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Abstract: The graphical structure of a Bayesian network (BN) makes it a technology well-
suited for developing decision support models from a combination of domain knowledge and 
data. The domain knowledge of experts is used to determine the graphical structure of the 
BN, corresponding to the relationships and between variables, and data is used for learning 
the strength of these relationships. However, the available data seldom match the variables in 
the structure that is elicited from experts, whose models may be quite detailed; consequently, 
the structure needs to be abstracted to match the data. Up to now, this abstraction has been 
informal, loosening the link between the final model and the experts’ knowledge. In this 
paper, we propose a method for abstracting the BN structure by using four ‘abstraction’ 
operations: node removal, node merging, state-space collapsing and edge removal. Some of 
these steps introduce approximations, which can be identified from changes in the set of 
conditional independence (CI) assertions of a network. 
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1 Introduction 
A knowledge-based Bayesian network (BN) aims to model the data-generating process of a 
problem domain by encoding knowledge about influences and independences between the 
important variables of the domain. The first step in building the BN is for a knowledge 
engineer to elicit the structure of the BN from domain experts. When the structure is 
finalised, any available data can be used to learn the parameters of the BN or, if no data are 
available, the parameters can also be elicited. This paper is about the knowledge engineering 
techniques used in the first stage of this process: the development of the BN structure.  

Knowledge-engineered BNs are often developed through multiple stages as the knowledge 
engineers and the domain experts refine the model iteratively (Laskey and Mahoney, 2000). 
The initial knowledge model is often large and detailed, and some elements of the model may 
need to be simplified or abstracted as data is lacking or the parameters are too difficult to 
elicit. However, even simple abstraction operations, such as removing a node, can result in 
numerous and complicated alternative BNs which are difficult for the knowledge engineers to 
evaluate without a structured method. The effects of these abstractions must be carefully 
examined by domain experts to prevent any unwanted changes in the modelled knowledge of 
the data generating process. Moreover, the way that the final BN has been derived needs to be 
presented thoroughly so that the knowledge base of the model and its derivation is 
understandable. 

Our aim is to present a method of abstracting a BN structure. The method is developed for 
knowledge engineers developing a BN structure with domain experts. The method provides a 
set of abstraction operations which together: 

1. Allow a BN to be simplified by removing and merging nodes, removing edges and 
reducing the number of states 

2. Distinguish abstractions that add to the knowledge base from those compatible with 
the knowledge elicited so far, so that the added knowledge can be confirmed by 
domain experts  

3. Provide a way to show the link between the initial and abstracted models, in the form  
of a derivation that captures the complete sequence of abstraction operations 

The method can be used to help knowledge engineers to select the most suitable model 
refinements by evaluating alternative abstractions, in consultation with domain experts. The 
selection may also be guided by considering the availability of data or compatibility with 
causal relationships.  

Our knowledge engineering method is based on well-known techniques mainly used for 
learning and inference problems (Shachter, 1986; Wellman and Liu, 1994; van Engelen, 
1998; Choi and Darwiche, 2006). Our main contribution is to explore knowledge engineering 
aspect of these operations. 

The remainder of this paper is organised as follows: Section 2 reviews the related work. 
Section 3 gives an overview of the relation between knowledge and conditional 
independences (CI) in BNs. Section 4 introduces abstraction as a knowledge engineering 
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method and Section 5 describes the abstraction operations of this method and examines their 
compatibility properties. These operations are illustrated by a medical case-study in Section 
6. Section 7 shows the graphical representation of the abstraction operations, and Section 8 
presents the conclusions. 

2 Related Work 
In this section, we review the previous studies about abstraction and knowledge engineering 
of causal models and BNs. The abstraction methodology proposed in this paper was initially 
motivated by ABEL (Patil, 1981). Section 2.1 discusses this motivation by illustrating the 
similarities and differences between ABEL and BNs. Section 2.2 reviews the existing 
knowledge engineering techniques for eliciting and abstracting a BN structure. Since this 
paper focuses on the BN structure, techniques for eliciting parameters are not discussed. 

2.1 ABEL 
ABEL (Patil, 1981; Patil et al. 1981) was a pioneering clinical expert system that was 
developed for diagnosing acid-base disturbances of patients. Given laboratory data about a 
particular patient, ABEL generates the relevant causal diagrams from its knowledge-base, 
which is called a patient specific model (PSM). It reasons by abstracting and elaborating 
these causal models to make diagnostic inferences, which is considered to be similar to how 
clinicians express their decisions. The causal models at the higher levels are directed acyclic 
graphs like BNs. Although widely referenced, PSMs have not become a commonly used 
approach for developing clinical decision support models. 

The causal diagrams of ABEL have several differences from the BN formalism. First, each 
node in a PSM represents a single state of a variable, whereas each node in a BN represents a 
variable that can have multiple states. Second, the lower abstraction levels of a PSM can have 
feedback loops which are always eliminated at higher levels; but BNs are acyclic graphs. 
Third, a PSM does not reason probabilistically and its reasoning mechanism does not take the 
prior probabilities of diseases into account; BNs have superior probabilistic reasoning 
algorithms that are able to calculate complex learning and inference problems. Fourth, BNs 
are lacking techniques for abstracting their knowledge-base for different levels of detail as 
used in ABEL. Abstraction is clearly necessary for developing knowledge-based BNs for 
complex domains, and for explaining these models to external users. Our work in this paper 
was initially motivated by ABEL, notably its hierarchical structure and abstraction 
operations. 

2.2 Knowledge Engineering Approaches in BN 
Wu and Poh (2000) propose a set of operations that change the abstraction level of 
knowledge-based influence diagrams. The ‘extend’ and ‘retract’ operations respectively add 
and remove the parents of a variable. The ‘abstract’ operation merges a set of variables that 
share a single parent and child. The ‘refine’ operation is the opposite of ‘abstract’, dividing a 
variable with a single parent and child into multiple variables. These operations can be 
applied to limited and simple modelling tasks. For example, Wu and Poh (2000) do not 
discuss merging variables that do not share parents. 
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Srinivas (1994) proposes a hierarchical BN approach for the fault diagnosis problem in 
engineering systems. In this approach, functional schematics can be defined in multiple levels 
of abstraction between the inputs and outputs of the system. Shachter’s node removal 
operation (Shachter, 1986) is used to reach to higher level schematics. The different 
abstraction levels of schematics must have the same inputs and outputs. 

Neil et al. (2000) use specific BN fragments called idioms for representing common types of 
uncertain reasoning. Knowledge engineers and domain experts select the most appropriate 
idioms for their modelling problems and use these idioms as building blocks for their BN 
structure. Idioms are reused for similar modelling tasks in order to develop BNs efficiently 
and consistently. Koller and Pfeffer (1997) describe object-oriented Bayesian Networks 
(OOBN), representing BNs with inter-related objects. OOBN are particularly useful for 
complex models that contain repeated fragments, where objects can be reused to decrease the 
modelling effort. Laskey and Mahoney (1997) also use object-oriented concepts to construct 
a BN by using semantically meaningful fragments as the basic building blocks. Laskey and 
Mahoney (2000) propose a system engineering approach that uses a spiral lifecycle model for 
the development of BNs. Their approach starts by defining objectives and building initial 
prototypes with simple features. These prototypes are evaluated and rebuild. As this process 
proceeds the knowledge engineer understands the domain and the domain experts understand 
the principles of BN.  The systems engineering approach uses network fragments (Laskey 
and Mahoney, 1997) as basic elements of model building.  

Heckerman (1990) describes similarity networks that can be used for diagnosing a single 
hypothesis that has mutually exclusive and exhaustive states. In this approach, each pair of 
similar hypotheses is connected in a similarity network. A separate BN network structure is 
elicited for each pair of these similar hypotheses. Then, the separate BN structures are 
merged to form the final BN structure. This approach divides the task of network building 
into pieces that are easier to manage. However, it can only be applied when the hypotheses 
are mutually exclusive and exhaustive and the hypothesis variable has no parents. Parent 
divorcing approach can reduce the parameter space by adding a variable to the BN (Nielsen 
and Jensen, 2007). As the parameter space of a variable increases exponentially with the 
number of its parents, adding an intermediate variable between the variable and its parents 
can make parameter space smaller. 

3 Conditional Independences in BNs 
Bayesian Networks 
A BN represents a joint probability distribution compactly in a factorised way. The structure 
of a BN is a directed acyclic graph that consists of nodes representing variables and directed 
edges encoding a set of CI conditions about these variables. Every node in a BN is 
independent of its non-descendants given that the state of its parents is known. Therefore, 
each node has a conditional probability distribution that defines its probabilistic relation with 
its parents. A probability distribution 𝑃! factorises over a BN structure 𝐺! if 𝑃! can be 
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decomposed into the product of factors 𝑃! = 𝑃 𝑋!,… ,𝑋! = 𝑃 𝑋! 𝑃𝐴!!
!!!

!!!  where 

𝑋!,… ,𝑋! are a set of variables, 𝑃𝐴!!
!! is the set of parents of 𝑋! in 𝐺!. 

We say that 𝐺! asserts the set of CIs 𝐼(𝐺!). 𝑃! can factorise on 𝐺! if 𝐼(𝐺!) is a subset of 
𝐼(𝑃!) where 𝐼(𝑃!) is the set of CIs in 𝑃!. 

Domain Knowledge and Conditional Independences 
The aim of a knowledge-based BN is to model the data-generating process for the domain by 
encoding knowledge about influences and independences in the BN structure. A satisfactory 
modelling of this knowledge is when a BN 𝐺! is able to represent the joint probability 
distribution 𝑃! of the data-generating process (see Fig. 1).   

 

Fig. 1 Knowledge-based Bayesian Network 

A BN structure encodes a set of CIs; therefore its ability to represent a data-generating 
process depends on the CIs the BN asserts. Consequently, compatibility of the BN 
abstractions can be evaluated by their effect on the CI assertions of the BN. 

CI assertions of a BN: D-separation 
The CI assertions of a BN can be determined by d-separation (Pearl, 1988).  

d-separation: A trail 𝑋! ⇋ ⋯ ⇋ 𝑋! is a consecutive sequence of edges that can be in any 
direction. Let 𝐺 be a BN structure, 𝐴,𝐵 and 𝑉 be three disjoint sets of nodes in 𝐺. 𝐴 and 𝐵 
are d-separated by 𝑉, 𝑑𝑠𝑒𝑝!(𝐴;𝐵|𝑉), if and only if there is no active trail between 𝐴 and 𝐵 
given that 𝑉 is observed. An active trail requires the following conditions: 

1) For every converging relation 𝑋!!! → 𝑋! ← 𝑋!!! in the trail, the node 𝑋! or one of its 
descendants is a member of 𝑉. 

2) The other nodes in the trail are not members of 𝑉. 

If 𝐴 and 𝐵 are d-separated given 𝑉 in the BN structure 𝐺, then 𝐴 and 𝐵 are conditionally 
independent given 𝑉 in any probability distribution that factorises over the BN. 𝐴 and 𝐵 are 
called d-connected if they are not d-separated. It follows from the definition of d-separation 
that adding an edge to a BN increases the number of trails and therefore does not increase the 
number of CI conditions.  
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Any CI that holds on the BN structure 𝐺 must also hold on the probability distribution 𝑃, if 𝑃 
factorises over 𝐺. On the other hand, 𝑃 can have additional CI conditions that are not 
reflected in 𝐺. Therefore, a probability distribution can factorise over various BN structures. 

An example of this situation can be seen by the BNs in Fig. 2. Some probability distributions 
can factorise on both of these BNs even though their graphical structure is different. In the 
BN in Fig. 2a, as well as in the probability distribution 𝑃, 𝐴 and 𝐵 are conditionally 
independent given that the state of 𝐶 is not known. This CI is not represented in the graphical 
structure of the BN in Fig. 2b. However, the CI condition can still be present in the 
probability distribution that factorises over this BN structure. In other words, the CI between 
𝐴 and 𝐵 can be encoded in the parameters of this BN rather than its structure. The BN on the 
left is preferable since an edge between 𝐴 and 𝐵 is unnecessary for this probability 
distribution, and additional edges increase the computational burden of a BN. The obvious 
conclusion is to choose a BN structure that encodes all of the CIs of the probability 
distribution in its graphical structure. Unfortunately, this is not possible in general. 
Symmetric variable-level CIs or some regularities in the parameters do not have a BN 
structure that represents all of the CIs (Pearl, 1988). 

 

Fig. 2 Same probability distribution factorised over two different BN structures 

4 Abstraction as a Knowledge Engineering Method 
In this section, we present an overview of our abstraction method for knowledge-engineered 
BNs. Our approach is to construct the BN structure based on expert knowledge before using 
available data, statistics from relevant studies, and numbers elicited from domain experts to 
parameterise the BN. The first step of our method is to elicit the BN structure for the domain. 
The initial structure should be considered as a knowledge-model of the domain so it should 
include all relevant variables and relations without being limited by issues such as availability 
of data or model complexity. Knowledge engineering techniques for eliciting the BN 
structure are discussed in Section 2.2. 

When the initial structure of the BN is complete, we compare it with the resources for 
parameterising the BN. The data and the statistics from relevant studies may not be enough to 
learn the parameters for all of the variables in the BN. For example, some of the variables 
may not be directly observed or observations may not be recorded in practice. Moreover, the 
conditional probability tables of some variables may be too large to elicit or learn from 
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available resources. Consequently, the initial BN structure may need to be abstracted in order 
to have a parameterised and working BN. 

 

Fig. 3 Overview of abstraction as a method of model development 

We propose 4 abstraction operations that are classified as compatible or incompatible as 
shown in Table 1. Node removal and node merging are ‘compatible’ abstractions meaning 
that these operations can always be applied without adding new CI conditions to the variables 
shared between the initial and the abstracted BN. State-space abstraction and edge removal 
are ‘incompatible’ abstractions that bring additional CI conditions to the BN structure. A 
probability distribution for the data-generating process that factorises on the initial BN 
structure may no longer factorise when incompatible abstractions are applied. Therefore, the 
domain experts should review the effects of incompatible abstractions on the knowledge-base 
of the BN. The compatibility properties of the abstraction operations are defined in Section 
5.1. Fig. 3 illustrates the overview of our method. In summary: 

• We use compatible abstractions first to reduce the number of variables in the model  
• We then make approximations with incompatible abstractions to improve learning and 

elicitation often as a complement to compatible abstractions 

However, the order of the abstraction operations is not restricted to this pattern; any operation 
can be applied to any network. 

Table 1 Abstraction Operations 

Operation Compatibility 
Node removal Compatible 
Node merging Compatible 
State-space abstraction Incompatible 
Edge removal Incompatible 

The purpose of the BN must be considered when removing variables: some variables may 
have primary importance, and they should not be removed even when no data is available; 
whereas other variables can be removed without affecting the reasoning mechanism of the 
model significantly. The node removal operation is described in Section 5.2. 
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In the next step, merging is used on the variables that require simplifications but should not 
be removed. The suitable candidates for merging are the variables that together represent an 
abstract concept. These variables can be described as the parts of the definition of the abstract 
concept. The node merging operations is demonstrated in Section 5.3. 

After determining variables of the BN, the states of the variables can be abstracted in order to 
make it feasible to learn or elicit their parameters with available resources. The domain 
experts should review the CI conditions added as a result of state-space abstraction. The 
state-space abstraction operation is described in Section 5.4. 

The final abstraction step in our method is the edge removal. This operation can be used to 
further simplify the BN when its parameter space is too large to be learned or elicited. The 
edge removal is also an incompatible abstraction; therefore, its effects on the CIs should be 
reviewed by experts. The data, if available, can be used to assess the effects of the edge 
removals by using statistical independence tests or model selection scores. The edge removal 
operation and the approaches for reviewing its effects are described in Section 5.5. 

5 Abstraction Operations 

5.1 Compatibility of Abstractions 
A BN structure has fewer variables, states or relations than the initial knowledge model after 
the abstraction operations are applied. A crucial factor to consider is whether the abstracted 
BN 𝐺! is a compatible abstraction that is able to represent the probability distribution of the 
remaining variables. In this section, we present the definition of compatible abstractions in 
the case where some variables are removed from the model. In the following sections we will 
expand this definition for the node merging operation, and discuss the compatibility of the 
state-space abstraction and edge removal operations. 

A compatible node removal operation is able to represent the probability distribution of the 
remaining variables in the BN. Let 𝐺! be a BN structure where the probability distribution 𝑃! 
of the set of variables 𝑋 factorises. When a set of nodes is removed from this BN, the 
abstracted BN structure 𝐺! must be able to represent the probability distribution of the 
remaining variables 𝐴. Since 𝐴 ⊆ 𝑋, the probability distribution of 𝑃! of the set of variables 
𝐴 is simply a marginalisation of 𝑃!, and the compatible abstraction 𝐺! is able to factorise 
𝑃! = 𝑃!! \ ! . This is possible if the abstraction operation does not introduce additional 
independence assertions to the BN structure so that 𝐺! asserts a subset of the d-separations in 
𝐺!. 

Compatible Abstraction: 𝐺! is an compatible abstraction of 𝐺! if 𝑑𝑠𝑒𝑝!! 𝐷;𝐸|𝐹 ⊆
𝑑𝑠𝑒𝑝!! 𝐷;𝐸|𝐹  where 𝐷,𝐸,𝐹 are three sets of variables in 𝐴. 

When abstraction operations results in an incompatible structure by adding a CI assertion, the 
knowledge engineers must carefully evaluate the differences between the additional CI and 
the initial knowledge-based model (See Fig. 4). 
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Fig. 4 Compatible and Incompatible Abstraction 

In the remainder of this section, we present each of the abstraction operations and discuss 
their compatibility properties. 

5.2 Node Removal 
Any node in a BN can be removed without adding independence assertions using Shachter’s 
topological operations (Shachter, 1986; 1989). The node removal operation is based on the 
concepts of barren nodes, covered edges and edge reversals: 

1. Barren Nodes: Nodes that do not have any descendants in the BN are called barren 
nodes. Removing barren nodes does not add CI assertions to the rest of the BN: 
𝑑𝑠𝑒𝑝!! 𝐷;𝐸|𝐹 = 𝑑𝑠𝑒𝑝!! 𝐷;𝐸|𝐹  where (𝑋 \ 𝐴) are barren nodes and 𝐷,𝐸,𝐹 are 
three sets of variables in 𝐴. 

2. Covered Edge and Edge Reversal: An edge 𝑌 → 𝑍 in a graph 𝐺 is covered if 
𝑃𝐴!! = 𝑃𝐴!!  \ {𝑌} that is if the set of parents of 𝑌 and set of parents of 𝑍 excluding 𝑌 
are equivalent. Covered edges can be reversed without adding any independence 
assertions to the BN structure. This is useful since the outgoing edges from a node can 
be reversed to make the node barren and remove the node without adding CIs when 
these edges are covered. 

3. Adding Edges: Adding edges to a BN structure does not add CI assertions to 𝐺!, but 
it removes CI assertions, since all the previously active trails are still present and the 
added edges may add further active trails: 𝐼 𝐺! ⊆ 𝐼(𝐺!) where 𝐺! is derived from 
adding some edges to 𝐺!. As a result, any edge in a BN can be covered without 
introducing CIs by adding edges between the variables that the edge connects and 
their parents. 

In summary, we can cover any edge in a BN by adding more edges to the BN structure, and 
this will not add more CI assertions. We can reverse any edge and make any node barren 
since we can cover any edge in the BN structure. Therefore, we can remove any node as a 
compatible abstraction without adding CI assertions to the BN (Shachter, 1989). 

Removing a node can increase the parameter-space and computational complexity of a BN 
especially if the removed node has many children. As the number of children of a node 
increases, more edges are required to cover the outgoing edges from the node. For example, if 
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we remove the node 𝑅 from the BN structure in Fig. 5a, we need to add 4 edges to keep the 
structure compatible, and the number of parents of 𝐶,𝐷 and 𝐸 is tripled (Fig. 5c). 

 

Fig. 5 (a) R with multiple children (b) Making R a barren node (c) R removed 

Suppose that we need to reverse the edge 𝐴 → 𝐵 so that A becomes a barren node. If another 
directed path exists from 𝐴 → ⋯ → 𝐵 then reversing the edge 𝐴 → 𝐵 would introduce a 
cycle. However, in this case node 𝐵 has another parent ‘𝑋’ on this path; since 𝑋 is a 
descendant of 𝐴 and the BN is acyclic we can be sure that there is no directed path from 𝑋 to 
𝐵 via 𝐴. In general, since the BN is acyclic, the set 𝑃𝐴! must contain at least one node that 
does not have an additional directed path leading to 𝐵. This node is not greater than the other 
parents of 𝐵 in the partial order on nodes defined by the BN’s graph. It is therefore always 
possible to select a node from 𝑃𝐴! so that its edge to 𝐵 can be reversed without introducing a 
cycle and is therefore possible to make any node in a BN barren without introducing a cycle. 

Since the BN’s graph defines only a partial, not total order, on nodes, we may have to choose 
the order in which the edges leading from a node 𝑅 are reversed as we transform the BN to 
make 𝑅 a barren node. Changing the order of edge reversal can change the structure of the 
final BN. For example, we have to reverse 𝑅 → 𝐷 and 𝑅 → 𝐶 in order to remove 𝑅 from the 
BN shown in Fig. 6a. If we start by reversing 𝑅 → 𝐷 the resulting structure has a total of 6 
edges as shown in Fig. 6b. However, if we start by reversing 𝑅 → 𝐶, the resulting structure 
has 7 edges as shown in Fig. 6c. 



11 
 

 

Fig. 6 (a) Initial BN; Equivalent abstractions when edge reversals start from (b) 𝑹 → 𝑫 and (c) 𝑹 → 𝑪 

The order of edge reversals can be selected in a way to minimise either the number of edges 
added or the size of the final state space. Having the least number of additional edges does 
not guarantee that the state-space is minimised. A BN with fewer edges can have a larger 
state-space due to the state-space of its individual variables. 

The search-space of possible equivalent abstractions gets increasingly large as the removed 
node has more children. The outgoing edges from a node that has 𝑛 children can be reversed 
in 𝑛! possible orders. This makes it difficult to evaluate all alternatives to find the minimal 
state-space size or number of added edges, especially for the nodes with many children. 
However, an exhaustive search can be unnecessary from a knowledge engineering 
perspective. A relation in a BN can represent causality or association. Edges added between 
the children of a removed node are assumed to represent association due to the missing parent 
therefore they can be modelled in any direction. However, some of the directions can make 
more sense to the domain experts even though these variables are assumed to be independent 
when the state of missing parent is known. 

If the domain experts have no preference about the directions of edges, following heuristics 
can be useful to choose the order of removing nodes without making an exhaustive search: 

• In order to add fewer edges, start reversing from the edge 𝑅 → 𝑋 where 𝑋 has the 
smallest number of parents. When multiple edges must be reversed to remove 𝑅, an 
edge is added from 𝑋 and 𝑃𝐴!! − {𝑅} in order to cover the edges directed to other 
children of 𝑅 that are reversed later. Therefore, if we start from reversing the node 
that has the smallest number of parents, fewer edges will be added to cover the edges 
that are reversed later. 

• Similarly, in order to have a smaller increase in the size of the state-space, start 
reversing from the edge 𝑅 → 𝑋 where 𝑋 has the smallest number of parameters.  

Node removal is a well-known technique that has been primarily used for inference problems 
(Shachter, 1986; 1989; 1990). It is a useful operation for knowledge engineering of the BN 
structure as it explicitly shows the number and possible direction of edges that must be added 
for abstraction. A node removal operation is straightforward when the removed node has a 
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single or no child. In this case, no edges are added and the edge directions are maintained. 
However, removing a node with multiple children can result in multiple equivalent BN 
structures with many additional edges as shown in Fig. 5. The additional edges are necessary 
for compatibility but incompatible abstractions may follow node removals for further 
simplification. 

Using Edge Removal with Node Removal 
The edge removal operation (see Section 5.5) can complement node removal when a large 
number of edges are added as a result of removing a node. Rather than making ad-hoc 
approximations, domain experts should evaluate the CIs modelled by each added edge, and 
remove the ones that are considered to be trivial. An example of a node removal followed by 
edge removals is shown by the case-study in Section 6. 

5.3 Node Merging 
The second of the compatible abstraction operations is merging multiple nodes 𝑇!,… ,𝑇! into 
a single node 𝑀. Two nodes 𝑇! and 𝑇! can be merged into a single node 𝑀 when an edge can 
be added between 𝑇! and 𝑇! and this edge is reversible by adding extra edges to cover it. The 
network with the merged variable combines the networks with this edge in both directions. 
The merging operation is a compatible abstraction since covering and reversing the edge 
between 𝑇! and 𝑇! does not add CI conditions to the BN structure (see Section 5.2). When we 
merge 𝑇! and 𝑇! into 𝑀, the state-space of 𝑀 becomes the Cartesian product of the state-
spaces of 𝑇! and 𝑇!.  

Node merging does not change the probability distribution that factorises on the BN. The 
main difference is that 𝑇! and 𝑇!  cannot be observed separately, they must be observed or 
unobserved together. Therefore, observing 𝑀 is equivalent to observing 𝑇! and 𝑇! together 
while comparing the CI conditions between 𝐺! and 𝐺!. 

An example of the merging operation is shown in Fig. 7 where the nodes 𝑋 and 𝑌 are merged 
into 𝑋𝑌. The first step is to add an edge between 𝑋 and 𝑌 as shown in Fig. 7b. Next, this edge 
is covered and reversed as shown in Fig. 7c. The final BN with the merged variable 𝑋𝑌 (see 
Fig. 7e), can be seen as equivalent to the BNs with edges in both directions (see Fig. 7d).  

Multiple nodes can be merged into a single node by repeating the merging operation 
pairwise. For instance, the nodes 𝑋,𝑌 and 𝑍 in Fig. 7a can be merged pairwise by first 
merging 𝑋 and 𝑌 to 𝑋𝑌 (see Fig. 7e), then merging 𝑋𝑌 and 𝑍 to 𝑋𝑌𝑍 as shown in (see Fig.8). 
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Fig. 7 (a) Initial BN (b) 𝑿 → 𝒀 added (c) 𝑿 → 𝒀 reversed (d) BNs with 𝑿 → 𝒀 and 𝑿 ← 𝒀 combined (e) 𝑿𝒀 merged 

A BN with merged nodes has the same or fewer CI assertions than the initial BN. The edges 
added after edge reversal and covering operations may remove some CIs. Moreover, some of 
the CI encoded in the initial BN disappears after merging since the merged variables cannot 
be observed separately. For example, 𝐴 and 𝐵 is independent given that 𝑋 and 𝑌 is observed 
in Fig. 9a, but this independence disappears after merging 𝑋 and 𝑌 as shown in Fig. 9b. 

 
Fig. 8 𝑿𝒀 and 𝒁 merged 

 
Fig. 9 (a) Initial BN (b) 𝑿 and 𝒀 Merged 

The merging operation introduces a cycle if there is a directed path between the nodes to be 
merged, 𝑇! and 𝑇!, that includes some other node. These cycles have to be eliminated since 
BNs are acyclic graphs. Our solution is to reverse some of the edges in these directed paths 
until none of the directed paths remain between 𝑇! and 𝑇!. In other words, if there is a directed 
path between 𝑇! and 𝑇! that includes other nodes, we break this directed path by reversing 
some of the edges in it. There are two issues to consider while reversing these edges: 

• The reversed edges must not introduce a cycle as well. 
• The edges must be covered before reversing (see Section 5.2). 

For example, we cannot immediately merge 𝑋 and 𝑌 in Fig. 10 since there is a directed path 
𝑋 → 𝐵 → 𝐷 → 𝑌 between 𝑋 and 𝑌 that includes the nodes 𝐵 and 𝐷. We have to reverse one 
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of the edges between 𝑋 → 𝐵, 𝐵 → 𝐷 or 𝐷 → 𝑌 to prevent the merging operation from 
introducing a cycle. 

 
Fig. 10 BN before 𝑿 and 𝒀 are merged 

We consider whether any of 𝑋 → 𝐵, 𝐵 → 𝐷 or 𝐷 → 𝑌 are covered or not. If one of them is 
covered, it can be reversed; if none are covered we need to add more edges to cover and 
reverse them:  

• Parents of 𝐵 = {𝐴,𝑋}, parents of 𝑋 = { } therefore the edge 𝑋 → 𝐵 is not covered. 
The edge 𝐴 → 𝑋 has to be added in order to make this edge covered.  

• Parents of 𝐷 = {𝐶,𝐵}, parents of 𝑌 = {𝐷,𝑋,𝐸}; therefore the edge 𝐷 → 𝑌 is not 
covered. The edges 𝐶 → 𝑌, 𝐵 → 𝑌, 𝑋 → 𝐷 and 𝐸 → 𝐷 must be added in order to 
make this edge covered. 

• Parents of 𝐵 = {𝐴,𝑋}, parents of 𝐷 = {𝐶,𝐵}; therefore the edge 𝐵 → 𝐷 is not 
covered. The edges 𝐴 → 𝐷, 𝑋 → 𝐷, 𝐶 → 𝐵 must be added in order to make this edge 
covered. 

 
Fig. 11 (a) 𝑿 → 𝑩 reversed (b) 𝑫 → 𝒀 reversed (c) 𝑩 → 𝑫 reversed 

Fig. 11a, Fig. 11b and Fig. 11c shows the model structure when the edges 𝑋 → 𝐵, 𝐷 → 𝑌 and 
𝐵 → 𝐷 are covered and reversed respectively. The edges that were added are shown by 
dashed lines, and the reversed edges are shown by bold lines in these figures. The BN in Fig. 
11a does not have a directed path between 𝑋 and 𝑌 therefore the nodes 𝑋 and 𝑌 can be 
merged. The BNs in Fig. 11b and Fig. 11c, on the other hand, still have directed paths 
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𝑋 → 𝐵 → 𝑌 and 𝑋 → 𝐷 → 𝑌 respectively. We need to reverse more edges in order to merge 
𝑋 and 𝑌 in these BNs. Since we already have a structure without a directed path between 𝑋 
and 𝑌 (Fig. 11a), we continue with this structure. The joint probability distribution 
𝑃(𝐴,𝐵,𝐶,𝐷,𝑋𝑌,𝐸) can be represented in the same way in these two BNs assuming that 
observing 𝑋𝑌 is equivalent to observing 𝑋 and 𝑌 at the same time in the initial BN. 

The BN in Fig. 12 has one more edge compared to the initial BN. It is possible to select the 
sequence of reversals that leads to the fewest number of additional edges or to the smallest 
state-space. In our example, reversing 𝑋 → 𝐵 (Fig. 11a) added the least number of edges 
compared to reversing 𝐷 → 𝑌 (Fig. 11b) or 𝐵 → 𝐷 (Fig. 11c). 

 
Fig. 12 Compatible Merging of 𝑿 and 𝒀 

In general, it is possible to merge any pair of nodes in a BN. In the worst case the process 
described above will lead to a fully connected BN, with no CI conditions. Since all fully 
connected BNs that are formed by the same set of nodes have equivalent CI conditions (i.e. 
none), any (acyclic) combination of edge directions can be reached by an appropriate 
sequence of reversals of covered edges. Therefore, any edge can be reversed in a fully 
connected network, and any pair of nodes can be merged. 

Although possible, not all merging operations are sensible from a knowledge engineering 
perspective. In Fig. 10, 𝑋 is a cause of 𝑌, and 𝐵 and 𝐷 are the intermediate variables between 
the cause and the effect. Merging the cause and the effect and leaving the intermediate 
variables in the model would not be sensible in most knowledge engineered BNs. One would 
prefer to merge an intermediate variable with either its cause or its effect when simplifying a 
causal BN. 

Using Node Merging with State-Space Abstraction 
Abstraction by merging variables is suitable when multiple variables in the model are parts of 
the definition of a more abstract concept. For example, an engine fault can be either 
explained as an abstract concept with binary states, or it can be explained in detail by 
describing the exact faults in each component of the engine. The detailed version of a BN for 
detecting car faults may have variables about faults in pistons, alternators and crankshaft. 
These variables can be merged into a single variable about engine fault but we would expect 
this variable to have more abstract states, rather than the Cartesian product of the states of the 
detailed variables. State-space abstraction will follow node merging in such cases (see 
Section 5.4). An example of node merging followed by state-space abstraction is shown by 
the case-study in Section 6. 
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5.4 State-space Abstraction 
State-space abstraction collapses multiple states of a variable into a single state. For example, 
suppose a variable has 4 states named {None, Moderate, Severe, Profound}. We could 
collapse ‘Moderate’, ‘Severe’ and ‘Profound’ states into a single state called ‘Present’. As a 
result, the variable would have 2 states named {None, Present} and it would require fewer 
parameters to be learnt or elicited. This operation is often used in combination with node 
merging (See Section 5.3).   

State-space abstraction is an incompatible abstraction even though it does not change the BN 
structure (Wellman and Liu, 1994; Chang and Fung, 1990). The changes in the CI and their 
effects to domain representation should be discussed with domain experts before state-space 
abstractions are made.  

5.5 Edge Removal 
Edge removal is an incompatible abstraction that always adds CI assertions to the BN 
structure (see Section 3). Therefore, an edge should not be removed if it is not recommended 
by experts or statistical evidence. By adding CIs, edge removal decreases the parameter space 
and computational complexity of the BN. Edges added after node removal and merging 
operations, and weak relations represented in the BN structure are suitable candidates for 
edge removal. The remainder of this section presents knowledge and data driven approaches 
for assisting edge removal. 

Using Domain Knowledge for Selecting Edges for Removal 
Before removing an edge, the effects of removing the edge should be reviewed with domain 
experts.  The review focuses on the strength of the relation modelled by the edge, and the 
additional CI conditions caused by removing it. Reviewing the edges between all subsets of 
variables may not be feasible if the BN is large. In this case, the domain experts can identify 
the important variables in the domain, and limit the review to these variables. 

Edge removal can be used with node removal and node merging as these operations can add a 
large number of edges to the BN structure (see Section 5.2 and 5.3). In this case, the experts 
can review the effects of removing each of the edges added by these operations. For example, 
when the node 𝑅 is removed from the BN in Fig. 13a edges are added between the variables 
𝐵, 𝐶 and 𝐷 as shown in Fig. 13b. Removing these edges can simplify the BN but it will add 
CIs that are not present in the initial BN. For example, removing 𝐶 → 𝐷 and 𝐵 → 𝐶 as in Fig. 
13c adds two CI conditions: 𝐵 ⊥ 𝐶 𝐴  and 𝐶 ⊥ 𝐷 𝐴 . These CIs do not exist in the initial 
structure 𝐺 and should be discussed with domain experts. 

 

Fig. 13 (a) Initial BN (b) Node R removed (c) Edges 𝑩 → 𝑪 and 𝑪 → 𝑫 removed 
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Using Data for Selecting Edges for Removal 
Statistical independence tests can also be used for selecting edges to be removed if there is 
adequate amount of data. These tests analyse statistically significant CIs between variables. 
There are widely used statistical tests suitable for this purpose including χ2 test, and the tests 
proposed by Margaritis (2004) and Dash and Druzdzel (2003). Model selection scores, such 
as Bayesian Information Criterion (Schwarz, 1978), can be used to compare the effects of 
removing edges based on data. Another possible approach is to evaluate the sensitivity of the 
parameters of a target variable to edge removal (Renooij, 2010). 

6 Case-Study: Shock 

6.1 Background 
Bleeding is one of the most common causes of death following injury. Blood is the medium 
through which oxygen, which is vital for metabolism, is delivered to tissues. Patients with 
significant blood loss are unable to adequately perfuse their tissues with blood and thus 
unable to adequately deliver oxygen to the tissues. The body tissues start to die if starved of 
oxygen for a prolonged time. The body responds in several ways to compensate for the 
effects of blood loss. First, the heart rate increases in order to maintain normal perfusion and 
blood pressure. However, as the blood loss increases the increased heart rate cannot 
compensate and the blood pressure decreases. Second, as oxygen delivery to the tissues 
decreases, less efficient (anaerobic) metabolism takes over to compensate for the lack of 
oxygen. The by-products of anaerobic metabolism increase the acidity of blood and tissues, 
which in turn causes the respiration rate to increase. A patient in whom these mechanisms are 
operating as a result of bleeding is said to be in a state of haemorrhagic shock. 

It is not possible to observe the state of the many variables explained above directly. For 
example, the oxygen perfusion to tissues cannot be measured precisely. Instead, these ‘latent’ 
variables are inferred from related measurements and clinical observations. Reasoning of this 
type suggests the potential of a BN to detect shock. 

6.2 Shock BN 
We developed a BN structure for reasoning about the physiology of bleeding patients and for 
predicting the risk of death from shock. We did not consider the limitations of available data 
at this stage; our aim was to model all main variables and relations indicated by domain 
experts. The structure of the BN can be seen in Fig. 14. The circular nodes in this BN are the 
main clinical variables, and rectangular nodes are the measurements and observations 
relevant to main clinical variables. Table 2 shows the definition of the main variables in the 
BN. A possible next step would be to learn the parameters of this BN from data. However, 
we do not have data about some of these variables since they are either not observed or not 
recorded in practice. We use abstraction operations to make it possible to learn the model 
with the available data. 
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Table 2 Definitions of Variables in Shock BN 

Variable Definition 
Bleeding Body Parts The number of bleeding body compartments. 

Hypovolemia Decrease in the volume of blood in circulatory system. Heart rate (HR) increases as a result of this to 
maintain normal blood pressure. 

Cardiac Output Volume of blood ejected from left side of the heart in 1 minute. As the blood loss increases cardiac output 
and blood pressure (SBP) will fall. 

Hypoperfusion Decrease in the volume of blood perfusion to the tissues. Urine output and Glasgow coma scale (GCS) is 
dependent on kidney and brain perfusion respectively. Body temperature (Temp) indicates the degree of 
overall perfusion. Therefore, these values can be used to estimate the degree of hypoperfusion. 

PVS Vascular resistance to the flow of blood in peripheral arterial vessels. Degree of PVS can be estimated by 
capillary refill time (CRT). 

Oxygen Delivery Amount of oxygen delivery to the tissues 

Metabolic Acidosis As oxygen delivery to the tissues decreases, less efficient (anaerobic) metabolism takes over to 
compensate for the lack of oxygen. The by-products of anaerobic metabolism increase the acidity of 
blood and tissues, which in turn causes the respiration rate (RR) to increase. The degree of metabolic 
acidosis can be estimated by pH, base excess (BE) and lactate values in blood. 

Death The risk of death in 48 hours 

6.3 Node Removal 
We removed the ‘CRT’, ‘Urine Output’, ‘PVS’, ‘Blood Loss’ and ‘Metabolic Acidosis’ 
variables from the BN structure in this order. These variables were selected with domain 
experts, considering both the objectives and the knowledge-base of the BN.  

The measurement variables ‘CRT’ and ‘Urine Output’ are already barren nodes and can 
therefore be removed without any edge reversal operations. The ‘PVS’ variable becomes 
barren after ‘CRT’ is removed so no edge reversal is needed for it either. Removing the 
’Blood Loss’ and ‘Metabolic Acidosis’ variables requires 1 and 4 edge reversal operations 
respectively. The resulting BN structure after the node removal operations can be seen in Fig. 
15.  

Removing the ‘Metabolic Acidosis’ variable with a compatible abstraction made the 
abstracted BN more complex: 6 edges were added between the children of this variable and 
one of its children has now 4 parents. These edges do not represent causal relations but 
removing them will introduce CIs that were not present in the initial BN. Before simplifying 
the graph, the effects of removing each of these edges on CIs should be investigated by 
domain experts (see Section 5.5). Our method enables a clear documentation of abstraction 
steps and allows evaluation of each approximation with domain experts. 

 

Fig. 14 Initial Structure of the Physiology BN 
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Fig. 15 BN structure after node removals 

 

Fig. 16 BN structure after node merging 

6.4 Node Merging 
We also do not have an adequate amount of data about the ‘Oxygen Delivery’, 
‘Hypoperfusion’, ‘Cardiac Output’ and ‘Hypovolemia’ variables. However, the domain 
experts do not recommended removing these variables since they represent an important 
physiological mechanism about bleeding. We have to elicit the parameters of these variables 
from domain experts, but a simplification is considered to be necessary for this task. 

The domain experts stated that oxygen delivery, hypoperfusion, cardiac output and 
hypovolemia are elements of a more abstract physiological definition called shock. Shock is 
clinically defined as a metabolic disturbance due to the failure of the circulatory system to 
maintain adequate perfusion to vital organs. Hypovolemia and cardiac output is associated 
with failure of the circulatory system, hypoperfusion represent the failure to maintain 
adequate perfusion, finally oxygen delivery and its relation to death represents the metabolic 
disturbance. Therefore these 4 variables can be merged into a single variable called shock. 
We did not have to reverse any edges during merging since the merged node do not have 
directed path that includes a non-merged node between them. The resulting BN after merging 
can be seen in Fig. 16. 

6.5 State-Space Abstraction 
The node merging operations have simplified the structure of the BN resulting in a ‘Shock’ 
variable that is clinically easier to elicit. However, the state-space of the ‘Shock’ variable still 
requires simplification since it is formed by the Cartesian product of each of the states of the 
merged nodes. For simplicity we defined binary states for the merged variables: {Normal, 
Abnormal}. The domain experts stated that shock is present when all of the 4 factors are 
abnormal. In other words, we are interested in two states of the shock variable: the state when 
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all of the factors are abnormal, and when all of the factors are not abnormal. An illustration of 
this state-space abstraction is shown in Table 3. 

Table 3 States of Shock Before and After State-Space Abstraction 

Before 
state-space 
abstraction1 

 After 
state-space 
abstraction 

A,A,A,A  Abnormal 
N,N,N,N 

. 
: 

N,A,A,A 

  
Normal 

1A: Abnormal, N: Normal 
 

6.6 Edge Removal 
Several edges were added between ‘BE’, ‘Lactate’, ‘RR’ and ‘pH’ as a result of removing the 
‘Metabolic Acidosis’ variable. We listed the CI conditions that removing each of these edges 
can bring, and discussed these CIs with the domain experts. For example, when we remove 
RR → BE, RR becomes independent of BE given that shock or variables that are merged into 
shock are observed. This CI was not present in the initial BN. The resulting BN structure 
after edge removals can be seen in Fig. 17. 

 

Fig. 17 Final abstracted BN after edge removal 

7 Graphical Notation for Abstractions 
In this section, we present a graphical notation that shows the order and type of abstraction 
operations applied to a BN. The notation shows how the abstracted structure is derived from 
the initial BN by showing each abstraction step. This is essential for communicating the 
knowledge-base of the BN or for deriving a more detailed version of the BN when, for 
example, more data become available. We use both the initial and the abstracted BN 
structures to show the abstraction steps. These structures are annotated by the symbols shown 
in Table 4.  In the remainder of this section, we illustrate the application of these symbols by 
using the case study about shock. 
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Table 4 Symbols for Abstraction Operations 

Operation Symbol Operation Symbol 
Node Merging 

 

Edge added 
after node 
merging  

Node 
Removal 

 

Edge reversed 
after node 
merging  

State-space 
Abstraction 

 

Edge added 
after node 
removal  

Edge Removal  

Removed nodes are shown with dashed boundaries and annotated by ‘xR’ where x is an 
integer that indicates the order of the abstraction operation and R indicates a removal 
operation. Edges that are added as a result of node removal operation are shown by an ‘xR’ 
annotation with the same ‘x’. In the case study, the first abstraction operation is the removal 
of the ‘Metabolic Acidosis’ variable, and this operation adds several edges to the model. This 
variable and the added edges are annotated by ‘1R’ in the initial and abstracted BNs 
respectively as shown in Fig. 18. 

 
Fig. 18 Notation for initial (a) and abstracted (b) BN fragment for removal of Metabolic Acidosis variable 

The nodes undergoing a node merging operation are annotated by ‘xM’ where x is the order 
of the abstraction operation and M stands for ‘merging’. In the shock example, we merged 
four nodes: ‘Oxygen Delivery’, ‘Hypoperfusion’, ‘Cardiac Output’ and ‘Hypovolemia’. The 
node resulting from this merging operation is ‘Shock’. We annotate each of these variables 
with ‘2M’ since it is the second abstraction operation and it is a merging operation. The 
initial and abstracted BNs after this operation can be seen in Fig. 19. 
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Fig. 19 Notation showing before (a) and after (b) merging multiple variables into Shock variable 

A node merging operation may introduce edges (see Section 5.3). In this case, both the added 
and the reversed edges are annotated by ‘xM’, and the reversed edges are shown by bold 
lines. 

Variables with state-space abstractions are shown by a double lined boundary, and removed 
edges are shown by dashed lines. The order of state-space abstraction and edge removal does 
not change the BN structure (other than the removed edge itself) so the order is not annotated. 
However, the collapsed or removed states after state-space abstraction must be documented 
(for example, as in Table 3). In the case study, the state-space of ‘Shock’ is abstracted and the 
edges between ‘pH’, ‘RR’, ‘BE’ and ‘Lactate is removed in order to simplify the BN, as 
shown in Fig. 20. 

 

Fig. 20 Notation showing edge removals and state-space abstraction (a) and BN structure after removing edges (b) 

Fig. 21 shows the initial and abstracted structure of the Shock BN with all the abstraction 
operations annotated. The graphical notation presented in this section clarifies the derivation 
of the final abstracted structure from the initial – detailed – structure. Multiple graphs each 
showing a particular step of abstraction can be stored if the model is large and requires many 
complex abstraction operations. 
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Fig. 21 Initial (a) and abstracted (b) bleeding physiology BN with abstraction notation 

8 Conclusion 
This paper proposed abstraction as a knowledge engineering method for simplifying BN 
structure. The method is illustrated by a medical case study about haemorrhagic shock. Our 
method provided: 

1. A sufficient set of operations that simplify a BN by removing and merging nodes, 
removing edges and reducing the number of states 

2. The compatibility properties of each abstraction in terms of CIs added to the BN 
structure 

3. A graphical notation that captures the sequence and type of abstraction operations, 
and thereby showing the link between the knowledge-base and the abstracted BN 

Some of the abstraction operations in our method are based on existing techniques that have 
been mainly used for learning and inference problems. This paper emphasises the potential of 
these techniques for following a systematic approach to knowledge engineering. The 
compatible abstraction operations do not add CIs but they can make the BN structure 
increasingly complex by adding edges. Incompatible abstraction can be used to simplify the 
structure but they approximate the BN structure by adding new CI conditions. Trade-offs 
between the approximations and complexity must be considered carefully since some 
approximations can significantly change the underlying domain knowledge while simplifying 
the BN. Our abstraction methodology allows domain experts and knowledge engineers to 
evaluate these trade-offs by explicitly showing the changes in the underlying domain 
knowledge. 

8.1 Comparison with Existing Abstraction Techniques 
The main motivation from ABEL was its ability of reasoning in multiple levels of abstraction 
by showing the link between different levels (see Section 2.1). Our abstraction methodology 
can show the link between the underlying knowledge and simplifications in a similar way to 
ABEL. However, ABEL’s abstractions are dynamically made at the inference stage based on 
its medical knowledge database, strongly guided by available data. ABEL uses its abstraction 
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mechanism to create causal models that explain the observed state of a patient. BNs are more 
sophisticated than the causal diagrams in ABEL as they are composed of variables with 
multiple states. A single BN can be instantiated in different ways according to observed 
values rather than creating different models for different observations. Therefore, our aim is 
to build a BN model that represents the best available knowledge and evidence, and our 
abstraction methodology is applied statically by knowledge engineers and domain experts at 
the development stage of the model. 

The aim of our abstraction methodology is not aligned with idioms, network fragments, 
OOBNs, parent divorcing approach and similarity networks (see Section 2.2). These 
techniques aim to assist BN development and maintenance either by using semantically 
meaningful BN fragments or merging BN fragments or introducing nodes. However, the aim 
of our abstraction technique is to allow BN simplification without losing the link to domain 
knowledge supporting the BN. The aims of Wu and Poh’s abstraction operations (Wu and 
Poh, 2000) and Srinivas’s hierarchical approach (Srinivas, 1994) are similar to our 
abstraction methodology. However, Wu and Poh’s operations can only be applied to limited 
and simple modelling tasks. The merged variables, for instance, must share only a single 
parent or child. The abstraction operations in this paper overcome these limitations as they 
can be applied to any node, edge or state in a BN. Srinivas uses node removal technique to 
model different levels of abstraction for a specific engineering problem. Our abstraction 
methodology is not developed for a specific problem, and contains a wider variety of 
abstraction techniques. We presented general properties of the abstraction techniques for BNs 
and use a medical case study only to illustrate the application of these techniques. In 
summary, our abstraction methodology overcomes the limitations of these studies as it is not 
developed for a specific problem, and its operations can be applied to any element of a BN. 

8.2 Future Work 
The case-study illustrates the application of the abstraction methodology to a real-world 
problem. Further case studies could focus on evaluating the practical impact of the 
abstraction methodology on BN development. The evaluation could be composed of two 
steps. The first step could assess the degree of knowledge that becomes unclear to users when 
BN models are simplified without using the abstraction methodology. The second step could 
evaluate the impact of the abstraction methodology to improve understanding of the BN. 

The next stage in this research is to implement the abstraction operations in BN software such 
as AgenaRisk (Agena Ltd, 2013). The BN software, supplemented with the abstraction 
operations, would guide knowledge engineers and support BN development by showing the 
impacts of compatible abstractions and presenting the approximations resulting from 
incompatible abstractions. The abstraction operations could also be coupled with an evidence 
framework that shows evidence supporting every node, edge and state in a BN. As a result, 
the evidence framework could show how abstraction operations affect the underlying 
evidence. This would assist knowledge engineers by showing evidence that supports or 
contradicts with a particular abstraction operation. 
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