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Abstract

The main objective of emergency medical assistance (EMA) services is to
attend patients with sudden diseases at any possible location within an area
of influence. This usually consists in providing “in situ” assistance and, if
necessary, the transport of the patient to a medical centre. The potential
of such systems to reduce mortality is directly related to the travel times
of ambulances to emergency patients. An efficient coordination of the am-
bulance fleet of an EMA service is crucial for reducing the average travel
times. In this paper we propose mechanisms that dynamically improve the
allocation of ambulances to patients as well as the redeployment of available
ambulances in the region under consideration. We test these mechanisms
in different experiments using historical data from the EMA service of the
Autonomous Region of Madrid in Spain: SUMMA112. The results empiri-
cally confirm that our proposal reduces the average response times of EMA
services significantly.

Keywords: coordination of multiagent systems; emergency medical
assistance systems; efficient fleet management.

*Corresponding author: Holger Billhardt (tel. +34 916647458
Email addresses: holger.billhardt@urjc.es (Holger Billhardt),
marin.lujak@urjc.es (Marin Lujak), vicente.sanchezbrunete@salud.madrid.org
(Vicente Sdnchez-Brunete), alberto.fernandez@urjc.es (Alberto Ferndndez),
sascha.ossowski@urjc.es (Sascha Ossowski)

Preprint submitted to Knowledge-Based Systems June 24, 2014



1. Introduction

The domain of medical assistance in general, and in emergency situations
in particular, includes many tasks that require flexible on-demand negotia-
tion, initiation, coordination, information exchange and supervision among
different involved entities (e.g., ambulances, emergency centres, hospitals,
patients, physicians, etc.). Among such tasks the coordination of the avail-
able resources to provide assistance to emergency patients as fast as possible
is of crucial importance for obtaining an efficient service. The main goal here
is to improve one of the key performance indicators: the response time (time
between a patient call and the moment an ambulance arrives and the patient
can receive medical assistance).

There is a general understanding that shorter response times are an es-
sential starting point to improve care and reduce mortality [1, 2]. This holds
especially for severe injuries. In order to assure the quality of emergency
services many countries and regions specify response time limits for EMA
service provider organisations either by law or through contractual norms.
In Europe and in the Unites States such limits usually lie between 8 and
15 minutes. In the UK, for instance, a national standard defines that at
least 75 per cent of Category A (immediately life-threatening) calls should
be responded within 8 minutes.

Even though response time standards are often fixed by norms, they can
be rather considered as targets that EMA service providers continuously try
to reach.

One way to reduce response time consists in reducing the part that de-
pends on the logistic aspects of an EMA service: the travel or arrival times
of ambulances to emergency patients. There are two main problems EMA
managers are faced with in the logistic part of a service: allocation and re-
deployment of ambulances. The allocation problem consists in determining
an ambulance that should be sent to assist a given patient. Redeployment
consists in relocating available ambulances in the region of influence in a way
that new patients can be assisted in the shortest time possible.

In this article we present a novel coordination model for ambulance fleets
that combines a mechanism for dynamic redeployment of available ambu-
lances with a dynamic allocation of ambulances to patients. Regarding am-
bulance redeployment, we propose a method, based on centroidal Voronoi
tessellations, that tends to optimize the allocation of idle ambulances in each
moment with respect to the probability distribution of possible emergency



cases. Regarding ambulance allocation, we propose to use a dynamic auction-
based assignment of patients to ambulances that tends to optimize the sum
of the expected arrival times in each particular moment. EMA services are
highly dynamic; e.g., new emergency patients will have to be attended and
previous missions will finish. We present an event-driven system that dy-
namically executes ambulance assignment and redeployment and, thus, con-
tinuously tends to optimize the situation of the ambulance fleet with regard
to the changes that occur in an EMA service.

The outline of the rest of the paper is as follows. Section 2 presents related
work and relates our approach to others. In Section 3 we provide a brief
description of the operation of EMA services. Then we present our ambulance
allocation and redeployment mechanisms, and we expose an event-driven
architecture for employing both mechanisms dynamically in real time. In
Section 4 we present an experimental evaluation of our proposal and compare
it with the operation strategies currently used by SUMMA112, the EMA
service provider organisation in the Autonomous Region of Madrid in Spain'.
The experiments have been carried out in a simulated environment and using
real patient data from Madrid. Finally, Section 5 gives some conclusions and
points out some aspects of our current and future research.

2. Related work

There have been many proposals for the problem of coordinating am-
bulance fleets for EMA services. Brotcorne et al. provides a good review
of ambulance allocation and redeployment strategies from the early 1970s
through 2003 [3]. More recent reviews have been done by Li at all. [4] and
Aboueljinane et al. [5]. Whereas the former concentrates on covering models
and optimization techniques for facility location, the latter analyses the use
of simulation models in emergency medical service operations.

To the best of our knowledge, most of the work has been dedicated to the
redeployment or coverage problem, e.g., the optimal location of ambulances
in an region such that all points can be reached within a predefined time stan-
dard. Early approaches concentrate on a static distribution of ambulances.
The Location Set Covering Problem, proposed by Toregas et al. [6] tries to
find the minimum number of emergency facilities and their locations to cover
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all demand assuming that the demand occurs at a finite set of points. In the
Maximal Covering Location Problem proposed by Church and Re Velle [7],
the aim is to locate a fixed number of facilities in order to maximize the pop-
ulation covered within some service distance. Such static methods do not
take into account the relation between mobility and coverage of ambulances.
In particular, demand points will be uncovered if one or more ambulances
are called for service. To overcome this problem, researchers have proposed
to maximize the coverage of demand points by more than one ambulance or
by using double standards for coverage (e.g., [8, 9]). Another trend has been
to establish probabilistic models, that explicitly model the availability or the
travel and assistance times of ambulances (e.g., [10, 11]).

More recent research on the covering problem has concentrated on the
dynamic location of ambulances, where methods are proposed to redeploy
ambulances during the operation of a service in order to take into account
the intrinsic dynamism of EMA services. In [12], Gendreau et al. extend
their Double Standard Model to reflect the dynamic nature of the problem.
They propose to use tabu search heuristics and solve the model through a
(non-exhaustive) pre-computation of redeployment scenarios. In [13], the
same authors propose the Maximal Expected Coverage Relocation Problem
and present a strategy for dynamically relocating idle ambulances that are
located in low demand areas. Rajagopalan et al. [14] developed another dy-
namic model for redeploying ambulances to predictable demand fluctuations
in time and space. The objective of the model is to determine the minimum
number of ambulances and their locations for each time cluster in which
significant changes in demand patterns might occur while meeting coverage
requirement with a predetermined reliability. Whereas the previous methods
require solving integer programs, in [15], Maxwell et al. propose to use an
approximate dynamic programming approach for ambulance redeployment.
To deal with the high-dimensional state space in the dynamic program, they
construct approximations to the value function that are formulated in terms
of the percentage of calls that are reached within a time standard. Naoum-
Sawaya and Elhedhli [16] present a two-stage stochastic optimization model
that minimizes ambulance relocations while maintaining acceptable service
level. While many approaches are based on centralized optimization, the
solution approach of Ibri et al. in [17] is decentralized. The authors pro-
pose a multi-agent system that integrates a dynamic ambulance dispatching
and redeployment method. However, there are a couple of drawbacks to this
method. To limit deviations of vehicles, they allow assigning a vehicle to
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another call only if this latter has higher priority than the first one, thus,
not leaving space for a real dynamic optimization of (current) travel times.
Secondly, the vehicles are represented (and grouped) by the station agents
and the redeployment is performed among a fixed number of stations, which
in the case of an insufficient number and/or position of stations, may result
in insufficient coverage.

Most proposals on dynamic redeployment of ambulances (like the ones
mentioned before) only consider the possibility to relocate ambulances among
different, predefined sites (stations). This requirement is relaxed in the work
proposed by Andersson and Varbrand [18]. These authors propose a de-
cision support tool that recommends the redeployment of a fixed number
of ambulances to areas with less preparedness (a criteria for coverage) and
ambulances can be relocated to any place in the region.

Regarding dispatching strategies for ambulances (the patient allocation
problem), there has been less research that treats this problem explicitly.
Most works use the "nearest available ambulance” rule for assigning ambu-
lances to patients in a first-came first-served manner. Some works analyse
priority dispatching strategies. For instance in [19], Baranda et al. analyse
dispatching strategies that take into account the severity level of patients
and evaluate the survival probability of patients for different strategies. Also
in [18], for calls with the highest priority the vehicle with the shortest travel
time is assigned, whereas for less severe patients a vehicle is dispatched that
reaches the patient in a given time limit but harms less some coverage crite-
rion. Lépez et al. [20] propose a multiagent system where ambulances are
also assigned based on the severity of the patients. Besides the distance, the
system also takes into account a trust value, that reflects the belief that an
ambulance can fulfil its obligations in time. In this sense, expert drivers will
have higher trust values than novice drivers. A more complex approach is
presented by Haghani et al. [21], where the system dynamically optimizes
the total travel time (ambulances to patients, ambulances to base stations
and ambulances to hospitals).

Our redeployment approach differs from others in the sense that we do not
try to maximize the zones in a region that are covered with respect to some
time limits. Instead, we use an approach based on geometric optimization
[22] that tends to optimize in each moment the positions of all ambulances
that are still available such that the expected arrival time to potential new
emergency patients is minimized. Using centroidal Voronoi tessellations, that
are scalable with the number of agents in the network [23], we compute



optimal ambulance positions dynamically in real time. The latter takes into
account the probability distribution of emergency cases in the region (at
different times of the day), based on historical data. Furthermore, in our
approach, ambulances can be redeployed to any point in the region and all
idle ambulances (and not only a limited number) are dynamically redeployed
whenever the changes in the system indicate that a better allocation may
exist.

With regard to the allocation of patients to ambulances, our approach
is similar to the one proposed by Haghani et al. [21] We also propose a
dynamic approach. However, instead of optimizing the global travel times of
all ambulance movements (including transfers to hospitals or base stations) as
they do, we concentrate only on the sum of the arrival times of ambulances to
the pending emergency patients. We use assignment based on computational
optimization auctions to minimize this sum in each particular moment. In
practice, in the case of severe patients (immediately life-threatening) it is this
arrival time that is often crucial for saving lives. In our work we concentrate
only on severe patients and, thus, we explicitly do not treat the problem of
priority dispatching.

3. Coordination Model for Ambulances

EMA services are based on flexible and complex interactions between
people playing different roles in diverse contexts of high responsibility. Even
though EMA services might have different ways of operation, there are some
main lines of emergency management common to all of them. The assistance
procedure typically starts when a patient calls an Emergency Coordination
Centre asking for assistance. The call is received by an operator who gathers
initial data from the patient. The operator, possibly with the help of a physi-
cian, assigns one of several levels of severity to incoming calls. These levels
are directly related to the priority that should be given to each emergency
patient. There exist several different triage systems, for both, pre-hospital
emergency medical services and emergency departments at hospitals [24].
In the case of Madrid, SUMMAT112 employs its own system containing four
levels of severity: level zero, urgent life-threatening calls; level one, urgent
but not life-threatening calls; level two, less urgent calls, and level three rep-
resenting non-urgent calls. According to the evaluation of the severity of
a call, a specific type of ambulances is assigned, taking into account their
availability, distance, and the estimated time to reach the patient. EMA ser-



vices typically work with at least two types of ambulances: basic life support
(BLS) and advanced life support (ALS) units; where the latter are normally
assigned to the most severe patients. When the ambulance arrives at the
patient’s location, the crew provides first aid and in some cases “in situ”
assistance. According to the conditions of the patient, he/she is transported
or not to hospital.

In the following two subsections we present our coordination model for
EMA services based on dynamic allocation and redeployment. We concen-
trate only on the assistance of the most severe patients, with advanced life
support units, that is, we do not consider the problem of priority dispatching
or dispatching of different types of ambulance.

We use the following notation to describe the problem and to present
our solution. The set of ambulances of an EMA service is denoted by A =
{ai,...,a,} where n is the cardinality of A. Each ambulance has a position
and an operational state which vary during time. pos(a;) and state(a;) denote
the current position and the current state of ambulance a;, respectively. The
position refers to a geographical location and the state can be one of the
following:

e assigned: An ambulance that has been assigned to a new patient and
is moving to the patients location.

e occupied: An ambulance that is occupied either attending a patient “in
situ” or transferring him/her to a hospital.

e idle: An ambulance that has no mission in this moment. The ambu-
lance is either waiting at a base station for a new mission, or returning
to its base from a previous mission.

Regarding the patients, P = {p1,...,pn} denotes the current set of pa-
tients that have to be attended and are waiting for an ambulance, where
m is the cardinality of P. Each patient p; € P has a position (denoted by
pos(p;)). We assume that patients do not move while they are waiting for
an ambulance. That is, pos(p;) is constant meanwhile the patient p; belongs
to the set of unattended patients. Once the attendance of a patient starts,
after the arrival of an ambulance, the patient is removed from the set of
unattended patients P.
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Figure 1: Example of ambulance assignment in dynamic environments. Solid lines rep-
resent the optimal solution and dotted lines assignment obtained with the fixed FCFS
assignment strategy.

3.1. Dynamic Ambulance Allocation Mechanism

The ambulance allocation problem consists in finding an assignment of
(available) ambulances to the emergency patients that have to be attended
in each moment such that the expected arrival time of the ambulances to
the patients’ locations is as short as possible. In practice, many real-world
EMA services, like in the case of SUMMA112 in Madrid, use a priority
dispatching strategy. Patients with the highest severity level (in our case
level-0 patients) are assigned to ambulances before other patients with a
lower severity level. Furthermore, for level-0 patients, a first-call first-served
(FCFS) rule applies, e.g., the patients that called first are also assigned first
to an ambulance. Normally the closest available ALS unit is chosen, where
an ambulance is considered available if it is either waiting at a station or it is
on the way to a station after finishing an assistance mission. Once a level-0
patient has been assigned to an ambulance, this assignment is usually fixed,
e.g., no reassignments take place. An exception is the case where a patient
was assigned to a BLS unit (because no ALS vehicle was available) and is
reassigned to a newly available ALS unit. We do not consider this latter case
in this paper.

Considering the fact that several level-0 patients may have to be attended
at the same time, this fixed FCFS approach is not always optimal from a
global perspective. In particular, it does not always assure an assignment
of ambulances to patients that minimizes the average arrival time. Fig. 1
presents an example to clarify this fact. In Fig.la a patient p; has to be



attended and two ambulances a; and a, are available. a; is slightly closer
to p; than ag, and, thus, assigning a; to p; would be the (locally and glob-
ally) optimal choice. Now let’s suppose that a new patient ps appears some
moments later (Fig.1b). Also for this patient, a; is the closest ambulance,
whereas a, is much further away. In this case, the globally optimal choice
would be reassigning a; to p, and assigning as to p;. In this solution, the
expected travel time to patient p; would be slightly worse, but at the benefit
of a much shorter time required to reach patient p;. That is, the average
expected travel time would be reduced. Using the fixed FCFS assignment
approach, ps would be assigned to as (the dotted lines in the figure) and the
overall solution would be worse. If we carry on with the example (Fig.1c),
let’s now suppose that a few moments later another ambulance, a3, has fin-
ished a previous mission and is becoming available again. a3 is very close to
the location of patient py (even closer than a;). Thus, in this moment the
optimal choice would be assigning as to p, and a; again to p;. as would not
need to be assigned to any patient. The solution obtained with the fixed
FCFS method (dotted lines) is clearly worse when considering the average
required arrival times.

The example indicates that in order to reduce the average arrival time in
the dynamic environment of an EMA service, the assignment of ambulances
to patients has to be recalculated whenever relevant events take place. Based
on this idea, we propose a dynamic (re)assignment mechanism of ambulances
to patients. In particular, whenever a new patient appears or an ambulance
becomes available again after finishing a mission, we start the (re)assignment
of all unattended patients to ambulances (including patients that have been
already assigned, but where the ambulance did not yet reach the patient).
This set of unattended patients is given by P. The set of available ambulances
for assignment is the set A,, = {a; € Alstate(a;) € {assigned,idle}}. That
is, we consider all ambulances that are either idle or already assigned (but
not attending a patient yet).

At a given moment in time an optimal assignment of ambulances to pa-
tients is a one-to-one relation between the sets A,, and P, that is, a set of
pairs AS = {< ax,p; >, < as,p; >,...} such that the ambulances and the
patients are all distinct, and that fulfils the following conditions:

e The maximum possible number of patients is assigned to ambulances,
that is:



Vp; € P:3<a;,p; >€ AS  if n>m
Va, € Agp : 3 < aj,p; >€ AS if n<m

e The total expected travel time of the ambulances to their assigned
patients is minimized, that is:

Z ETT (pos(a;), pos(p;j)) is minimal

<a;,pj >eAS

where ETT(z,y) denotes the expected travel time for the fastest route
from one geographical location x to another location y.

In our work we propose to calculate the optimal assignment of a set of
ambulances to a set of patients with Bertsekas’ auction algorithm [25, 26].
We use Bertsekas’ optimization algorithm, instead of other methods (e.g. the
Hungarian method [27]), because it has a naturally decentralized character.
In the emergency medical assistance domain, this characteristic may be of
interest since it may allow to accomplish the assignment of patients locally
among different ambulances. However, in this paper, we do not analyse such
a decentralized assignment approach.

Algorithm 1 (getOptimalAssignment) summarizes the adaptation of Bert-
sekas’ algorithm to our problem. The general idea is that patients bid for
the ambulances in an auction process. The input to the algorithm consists
of the current set of available ambulances A,, and the current set of unat-
tended patients P. First, the prices of all ambulances are initialized to 0
(lines 1 to 3) and the global assignment (AS) is initialized to the empty set.
Then, the auction process starts (steps 5 to 18). In each iteration, a bidding
and an assignment phase take place. During the bidding phase (lines 9 to
12), each patient p; that is not currently assigned to any ambulance (not
included in the global assignment AS) determines the ambulance a; and a
with the least cost (¢1) and second least cost (¢2), respectively. The cost of
an ambulance a, for patient p; is computed as the expected travel time for
as to reach patient p; plus the current price of as;. Then, patient p; issues a
bid for its best ambulance (a;), where the bid value is the difference between
the cost of the second best and the best ambulance for p; plus a constant e.
The rationale behind this bid value is that, at the current prices and up to a
price increment of ¢2 — ¢l for ambulance a;, patient p; would prefer this am-
bulance with respect to its second choice (ay). € is a (positive) constant (the
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Algorithm 1 getOptimalAssignment for ambulance assignment

Require: A,, - the set of available ambulances
Require: P - the set of unattended patients

1

[t
<

11:
12:
13:
14:

15:

16:

17:

18
19

. for all a;, € A,, do
priceg, < 0
end for
: AS ()
repeat {Auction process}
for all a; € A,, do
Bids,, + 0
end for
for all p; € P with < _,p; >¢ AS do {Bidding phase}
Determine the ambulances a; and a; with the least cost ¢l and sec-
ond least cost ¢2 for p;, where:
cl = ming ea,, {ETT (pos(as), pos(p;)) + price,, } and
€2 = Ming,eAuynasra A ETT (pos(as), pos(p;)) + priceg, }.
Patient p; issues a bid for ambulance a;:
Bids,, < Bids,, U {bid;;} , where bid;; = c2 —cl +e.
end for
for all a; € A,, with Bids,, # () do {Assignment phase}
Determine the highest bid bid;; for a;:
bid;; = mazx{bid € Bids,, }.
Assign ambulance a; to the highest bidder p;:
AS «+— AS —{< a;,->€ AS}
AS + ASU {< ai, Pj >}
Increment the price for ambulance a;:
priceg, < price,, + bid;;
end for
. until ij eP:d< - Dj >€ AS
: return AS

minimum price increment), necessary to assure termination of the auction
process. After all unassigned patients have issued their bids, the assignment
phase takes place (lines 13 to 17). Each ambulance a; that received a bid,

18

(I

assigned to the patient p; that issued the highest bid for that ambulance
ne 15). If a; was already assigned to another patient, it is deassigned pre-

viously. Finally, the price of a; is incremented by the highest bid value. The
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bidding and assignment phases are repeated until all patients are assigned to
an ambulance.

The expected travel time between two locations (ETT') can be calculated
using a normal route service. Furthermore, assuming E7TT’s to be integers
(they can be scaled up to integers if necessary) and selecting € < 1/m, it
is assured that the algorithm finds an optimal global assignment. In the
worst case, where |P| = |A,,| (e.g., the number of unattended patients is
equal to the number of available ambulances), the algorithm has a pseudo-
polynomial time complexity of O(m3C/¢) if € is kept constant and where m =
|P| = |Au| and C denotes the maximum expected travel time between any
ambulance/patient pair. This complexity can be reduced to O(m?log(m(C'))
for a particular implementation that uses e-scaling [25].

Algorithm 1 is defined for the case where the number of available ambu-
lances is greater or equal to the number of patients. If this is not the case,
e.g. there are more patients than available ambulances, the roles of patients
and ambulances in the auction process have to be changed. That is, in such
a case ambulances bid for patients.

Let AS be the optimal global assignment of unattended patients to avail-
able ambulances calculated at a given moment ¢ by algorithm 1. The dynamic
nature of an EMA service implies that such an assignment may not be opti-
mal at a later point in time ¢’ (¢’ > t). The following situations have to be
considered regarding AS:

1. One or more new patients require assistance: In this case, the set of
patients that have to be attended changes and the current assignment
AS may not be optimal any more.

2. Some ambulances that have been occupied at time ¢ have finished their
mission and are idle at time ¢': This implies that the set of available
ambulances changes and a better assignment than the current one may
exist.

3. None of the two situations above happens: It can be observed that in
this case the assignment AS is still optimal at time ¢’. For simplicity,
here we assume that the service for calculating the shortest expected
travel times is consistent and ambulances always move with the velocity
corresponding to the expected travel times. Furthermore, we exclude
certain unforeseen events like ambulance break down, etc.

4. An ambulance a; has reached the location of the assigned patient p;:
the pair < a;,p; > can be eliminated from the assignment AS and if
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Algorithm 2 ambulanceReallocation for ambulance (re)allocation
Require: AS - the current global assignment

Require: A - the set of ambulances

Require: P - the current set of patients to be attended
Require: FE - set of received events

1: for all ambOccupiedEvent(a;) € E do
2. AS «+ AS —{< a,,p, >€ AS|a, = a;}
3: end for

4: ASyy +— AS

o:

if 3 newPatientEvent(p;) € E or
3 ambFinishedEvent(a;) € E then
Ay < {a; € A|state(a;) € {assigned,idle}}
AS «+ getOptimal Assignment(Aq,, P) \\execution of Algorithm 1
else
AS ASold
10: end if
11: return AS

none of the conditions in 1 and 2 take place, the resulting assignment
is still optimal at time ¢'.

Based on this analysis, we define algorithm 2 (ambulanceReallocation) to
dynamically re-calculate the global assignment AS whenever a better solution
may exist. In particular, the algorithm is executed whenever any of the
following events are received:

e newPatient Event(p;): a new patient (p;) has to be attended.

o ambFinishedEvent(a;): an ambulance (a;) has finished a patient as-
sistance mission and has changed its state from occupied to idle.

e ambOccupied Event(a;): an ambulance (a;) that was assigned to a pa-
tient has reached the patient’s location. Thus it has changed its state
from assigned to occupied.

The algorithm ambulanceReallocation assures that the assignment AS' is the
optimal assignment at each moment in time. It first eliminates pairs <
a;,p; > for all ambulances a; that have reached the assigned patients (line 1
to 3). Then, if a new patient has appeared or if an ambulance has become
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idle after finishing a mission (line 5), it recalculates the global assignment
AS by calling algorithm 1 with the current set of unattended patients P and
the current set of available ambulances A,, (line 7). If there are no new
patients nor new available ambulances, the global assignment does not need
to be recalculated since it is still optimal (line 9).

3.2. Dynamic Ambulance Redeployment Mechanism

Besides an optimal allocation of ambulances to patients, the average ar-
rival time of an EMA service can be reduced by efficiently deploying idle
ambulances in the region of interest. In particular, the deployment objective
is to place ambulances such that the expected travel time to appearing future
emergency patients is minimized. We tackle this problem by using Voronoi
tessellations [28, 29].

A Voronoi tessellation (or Voronoi diagram) is a partition of a space into
a number of regions based on a set of sites such that for each site there will
be a corresponding region. Each region consists of all points in the space that
are closer to the site of the region than to any other site. Formally, in a two
dimensional space, let 2 C R? denote a bounded space and let S = {s1, ..., sz}

denote a set of sites in €2. The Voronoi region V; corresponding to the site s;
is defined by

Vi={yeQ:|ly—si| <|ly—sjlfor j=1,..kj#i}

where | - | denotes the Euclidean norm. The set V(S) = {4, ..., Vi, } with
Ule V; = is a Voronoi tessellation of S in (2.

Of special interest are centroidal Voronoi tessellations. A centroidal
Voronoi tessellation is a Voronoi tessellation that has the property that each
site s; is itself the mass centroid of its Voronoi region w.r.t. some positive
density function p. That is, for each s; it holds

e vr(y)dy
" ey, W)y

A centroidal Voronoi tessellation V'(S) is a necessary condition for mini-
mizing the cost function

FS)= 5 [ sl sy )

V;eV(S)
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For a detailed description of centroidal Voronoi tessellations, the inter-
ested reader is referred to [28, 29].

Applied to our application scenario, S represents the positions of idle
ambulances and p is a function that should reflect the density of predicted
future emergency cases, then minimizing (1) is a reasonable approximation
for minimizing the expected distance and, thus, the arrival time, to future
emergency patients. As mentioned in section 2, most other works on am-
bulance redeployment try to optimize the allocation of ambulances to fixed
bases or to predefined zones. In contrast, our approach based on centroidal
Voronoi tessellations is a geometric optimization technique. That means, am-
bulances can be positioned at any point in the region and not only to a set
of fixed places. This allows more freedom for better ambulance allocations.
Furthermore, reasonable approximations of centroidal Voronoi tessellations
can be calculated very fast, what allows for a dynamic recalculation of am-
bulance positions whenever the current situation has changed, as we propose
in this paper.

A common approach to calculate centroidal Voronoi tessellations and,
thus, to minimize F is the algorithm proposed by Lloyd [30]. The algorithm
is an iterative gradient descent method that finds a new set of points S that
minimizes JF in each iteration and converges to a local optimum. Lloyd’s
algorithm performs the following steps:

1. Select an initial set S of k sites in €2

2. Generate the Voronoi tessellation V' (.5)

3. Compute the mass centroids of all Voronoi regions in V(S) w.r.t. the
density function p. These centroids compose the new set of points S.

4. If some termination criteria is fulfilled, finish; otherwise return to step
2.

With regard to the density function p, in our work this function represents
the forecasting of the positions of future emergency cases. In particular, we
divide the region of interest in a set of equally sized cells C' = {¢q, ..., ¢, },
where u is the cardinality of C'. Then, we estimate for each cell ¢; the con-
ditional probability that an emergency patient will appear in that cell, given
that a new emergency case happens. We denote the probabilities by p., and it
holds that } . .- pe; = 1. pe; can be obtained by tracking historical data on
emergency cases. The historical emergency occurrence dynamics can have
many attributes like the season of the year (summer, fall, winter, spring),
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the day of the weak and the hour of the day, etc. Based on these types of
attributes and on the geographical coordinates, different emergency estima-
tion models can be obtained for different situations. In our experiments we
defined a different estimation model based on historical data and for each
particular day and hour of the day.

Algorithm 3 presents the adaptation of Lloyd’s method to our scenario.
The objective of the algorithm is to find positions of all currently idle am-
bulances such that the response time for future emergency patients is mini-
mized. €2 denotes the two-dimensional geographical region in which the EMA
service operates and C' is a partition of 2 in equally sized cells as described
before.

The algorithm returns the recommended positions of idle ambulances (set
AP) that have been obtained after a fixed number of iterations
(maxlterations). It starts with the current real positions of all ambulances
(pos(a;)) and iteratively encounters new positions (pos;).

We use the Euclidean norm as a distance measure to generate the Voronoi
regions for the ambulances. While in a real traffic scenario, as it is our case,
the Euclidean distance is a rather imprecise approximation of real distances
on the road network, from a global perspective, and assuming a rather ho-
mogeneous connection between different points of the region of interest (as
it is usually the case in many urban areas), the Euclidean norm seems to
work reasonably well for our purposes. Furthermore, using “road-network
distances” when calculating the Voronoi regions is a rather complicated task
that would increase the computation complexity considerably.

We use the probability distribution {p.,,...,p., } to compute the mass
centroid of each Voronoi region V;. We estimate the centroid of V; as the
weighted average of the centre coordinates of the cells (denoted by y.;) be-
longing to V;, weighted by the proportion of the probability density of each
cell that corresponds to the region V; (denoted by prop(p.,,V:)). In the cal-
culation we consider all those cells that at least partially belong to V;, e.g.,
cells ¢; for which ¢; (V; # (0 holds. If a cell belongs to more than one Voronoi
region, its probability density is distributed proportionally.

Obviously, the size of the cells influences the precision of the calculation
of the Voronoi tessellation and the solution to the minimization problem.
Smaller cell sizes will lead to more precise results, whereas bigger cell sizes
result in less computational costs.

In general, Lloyd’s algorithm is not assured to find the global minimum
for the cost function. Moreover, if the density function is discrete, as it is
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Algorithm 3 ambulanceRedeployment for calculating positions of idle am-

bulances
Require: A;y. - the current set of idle ambulances

Require: {pi,...,p,} - a probability distribution over the cells in C'
1: for all a; € A;q. do
2:  pos; < pos(a;)
3: end for
4: for 1 = 1 to maxIteration do
5. for all a; € A;g. do

6: Generate the Voronoi region V; in () corresponding to the ambu-
lance’s position pos;
7. end for
8 for all a; € A,g. do
9: Compute the mass centroid s; of V;:
Y e v Ye;prop(pe;, Vi)
S; < i
> e;ev; Prop(pe;, Vi)
10: poS; < S;
11:  end for
12: end for
13: AP <)

14: for all a; € A;y. do

15 AP <« APJ{< a;,pos; >}
16: end for

17: return AP

in our case, after a certain point, the iterations may oscillate between dif-
ferent local minima. However, the algorithm finds good solutions very fast
— after a few iterations. To illustrate this fact, we analysed the convergence
of algorithm 3 (ambulanceRedeployment) in our particular setting of allocat-
ing ambulances in a geographical area — a rectangle of 125 133 kilometres
that covers the region of Madrid. The area is split into cells of about 1300
1300 meters (the set C' = {cy,...,c,}) and the probabilities p., correspond
to the probabilities of emergency patients appearing Mondays between 9:00
and 10:00 (obtained from statistical data for the year 2009). We executed
algorithm 3 100 times with different randomly chosen initial positions of 29
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Figure 2: Improvement of expected shortest distance over iterations of the ambulanceRe-
deployment algorithm.

ambulances (corresponding to the ALS units used by SUMMA112). In each
execution, we measure the evolution of the expected (Euclidean) distance of
the closest ambulance to possible upcoming emergency patients (following
the given probability distribution) corresponding to the positions calculated
in each iteration of the algorithm.

Figure 2 presents the results, averaged over the 100 executions. The error
bars reflect the standard deviation over the 100 executions. As this figure
shows, the positions of ambulances improve very fast during the first 20
iterations and there is almost no improvement after 50 iterations. Therefore,
we set maxlterations to 50 in the experiments presented in section 4. This
fast improvement suits well with our particular application, where we need to
calculations ambulance positions in almost real time. Furthermore, the fact
that the algorithm obtains only suboptimal solutions is not really critical.
In fact, geographical and road network restrictions imply that it does not
make sense to calculate the very optimal positions of ambulances. The latter
is due to the fact that ambulances waiting for new missions can not be
placed at every possible geographical location; they need an appropriate
parking space, preferably at a location that provides good road connections
to the surrounding area. In this sense, we are rather interested in finding the
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approximate positions where idle ambulances should wait for new missions.
The idea is that, once given such an area, the ambulance driver will decide
which is the most appropriate waiting location in that area.

Similar to the ambulance allocation problem, the dynamic nature of an
EMA service implies that the optimal positions of the idle ambulances may
change when changes in the environment occur. In particular, the optimal
positions may change if the set of idle ambulances changes (e.g., a previously
occupied ambulance is becoming idle or an idle ambulance is assigned to
assist a patient), or if the environmental situation implies a change in the
probability distribution {p, ..., p.}.

In order to cope with such changes, algorithm 3 has to re-calculate am-
bulance positions in a dynamic manner. In order to do that, it is executed
whenever any of the following events occur:

e ambldleFEvent(a;): An ambulance (a;) that was assigned to a patient
has been deassigned. It has changed its state from assigned to idle

o ambFinishedEvent(a;): an ambulance (a;) has finished a patient as-
sistance mission and has changed its state from occupied to idle.

e ambAssignedEvent(a;): An ambulance (a;) that was idle has been
requested to assist a patient. It changes its state from idle to assigned.

e probDistChangeEvent(): A different probability distribution has to
be used to compute ambulance positions.

3.3. Event-Driven Architecture

Our coordination model is dynamic in the sense that ambulance allocation
and redeployment are revised in real time whenever changes in the system
may imply the existence of a better assignment or redeployment strategy.
As explained before, such changes are captured by events, which trigger the
execution of the allocation and redeployment mechanisms (algorithms 2 and
3). Fig. 3 presents the global architecture and summarizes the event-driven
dynamic nature of our approach.

The architecture contains two basic layers. The top layer contains the
ambulances, modelled as agents. The bottom layer represents the EMA co-
ordination centre. It includes a fleet coordination module and possibly other
components that are necessary for the normal operation of EMA services
(e.g., components for monitoring, call management, call operators, etc.). In
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Figure 3: Event-driven architecture for EMA ambulance coordination.

the fleet coordination module contains a Fleet Tracker keeps track of the
current operational state and the positions of ambulances. We assume that
ambulances send their current positions on a regular basis and inform about
any changes in their operational states (stateC'hanegFEvents).

The ambulance allocation mechanism (algorithm 2) is executed either
through the Fleet Tracker, if an ambFinished Event or an ambOccupied Event
has been received, or if a call operator has generated a newPatient Event.
The algorithm recalculates the optimal assignment for all pending patients
and taking into account all idle and already assigned ambulances. If the op-
timal assignments change, the affected ambulances are informed about such
changes. In particular, an ambulance a; has to be informed in the following
situations:

e a; was assigned to patient p; and it is now assigned to a different patient
Dk

e a; was tdle and is now assigned to patient p;; The state of a; changes
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from idle to assigned.

e a; was assigned to patient p; and it is deassigned from p;. The state of
a; changes from assigned to idle.

In the latter two cases, the ambulances would generate new events —
ambAssignedEvent and ambldle Event, respectively — that would trigger
a new execution of the ambulance Redeployment algorithm.

The ambulance redeployment mechanism (algorithm 3) is executed
through the Fleet Tracker if an ambldle Event, ambFinished Event or an
ambAssigned Event has been received, or if the Probability Estimation Mod-
ule issues an proDistChangeEvent. The latter module, uses past patient
data to maintain estimations of the probability distribution of emergency
patients for different situations (e.g., different days or hours). It generates
an proDistChange Event if a different probability distribution of emergency
patients should be used for ambulance redeployment. When executed, algo-
rithm 3 recalculates recommended waiting positions for all idle ambulances
and, if those positions have changed, the affected ambulances are informed.

In practice, the redeployment mechanism may be executed quite fre-
quently what leads to rather continuous changes in the recommended waiting
positions of ambulances. In order to avoid very small and almost continuous
movements, we establish that ambulances should not move, if the new rec-
ommended position is within a certain threshold U. In our experiments, we
set U = 300 meters.

4. Empirical Evaluation

In order to evaluate the effectiveness of our ambulance fleet coordina-
tion model we tested it in different experiments simulating the operation
of SUMMAT112, the EMA service provider organisation in the Autonomous
Region of Madrid in Spain. For the experiments we used a simulation tool
that allows for a semi-realistic simulation of intervals of times of normal
operation of an EMA service. The tool reproduces the whole process of at-
tending emergency patients, from their appearance and communication with
the emergency centre, the schedule of an ambulance, the “in situ” attendance
and, finally, the transfer of the patients to hospitals. The appearance of new
patients can either be generated randomly, or by using a file with historical
patient data. The simulator operates in a synchronized manner based on a
step-wise execution, with a step frequency of 5 seconds. That is, every 5
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seconds, the activities of all agents are reproduced leading to a new global
state of the system.

In the experiments we are mainly interested in analysing the movements of
ambulances and the subsequent arrival times to the patients. The movements
are simulated using direction services. In particular, we use Mapquest’s Open
Directions API Web Service to reproduce semi-realistic movements on the
actual road network with a velocity adapted to the type of road. External
factors, like traffic conditions or others, are ignored. In fact, such factors
are not so relevant for ambulances, as the fact shows that our simulated
travel times are similar to the real travel times observed by SUMMA112. In
the simulations, based on information provided by EMA experts, other time
intervals that play a role in the attendance process are simplified as follows:

e The duration of the phone call between a patient and the emergency
centre is set to 2 minutes.

e The time for attending a patient “in situ”, after an ambulance has ar-
rived at his/her location, is set to 15 minutes.

4.1. Ezxperimental Setup

As the area of consideration we used a rectangle of 125 x 133 kilometres
that covers the whole region of Madrid. We used 29 hospitals (all located
at their real positions) and 29 ambulances with advanced life support (as
currently used by SUMMA112).

We simulate the operation of the service for different days (24 hour peri-
ods) with real patient data from 2009. In particular, data of the most severe
patients from 10 different days have been selected. Included is the day with
the highest number of severe patients in 2009 — the 21 of January (221 pa-
tients) — and the day with the lowest number of such patients — the 17 of
October (96 patients). The rest of the days were chosen to have a represen-
tation of high, medium and low work loads. The total number of analysed
patients on the 10 days is 1609.

We compare the performance of the following coordination models:

e C-SUMMA112: this is the current coordination model used by
SUMMAT112. Level-0 patients are assigned to the closest AVL am-
bulances using a fixed FCFS strategy. No re-assignment of AVL am-
bulances takes place. Furthermore, idle ambulances are positioned on
fixed stations (at the hospitals) and return to their home station after
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the completion of a mission. The distribution of the stations has been
optimized based on population densities and on geographic parameters.

e DAAM: The dynamic ambulance allocation mechanism is used to dy-
namically assign and eventually re-assign patients to ambulances. Each
ambulance maintains its (fixed) base station and returns to that station
after it has completed a mission.

¢ DARM: Ambulances do not have a fixed base station. Instead, the
dynamic ambulance redeployment mechanism is used to dynamically
re-calculate adequate positions of available ambulances such that the
expected travel time to new patients is minimized. The assignment of
ambulances is done using the fixed FCF'S strategy.

e DAAM+DARM: Both mechanisms, dynamic ambulance allocation
and dynamic redeployment, are combined.

In the case of C-SUMMA112 and DAAM, the (fixed) base stations of
the 29 ambulances are located at the 29 hospitals. In the case of DARM
and DAAM+DARM, only the initial positions of ambulances are at the 29
hospitals. Afterwards the ambulances move to the positions recommended
by algorithm 3. Furthermore, in these two models the centroidal Voronoi
tessellation is calculated each time for 50 iterations.

In order to estimate the probability of appearance of patients in the
DARM approach (as described in section 3.2) we split the region into a grid
of cells of about 1300 x 1300 meters. The patient appearance probabilities
are obtained from statistical data (patient data from the whole year 2009).
A different probability distribution is calculated for each day of the week and
each hour.

4.2. Comparing DAAM with C-SUMMA112

In the first set of experiments we analyse the effectiveness if the dynamic
reallocation of ambulances (DAAM) in comparison to the C-SUMMA112
approach.

It should be noted that, in most cases, the DAAM approach provides
exactly the same solution as a fixed FCFS assignment strategy (the closest
available ambulance is assigned). As described in section 3.1, only in some
occasions a different and necessarily better solution can be found, basically
if more than one patient has to be attended at the same time or a newly

23



Day 21/01/09 | 28/05/09 | 2/07/09 | 30/09/09 | 5/10/09
#patients 221 152 199 124 137
#affected pat. 40 28 25 7 4
C-SUMMA112 16:57 16:44 13:07 16:14 15:42
DAAM 15:30 14:30 11:44 17:36 14:45
1:27 2:14 1:23 -1:22 0:58
Improvement
(8.5%) (13.3%) (10.6%) (-8.4%) (6.1%)
Day 6/10/09 | 17/10/09 | 25/10/09 | 16/11/09 | 30/11/09 | 10 days
#patients 175 96 160 144 201 1609
#affected pat. 21 0 16 11 16 168
C-SUMMA112 13:38 na 13:34 13:45 11:47 14:51
DAAM 13:10 12:57 11:37 10:27 13:34
0:27 na 0:37 2:05 1:20 1:16
Improvement
(3.4%) (4.5%) (15.5%) (11.3%) (8.6%)

Table 1: Comparison of average arrival times for patients affected by the DAAM mecha-
nism.

available ambulance is closer to an already assigned patient than the assigned
ambulance. In the case of the 10 analysed days, 168 out of the 1609 patients
are affected by DAAM assignment. The rest of the patients have exactly the
same arrival times in both approaches. Table 4.2 presents the average arrival
times (in minutes) of the DAAM approach in comparison to C-SUMMA112
for the affected patients. In general, it can be observed that as the workload
of the service (number of patients to be attended) increases, more patients are
affected by the DAAM model. For instance, the highest number of affected
patients is on the 12 of January (40 out of 221) and there are no patients
affected on the 17 of October (with a total number of only 96 patients).

The average improvement of the arrival time for the patients affected by
DAAM in comparison to C-SUMMA112 is 1 minute and 16 seconds (about
8.6 %). This shows that the DAAM approach does have a positive effect on
the arrival times. It should be noted that this improvement has no extra cost
and is obtained just through a better assignment of ambulances to patients.
In fact, comparing the average distances ambulances have to cover during a
24 hour period, they are slightly lower with DAAM than with C-SUMMA112
(94 km vs. 95.8 km on the 10 analysed days).

The table also shows that there is one day for which DAAM provides
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worse results than C-SUMMA112 (the 30 of September). Looking in detail
at the 7 affected patients for this day, there is one patient that obtains
a significantly worse arrival time in the DAAM approach (33:00 minutes
versus 14:10 minutes). This particular patient is actually not directly affected
by a reassignment in the DAAM approach. What happens is that prior
to the appearance of this particular patient, DAAM assigns an ambulance
that is fairly close to the location of the patient to another case (in order
to optimize the global assignment at that particular moment). Thus the
ambulance moves away and no other ambulance is sufficiently close when the
patient appears. This can happen because, even though the DAAM approach
produces an optimal assignment on a static snapshot of the problem, in
the more dynamic scenario it just constitutes a (sophisticated) heuristic.
However, as the results show, a significant improvement can be obtained on
the average case of the affected patients.

Fig. 4 compares the distribution of arrival times (in minutes) of C-
SUMMAT112 and DAAM on the affected 168 patients. For each curve, the
patients are ordered by increasing arrival time. The curves show that both
distributions are similar but, in general, DAAM obtains a better behaviour.
The exception is in the seven highest values, which are slightly worse with
DAAM than with C-SUMMAT112. We believe that this is just due to the
stochastic nature of the appearance of patients.

As we mentioned before, the DAAM approach is in general more effec-
tive in higher workload situations, e.g., when the number of patients to be
attended at the same time is high. Based on this observation, we where in-
terested in analysing how the approach would perform on a rather extreme
work load. To do that, we tested the approach on patient data for an artifi-
cially generated day with a much higher number of patients. In particular,
we merged the patient data of four days (5/10,/2009, 12/01,/2009,16/11/2009
and 30/11/2009) into a data set for a single day. At the whole, the num-
ber of patients on this“extreme day” was 703. In the simulation with this
day, 562 patients where affected by the DAAM approach as compared to
C-SUMMAT112. Only 141 patients had exactly the same arrival time. For
the 562 patients, the average arrival time with C-SUMMA112 was 20:47 min
and with DAAM 13:51 min. This is an improvement of the average arrival
time for the affected patients of 6:56 min (about 33.4%). On the whole data
set, considering all 703 patients, the improvement is still very high: 5:33 min
(29.1%). Fig. 5 shows the distribution of the arrival times (in minutes) of C—
SUMMA112 and DAAM on the affected 562 patients of this experiment. The
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Figure 4: Comparison of the distribution of arrival times among the 168 patients affected
by DAAM versus C-SUMMAT112.

figure shows a clear improvement on all arrival time ranges and especially on
the patients with higher arrival times.

4.3. Comparing DARM and DAAM+DARM with C-SUMMA112

In the next set of experiments we analysed the effect of the dynamic am-
bulance redeployment mechanism (DARM) and its combination with DAAM
(DAAM+DARM) in comparison to C-SUMMA112. Table 4.3 presents the
average arrival times (in minutes) obtained with these three models in sim-
ulations for the 10 selected days and over all 10 days (last column).

As the results presented in table 4.3 show, the use of the DARM ap-
proach provides a considerable improvement on the average arrival times for
all 10 days with an average reduction of 1 minute and 41 seconds (about
14.4%). The best performance is obtained when both mechanisms are com-
bined (DAAM+DARM), where the average reduction of the arrival time is
on the 1609 patients is 1 minute and 52 seconds (about 15.8%). A reduction
of the arrival times of this magnitude is considered by the managers from
SUMMA112 as very significant.

Fig. 6 compares the distribution of arrival times for the different ap-
proaches for all 1609 patients of the 10 selected days. Again, the patients
in each curve are ordered by increasing arrival time. Whereas the curves for
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Figure 5: Comparison of the distribution of arrival times for the 562 affected patients on
the “extreme work load day”.

DARM and DAAM+DARM are very similar, a clear difference can be ob-
served between both methods with respect to the current operation model of
SUMMAT112. The results are clearly better for almost all arrival time ranges.
Furthermore, the most important improvements can be observed in the range
of higher arrival times. This is a very positive effect for EMA services because
it assures that more patients can be attended within given response time ob-
jectives. For example, out of the 1609 patients, 1163 (72.3%) are reached
within 14 minutes with C-SUMMA112, whereas this number increases to
1356 patients (84.3 %) with DAAM+DARM.

One negative side effect of the dynamic ambulance redeployment ap-
proach is that available ambulances have to change their positions frequently
in order to improve their locations regarding new potential emergency pa-
tients. Table 4.3 compares the average distances ambulances have to cover
on each of the analysed days and on average in the C-SUMMA112 and the
DAAM+DARM approaches. As it can be observed, the average distance
increases approximately by a factor of 3. It will depend on each partic-
ular application whether the significant improvement regarding the arrival
times justifies the associated higher operation costs of the DAAM+DARM
approach.
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Day 21/01/09 | 28/05/09 | 2/07/09 | 30/09/09 | 5/10/09
# patients 221 152 199 124 137
C-SUMMA112 11:43 11:52 11:03 11:23 11:50
DARM 10:03 10:00 09:38 10:20 10:11
1:40 1:52 1:25 1:03 1:39
Improvement
(14.2%) | (15.7%) | (12.8%) (9.3%) (14.0%)
DAAM-+DARM 09:46 09:50 09:29 09:39 10:09
1:57 2:02 1:33 1:44 1:41
Improvement
(16.6%) (17.1%) (14.1%) (15.3%) (14.2%)
Day 6/10/09 | 17/10/09 | 25/10/09 | 16/11/09 | 30/11/09 | 10 days
# patients 175 96 160 144 201 1609
C-SUMMA112 12:30 12:51 12:42 10:11 11:49 11:45
DARM 10:53 9:50 10:13 08:59 10:23 10:04
1:37 3:00 2:29 1:12 1:26 1:41
Improvement
(12.9%) (23.4%) (19.6%) (11.8%) (12.1%) | (14.4%)
DAAM+DARM 10:51 09:48 10:05 09:05 10:08 09:54
1:38 3:02 2:38 1:06 1:41 1:52
Improvement
(13.1%) (23.7%) (20.7%) (10.8%) (14.3%) | (15.8%)

Table 2: Comparison of average arrival times for 10 different days.

Day 21/01/09 | 28/05/09 | 2/07/09 | 30/09/09 | 5/10/09

# patients 221 152 199 124 137
C-SUMMA112 | 129.87 88.54 111.15 69.53 82.83
DAAM+DARM | 38463 | 27186 | 329.81 | 259.17 | 280.78

Day 6/10/09 | 17/10/09 | 25/10/09 | 16/11/09 | 30/11/09 | 10 days
# patients 175 96 160 144 201 1609
C-SUMMA112 | 117.49 62.89 106.92 68.54 120.5 95.84

DAAM+DARM 312.2 201.09 317.24 265.98 376.92 299.97

Table 3: Comparison of average distances (in kilometres) ambulances have to cover on a
24 hour period.

5. Conclusions

This paper has reported on a piece of applied research, looking into the use
of ICT for emergency medical assistance (EMA) services. In particular, we
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Figure 6: Comparison of the distribution of arrival times among the 1609 patients of the
10 analysed days.

have put forward a dynamic coordination model for ambulance fleets of EMA
services, which combines an ambulance allocation mechanism (DAAM) with
an ambulance redeployment mechanism (DARM). The DAAM is in charge of
assigning available ambulances to patients that have to be attended, dynam-
ically calculating the optimal assignment from a global perspective, minimis-
ing the sum of the expected travel times to all pending patients. Setting out
from historical data, the DARM determines appropriate positions for avail-
able ambulances such that upcoming patients can be attended faster. We
evaluated the coordination model in a simulated environment and compared
it against an actually deployed strategy for a real-world scenario (patients,
ambulances, ambulance and hospital positions) provided by SUMMA112,
the EMA service provider in Madrid, Spain. The results empirically confirm
significant improvements of arrival times over SUMMA112’s current mode
of operation, a fact that, especially for severe patients, can potentially be
life-saving.
The main contributions of our work can be summarised as follows:

1. We have chosen two existing algorithms (Bertsekas auction and Lloyds
algorithm for centroidal Voronoi tessellation) and instantiated them to
the ambulance allocation and ambulance redeployment problems.
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2. The resulting algorithms have been adapted so as to allow for their
smooth integration, while taking into account the dynamicity of the am-
bulance fleet coordination problem. In particular, DAAM continuously
optimises the assignment of ambulances to patients, and also supports
the re-assignment of ambulances, an option that SUMMA112 has not
considered so far. Furthermore, DARM uses a geometric method for dy-
namic ambulance redeployment, i.e. we calculate new (nearly) optimal
ambulance positions for all currently available ambulances, whenever
the fleet situation changes. To the best of our knowledge, this is a novel
approach to the redeployment problem, insofar as ambulances can be
positioned at any point in the region.

3. We have defined an event-based architecture and characterised a set
of events that provide the “runtime glue” among ambulance allocation
(DAAM) and redeployment algorithms (DARM). The software imple-
mentation of this architecture is the backbone of a knowledge-based
system prototype that, combined with the simulation tool that we de-
veloped, allows us to perform realistic quantitative evaluations of the
real-world scenario provided by SUMMA112.

4. The analysis of our approach is carried out with real data for different
days and load situations provided by SUMMAT112. Its performance is
compared to the coordination model that is currently in use in Madrid.
Especially in “high load” situations, when multiple patients have to be
attended at the same time, an important improvement can be obtained
by the use of DAAM - in the experiments on average about 8.6% on
the affected patients. Furthermore, the over 14% improvement in the
arrival times obtained with the DARM mechanism is certainly signifi-
cant. On average, both approaches together manage to reduce arrival
times by almost 16%.

A key assumption underlying our approach is that it is suitable and fea-
sible to repeatedly determine optimal assignments of ambulances to patients
in a dynamic scenario. The experimental results obtained confirm that, at
least for the case of ambulance coordination in Madrid, this heuristic obtains
good results. Furthermore, scalability is not a predominant issue for typical
EMA scenarios, as the number of ambulances and hospitals, as well as patient
arrival rate, are usually rather low. For the Madrid case (29 ambulances and
less than 250 severe patients per day), for each trigger (event) our system
showed runtimes of a few seconds.
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Still, it must be acknowledged that, as it is based on Bertsekas’ auc-
tion algorithm, our assignment method shows an asymptotic runtime of
O(m3log(m()) for a particular implementation that uses e-scaling and where
m available ambulances have to be assigned to m unattended patients. C'is
the maximum expected travel time between any ambulance and any patient
[25]. To this respect, it should be noted that the Hungarian method, the
fastest known method for solving the general assignment problem, shows a
slightly better asymptotic runtime of O(m?) [27]. Nevertheless, we preferred
using Bertsekas’ method, firstly because of its distributed character, giving
it the potential to support coordination for EMA services that are organ-
ised in a more decentralised manner; and secondly because it allows us to
conceive the coordination process as a sequence of interactions (“auctions”)
among “agents” (ambulances and patients), making it easier to convey its
basic functioning to stakeholders in the domain.

Furthermore, in order to effectively solve the ambulance assignment prob-
lem for the case of real-world EMA services based on the aforementioned
heuristic, the ambulance travel times within a town’s road network at a
given moment must be known for all ambulance-patient pairs. This can be
computed in O(mE + mVlioglogV') for directed graphs where m is again
the number of unattended patients/available ambulances, V' is the number
of vertices in the graph (intersections in the road network), and F is the
number of edges (roads segments) [31]. In our settings, £ and V are by far
greater than m. This means that the complexity of determining the routes
is higher than the one of the proper assignment algorithm, and therefore the
overall asymptotic time complexity would usually not be improved if we had
chosen the Hungarian method.

Regarding ambulance redeployment, alternative approaches in the litera-
ture direct ambulances to a set of fixed base stations or to predefined zones,
and tend to optimize the coverage of the region of interest (e.g., try to assure
that every point can be reached within given time limits). By contrast, for
DARM we selected Lloyds algorithm, firstly because it is a geometric opti-
mization technique that allows locating ambulances at any point in the re-
gion; and secondly because it gives us a natural way to minimize the expected
travel time to future emergency patients based on historical distributions of
emergency incidents. Again, our empirical results have shown that rede-
ployment based on DARM leads to significant performance improvements as
mentioned above.

Whereas the DAAM mechanism has no direct additional cost, the DARM
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approach, however, relies on rather frequent movements of available ambu-
lances in order to adapt the coverage to the particular situation in each
moment. This increases the distances an ambulance has to cover each day.
In our experiments, for the case of Madrid, the distance grew from about 100
kilometres a day to about 300 kilometres. This increase implies higher oper-
ation and maintenance costs. It belongs to the realm of politics whether the
obtained improvements compensate the higher costs. Nevertheless, it should
be noted that a common way of reducing arrival times for EMA services
is to increment the number of ambulances. In this sense, the coordination
approach proposed in this paper may constitute a less expensive alternative.

Regarding our future work, we plan to improve the estimation of expected
travel times by including information about other influencing factors, e.g.,
more fine-grained information on traffic and weather conditions. This can
be done either using real-time information provided by web services, or by
a statistical analysis of past ambulance missions. We also plan to look into
the problem of event generation and low-level event processing. Currently,
it is the ambulance crew who informs the coordination centre about changes
in the operational state of their ambulance. Elsewhere [32] we reported
on a preliminary approach for automatically detecting such changes based
on different types of sensors combined with complex-event processing (CEP)
software [33]. In the future, we plan to integrate the aforementioned approach
to event-generation and low-level processing based on CEP with the higher-
level, knowledge-based coordination approach reported in this article.
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