Review of earlier methods for dealing with imprecise
information within MCDM

Different approaches dealing with imprecise attribute weights
to output a best alternative and/or ranking of alternatives can be
found in the literature. In this section, we detail the approaches
that will be compared with the methods that we propose in order
to analyse their performance. We start with surrogate weighting
methods, which can be used when there are ordinal relations
regarding attribute weights. Next, we introduce some classical
decision rules modified to account for imprecise decision contexts
based on the absolute dominance concept. Finally, we describe two
dominance measuring methods.

2.1. Surrogate weighting methods

If the DM provides ordinal relations regarding attribute weights,
i.e., we consider a ranking of importance of attributes, arranged in
descending order from the most to the least important attribute,
then

weW

n
—{w—(wl,...,wn)|w1 SWy = =W, >O,Zwi—l}.
1

Surrogate weighting methods deal with ranked attribute weights
to output a best alternative and/or ranking of alternatives. In these
methods, a weight vector is selected from a set of admissible
weights to represent the set. This vector is then used to evaluate
the alternatives by means of the multi-attribute value model.
Commonly used surrogate weighting methods are rank sum (RS)
weights and rank reciprocal (RR) weights, proposed in Stillwell

et al. [22], or rank-order centroid (ROC) weights and equal (EW)
weights, suggested by Barron and Barrett [3]. Table 1 shows how
weights are computed for the above surrogate weighting methods.

The ROC and RR methods typically attach more importance to
the best rankings. Compared with the ROC method, the RR method
distributes values more evenly over the worst rank. Thus, aggrega-
tion by the RR method is insensitive to the order of the worst ranks.
On the other hand, the EW method assigns equal weights to all the
attributes, whereas the RS method emphasizes all the weight rank-
ings at the same level (i.e, W1 — Wy =Wy, — W3 =--- =Wj,_1 — Wy).

Surrogate weighting methods have been evaluated by differ-
ent authors (see, e.g., [4]). The common conclusion reached is
that the ROC method has an appealing theoretical rationale
and appears to perform better than the other rank-based
schemes in terms of choice accuracy. ROC has been extended
to address the situation where alternative performances for an
attribute are not precisely known, but again the DM has to pro-
vide ordinal information [20], i.e,, a ranking of alternatives for
the respective attributes.

2.2. Dominance measuring methods

A possibility described in the literature for dealing with impre-
cision is based on the concept of dominance. Given two alternatives
a, and g;, alternative a, dominates g; if Dy; > 0, with Dy; being the
optimum value of the optimization problem,

Dy = min{z(ay) — v(a;) = w'v, —wivjjw e W, v, € Vv, € V}},

2)
and there exists at least one w, v, and v; such that the overall value
of gy is strictly greater than that of g;. This concept of dominance is
called pairwise dominance.

Another type of dominance, known as absolute dominance [18],

can be employed. Absolute dominance considers the following
optimization problems:

Uy = max {w'v|w € W, v, € V} and
Ly = min {W'vi|w € W, vy € Vi }.

Alternative q; dominates absolutely g; if Ly > U;. Note that if a
absolutely dominates g;, then g, dominates g;, but the reverse does
not hold.

This dominance approach often results in almost no priorization
of alternatives or too many non-dominated alternatives [8]. How-
ever, pairwise and absolute dominance values can be used to further
prioritize competitive alternatives, and hence recommend the best
alternative and fully rank alternatives. The use of these dominance
values is exemplified by the modification of four classical decision
rules to encompass an imprecise decision context [13,18]:

o maximax or optimist rule (OPT) consists of evaluating each alter-
native based on its maximum guaranteed value, i.e. best
case = maximax: max;{U;}.

o maximin or pessimist rule (PES) consists of evaluating each alter-
native based on its minimum guaranteed value, i.e., worst
case = maximin: max;{L;}.

Table 1
Surrogate weighting methods.
Rank sum weights (RS) w; = nzi;j _ zngrz’ﬂ;;)’i -1,....n
Rank reciprocal weights (RR) w=—YL i-1....n
i qu 1/ B B B

Rank-order centroid weights ROC Ry
& ( ) wl-:izf;w,izl,m,n

Equal weights (EW) wi=L1i=1,..n




o minimax regret rule (REG) consists of evaluating each alternative
based on the maximum loss of value with respect to a better
alternative = minimax regret: ming{MR;}, where MR, repre-
sents the maximum regret incurred when choosing alternative
ag, 1.e.,

MRy =max {max{w'v; —-w'vilwe W, v, € V; v, eV, }Vj#k}.

o central value rule (CEN) consists of evaluating each alternative
based on the midpoint of the range of possible perfor-

mances = central values: maxk{%}.

Obviously none of these rules ensures that the best-ranked
alternative coincides. However, simulations show that the selected
alternative is generally one of the best [19].

A more recent approach is computing different measures of
dominance to derive a ranking of alternatives, known as dominance
measuring methods. For instance, Ahn and Park [2] compute a dom-
inating measure ¢} = Z%ij and a dominated measure

ok

¢r = > Dy for alternative g, and then derive a net dominance
J#k

as ¢y = ¢ — ¢, With these measures, Ahn and Park proposed
two methods:

¢ API: Rank alternatives according to ¢; values, where the pro-
posed alternative is that for which ¢} is maximum.
e AP2: Rank alternatives according to ¢.

3. Dominance intensity measuring methods

We introduce two new dominance measuring methods based
on dominance intensities, denoted dominance intensity measuring
methods. The first one is based on the same idea as Ahn and Park
[2]. It also computes dominating and dominated measures but they
are combined into a dominance intensity rather than a net domi-
nance index. In the second method, a global dominance intensity in-
dex is derived to rank alternatives. These are used as a measure of
the strength of the preference in the sense that a greater value is
better.

3.1. Dominance intensity method 1 (DIM1)
DIMT1 is implemented as follows:
1. Obtain the paired dominance values Dy; by solving problem Eq.

(2) for m{(m — 1) ordered pairs of alternatives, grouped in the
matrix;

- Dp Dim-1y Dinm

Dy - Dym—1y Dom

p=|Da Dsn D31y Dap
Dm1 sz Dm(m—l) -

2. Compute the dominating indices ¢;, ¢~ and ¢;~ for each alter-
native ay:

m m m
(]5; = ZDkJ‘, ;> = Z ij, and ¢;< = ZDkJ‘, l<:1,...,m.
ok j=1 ok
j#k ij<0
DU>O
In other words, ¢; is computed adding the paired dominance values
in the kth row of D, whereas ¢~ and ¢~ are computed in the same
way, but just considering positive and negative values in the corre-
sponding row, respectively. Clearly, ¢} = ¢}~ + ¢/ ~.

3. Compute the ratio

+>
Ri == o=
k k
Note that R} is well defined because we can assume
that 0 < ¢;~ — ¢ =, avoiding division by 0, as demonstrated at the
end of the algorithm. Note also that 0 < R} < 1.
4. Compute the dominated indices ¢, ¢~ and ¢~ for each alter-

native ay:

m m m
(]5,; = ZDjk’ (]5,;> = ZDJ‘k, and (]5,;< = ZDJ‘k, k = 1, o,
1 i1 ]

=k =k j#k
Djk =0 Djk<0

In other words, ¢, is computed by adding the paired dominance
values in the kth column of D, whereas ¢;~ and ¢, < are computed
in the same way, but considering just the positive and negative val-
ues in the respective column. Note that ¢, = ¢~ + ¢ .

5. Compute the ratio

_
o =
Note that R, is also well defined because we can assume
that 0 < ¢;,” — ¢ =, and 0 < R, < 1.
6. Calculate the global dominance intensity value Dy for each alter-
native ay:

Ry

D,=R{-R,, k=1,....m.

Note that —1 < Dy <1, where —1=D; < (R =0and R, = 1)

when all alternatives dominate @, and Dy =1 «— R/ =1

and R, = 0) when all alternatives are dominated by q.

7. Rank alternatives according to Dy values, where the best alter-
native is that for which Dy is maximum and the worst is that
for which Dy, is minimum.

Let us demonstrate that R} is well defined. R} would not be well
defined if ¢;~ — ¢~ = 0. In this case,

+> ::O
;>— ;<:O:> i<_0:>ij:O,W
=

=wv,—wv > 0V, Yw=wv, - wv, <0,V = Dj <0,vj.

Therefore, we have two possibilities:

e Dy; =0,Vj and Dy < 0,Vj = alternative g, dominates a;,Vj = a
is the most preferred alternative. This may be recognized from
the beginning, so we assume it does not happen.

e Dy =0,Vj and Dy = 0,Vj = wv, = wv;yw ¢ W = Both alter-
natives are indifferent. In this case, we can discard alternative
a; and keep ay (or the opposite).

As a conclusion, if we assume that there are no two alternatives
ar and g; with wiv, = wiviyw e W Vv, € V,,¥v; € V;, (in this
case, alternative g;, or alternative a;, would be discarded because
they are indifferent) and ¢;~ — ¢;< = 0, then alternative g, domi-
nates g, i.e., alternative ay is preferred, and a; would be eliminated
from the analysis.

The difference between this approach and the methods pro-
posed by Ahn and Park is as follows. Ahn and Park’s first method,
AP1, adds positive and negative values for the alternative in its
respective row. This accounts for the dominance of this over the
other alternatives. Likewise, Ahn and Park’s second method, AP2,
adds positive and negative values to both the row and column.
The two quantities are then subtracted. The values added in the
column account for the dominance of the other alternatives over



the alternative in question. As pointed out in Section 2, a simula-
tion study showed AP1 to be better than AP2. The reason is that
AP2 uses duplicate information (row and column values).

The starting point for DIM1 is AP2. The aim is to improve AP2
by reducing the duplicate information involved in the computa-
tions. We have taken into account that a given alternative, g,
only dominates alternatives with positive elements in the kth
row of the dominance matrix. Analogously, this alternative is
dominated only by alternatives with positive elements in the
kth column.

Therefore, we compute the dominating measure by adding
positive values in the respective row, which we divide by the dif-
ference between the sums of the positive and negative values in
that row. Likewise, we compute the dominated measure by adding
positive values in the respective column, which we divide by the
difference between the sums of the positive and negative values
in that column.

This type of ratios attach more weight to positive values in the
row {or column). This means that DIM1 would output a value
greater than zero in the event of positive values being canceled
out by negative values where the dominating (dominated) mea-
sures in AP1 and AP2 would be zero.

However, DIM1 has a drawback: if all the elements in D are neg-
ative then it is not possible to derive a ranking of alternatives be-
cause their dominance intensity is zero in all cases, since ¢}~ =0
and ¢~ = 0,Vk. This drawback implies that DIMT is not indepen-
dent of irrelevant alternatives. A simple numerical example fol-
lows. Consider a two-criteria problem. The only constraints on
weights are that they should be non-negative and add up to 1.
Alternatives are a; = (e,1+e),a; =(0,1) and a; =(1,0) (e is a
number between 0 and 1). Considering all three alternatives, a;
is the best-ranked according to DIM1. But this is because we have
included a,, which is irrelevant. If we remove a,, DIM1 is unable to
rank the alternatives. In Section 3.2, we propose another domi-
nance intensity method that overcomes this drawback.

3.2. Dominance intensity method 2 (DIM2)

To introduce the second dominance intensity method, DIM2, we
observe that, trivially,

ij < WT(Vk —Vj) < —Djk,VW eW v, e Vk,Vj € V]‘.

In this method, paired dominance values Dj; are first transformed
into dominance intensities DIy;. Then, a global dominance intensity
(GDIL) is derived for each alternative a,. This is used as a measure
of the strength of preference, in the sense that a greater global dom-
inance intensity is better.

DIM?2 is implemented as follows:

—_

. Obtain matrix D as before.

2. If Dy > O, then alternative g, dominates alternative g;, and we

say that the dominance intensity of a; over g; is 1, i.e,, DIy = 1.

Else (Dy < 0):

- If Dy = 0, then alternative g; dominates alternative a;, and
we say that the dominance intensity of a; over g; is 0, i.e,,

DI; = 0.

- Else, (Dy < 0) the dominance intensity of a, over g; is defined
as
DIy = _ THk

—Dy — Dy

3. Calculate a global dominance intensity (GDI) for each alterna-
tive ay

m
GDIy = > DIy
j=1j=k

4. Rank alternatives according to the GDI, values, where the best
(rank 1) is the alternative for which GDI; is maximum and the
worst is the alternative for which GDI; is minimum.

In Section 5, we analyse the performance of the proposed meth-
ods and compare them with other methods reviewed in Section 2.

4. A numerical example

In this section, we provide a simple example to illustrate the
proposed dominance intensity measuring methods. Let us consider
a decision-making problem with five attributes, X;,i=1,...,5 and
five alternatives, g;,j =1,...,5. We assume that the ranking of
attribute importance is 1 = wy = Wy = w3 = wy > ws = 0, with
P wi=1,

The evaluation of the five alternatives is as follows

X X X3 X4 X5
a1 0.711 0.146 0.115 0.892 0.241
ag 0.253 0.192 0.087 0.722 0.477
as 0.401 0.805 0.524 0.327 0.828
a4 0.793 0.965 0.647 0.241 0.091
as 0.284 0.576 0.714 0.618 0.411

For convenience, the columns in this matrix are normalized so
that the smallest value is zero and the largest value is one:

0.848 0 0.044 1 0.203
0 0.056 0 0.739 0523
04274 0.804 0697 0.132 1
1 1 0.893 0 0
0.057 0525 0714 1 0434

Optimization problems are solved to compute paired domi-
nance values, leading to the corresponding dominance matrix;:

ay az as a4 as

a1 - 1 066 0 077

_ az 0 - 0 0 0
DI= az 0.34 1 - 0,004 0.80
aq 1 1 099 - 1

as 0.22 1 020 0 -

In the DIM1 method, the dominating measures, ¢~ and ¢; <, are
computed for each alternative, followed by the ratios R{, see
Table 2. For instance, ¢~ =0.152 +0.3148 + 0.0596 = 0.5264 or

3<=-0574—-0.726 — 0.0633 = —1.3633. Next, the dominated
measures ¢, < and ¢;~ are computed for each alternative, followed
by the proportion R/, shown in Table 2.

Finally, the ranking of alternatives is derived from the global
dominance intensity Dy, see Table 3.

In the DIM2 dominance intensity measuring method, once the
paired dominance matrix D is available, dominance intensities DIy;
are computed, leading to the matrix:

ay az as ay ag
a1 - 1 066 0 077
_ ag 0 - 0 0 i
br= asz 0.34 1 - 0,004 0.80
ay 1 1 099 - 1
ag 0.22 1 0.20 0 -
Table 2

Dominating and dominated measures.

Dominating measures Dominated measures

Altern. ¢ - R{ Altern. ¢~ ¢ Ry

a 0.155  -1.1907 011518 g 0152 -22131 0.0643
@ 0 -2.93 0 @ 0.8008 © 1

a3 0274  -1.3633 016734 a3 0 -1.1191 0

ay 0.5264 0003 099433 a4 0 -3.3357 0

as 0.057 -1.9826 0.02794 as 00596 -0.8017 0.0692




Table 3
Global dominance intensities and ranking with DIM1.
[N a a3 ay as
Dy 0.05 -1 0.17 0.99 —0.04
Ranking 3 5 2 1 4

Table 4
Global dominance intensities and ranking with DIM2.
[ aO as ay ds
GDI 244 0.00 2.14 3.99 143
Ranking 2 5 3 1 4

For instance, as Dy, = 0.155 = 0, then a; dominates a, and DI}, = 1.
On the other hand, D14 = —0.6667 < 0, whereas D4; = 0.152 > 0, so
DI, = 0.

Finally, D3 = -0.2943 <0 and Dj3; =-0574 <0. Conse-
quently, DIy3 = % =0.66.

Finally, the ranking of alternatives is derived from the global
dominance intensity GDIy (see Table 4).

We find that the rankings output by both methods (DIM1 and
DIM?2), see Tables 3 and 4, are very similar but do not match ex-
actly. The best- and worst-ranked alternatives are the same for
both methods (a4, and as and ay, respectively). However, the alter-
natives ranked second and third are different for each method (a;
and a3, respectively). The question is, then, does one method out-
perform the other for different decision-making settings, i.e., for
a different number of attributes or alternatives?

5. Performance analysis based on Monte Carlo simulation

Having described the dominance intensity measuring methods
we propose { DIM1 and DIM2), let us now compare these methods
with Ahn and Park’s approach, surrogate weighting methods and
decision rules modified to encompass an imprecise decision-mak-
ing context. Note that, although DIM1 could be discarded from fur-
ther analysis since it is not independent of irrelevant alternatives,
as explained in Section 3.1, it has been considered in the simula-
tion process.

The proposed methods can be applied for different representa-
tions of imprecision concerning weights. In surrogate weighting
methods, however, DMs provide ordinal relations regarding attri-
bute weights. For comparability, we have considered ordinal rela-
tions about weights throughout the simulation.

We shall carry out a simulation study of the above methods to
analyze their performance. For a decision-making problem with m
alternatives and n attributes, the process would be as follows:

1. Component utilities are randomly generated for each alterna-
tive in each attribute from a uniform distribution in (0, 1), lead-
ing to an m xn matrix. The columns in this matrix are
normalized to make the smallest value zero and the largest
value one, and dominated alternatives are removed. Note that
these alternatives are removed in the simulation because they
are not useful for analyzing the performance of the considered
methods.

2. Attribute weights are randomly generated according to the
ranking of attribute importance [5]. If these weights are the
TRUE weights, the derived ranking of alternatives will be
denoted as the TRUE ranking. To generate the TRUE weights, first
select n — 1 independent random numbers from a uniform dis-
tribution on (0, 1), and rank these numbers. Suppose the ranked
numbers are 1= 71,4 2= --- =71, =11 >0. The differences
between adjacently ranked numbers are then used as the target

weights Wl =1-r1,1,Wl ;=71 —Tna,...,w =11. The
resulting weights will sum 1 and be uniformly distributed in
the weight space. Attribute weights corresponding to surrogate
weighting methods are computed as described in the
introduction.

3. The ranking of alternatives is computed for each method (surro-
gate weighting methods, modified decision rules and domi-
nance measuring methods) according to their procedures and
compared with the TRUE ranking, computed in the last step.
We use two measures of efficacy, the hit ratio and rank-order
correlation [3,2]. The hit ratio is the proportion of cases in which
the method selects the same best alternative as in the TRUE
ranking. Rank-order correlation represents how similar the
overall rank structures of alternatives are in the TRUE ranking
and in the ranking derived from the method. It is calculated
using Kendall’s 7 [24]:

2 x (number of pairwise preference violations)

T-1 Total number of pair preferences

S
“mm-1)/2’ ®

where S is the difference between the number of concordant (or-
dered in the same way) and discordant {ordered differently) pairs
and m is the total number of alternatives.

If there are tied (same value) observations then the denominator
m(m — 1)/2 has to be replaced by

\/{m(m—l)/Z—Zi 1&(&—1)/2} {m(m—l)/Z—ZE (- 1)/2],

where t; is the number of observations tied at the TRUE ranking, and
u; is the number of observations tied at the ranking derived from
the method.

Like Ahn and Park [2], we validated the results using four differ-
ent levels of alternatives (m = 3,5,7,10 ) and five different levels
of attributes (n = 3,5,7,10, 15). Also, 10 replications of 10,000 tri-
als were performed for each of the 20 design elements (alternatives
x attributes). Replications were parallelized to save computational
resources (mainly time).

Table 5 exhibits the average hit ratio for each of the 20 design
elements, i.e., the average values of 10 replications of 10,000 trials,
whereas the last row in this table is the mean of each column.

Looking at the surrogate weighting methods, ROC is the best,
followed by the RR method, the RS method and the EW method.
This result matches those reported in Barron and Barrett [3] and
Ahn and Park [2]. Regarding modified decision rules, although
there is no regular trend, the PES method appears to be better than
the CEN method. CEN outperforms the REG method, and REG out-
performs the OPTmethod. In any case, modified decision rules are
worse than surrogate weighting methods, except for the EW meth-
od. For the dominance intensity methods, the mean value for the
DIM2 method is the highest (81.8), its hit ratio being the highest
for 13 out of the 20 design elements. The DIM2 method is followed
by DIM1, which is better than AP1. AP1 is better than AP2.

On the whole, ROC and DIM2 are better than the other methods
in terms of hit ratio. The DIM2 method performs better than the
dominance measuring methods in Ahn and Park [2], and outputs
results closer to the ROC method. Furthermore, according to
the paired-samples t-test (which computes the difference between
the mean values of the two methods and tests whether the average
differs from zero), there is no significant difference among the hit
ratio means for the DIM2 and ROC methods (significance level,
two-tailed: 0.210).

ROC is again the best surrogate weighting method in terms of
rank-order correlation (see Table 6), followed by RR, RS and EW.



Table 5
Average hit ratios.

Table 6
Rank-order correlation (Kendall's 7).

Alt. Crit.  Surrogate weighting Modified decision rules Alt. Crit.  Surrogate weighting Modified decision rules
RS RR ROC EW  OPT PES REG CEN RS RR ROC EW OPT  PES REG  CEN
3 3 89.6 925 925 896 771 896 925 925 3 3 855 889 889 606 667 870 889 889
5 825 88.0 880 812 748 814 848 848 5 864 899 899 628 758 707 77.0 825
7 794 784 799 734 560 735 659 659 7 644 655 71.6 594 497 527 459 459
10 94.8 948 948 848 591 948 751 79.0 10 79.3 862 881 668 603 795 664 736
15 782 87.8 901 571 538 717 694 694 15 63.5 747 826 271 555 573 558 625
5 3 824 83.1 844 539 466 650 844 831 5 3 81.8 840 845 465 626 779 801 823
5 935 93,5 935 383 622 838 935 935 5 842 858 864 454 735 751 737 801
7 90.9 909 909 712 447 848 702 647 7 83.0 847 878 623 682 708 655 738
10 78.3 643 792 599 295 56.7 584 561 10 78.1 761 831 542 653 561 737 649
15 89.3 851 91.1 595 469 813 589 669 15 838 786 885 586 584 544 499 586
7 3 63.0 65.7 666 451 361 608 649 625 7 3 786 806 815 483 710 746 735 787
5 68.8 714 772 479 426 714 618 641 5 77.0 801 820 474 704 709 662 745
7 84.6 84.6 846 435 398 721 663 490 7 81.3 857 873 493 706 703 680 736
10 64.7 64.2 723 487 408 51.7 492 504 10 759 771 844 546 587 586 529 628
15 71.7 785 878 500 515 802 532 615 15 79.3 790 879 552 707 640 562 666
10 3 734 734 734 422 379 530 650 734 10 3 754 77.0 796 366 578 723 749 770
5 722 66.2 72.0 304 421 554 664 663 5 776 811 829 513 663 689 624 751
7 72.9 806 806 326 314 806 677 806 7 78.0 831 852 500 698 692 600 750
10 76.7 76.7 883 584 140 622 471 329 10 789 812 870 533 698 581 488 653
15 80.7 824 857 780 222 812 604 615 15 813 856 907 536 677 701 623 723
Mean 79.94 80.1 836 573 456 725 677 679 Mean 786 812 850 521 654 679 641 717
Alt. Crit. Dominance measuring Alt. Crit. Dominance measuring
AP1 AP2 DIM1 DIM2 AP1 AP2 DIM1 DIM2
3 3 92.5 92.5 89.6 94.6 3 3 88.9 889 70.9 87.5
5 84.8 84.8 942 93.3 5 82.3 87.8 771 87.8
7 74.4 65.9 95.3 77.4 7 56.9 512 68.9 834
10 88.7 79.0 96.7 98.9 10 82.2 75.7 59.3 85.6
15 78.6 69.4 84.8 78.6 15 61.9 62.5 299 68.6
5 3 824 84.4 76.8 824 5 3 83.5 833 76.8 82.5
5 93.5 93.5 72.9 935 5 83.1 82.6 782 83.7
7 88.4 64.7 884 88.4 7 78.9 742 69.5 82.3
10 73.0 41.8 85.3 82.5 10 64.0 62.1 491 70.9
15 82.7 66.9 95.7 804 15 58.5 56.2 53.1 66.2
7 3 65.7 66.5 64.0 73.1 7 3 80.0 79.2 76.9 80.3
5 67.4 68.7 73.0 74.6 5 735 76.1 78.7 82.2
7 80.1 66.3 70.3 76.0 7 76.7 79.2 824 82.8
10 62.2 61.1 57.8 66.3 10 67.6 66.1 85.3 83.5
15 78.5 61.5 56.5 78.5 15 64.4 67.3 63.1 73.4
10 3 69.6 734 70.4 86.0 10 3 77.5 784 80.5 81.7
5 68.1 66.2 68.2 70.2 5 75.5 76.8 834 82.7
7 76.7 71.5 72.7 79.3 7 76.3 76.8 840 82.3
10 73.2 48.0 81.2 76.7 10 67.4 684 78.7 75.7
15 80.0 73.7 80.0 84.6 15 74.9 775 814 80.7
Mean 78.0 70.0 78.7 81.8 Mean 73.7 735 714 80.2

In the ROC method, the rank-order correlations range from 71.6% to
90.7%, and the values are relatively constant irrespective of the
number of alternatives (mean values are 84.2%, 86%, 84.6% and
85% for 3, 5, 7 and 10 alternatives, respectively). With exception
of EW, modified decision rules are worse than the surrogate
weighting method.

As regards dominance intensity measuring methods, DIM2 per-
forms better than DIMT and the approaches suggested by Ahn and
Park [2], and reaches a rank-order correlation close to the ROC
method. Its rank-order correlations range from 66.2% to 87.8%,
and are relatively constant irrespective of the number of alterna-
tives (mean values are 82.6%, 77.1%, 80.4% and 80.6%, respectively).
In this case, the paired-samples t-test shows a significant difference
among the rank-order correlation means for the DIM2 and ROC
methods (significance level, two-tailed: 0.009). On the other hand,

DIM1 has the worst rank-order correlation mean out of all the
dominance intensity measuring methods, this value improves in
proportion to the number of alternatives ranked (mean values for
3, 5, 7 and 10 alternatives are 61.2%, 65.3%, 77.3% and 81.6%,
respectively), see Table 6.

Note that ROC is an example of centroid values, which gener-
alizes to any convex value set defined by linear inequalities, and
centroid computations are relatively straightforward for a large
class of situations. However, we think that DIM2 is more gener-
ally applicable in the sense that, it is easy to apply even to a
non-convex value set (corresponding to different types of impre-
cision concerning the input parameters), once the respective opti-
mization problems have been solved (possibly based on the
application of metaheuristics) and the dominance matrix has
been obtained.



6. Conclusions

In complex decision-making problems it is often not easy to eli-
cit precise values for scaling weights representing the relative
importance of criteria, which are described by a constraint set,
for instance, within prescribed bounds or as just satisfying certain
ordinal relations (ranked attribute weights).

Two distinct approaches for suggesting an alternative andjor
ranking of alternatives can be found in the literature dealing with
ranked attribute weights. One group is the so-called surrogate
weighting methods, where a weight vector is selected from a set
of admissible weights to represent that set. This vector is then used
to evaluate the alternatives by means of a multi-attribute value
model. The other possibility is to eliminate inferior alternatives
based on the concept of dominance. An example of the employment
of dominance values is the modification of classical decision rules
to encompass an imprecise decision context. A more recent ap-
proach is to use information about each alternative’s intensity of
dominance, known as dominance intensity measuring methods.

We have proposed two new dominance intensity measuring
methods, DIM1 and DIM2. DIM1 is designed to improve one of
the methods proposed by Ahn and Park, AP2, by reducing duplicate
information to compute dominating and dominated measures.
These measures are then combined to yield a dominance intensity.
However, DIM1 was dispensed with because it is not independent
of irrelevant alternatives. DIM2 derives a global dominance intensity
measure to rank alternatives.

Monte Carlo simulation techniques have been used to analyse
the performance of the proposed methods and to compare them
with dominance measuring methods proposed by other authors
(Ahn and Park), surrogate weighting methods and adapted decision
rules.

As regards average hit ratios, DIM2 and ROC outperform the
other methods (including DIM1) and, according to the paired-sam-
ples t-test, there is no significant difference among them. DIM2 and
ROC also outperform the other methods (including DIMT) in terms
of rank-order correlation, but ROC slighty outperforms DIM2 in this
case.

Note, however, that ROC can be only applied when ordinal rela-
tions regarding attribute weights are provided. However, DIM2 is
more generally applicable since it can also be used when the
imprecision concerning weights or even value functions is repre-
sented in other ways, for example by interval values, probability
distributions or even fuzzy numbers. And again it is applicable
when there is uncertainty about the alternative performances.
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