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a b s t r a c t 

We consider a multicriteria decision-making context in which the decision-maker’s preferences are represented by a multi-attribute additive value 
function. We account for imprecision concerning the per-formance of alternatives, value functions and weights, which represent the relative importance 
of criteria. We propose two new methods based on dominance intensity measures aimed at ranking alternatives. Both methods can be applied to 
different representations of imprecision about weights. Their perfor-mance is compared with other existing approaches when ordinal weight 
information represents impre-cision concerning weights. Monte Carlo simulation is used for the comparison in terms of a hit ratio and a rank-order 
correlation. 

1. Introduction 

A key concept in Multi-Attribute Value Theory (MAVT) refers to 
preferential independence conditions, see Keeney and Raiffa [7]. 
For reasons described in Raiffa [14] and Stewart [21], the additive 
model is considered a valid approach in many practical situations 
and is widely used. The functional form of the additive model is 

n 

v(ai) = YwjVj(xij), (1) 

where xij is the performance over the attribute (or criterion) 
Xj, j = 1,..., n, for the alternative ai, i = 1,..., m; and Vj is the value 
function and wj is the weight, respectively, for attribute Xj. Note 
that Yj=1wj — 1 and wj P 0. 

However, it is often not easy to elicit precise value functions 
and/or values for scaling weights. They are often described within 
prescribed bounds or as just satisfying certain relations. Different 
authors refer to this situation as decision-making with imprecise 
information, incomplete information or partial information [15,16]. 

Several reasons are given in the literature that justify why a 
decision maker (DM) may wish to provide imprecise information 
[23,20]. For instance, regarding alternative performances, some 
parameters of the model may be intangible as they reflect social 
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or environmental impacts. Also, performance may be taken from 
statistics or measurements , and the information that would set 
the value of some parameters may be incomplete, contradictory 
or controversial. Regarding weights, DMs may find it difficult to 
compare criteria or may not wan t to reveal their preferences in 
public. Moreover, the decision could be taken in a group deci­
sion-making situation, where imprecise information, such as 
weight rankings or weight intervals, is usually derived from a 
negotiation process [6,11]. 

Many papers on MAVT have dealt with imprecise information. 
Sage and White [17] proposed the model of Imprecisely Specified 
Multi-Attribute Utility Theory (ISMAUT), where preference infor­
mation about both weights and utilities is not assumed to be pre ­
cise. Malakooti [10] suggested an efficient algorithm for ranking 
alternatives when there exists imprecise information about pref­
erences and alternative values. Ahn [1] extended Malakooti’s 
work. Lee et al. [9] extended the approach to hierarchical s truc­
tures, and Park [12] developed the concepts of weak potential 
optimality and strong potential optimality. More recently, the TOP-
SIS method has been extended to uncertain linguistic environ­
ments [25,26] or used for determining DM weights wi th 
interval numbers [27]. Dias [19] provide a brief overview of a p ­
proaches proposed by different authors within the MAUT (Mul­
ti-Attribute Utility Theory) and MAVT framework to deal wi th 
imprecise information. 

A recent approach to deal wi th imprecise information is com­
puting different measures of dominance to derive a ranking of 
alternatives, known as dominance measuring methods. Ahn and Park 
[2] compute both dominating and dominated measures to derive 
net dominance. This is used as a measure of the strength of prefer­
ence in the sense that a greater net value is better. However, the 



results of simulation experiments suggest that surrogate weighting 
methods, specifically the rank-order centroid weights (ROC) method, 
perform best in terms of selecting the best alternative and ranking 
alternatives. 

In this paper we consider a decision-making problem with n 
attributes, X = {X1,... ,X„}, and m alternatives, A = {a1,. . . , am}, 
where W ( w = (w1,...,w„) e W) and V, ( v* = (vt(x1),..., Vi(xin)) 
e Vj) define the feasible region for scaling weights and values 
associated with the alternative a, over each attribute, respectively, 
representing imprecise information. Therefore, Eq. (1) can be 
rewritten as 

v(a{) = {wT v,'|w e W,v,- e V,-}. 

We analyze two new dominance measuring methods based on a 
dominance intensity that we will denote from now on as domi­
nance intensity methods. The first method computes dominating 
and dominated measures in the manner of Ahn and Park [2], but 
these measures are combined into a dominance intensity rather 
than a net dominance measure. In the second method, a global 
dominance intensity measure is derived to rank alternatives. A sim­
ulation study is performed to compare the proposed methods with 
Ahn and Park [2] and with surrogate weighting methods and mod­
ified decision rules. 

The paper is organized as follows. Section 2 reviews earlier 
methods for dealing with imprecise information within MCDM. 
Section 3 introduces two dominance intensity measuring methods. 
Section 4 illustrates the proposed methods with an example. Sec­
tion 5 uses Monte Carlo simulation to compare the performance 
of the proposed methods with the approaches reviewed in Sec­
tion 2. We outline the conclusions in Section 6. 

2. Review of earlier methods for dealing with imprecise 
information within MCDM 

Different approaches dealing with imprecise attribute weights 
to output a best alternative and/or ranking of alternatives can be 
found in the literature. In this section, we detail the approaches 
that will be compared with the methods that we propose in order 
to analyse their performance. We start with surrogate weighting 
methods, which can be used when there are ordinal relations 
regarding attribute weights. Next, we introduce some classical 
decision rules modified to account for imprecise decision contexts 
based on the absolute dominance concept. Finally, we describe two 
dominance measuring methods. 

2.1. Surrogate weighting methods 

If the DM provides ordinal relations regarding attribute weights, 
i.e., we consider a ranking of importance of attributes, arranged in 
descending order from the most to the least important attribute, 
then 

w e W 

= w = (W1,..., w„) |W1 P W2 P • • • P w„ P 0, V~\v,- = 1 

et al. [22], or rank-order centroid (ROC) weights and equal (EW) 
weights, suggested by Barron and Barrett [3]. Table 1 shows how 
weights are computed for the above surrogate weighting methods. 

The ROC and RR methods typically attach more importance to 
the best rankings. Compared with the ROC method, the RR method 
distributes values more evenly over the worst rank. Thus, aggrega­
tion by the RR method is insensitive to the order of the worst ranks. 
On the other hand, the EW method assigns equal weights to all the 
attributes, whereas the RS method emphasizes all the weight rank­
ings at the same level (i.e., w1 — w2 = w2 — w3 = • • • = w„_1 - w„). 

Surrogate weighting methods have been evaluated by differ­
ent authors (see, e.g., [4]). The common conclusion reached is 
that the ROC method has an appealing theoretical rationale 
and appears to perform better than the other rank-based 
schemes in terms of choice accuracy. ROC has been extended 
to address the situation where alternative performances for an 
attribute are not precisely known, but again the DM has to pro­
vide ordinal information [20], i.e., a ranking of alternatives for 
the respective attributes. 

2.2. Dominance measuring methods 

A possibility described in the literature for dealing with impre­
cision is based on the concept of dominance. Given two alternatives 
ak and a,, alternative ak dominates a, if Dkj P 0, with Dkj being the 
optimum value of the optimization problem, 

Dkj = min{v(ak) - v(aj) = wT\k - wT v,|w e W,\k e Vk,\j e Vj}, 

(2) 

and there exists at least one w, \k and v, such that the overall value 
of ak is strictly greater than that of a,. This concept of dominance is 
called pairwise dominance. 

Another type of dominance, known as absolute dominance [18], 
can be employed. Absolute dominance considers the following 
optimization problems: 

Uk = max {w TVt|w e W,v t e Vt} and 

Lk = min {w TVt|w eW,\k eVk}. 

Alternative ak dominates absolutely a, if Lk P Vj. Note that if ak 

absolutely dominates a,, then ak dominates a,, but the reverse does 
not hold. 

This dominance approach often results in almost no priorization 
of alternatives or too many non-dominated alternatives [8]. How­
ever, pairwise and absolute dominance values can be used to further 
prioritize competitive alternatives, and hence recommend the best 
alternative and fully rank alternatives. The use of these dominance 
values is exemplified by the modification of four classical decision 
rules to encompass an imprecise decision context [13,18]: 

• maximax or optimist rule (OPT) consists of evaluating each alter­
native based on its maximum guaranteed value, i.e., best 
case =• maximax: maxj{Uj}. 

• maximin or pessimist rule (PES) consists of evaluating each alter­
native based on its minimum guaranteed value, i.e., worst 
case =• maximin: max,{L,}. 

Surrogate weighting methods deal wi th ranked at tr ibute weights 
to output a best alternative and/or ranking of alternatives. In these 
methods, a weight vector is selected from a set of admissible 
weights to represent the set. This vector is then used to evaluate 
the alternatives by means of the multi-at tr ibute value model. 
Commonly used surrogate weighting methods are rank sum (RS) 
weights and rank reciprocal (RR) weights, proposed in Stillwell 

Table 1 

Surrogate weight ing me thods . 

Rank s u m w e i g h t s 

Rank reciprocal w e i g h t s 

Rank-order cen t ro id w e i g h t s 

Equal w e i g h t s 

(RS) 

(RR) 

(ROC) 

(EW) 

£ j-1 "(n+
1

) 

Wv = ^ 1 l , ! = 1 , . . . , n 

W; = ^ ^ , i = 1 , . . . , n 

W; = 1 , i = 1 , . . . , n 



• minimax regret rule (REG) consists of evaluating each alternative 
based on the maximum loss of value with respect to a better 
alternative =$- minimax regret: mink{MRk}, where MRk repre­
sents the maximum regret incurred when choosing alternative 
ak, i.e., 

MRk = max { max{w Tv, - w T\k | w e W, v,- e Vj,\k e Vk }Vj ¥=k}. 

• central value rule (CEN) consists of evaluating each alternative 
based on the midpoint of the range of possible perfor­

3 . Compute the ratio 

mances =$• central values: maxk ^±M. 

Obviously none of these rules ensures that the best-ranked 
alternative coincides. However, simulations show that the selected 
alternative is generally one of the best [19]. 

A more recent approach is computing different measures of 
dominance to derive a ranking of alternatives, known as dominance 
measuring methods. For instance, Ahn and Park [2] compute a dom­
inating measure <pt = S-1Ag and a dominated measure 

<pk = ^j-1^jk for alternative ak, and then derive a net dominance 

as 4k = 4t~4k. With these measures, Ahn and Park proposed 
two methods: 

j T 

Note that R£ is well defined because we can assume 
that 0 < 4>k

> - 4>
k
<, avoiding division by 0, as demonstrated at the 

end of the algorithm. Note also that 0 < R£ < 1. 
4. Compute the dominated indices tp^tp^< and tp^ for each alter­

native ak: 

m m m 

4>k = y^Pjk, 4k> = y2Djk, and 4^ = V ^ , k = 1 , . . . ,m. 

Dii, >0 
j – k 

D < 0 jk 

In other words, <pk is computed by adding the paired dominance 
values in the fcth column of D, whereas ip^> and 4>k

 < are computed 
in the same way, but considering just the positive and negative val­
ues in the respective column. Note that 4>k = 4k> + 4k

<. 
5. Compute the ratio 

Rl if 

• API: Rank alternatives according to <pt values, where the pro­
posed alternative is that for which <pk is maximum. 

• AP2: Rank alternatives according to <j>k. 

3. Dominance intensity measuring methods 

We introduce two new dominance measuring methods based 
on dominance intensities, denoted dominance intensity measuring 
methods. The first one is based on the same idea as Ahn and Park 
[2]. It also computes dominating and dominated measures but they 
are combined into a dominance intensity rather than a net domi­
nance index. In the second method, a global dominance intensity in­
dex is derived to rank alternatives. These are used as a measure of 
the strength of the preference in the sense that a greater value is 
better. 

3.1. Dominance intensity method 1 (DIM1) 

DIM1 is implemented as follows: 

1. Obtain the paired dominance values Dki by solving problem Eq. 
(2) for m(m - 1) ordered pairs of alternatives, grouped in the 
matrix: 

D 

£>12 

E>21 

i-'m1 L*m2 

D 1(m-1) 

D 2(m-1) 

£*3(m-1) 

An(m-1) 

i-'2m 

2. Compute the dominating indices 
native ak : 

P+> and k
 < for each alter-

\ L)bi k+> y^Dfy, and4£< = y^Dkj, k = 1,...,m. 
i=1 

D H > 0 

j – k 
D < 0 kj 

In other words, 4>k is computed adding the paired dominance values 
in the fcth row of D, whereas <^> and (pt< are computed in the same 
way, but just considering positive and negative values in the corre­
sponding row, respectively. Clearly, 4>k = 4V> + 

that 0 < (p^ - (p^, and 0 < Kj~ < 1. 
6. Calculate the global dominance intensity value Dk for each alter­

native ak: 

Dk = Rk 
n - k = 1 , . . . , m. 

Note that - 1 < Dk < 1, where - 1 = Dk ^^> V j k 

when all alternatives dominate ak, and Dk = 
(R+ = 0 and Rk 

1 (K 
1) 
1 

and Rk = 0) when all alternatives are dominated by ak. 
7. Rank alternatives according to Dk values, where the best alter­

native is that for which Dk is maximum and the worst is that 
for which Dk is minimum. 

Let us demonstrate that Rk is well defined. Rk would not be well 
defined if tp^ - 4k

< = 0. In this case, 

rk i'V< = 0 =^ fk => Dkj = 0 , Vj 

r. 

=> wT\k - wTy, P 0, Vj, Vw => wTy, - wT\k < 0, Vj => Djk < 0, Vj. 

Therefore, we have two possibilities: 

• Dkj = 0,Vj and Djk < 0,Vj =$- alternative ak dominates aj,\/j =$- ak 

is the most preferred alternative. This may be recognized from 
the beginning, so we assume it does not happen. 

• Dkj = 0, Vj and Djk = 0,Vj =• wT \ k = wT v,Vw e W =• Both alter­
natives are indifferent. In this case, we can discard alternative 
a, and keep ak (or the opposite). 

As a conclusion, if we assume that there are no two alternatives 
ak and a, with wTyk =wTYj\/w eW,\/yk eVk,\/\j eVj, (in this 
case, alternative a,, or alternative ak, would be discarded because 
they are indifferent) and <pk

> - 4k
< = 0, then alternative ak domi­

nates a,, i.e., alternative ak is preferred, and a, would be eliminated 
from the analysis. 

The difference between this approach and the methods pro­
posed by Ahn and Park is as follows. Ahn and Park’s first method, 
AP1, adds positive and negative values for the alternative in its 
respective row. This accounts for the dominance of this over the 
other alternatives. Likewise, Ahn and Park’s second method, AP2, 
adds positive and negative values to both the row and column. 
The two quantities are then subtracted. The values added in the 
column account for the dominance of the other alternatives over 

Note that Rk is also well defined because we can assume 

( 



the alternative in question. As pointed out in Section 2, a simula­
tion study showed AP1 to be better than AP2. The reason is that 
AP2 uses duplicate information (row and column values). 

The starting point for DIM1 is AP2. The aim is to improve AP2 
by reducing the duplicate information involved in the computa­
tions. We have taken into account that a given alternative, ak, 
only dominates alternatives with positive elements in the feth 
row of the dominance matrix. Analogously, this alternative is 
dominated only by alternatives with positive elements in the 
feth column. 

Therefore, we compute the dominating measure by adding 
positive values in the respective row, which we divide by the dif­
ference between the sums of the positive and negative values in 
that row. Likewise, we compute the dominated measure by adding 
positive values in the respective column, which we divide by the 
difference between the sums of the positive and negative values 
in that column. 

This type of ratios attach more weight to positive values in the 
row (or column). This means that DIM1 would output a value 
greater than zero in the event of positive values being canceled 
out by negative values where the dominating (dominated) mea­
sures in AP1 and AP2 would be zero. 

However, DIM1 has a drawback: if all the elements in D are neg­
ative then it is not possible to derive a ranking of alternatives be­
cause their dominance intensity is zero in all cases, since tp^ = 0 
a n d 0;Vfc. This drawback implies that DIM1 is not indepen­
dent of irrelevant alternatives. A simple numerical example fol­
lows. Consider a two-criteria problem. The only constraints on 
weights are that they should be non-negative and add up to 1. 
Alternatives are a1 = (e; 1 +e);a2 = (0;1) and a3 = (1;0) (e is a 
number between 0 and 1). Considering all three alternatives, a1 
is the best-ranked according to DIM1. But this is because we have 
included a2, which is irrelevant. If we remove a2, DIM1 is unable to 
rank the alternatives. In Section 3.2, we propose another domi­
nance intensity method that overcomes this drawback. 

3.2. Dominance intensity method 2 (DIM2) 

To introduce the second dominance intensity method, D1M2, we 
observe that, trivially, 

Dkj < w T(yk - V,) < -Djk; Vw e W; Vt e Vk;\j e V,: 

In this method, paired dominance values Dkj are first transformed 
into dominance intensities Dlkj. Then, a global dominance intensity 
(GDIk) is derived for each alternative ak. This is used as a measure 
of the strength of preference, in the sense that a greater global dom­
inance intensity is better. 

DIM2 is implemented as follows: 

1. Obtain matrix D as before. 
2. If Dkj P 0, then alternative ak dominates alternative a,, and we 

say that the dominance intensity of ak over a, is 1, i.e., Dlkj = 1. 
Else (Dkj < 0 ) : 

- If Djk P 0, then alternative a, dominates alternative ak, and 
we say that the dominance intensity of ak over a, is 0, i.e., 
DIkj = 0. 

- Else, (Djk < 0) the dominance intensity of ak over a, is defined 
as 
DIkj 

-D jk 
-Djk - Dkj : 

3. Calculate a global dominance intensity (GDI) for each alterna­
tive ak 

m 

GDIk = V" DIkj: 

4. Rank alternatives according to the GDIk values, where the best 
(rank 1) is the alternative for which GDIk is maximum and the 
worst is the alternative for which GDIk is minimum. 

In Section 5, we analyse the performance of the proposed meth­
ods and compare them with other methods reviewed in Section 2. 

4. A numerical example 

In this section, we provide a simple example to illustrate the 
proposed dominance intensity measuring methods. Let us consider 
a decision-making problem with five attributes, X,; i = 1;...; 5 and 
five alternatives, a,;j = 1;... ;5. We assume that the ranking of 
attribute importance is 1 P W1 P w2 P w3 P w4 P w5 P 0, with 
]T5

=1W; = 1. 
The evaluation of the five alternatives is as follows 

0.2 

O3 

0,4 

as 

X\ X2 X3 Xi X§ 
/ 0.711 0.146 0.115 0.892 0.241 \ 

0.253 0.192 0.087 0.722 0.477 
0.401 0.805 0.524 0.327 0.828 
0.793 0.965 0.647 0.241 0.091 

^ 0.284 0.576 0.714 0.618 0.411 J 

For c o n v e n i e n c e , t h e c o l u m n s i n t h i s m a t r i x a r e n o r m a l i z e d s o 

t h a t t h e s m a l l e s t v a l u e i s z e r o a n d t h e l a r g e s t v a l u e i s o n e : 

0:848 0 0:044 1 0:203 

0 0:056 0 0:739 0:523 

0:4274 0:804 0:697 0:132 1 

1 1 0:893 0 0 CA 

0:057 0:525 0:714 1 0:434 

O p t i m i z a t i o n p r o b l e m s a r e s o l v e d t o c o m p u t e p a i r e d d o m i ­

n a n c e v a l u e s , l e a d i n g t o t h e c o r r e s p o n d i n g d o m i n a n c e m a t r i x : 

DI--

In the DIM1 method, the dominating measures, 4>k> and 4>k
<, are 

computed for each alternative, followed by the ratios Rk, see 
Table 2. For instance, 4%> = 0:152 + 0:3148 + 0:0596 = 0:5264 or 
4>t/< = -0:574 - 0:726 - 0:0633 = -1:3633. Next, the dominated 
measures 4>k

< and <pk
> are computed for each alternative, followed 

by the proportion Rk, shown in Table 2. 
Finally, the ranking of alternatives is derived from the global 

dominance intensity Dk, see Table 3. 
In the DIM2 dominance intensity measuring method, once the 

paired dominance matrix D is available, dominance intensities Dlkj 

are computed, leading to the matrix: 

ai 
02 

"3 

CZ4 

05 

{ ~ 
0 

0.34 

1 
^ 0.22 

1 

-
1 
1 
1 

0.66 

0 

-
0.99 

0.20 

0 
0 

0,004 

-
0 

0.77 \ 

0 
0.80 

1 

" / 

Ol 

02 

03 

04 

05 

( ~ 
0 

0.34 

1 
^ 0.22 

1 

-
1 
1 
1 

0.66 

0 

-
0.99 

0.20 

0 
0 

0,004 

-
0 

0.77 \ 

0 
0.80 

1 

" / 

DI--

Table 2 
Dominating and dominated measures. 

Dominating measures Dominated measures 

Altern. Ri Altern. R: 

a1 

a2 

a3 

a4 

a5 

0.155 —1.1907 0.11518 a1 

0 -2.93 0 a2 

0.274 —1.3633 0.16734 03 
0.5264 —0.003 0.99433 a4 

0.057 -1.9826 0.02794 05 

0.152 —2.2131 0.0643 
0.8008 0 1 
0 —1.1191 0 
0 —3.3357 0 
0.0596 —0.8017 0.0692 



Table 3 
Global dominance intensities and ranking with DIM1. 

a1 a2 a3 

D& 0.05 —1 0.17 
Ranking 3 5 2 

a4 

0.99 
1 

05 

-0.04 
4 

Table 4 
Global dominance intensities and ranking with DIM2. 

a1 a2 a3 

GDIk 2.44 0.00 2.14 
Ranking 2 5 3 

a4 

3.99 
1 

a5 

1.43 
4 

For instance, as D12 =0:155 P 0,thena1 dominates a2 and D/12 = 1. 
On the other hand, D14 = -0:6667 < 0, whereas D41 =0:152 > 0, so 
D/14 = 0. 

Finally, D13 = -0:2943 < 0 and D31 = -0:574 < 0. Conse­
quently, D/13 = 029435+0 574 = 0:66. 

Finally, the ranking of alternatives is derived from the global 
dominance intensity GDIk (see Table 4). 

We find that the rankings output by both methods (D/M1 and 
D/M2), see Tables 3 and 4, are very similar but do not match ex­
actly. The best- and worst-ranked alternatives are the same for 
both methods (a4, and a5 and a2, respectively). However, the alter­
natives ranked second and third are different for each method (a1 
and a3, respectively). The question is, then, does one method out­
perform the other for different decision-making settings, i.e., for 
a different number of attributes or alternatives? 

5. Performance analysis based on Monte Carlo simulation 

Having described the dominance intensity measuring methods 
we propose ( DIM1 and DIM2), let us now compare these methods 
with Ahn and Park’s approach, surrogate weighting methods and 
decision rules modified to encompass an imprecise decision-mak­
ing context. Note that, although DIM1 could be discarded from fur­
ther analysis since it is not independent of irrelevant alternatives, 
as explained in Section 3.1, it has been considered in the simula­
tion process. 

The proposed methods can be applied for different representa­
tions of imprecision concerning weights. In surrogate weighting 
methods, however, DMs provide ordinal relations regarding attri­
bute weights. For comparability, we have considered ordinal rela­
tions about weights throughout the simulation. 

We shall carry out a simulation study of the above methods to 
analyze their performance. For a decision-making problem with m 
alternatives and n attributes, the process would be as follows: 

1. Component utilities are randomly generated for each alterna­
tive in each attribute from a uniform distribution in (0,1), lead­
ing to an m x n matrix. The columns in this matrix are 
normalized to make the smallest value zero and the largest 
value one, and dominated alternatives are removed. Note that 
these alternatives are removed in the simulation because they 
are not useful for analyzing the performance of the considered 
methods. 

2. Attribute weights are randomly generated according to the 
ranking of attribute importance [5]. If these weights are the 
TRUE weights, the derived ranking of alternatives will be 
denoted as the TRUE ranking. To generate the TRUE weights, first 
select n - 1 independent random numbers from a uniform dis­
tribution on (0,1), and rank these numbers. Suppose the ranked 
numbers are 1 P r„_1 P • • • P r2 P n > 0. The differences 
between adjacently ranked numbers are then used as the target 

weights w\ = 1 - r„_1, w£_1 = r„_1 - r„_2 ,...,w1 = r1. The 
resulting weights will sum 1 and be uniformly distributed in 
the weight space. Attribute weights corresponding to surrogate 
weighting methods are computed as described in the 
introduction. 

3. The ranking of alternatives is computed for each method (surro­
gate weighting methods, modified decision rules and domi­
nance measuring methods) according to their procedures and 
compared with the TRUE ranking, computed in the last step. 
We use two measures of efficacy, the hit ratio and rank-order 
correlation [3,2]. The hit ratio is the proportion of cases in which 
the method selects the same best alternative as in the TRUE 
ranking. Rank-order correlation represents how similar the 
overall rank structures of alternatives are in the TRUE ranking 
and in the ranking derived from the method. It is calculated 
using Kendall’s T [24]: 

2 x (number of pairwise preference violations) 
T = 1 " 

Total number of pair preferences 
= , V^, (3) 

m(m - )/2 
where S is the difference between the number of concordant (or­
dered in the same way) and discordant (ordered differently) pairs 
and m is the total number of alternatives. 
If there are tied (same value) observations then the denominator 
m{m - 1)/2 has to be replaced by 

^ [ m ( m - 1 ) / 2 - £ j 1m-1)/2] [ m ( m - 1 ) / 2 - ^ ^ - 1 ) / 2 , 

where t, is the number of observations tied at the TRUE ranking, and 
u, is the number of observations tied at the ranking derived from 
the method. 

Like Ahn and Park [2], we validated the results using four differ­
ent levels of alternatives (m = 3,5,7,10 ) and five different levels 
of attributes (n = 3,5,7,10,15). Also, 10 replications of 10,000 tri­
als were performed for each of the 20 design elements (alternatives 
x attributes). Replications were parallelized to save computational 
resources (mainly time). 

Table 5 exhibits the average hit ratio for each of the 20 design 
elements, i.e., the average values of 10 replications of 10,000 trials, 
whereas the last row in this table is the mean of each column. 

Looking at the surrogate weighting methods, ROC is the best, 
followed by the RR method, the RS method and the EW method. 
This result matches those reported in Barron and Barrett [3] and 
Ahn and Park [2]. Regarding modified decision rules, although 
there is no regular trend, the PES method appears to be better than 
the CEN method. CEN outperforms the REG method, and REG out­
performs the OPImethod. In any case, modified decision rules are 
worse than surrogate weighting methods, except for the EW meth­
od. For the dominance intensity methods, the mean value for the 
DIM2 method is the highest (81.8), its hit ratio being the highest 
for 13 out of the 20 design elements. The DIM2 method is followed 
by DIM1, which is better thanAPJ. API is better than AP2. 

On the whole, ROC and DIM2 are better than the other methods 
in terms of hit ratio. The DIM2 method performs better than the 
dominance measuring methods in Ahn and Park [2], and outputs 
results closer to the ROC method. Furthermore, according to 
the paired-samples t-test (which computes the difference between 
the mean values of the two methods and tests whether the average 
differs from zero), there is no significant difference among the hit 
ratio means for the DIM2 and ROC methods (significance level, 
two-tailed: 0.210). 

ROC is again the best surrogate weighting method in terms of 
rank-order correlation (see Table 6), followed by RR, RS and EW. 



Table 5 
Average hit ratios. 

Table 6 
Rank-order correlation (Kendall’s s). 

Alt. Crit. Surrogate weighting Modified decision rules 

10 

Mean 

Alt. 

10 

Mean 

RS RR ROC EW OPT PES REG CEN 

3 89.6 
5 82.5 
7 79.4 

10 94.8 
15 78.2 

3 82.4 
5 93.5 
7 90.9 

10 78.3 
15 89.3 

3 63.0 
5 68.8 
7 84.6 

10 64.7 
15 71.7 

3 73.4 
5 72.2 
7 72.9 

10 76.7 
15 80.7 

79.94 

Crit. 

92.5 92.5 89.6 77.1 89.6 92.5 92.5 
88.0 88.0 81.2 74.8 81.4 84.8 84.8 
78.4 79.9 73.4 56.0 73.5 65.9 65.9 
94.8 94.8 84.8 59.1 94.8 75.1 79.0 
87.8 90.1 57.1 53.8 71.7 69.4 69.4 

83.1 84.4 53.9 46.6 65.0 84.4 83.1 
93.5 93.5 38.3 62.2 83.8 93.5 93.5 
90.9 90.9 71.2 44.7 84.8 70.2 64.7 
64.3 79.2 59.9 29.5 56.7 58.4 56.1 
85.1 91.1 59.5 46.9 81.3 58.9 66.9 

65.7 66.6 45.1 36.1 60.8 64.9 62.5 
71.4 77.2 47.9 42.6 71.4 61.8 64.1 
84.6 84.6 43.5 39.8 72.1 66.3 49.0 
64.2 72.3 48.7 40.8 51.7 49.2 50.4 
78.5 87.8 50.0 51.5 80.2 53.2 61.5 

73.4 73.4 42.2 37.9 53.0 65.0 73.4 
66.2 72.0 30.4 42.1 55.4 66.4 66.3 
80.6 80.6 32.6 31.4 80.6 67.7 80.6 
76.7 88.3 58.4 14.0 62.2 47.1 32.9 
82.4 85.7 78.0 22.2 81.2 60.4 61.5 

80.1 83.6 57.3 45.6 72.5 67.7 67.9 

Dominance measuring 

AP1 AP2 DJM1 DIM2 

3 
5 
7 

10 
15 

3 
5 
7 

10 
15 

3 
5 
7 

10 
15 

3 
5 
7 

10 
15 

92.5 
84.8 
74.4 
88.7 
78.6 

82.4 
93.5 
88.4 
73.0 
82.7 

65.7 
67.4 
80.1 
62.2 
78.5 

69.6 
68.1 
76.7 
73.2 
80.0 

78.0 

92.5 
84.8 
65.9 
79.0 
69.4 

84.4 
93.5 
64.7 
41.8 
66.9 

66.5 
68.7 
66.3 
61.1 
61.5 

73.4 
66.2 
71.5 
48.0 
73.7 

70.0 

89.6 
94.2 
95.3 
96.7 
84.8 

76.8 
72.9 
88.4 
85.3 
95.7 

64.0 
73.0 
70.3 
57.8 
56.5 

70.4 
68.2 
72.7 
81.2 
80.0 

78.7 

94.6 
93.3 
77.4 
98.9 
78.6 

82.4 
93.5 
88.4 
82.5 
80.4 

73.1 
74.6 
76.0 
66.3 
78.5 

86.0 
70.2 
79.3 
76.7 
84.6 

81.8 

Alt. 

3 

5 

7 

10 

Mean 

Alt. 

3 

5 

7 

10 

Mean 

Crit. 

3 
5 
7 

10 
15 

3 
5 
7 

10 
15 

3 
5 
7 

10 
15 

3 
5 
7 

10 
15 

Surrogate weighting 

RS RR ROC 

85.5 
86.4 
64.4 
79.3 
63.5 

81.8 
84.2 
83.0 
78.1 
83.8 

78.6 
77.0 
81.3 
75.9 
79.3 

75.4 
77.6 
78.0 
78.9 
81.3 

78.6 

Crit. 

3 
5 
7 

10 
15 

3 
5 
7 

10 
15 

3 
5 
7 

10 
15 

3 
5 
7 

10 
15 

88.9 88.9 
89.9 89.9 
65.5 71.6 
86.2 88.1 
74.7 82.6 

84.0 84.5 
85.8 86.4 
84.7 87.8 
76.1 83.1 
78.6 88.5 

80.6 81.5 
80.1 82.0 
85.7 87.3 
77.1 84.4 
79.0 87.9 

77.0 79.6 
81.1 82.9 
83.1 85.2 
81.2 87.0 
85.6 90.7 

81.2 85.0 

EW 

60.6 
62.8 
59.4 
66.8 
27.1 

46.5 
45.4 
62.3 
54.2 
58.6 

48.3 
47.4 
49.3 
54.6 
55.2 

36.6 
51.3 
50.0 
53.3 
53.6 

52.1 

Modified decision rules 

OPT 

66.7 
75.8 
49.7 
60.3 
55.5 

62.6 
73.5 
68.2 
65.3 
58.4 

71.0 
70.4 
70.6 
58.7 
70.7 

57.8 
66.3 
69.8 
69.8 
67.7 

65.4 

Dominance measuring 

AP1 

88.9 
82.3 
56.9 
82.2 
61.9 

83.5 
83.1 
78.9 
64.0 
58.5 

80.0 
73.5 
76.7 
67.6 
64.4 

77.5 
75.5 
76.3 
67.4 
74.9 

73.7 

AP2 

88.9 
87.8 
51.2 
75.7 
62.5 

83.3 
82.6 
74.2 
62.1 
56.2 

79.2 
76.1 
79.2 
66.1 
67.3 

78.4 
76.8 
76.8 
68.4 
77.5 

73.5 

PES 

87.0 
70.7 
52.7 
79.5 
57.3 

77.9 
75.1 
70.8 
56.1 
54.4 

74.6 
70.9 
70.3 
58.6 
64.0 

72.3 
68.9 
69.2 
58.1 
70.1 

67.9 

DJM1 

70.9 
77.1 
68.9 
59.3 
29.9 

76.8 
78.2 
69.5 
49.1 
53.1 

76.9 
78.7 
82.4 
85.3 
63.1 

80.5 
83.4 
84.0 
78.7 
81.4 

71.4 

REG 

88.9 
77.0 
45.9 
66.4 
55.8 

80.1 
73.7 
65.5 
73.7 
49.9 

73.5 
66.2 
68.0 
52.9 
56.2 

74.9 
62.4 
60.0 
48.8 
62.3 

64.1 

CEN 

88.9 
82.5 
45.9 
73.6 
62.5 

82.3 
80.1 
73.8 
64.9 
58.6 

78.7 
74.5 
73.6 
62.8 
66.6 

77.0 
75.1 
75.0 
65.3 
72.3 

71.7 

DIM2 

87.5 
87.8 
83.4 
85.6 
68.6 

82.5 
83.7 
82.3 
70.9 
66.2 

80.3 
82.2 
82.8 
83.5 
73.4 

81.7 
82.7 
82.3 
75.7 
80.7 

80.2 

In t he ROC method, the rank-order correlations range from 71.6% to 
90.7%, and the values are relatively constant irrespective of the 
number of alternatives (mean values are 84.2%, 86%, 84.6% and 
85% for 3 , 5, 7 and 10 alternatives, respectively). With exception 
of EW, modified decision rules are worse than the surrogate 
weighting method. 

As regards dominance intensity measuring methods, DIM2 per­
forms better than DIM1 and the approaches suggested by Ahn and 
Park [2], and reaches a rank-order correlation close to the ROC 
method. Its rank-order correlations range from 66.2% to 87.8%, 
and are relatively constant irrespective of the number of alterna­
tives (mean values are 82.6%, 77.1%, 80.4% and 80.6%, respectively). 
In this case, the paired-samples t-test shows a significant difference 
among the rank-order correlation means for the DIM2 and ROC 
methods (significance level, two-tai led: 0.009). On the other hand, 

DIM1 has the worst rank-order correlation mean out of all the 
dominance intensity measuring methods, this value improves in 
proportion to t he number of alternatives ranked (mean values for 
3 , 5, 7 and 10 alternatives are 61.2%, 65.3%, 77.3% and 81.6%, 
respectively), see Table 6. 

Note that ROC is an example of centroid values, which gener­
alizes to any convex value set defined by linear inequalities, and 
centroid computat ions are relatively straightforward for a large 
class of situations. However, w e think that DIM2 is more gener­
ally applicable in the sense that , it is easy to apply even to a 
non-convex value set (corresponding to different types of impre­
cision concerning the input parameters), once the respective opti­
mization problems have been solved (possibly based on the 
application of metaheuristics) and the dominance matrix has 
been obtained. 

3 

5 

7 

3 

5 

7 



6. Conclusions 

In complex decision-making problems it is often not easy to eli­
cit precise values for scaling weights representing the relative 
importance of criteria, which are described by a constraint set, 
for instance, within prescribed bounds or as just satisfying certain 
ordinal relations (ranked attribute weights). 

Two distinct approaches for suggesting an alternative and/or 
ranking of alternatives can be found in the literature dealing with 
ranked attribute weights. One group is the so-called surrogate 
weighting methods, where a weight vector is selected from a set 
of admissible weights to represent that set. This vector is then used 
to evaluate the alternatives by means of a multi-attribute value 
model. The other possibility is to eliminate inferior alternatives 
based on the concept of dominance. An example of the employment 
of dominance values is the modification of classical decision rules 
to encompass an imprecise decision context. A more recent ap­
proach is to use information about each alternative’s intensity of 
dominance, known as dominance intensity measuring methods. 

We have proposed two new dominance intensity measuring 
methods, DIM1 and DIM2. DIM1 is designed to improve one of 
the methods proposed by Ahn and Park, AP2, by reducing duplicate 
information to compute dominating and dominated measures. 
These measures are then combined to yield a dominance intensity. 
However, DIM1 was dispensed with because it is not independent 
of irrelevant alternatives. DIM2 derives a global dominance intensity 
measure to rank alternatives. 

Monte Carlo simulation techniques have been used to analyse 
the performance of the proposed methods and to compare them 
with dominance measuring methods proposed by other authors 
(Ahn and Park), surrogate weighting methods and adapted decision 
rules. 

As regards average hit ratios, DIM2 and ROC outperform the 
other methods (including DIM1) and, according to the paired-sam­
ples t-test, there is no significant difference among them. DIM2 and 
ROC also outperform the other methods (including DIM1) in terms 
of rank-order correlation, but ROC slighty outperforms DIM2 in this 
case. 

Note, however, that ROC can be only applied when ordinal rela­
tions regarding attribute weights are provided. However, DIM2 is 
more generally applicable since it can also be used when the 
imprecision concerning weights or even value functions is repre­
sented in other ways, for example by interval values, probability 
distributions or even fuzzy numbers. And again it is applicable 
when there is uncertainty about the alternative performances. 
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