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Abstract

In this paper, an ensemble-based method for the screening of diabetic retinopa-

thy (DR) is proposed. This approach is based on features extracted from

the output of several retinal image processing algorithms, such as image-

level (quality assessment, pre-screening, AM/FM), lesion-specific (microa-

neurysms, exudates) and anatomical (macula, optic disc) components. The

actual decision about the presence of the disease is then made by an ensemble

of machine learning classifiers. We have tested our approach on the publicly

available Messidor database, where 90% sensitivity, 91% specificity and 90%

accuracy and 0.989 AUC are achieved in a disease/no-disease setting. These

results are highly competitive in this field and suggest that retinal image

processing is a valid approach for automatic DR screening.

Keywords: Diabetic retinopathy, Ensemble learning, Decision making,

Machine learning
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1. Introduction

Diabetic retinopathy (DR) is a consequence of diabetes mellitus which

manifests itself in the retina. This disease is one of the most frequent causes of

visual impairment in developed countries and is the leading cause of new cases

of blindness in the working age population. In 2011, 366 million people were

diagnosed with diabetes and a further 280 million people were having risk

to develop it. At any point in time, approximately 40% of diabetic patients

suffer from DR, out of which an estimated 5% face the sight-threatening

form of this disease. Altogether, nearly 75 people go blind every day as a

consequence of DR even though treatment is available.

Automatic computer-aided screening of DR is a highly investigated field

(Abramoff et al., 2008). The motivation for creating reliable automatic DR

screening systems is to reduce the manual effort of mass screening (Flem-

ing et al., 2011), which also raises a financial issue (Scotland et al., 2010).

While several studies focus on the recognition of patients having DR (Flem-

ing et al., 2011) (Abramoff et al., 2010b) and considering the specificity of the

screening as a matter of efficiency, we show how both sensitivity and speci-

ficity can be kept at high level by combining novel screening features and a

decision-making process. Especially, our results are very close to meet the

recommendations of the British Diabetic Association (BDA) (80% sensitivity

and 95% specificity (Bda, 1997)).

The basis for an automatic screening system is the analysis of color fundus

images (Abramoff et al., 2010a). The key to the early recognition of DR is the

reliable detection of microaneurysms (MAs) on the retina, which serves as

an essential part for most automatic DR screening systems (Abramoff et al.,
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2010b) (Jelinek et al., 2006) (Antal and Hajdu, 2012a) (Niemeijer et al.,

2009). The role of bright lesions for DR grading has also been investigated

with positive (Fleming et al., 2010b) and negative outcomes (Abramoff et al.,

2010b) reported. Besides lesions, image quality assesment (Philip et al., 2007)

(Fleming et al., 2010a) is also considered to exclude ungradeable images.

As a new direction, in (Agurto et al., 2011) an image-level DR recognition

algorithm is also presented.

The proposed framework extends the state-of-the-art components of an

automatic DR screening system by adding pre-screening (Antal et al., 2012a)

and the distance of the macula center (MC) and the optic disc center (ODC)

as novel components. We also use image quality assessment as a feature

for classification rather than a tool for excluding images. The comparison

of the components used in some recently published automatic DR screening

systems can be found in Table 1.

Table 1: Comparison of components of the automatic screening system.

Screening system
Image

quality

Red

lesion

Bright

lesion AM/FM

Pre-

screening

MC-

ODC

(Abramoff et al., 2010b) X

(Jelinek et al., 2006) X

(Antal and Hajdu, 2012a) X

(Philip et al., 2007) X X

(Fleming et al., 2010a) X X X

(Agurto et al., 2011) X

Proposed X X X X X X
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Regarding decision making, automatic DR screening systems either par-

tially follow clinical protocols (e.g. MAs indicate presence of DR) (Jelinek

et al., 2006) (Antal and Hajdu, 2012a) (Philip et al., 2007) (Fleming et al.,

2010a) or use a machine learning classifier (Abramoff et al., 2008) (Fleming

et al., 2010b) (Agurto et al., 2011). A common way to improve reliability

in machine learning based applications is to use ensemble-based approaches

(Kuncheva, 2004). For medical decision support, ensemble methods have

been successfully applied to several fields. In (West et al., 2005) the authors

have investigatedthe applicability of ensembles for breast cancer data clas-

sification. The prediction of response to certain therapy is improved by the

use of a classifier ensemble (Moon et al., 2007). In (Eom et al., 2008) the

authors used an ensemble of four classifiers for cardiovascular disease predic-

tion. Ensemble methods are also provided improvement over single classifiers

in a natural language processing environment (Doan et al., 2012).

Ensemble systems combine the output of multiple learners with a specific

fusion strategy. In (Abramoff et al., 2010b) and (Antal and Hajdu, 2012a),

the fusion of multiple MA detectors has proven to be more efficient than

a single algorithm for DR classification. The proposed system is ensemble-

based at more levels: we consider ensemble systems both in image processing

tasks and decision making.

In this paper, a framework for the automatic grading of color fundus

images regarding DR is proposed. The approach classifies images based

on characteristic features extracted by lesion detection and anatomical part

recognition algorithms. These features are then classified using an ensemble

of classifiers. As the results show, the proposed approach is highly efficient
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for this task. The flow chart of our decision making protocol can be seen in

Figure 1, as well.

Figure 1: Flow chart of the proposed decision support framework.

We have tested our approach on the publicly available dataset Messidor

(see http://messidor.crihan.fr), where it has provided a 0.989 area under the

ROC curve (AUC) value in a disease/no disease setting, which is a relatively

high figure compared with other state-of-the-art techniques.

The rest of the paper is organized as follows: in section 2, we present the

image processing components of our system. Section 3 presents the details of

the presented ensemble learning framework. Our experimental methodology

and results can be found in sections 4 and 5, respectively. Finally, we draw

conclusions in section 6.
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2. Components of an automatic system for diabetic retinopathy

screening

In this section, the components we used for feature extraction are de-

scribed. They can be classified as image-level, lesion-specific, and anatomical

ones.

2.1. Image-level components

2.1.1. Quality assessment

We classify the images whether they have sufficient quality for a reliable

decision with a supervised classifier, where the box count values of the de-

tected vessel system serve as features (Antal and Hajdu, 2009). For vessel

segmentation we use an approach proposed in (Kovács and Hajdu, 2011)

based on Hidden Markov Random Fields (HMRF). Here, the authors extend

the optimization problem of HMRF models considering the tangent vector

field of the image to enhance the connectivity of the vascular system consist-

ing of elongated structures.

2.1.2. Pre-screening

During pre-screening (Antal et al., 2012a), we classify the images as

severely diseased (abnormal) ones or to be forwarded for further processing.

Each image is split into disjoint regions and a simple texture descriptor (in-

homogeneity measure) is extracted for each region. Then, a machine learning

classifier is trained to classify the images based on these features.

2.1.3. Multi-scale AM/FM based feature extraction

The Amplitude-Modulation Frequency-Modulation (AM/FM) (Agurto

et al., 2010) method extracts information from an image, decomposing the
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green channels of the images into different representations which reflect the

intensity, geometry, and texture of the structures with signal processing tech-

niques. The extracted information are then filtered to establish 39 different

representations of the image. The images are classified using these features

with a supervised learning method. More on this approach can be found in

(Agurto et al., 2010).

2.2. Lesion-specific components

2.2.1. Microaneurysm detection

Microaneurysms are normally the earliest signs of DR. They appear as

small red dots in the image and their resemblance to vessel fragments make

it hard to detect them efficiently. In the proposed system, we apply the MA

detection method described in (Antal and Hajdu, 2012a), which is an efficient

approach based on 〈preprocessing method, candidate extractor〉 ensembles.

2.2.2. Exudate detection

Exudates are primary signs of diabetic retinopathy and occur when lipid

or fat leak from blood vessels or aneurysms. Exudates are bright, small spots,

which can have irregular shape. Since exudate detection is also a challenging

task, we follow the same complex methodology as for MA detection (Antal

and Hajdu, 2012b). Thus, we combine preprocessing methods and candidate

extractors in the case of exudate detection, as well (Nagy et al., 2011).

In Figure 2, we show some examples for the appearance of DR-related

symptoms in retinal images.
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(a) Microaneurysm (b) Exudates (c) Inhomogeneity

Figure 2: Some representative visual features to be extracted from the images.

2.3. Anatomical components

2.3.1. Macula detection

The macula is the central region of sharp vision in the human eye with its

center referred to as the fovea. Any lesions appearing within the macula can

lead to severe loss of vision. Therefore, the efficient detection of the macula

is essential in an automatic screening system for DR. The macula is located

roughly in the center of the retina, temporal to the optic nerve. In our system,

we use the method described in (Antal and Hajdu, 2011), which extracts the

largest component from the image which is darker than its surroundings. The

location of the macula together with the optic disc described below define

some features incorporated in our decision framework.

2.3.2. Optic disc detection

The optic disc is a circular shaped anatomical structure with a bright

appearance. It is the area, where the optic nerve enters the eye. If the center

and the radius of the optic disc are detected correctly, they can be used

as reference data for locating other anatomical parts e.g. the macula. In

our system, we use the ensemble-based system described in (Qureshi et al.,

2012). Recognizing these anatomical parts is important from two aspects:
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the appearance of certain lesions at specific positions can indicate a more

advanced stage of DR and the presence of rare, but serious defects (like

retinal detachment) can ruin the detection of the optic disc and macula.

3. Ensemble learning

The most important expectation for a computer-aided medical system is

its high reliability. To ensure that, we use ensemble-based decision making

(Kuncheva, 2004). Thus, we have trained several classifiers to separate DR

and non-DR cases and fused their results. In this section, we describe how

we select the ensemble for DR classification based on the features extracted

from the output of the detectors presented in section 2.

3.1. Concepts of ensemble learning

The basic concepts of ensemble learning are presented by following the

classic literature (Kuncheva, 2004). These concepts formalize our ensemble-

based system for DR grading described in the forthcoming sections.

Definition 1. Let Ω = {ω1, ω2, . . . , ωM} be a set of class labels. Then, a

function D : Rn → Ω is called a classifier, while a vector ~χ = (χ1, χ2, . . . , χn) ∈

Rn is called a feature vector.

Definition 2. Let h1, h2, . . . , hM , hi : Rn → R, i = 1, . . . , M be so-called

discriminator functions corresponding to the class labels ω1, ω2, . . . , ωM , re-

spectively. Then, the classifier D belonging to these discriminator functions

is defined by:

D (~χ) = ωj∗ ⇐⇒ hj∗ (~χ) =
M

max
j=1

(hj (~χ)) . (1)
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for all ~χ ∈ Rn.

Definition 3. Let D1, D2, . . . , DL be classifiers. Then, the majority voting

ensemble classifier Dmaj : Rn → Ω formed from these classifiers is defined

as:

Dmaj (~χ) = ωi∗ ⇐⇒ |{j : Dj (~χ) = ωi∗ , j = 1, . . . ,M}| = M
max
i=1
|{j : Dj (~χ) = ωi, j = 1, . . . ,M}| .

(2)

Definition 4. Let D1, D2, . . . , DL be classifiers and ~β = (β1, β2, . . . , βL) ∈

RL be a weight vector assigned to the classifiers. Then, the weighted majority

voting ensemble classifier Dwmaj : Rn → Ω is defined as follows:

Dwmaj (~χ) = ωi∗ ⇐⇒
L∑
j=1

Dj(~χ)=ωi∗

βj =
M

max
i=1

 L∑
j=1

Dj(~χ)=ωi

βj

 . (3)

Definition 5. Let D1, D2, . . . , DL be classifiers and hj,i be a discriminator

function of the classifier Dj for the class i, i = 1, . . . ,M, j = 1, . . . , L. Then,

the following algebraic ensemble classifiers can be defined:

Davg (~χ) = ωi∗ ⇐⇒
1

L

L∑
j=1

(hj,i∗ (~χ)) =
M

max
i=1

(
1

L

L∑
j=1

(hj,i (~χ))

)
, (4)

Dpro (~χ) = ωi∗ ⇐⇒
L∏
j=1

(hj,i∗ (~χ)) =
M

max
i=1

(
L∏
j=1

(hj,i (~χ))

)
, (5)

Dmin (~χ) = ωi∗ ⇐⇒
L

min
j=1

(hj,i∗ (~χ)) =
M

max
i=1

(
L

min
j=1

(hj,i (~χ))

)
, (6)

Dmax (~χ) = ωi∗ ⇐⇒
L

max
j=1

(hj,i∗ (~χ)) =
M

max
i=1

(
L

max
j=1

(hj,i (~χ))

)
. (7)
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3.2. Ensemble selection

To select the optimal ensemble for DR classification, we have trained

several well-known classifiers that will be described in section 4.3. Each en-

semble is a subset of these classifiers. Several approaches have been tested for

selecting the best subset of classifiers D for DR grading. The following search

methods were investigated based on (Ruta and Gabrys, 2005) for a fixed set of

classifiers {D1, . . . , DL} and energy function E : D ⊆ {D1, . . . , DL} → R≥0:

• Forward search: First, the best individual classifier is selected. Then,

further classifiers are added if the performance of the ensemble in-

creases. The process ends when no further increase of performance

is reached by adding more classifiers. Algorithm 1 gives a formal de-

scription of this search method.

Algorithm 1 Forward search

1. D ← argmax (E ({D1}) , E ({D2}) , . . . , E ({DL}))

2. ebest ← E (D)

3. for all Di /∈ D, i = 1 . . . L do

4. e← E (D ∪ {Di})

5. if e > ebest then

6. D ← D ∪ {Di}

7. ebest ← e

8. end if

9. end for

10. return D

• Backward search: First, all classifiers are considered as members of
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the ensemble. Then, classifiers are removed from the ensemble while

the performance of the ensemble increases. See Algorithm 2 for a formal

description.

Algorithm 2 Backward search

1. D ← {D1, . . . , DL}

2. ebest ← E (D)

3. for all Di ∈ D do

4. e← E (D \ {Di})

5. if e > ebest then

6. D ← D \ {Di}

7. ebest ← e

8. end if

9. end for

10. return D

For comparison, we also consider the following two ensembles besides the

ones found by the search methods:

• All: All classifiers are members of the ensemble.

• Single best: The ensemble contains only the best performing classifier.

4. Methodology

4.1. Messidor database

For experimental studies, we consider the publicly available Messidor

database that consists of 1200 losslessly compressed images with 45◦ FOV
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and different resolutions (440×960, 2240×1488 and 2304×1536 pixels). For

each image, a grading score ranging from R0 to R3 is also provided. These

grades correspond to the following clinical conditions: a patient with grade

R0 has no DR. R1 and R2 are mild and severe cases of non-proliferative

retinopathy, respectively. Finally, R3 stands for the most serious condition.

The grading is based on the appearance of MAs, haemorrhages and neovas-

cularization. The corresponding proportion of the images in the Messidor

dataset: 540 R0 (46%), 153 R1 (12.75%), 247 R2 (20.58%) and 260 R3

(21.67%). This database is made available by the Messidor program part-

ners (see http://messidor.crihan.fr). Some example images corresponding to

the different grading scores are shown in Figure 3.

4.2. Features

In this section, we describe the features that were extracted from the

output of the image processing algorithms presented in section 2. These

features are also summarized in Table 2.

• χ0 is the result of quality assessment, which is a real number between

0 (worst) and 1 (best) quality for a color fundus image.

• χ1 is a binary variable representing the result of pre-screening, where 1

indicates severe retinal abnormality and 0 its lack.

• As an essential part of a DR screening system, features χ2−χ7 describe

the results of MA detection. More precisely, χi (i = 2, . . . , 7) stand for the

number of MAs found at the confidence levels α = 0.5, . . . , 1, respectively.

• χ8−χ16 contain the same information as χ2−χ7 for exudates. However,

as exudates are represented by a set of points rather than the number of

pixels constructing the lesions, these features are normalized by dividing the

13
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(a) R0 (b) R1

(c) R2 (d) R3

Figure 3: Representative images having different grades (R0, R1, R2, R3) from the Mes-

sidor database.

number of lesions with the diameter of the ROI to compensate different image

sizes.

• Since abnormalities can make it harder to detect certain anatomical

landmarks in an image, χ17 represents the euclidean distance of the center of

the macula and the center of the optic disc to provide important information

regarding the patient’s condition (see Figure 4 for an example). This feature

is also normalized with the diameter of the ROI.

• χ18 is the result of the AM/FM-based classification, which is a non-

negative scalar indicating the confidence of the detection of DR. The larger
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Figure 4: The difference between the actual and the detected optic disc and macula centers.

χ18, the higher the probability that DR is present.

4.3. Classifiers and energy functions

We have considered the following classifiers as potential members of en-

sembles:

• Alternating Decision Tree,

• kNN,

• AdaBoost,

• Multilayer Perceptron,

• Naive Bayes,

15



Table 2: Features for DR grading.

Feature Description of feature

χ0 The result of quality assessment.

χ1 The result of pre-screening (non-severe DR / severe DR).

χ2 − χ7 The number of MAs detected at confidence levels α =

0.5, . . . , 1.0, resp.

χ8 − χ16 The number of exudate pixels at confidence levels α =

0.1, . . . , 1.0, resp.

χ17 The euclidean distance of the center of the macula and the

center of the optic disc.

χ18 The result of the AM/FM-based classification (No DR/DR).

• Random Forest,

• SVM,

• Pattern classifier (Antal et al., 2012b).

For ensemble selection, we have considered the following energy functions:

Sensitivity =
TP

TP + FN
, (8)

Accuracy =
TP + TN

TP + FP + TN + FN
, and (9)

F-score =
2TP

2TP + FN + FP
, (10)

where TP , FP , TN , FN represent the true and false positive and true and

false negative classifications of the system, respectively. In the rest of the

paper, when the functions (8), (9), (10) are set in italic, we refer to them
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as energy functions; their normal typesetting forms mean the same function,

but applied to evaluation purposes.

Note that to fit this realization to the general framework, the above

features and classifiers should be considered as the ones χ1, . . . , χ18 and

D1, . . . , D8 given in section 3.1, respectively. Moreover, any of the energy

functions (8), (9), (10) should be assigned to E in section 3.2.

4.4. Training and evaluation

10-fold cross-validation have been used for both the training phase and

for the evaluation of the ensembles. The figures given in section 5 are the

average values of the 10-fold cross-validation for the respective energy func-

tions in each case on the Messidor database. To measure the performance of

the ensembles, we disclose the following descriptive values: Sensitivity (8),

Accuracy (9), and Specificity with the latter one is defined as:

Specificity =
TN

TN + FP
. (11)

To compare our results with other approaches, we have fitted Receiver Op-

erating Characteristic curves to the results and calculated the area under

these curves (AUC) using JROCFIT (Eng, 2013). We have evaluated the

ensemble creation strategies in two scenarios:

• R0 vs R1: First, we have investigated whether the image contains early

signs of retinopathy (R1) or not (R0), that is, Ω = {R0,R1} in Defini-

tion 1. Discriminating these two classes are the most challenging task

of DR screening, since R1 usually contain only minor and visually less

distinguishable signs of DR than advanced stages (R2, R3).
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• No DR/DR: Second, we have measured the classification performance

of the ensembles between all diseased categories (R1, R2, R3) and the

normal one (R0), that is, Ω = {R0, {R1 ∪ R2 ∪ R3}} in Definition 1.

5. Results

5.1. Ensemble selection

Tables 3 and 4 contain the Sensitivity, Specificity and Accuracy values

corresponding to the different fusion strategies and search methods for the

scenario R0 vs R1, while Tables 5 and 6 relate to the scenario No DR/DR,

respectively. For both scenarios, the table entries corresponding to the most

accurate ensembles are set in bold. For better comparison, we also disclose

the accuracy values for the ensembles containing all classifiers in table 7.

Regarding the scenario R0 vs R1, from Table 4 we can see that the best

performing ensemble achieved 94% Sensitivity, 90% Specificity and 90% Ac-

curacy using backward search, output fusion strategy Davg and energy func-

tion Accuracy. For the scenario No DR/DR, 90% Sensitivity, 91% Specificity

and 90% Accuracy are achieved with the same search method and fusion

strategy (see Table 6). However, the energy function in this case is Sensi-

tivity. For a fair comparison, we also disclose the aggregated results for the

energy functions and search methods in Tables 8, and 10 for the scenario R0

vs R1, and in Tables 9, and 11 for the scenario No DR/DR, respectively.

5.1.1. Energy functions

For scenario R0 vs R1 we can state that while the energy functions Sen-

sitivity and Accuracy have performed similarly, F-score has provided less

18



Table 3: DR grading results for scenario R0 vs R1 on the Messidor database with forward

search method using different fusion strategies and energy functions. Each cell contains

the Sensitivity/Specificity/accuracy of the best ensemble for the corresponding setup.

R0 vs R1 – Forward search
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

Fusion strategy

Energy function

Sensitivity Accuracy F-Score

Dmaj 98%/82%/83% 77%/90%/88% 75%/89%/86%

Dwmaj 76%/90%/88% 83%/88%/87% 87%/87%/87%

Davg 86%/88%/88% 77%/88%/86% 82%/89%/88%

Dpro 74%/90%/86% 80%/88%/87% 79%/89%/87%

Dmin 74%/90%/87% 74%/91%/87% 85%/88%/88%

Dmax 77%/90%/87% 71%/91%/86% 81%/88%/87%
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Table 4: DR grading results for scenario R0 vs R1 on the Messidor database with backward

search method using different fusion strategies and energy functions. Each cell contains

the Sensitivity/Specificity/accuracy of the best ensemble for the corresponding setup.

R0 vs R1 – Backward search
Q
Q

Q
Q
Q
Q
Q
Q
Q
QQ

Fusion strategy

Energy function

Sensitivity Accuracy F-Score

Dmaj 88%/87%/87% 92%/88%/89% 84%/89%/88%

Dwmaj 98%/82%/84% 85%/88%/88% 69%/88%/83%

Davg 85%/89%/88% 94%/90%/90% 93%/90%/90%

Dpro 0%/78%/78% 0%/79%/80% 0%/78%/80%

Dmin 81%/90%/88% 83%/89%/88% 64%/96%/85%

Dmax 98%/81%/82% 98%/81%/83% 76%/89%/86%
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Table 5: DR grading results for scenario No DR/DR on the Messidor database with

forward search method using different fusion strategies and energy functions. Each cell

contains the Sensitivity/Specificity/accuracy of the best ensemble for the corresponding

setup.

No DR/DR – Forward search
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

Fusion strategy

Energy function

Sensitivity Accuracy F-Score

Dmaj 88%/79%/86% 91%/76%/88% 88%/84%/88%

Dwmaj 88%/84%/87% 88%/88%/87% 91%/68%/85%

Davg 86%/83%/85% 88%/85%/88% 89%/81%/87%

Dpro 95%/38%/60% 85%/83%/85% 89%/72%/85%

Dmin 80%/95%/80% 88%/82%/87% 87%/78%/86%

Dmax 92%/50%/72% 90%/76%/87% 88%/76%/86%
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Table 6: DR grading results for scenario No DR/DR on the Messidor database with

backward search method using different fusion strategies and energy functions. Each cell

contains the Sensitivity/Specificity/accuracy of the best ensemble for the corresponding

setup.

No DR/DR – Backward search
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

Fusion strategy

Energy function

Sensitivity Accuracy F-Score

Dmaj 89%/78%/86% 90%/80%/89% 90%/88%/90%

Dwmaj 88%/93%/85% 86%/83%/85% 89%/90%/88%

Davg 90%/91%/90% 87%/80%/86% 89%/92%/90%

Dpro 97%/56%/80% 88%/85%/88% 90%/73%/86%

Dmin 81%/97%/82% 81%/97%/82% 81%/98%/83%

Dmax 93%/68%/86% 93%/77%/89% 89%/83%/88%

accurate ensembles. For scenario No DR/DR all the three energy functions

performed similarly. The difference in the effectiveness of the measure F-

score probably lies in the fact that the dataset for scenario R0 vs R1 is

biased to R0, since it contains much more instances belonging to that class.

That is, the energy functions Accuracy and Sensitivity look more robust for

less balanced datasets.

5.1.2. Search methods

As for the search methods, the accuracy of the forward and backward

search method are similar. However, in both scenarios, the Sensitivity and

Specificity values are more balanced for the backward strategy, which is de-
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Table 7: DR grading results on the Messidor database with all of the classifiers included in

the ensemble. Each cell contains the Sensitivity/Specificity/accuracy of the best ensemble

for the corresponding setup.

All classifiers
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

Fusion strategy

Scenario

R0 vs R1 No DR/DR

Dmaj 96%/84%/85% 88%/79%/86%

Dwmaj 85%/87%/87% 88%/84%/87%

Davg 80%/88%/87% 86%/83%/85%

Dpro 100%/78%/78% 95%/38%/60%

Dmin 48%/95%/69% 80%/95%/80%

Dmax 95%/79%/80% 92%/50%/72%

Table 8: Comparison of the energy functions for the scenario R0 vs R1.

R0 vs R1

Energy function Sensitivity Specificity Accuracy

Sensitivity 86% 86% 86%

Accuracy 84% 88% 87%

F-score 81% 88% 80%
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Table 9: Comparison of the energy functions for the scenario No DR/DR.

No DR/DR

Energy function Sensitivity Specificity Accuracy

Sensitivity 90% 79% 86%

Accuracy 88% 84% 87%

F-score 88% 82% 87%

sired for a grading system.

Table 10: Comparison of the search methods for the scenario R0 vs R1.

R0 vs R1

Search method Sensitivity Specificity Accuracy

Forward 80% 89% 87%

Backward 88% 86% 86%

All 84% 85% 81%

Table 11: Comparison of the search methods for the scenario No DR/DR.

R0 vs R1

Search method Sensitivity Specificity Accuracy

Forward 90% 78% 87%

Backward 88% 84% 87%

All 88% 71% 79%

5.1.3. Classifier output fusion strategies

In Tables 12, and 13 the comparison of the fusion strategies can be ob-

served. The experimental results indicate that Davg is the most effective
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Table 12: Comparison of classifier output fusion strategies for the scenario R0 vs R1.

R0 vs R1

Fusion strategy Sensitivity Specificity Accuracy

Dmaj 87% 87% 87%

Dwmaj 83% 87% 86%

Davg 85% 89% 88%

Dpro 33% 82% 82%

Dmin 73% 92% 85%

Dmax 85% 86% 84%

strategy for both scenarios. The aggregated results confirm this observation.

However, Dmaj and Dwmaj have also provided similar results, suggesting pos-

sible alternative choices.

To conclude on the analysis of ensemble selection approaches, it can be

stated that backward ensemble search method with energy functions Sensi-

tivity or Accuracy and fusion strategy Davg can be recommended for ensemble

selection for automatic DR screening.

5.2. Comparison with other automatic DR screening systems

It is challenging to compare our approach with other methods. As we

can see in Table 14, most research groups not only evaluated their approach

on private datasets, but the proportion of images showing signs of DR is

also completely different. Moreover, the most meaningful measure, the area

under the ROC curves is not always disclosed either. However, the proposed

approach has provided significantly better performance then the other state-

of-the-art techniques regarding the clinically important measures. Also note
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Table 13: Comparison of classifier output fusion strategies for the scenario No DR/DR.

No DR/DR

Fusion strategy Sensitivity Specificity Accuracy

Dmaj 89% 80% 88%

Dwmaj 88% 83% 87%

Davg 88% 84% 88%

Dpro 91% 69% 81%

Dmin 84% 89% 84%

Dmax 91% 77% 85%

that this comparison was able to be made only for the scenario No DR/DR

because of the lack of data for scenario R0 vs R1 from the other systems.

Table 14: Comparison of automatic DR screening systems.

System Cases having DR Sensitivity Specificity AUC

(Abramoff et al., 2008) 4.8% 84% 64% 0.84

(Abramoff et al., 2010b) 4.96% N/A N/A 0.86

(Jelinek et al., 2006) 30% 85% 90% N/A

(Antal and Hajdu, 2012a) 46% 76% 88% 0.90

(Philip et al., 2007) 37.5% 90.5% 54.7% N/A

(Fleming et al., 2010a) 35.88% 87% 50.4% N/A

(Agurto et al., 2011) 74.43% N/A N/A 0.81

(Agurto et al., 2011) 76.26% N/A N/A 0.89

Proposed 46% 90% 91% 0.989

In (Antal and Hajdu, 2012a), we have reported grading results for the
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dataset Messidor based on only MA detection for both scenarios. The com-

parative results between the proposed system and (Antal and Hajdu, 2012a)

are given in Table 15 for the scenario R0 vs R1, and in Table 16 for the sce-

nario No DR/DR, respectively. To highlight the efficiency of the ensemble-

based approach, we have included the results corresponding to a single clas-

sifier based decision, as well. As we can see, the proposed system outpeforms

both (Antal and Hajdu, 2012a) and the single classifier approach. It is also

interesting to note that the single classifier approach clearly performs bet-

ter than (Antal and Hajdu, 2012a), which is based solely on the detection

of MAs. This observation also confirms the necessity of the wide range of

components.

Table 15: Comparison of automatic DR screening systems evaluated on the Messidor

dataset for the scenario R0 vs R1.

R0 vs R1

System Sensitivity Specificity Accuracy AUC

(Antal and Hajdu, 2012a) 97% 14% 32% 0.826

Best single classifier 85% 87% 86% 0.893

Proposed 94% 90% 90% 0.942

6. Conclusion

In this paper, we have proposed an ensemble-based automatic DR screen-

ing system. Opposite to the state-of-the-art methods, we have used image-

level, lesion-specific and anatomical components at the same time. To strengthen

the reliability of our approach, we have created an ensemble of classifiers.
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Figure 5: ROC curves of automatic DR screening systems evaluated on the Messidor

dataset for the scenario R0 vs R1.

Table 16: Comparison of automatic DR screening systems evaluated on the Messidor

dataset for the scenario No DR/DR.

No DR/DR

System Sensitivity Specificity Accuracy AUC

(Antal and Hajdu, 2012a) 76% 88% 82% 0.90

Best single classifier 90% 81% 86% 0.936

Proposed 90% 91% 90% 0.989

We have discussed extensively on how an efficient ensemble for such a task

can be found. Our approach has been validated on the publicly available
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Figure 6: ROC curves of automatic DR screening systems evaluated on the Messidor

dataset for the scenario No DR/DR.

dataset Messidor, where an outstanding 0.989 area under the ROC curve is

achieved. The presented results outperform the current state-of-the-art tech-

niques, which can be reasoned by the well-known observation that ensemble-

based systems often lead to higher accuracies. It is also worth noting that our

system can be very easily extended by adding more/other components and

classifiers. The sensitivity/specificity results (90%/91%) we have achieved

are also close to the recommendations of the British Diabetic Association

(BDA) (80%/95%) for DR screening (Bda, 1997).
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