
ar
X

iv
:1

50
2.

00
23

1v
1 

 [
cs

.L
G

] 
 1

 F
eb

 2
01

5

Feature Selection with Redundancy-complementariness Dispersion

Zhijun Chena,b,e, Chaozhong Wua,b, Yishi Zhangc,f,∗, Zhen Huangd, Bin Rane, Ming Zhonga,b, Nengchao
Lyua,b

aIntelligent Transport Systems Research Center, Wuhan University of Technology, Wuhan 430063, China
bEngineering Research Center for Transportation Safety, Ministry of Education, Wuhan 430063, China

cSchool of Management, Huazhong University of Science and Technology, Wuhan 430074, China
dSchool of Automation, Wuhan University of Technology, Wuhan 430063, China

eDepartment of Civil and Environment Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
fWisconsin School of Business, University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract

Feature selection has attracted significant attention in data mining and machine learning in the past decades.

Many existing feature selection methods eliminate redundancy by measuring pairwise inter-correlation of

features, whereas the complementariness of features and higher inter-correlation among more than two

features are ignored. In this study, a modification item concerning the complementariness of features is

introduced in the evaluation criterion of features. Additionally, in order to identify the interference effect

of already-selected False Positives (FPs), the redundancy-complementariness dispersion is also taken into

account to adjust the measurement of pairwise inter-correlation of features. To illustrate the effectiveness of

proposed method, classification experiments are applied with four frequently used classifiers on ten datasets.

Classification results verify the superiority of proposed method compared with five representative feature

selection methods.

Keywords: Classification, Feature selection, Relevance, Redundancy, Complementariness,

Redundancy-complementariness dispersion

1. Introduction

With the fast development of the world, the dimensional and size of data is fast-growing in most kinds of

fields which challenge the data mining and machine learning techniques. Feature selection is an important

and useful method that can effectively reduce the dimensionality of feature space while retaining a relatively

high accuracy in representing the original data. Thus, it plays a fundamental role in many data mining

and machine learning tasks, particularly in pattern recognition [1], knowledge discovery [2, 3], information
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retrieval [4, 5], computer vision [6, 7], bioinformatics [8], and so forth. The effects of feature selection [9] have

been widely recognized for its abilities in facilitating data interpretation, reducing acquisition and storage

requirements, increasing learning speeds, improving generalization performance, etc. Therefore, feature

selection has attracted significant attention of more and more researchers [10, 11, 12, 13, 14].

Generally speaking, the feature selection methods can be divided into two types: Wrapper and filter.

Wrapper methods depend on specific learning algorithms. Thus the performance of wrapper methods is

affected by the selected learning method. This may makes the wrapper methods computationally expensive

in learning, since they must train and test the classifier for each feature subset candidate. Conversely, filter

methods do not rely on any learning schemes. Instead, it is only based on some classifier-irrelevant metrics,

including Fisher score [15], χ2-test [16], mutual information [17, 18, 19, 20, 21], Symmetrical Uncertainty(SU)

[22, 11], etc., to estimate the discrimination power of features. In this study, we only focus on filter methods.

Filter methods can also divided into feature subset selection and feature ranking ones, with regard to

their searching strategy. The evaluation unit for subset selection methods is a set of features, thus the

one with best discrimination power is trying to be discovered [22, 23, 24, 25, 26]. Nevertheless, to find the

best feature subset, O(2m) candidate subsets (where m is # features in the original data) will be traversed

for feature selection task cannot be solved optimally in polynomial-time unless P = NP [27]. Thus it is

computationally intractable in practice. Unlike subset methods, feature ranking methods individually take

features as the evaluation units and rank them according to their discrimination power [28, 29, 30]. These

methods usually employ heuristic search strategies such as forward search, backward search, and sequential

floating search.

However, whatever feature ranking or feature subsets selection method, there are two problems possibly

leading to the wrong ranking or lower capacity for classification. One is that the ignorance of feature

interaction and dependencies may lead to redundancy, as some feature selection methods like MIM [31] take

the assumption of independence of features. For the real-world datasets, especially those high-dimensional

ones, such strong assumption may produce results far from optimal. The other problem is that group capacity

of features is usually ignored, since many methods only measure the relationship between any two features

[17, 32, 30]. For example, a feature has low individual classification capacity and is highly dependent on other

features may be overlooked and even misidentified as a redundant feature by only measuring its pairwise

relationship with other features. However, since it is highly dependent on other features, it is also possible

that the feature contributes largely to the discrimination power of the subset consisting of such features.

Thus, it should be evaluated as a salient feature and selected. Since the dependence among features is related

to both redundancy and complementariness, it is imperative to develop more precise correlation analysis in

order to distinguish them effectively. To this end, we propose a novel feature selection algorithm which tries

to modify the redundancy analysis applied in prior methods in this paper by introducing a modification item

and a dynamic coefficient to effectively adjust the redundancy-complementariness identification process.
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The remainder of the paper is organized as follows: Section 2 reviews related work. Section 3 presents

the Information theoretic metrics and evaluation criteria. A new feature selection method is included in

section 4. In section 5, experimental study is described and the results are discussed. Finally, section 6

concludes this study and proposes possible further work.

2. Related work

In recent decades, many kinds of feature selection methods have been studied. In general, there are two

aims in these feature selection methods. One is to search the most class-relevant features, the other is to

remove redundancy. Most feature selection algorithms can effectively find relevant features [33, 29, 34]. A

well-known example is Relief, which is developed by Kira and Rendell [28]. The main idea of Relief is to rank

features in terms of the weight corresponding to their ability to both discriminate instances with different

class labels and cluster those with same class labels based on the distance between instances. However,

Relief method may be ineffective since similar weights of two or more features cannot be removed by this

method. In other words, this implies that redundant features cannot be identified. A typical and widely

used extension of Relief is ReliefF [35], which is competent to the noisy and incomplete datasets. However,

it is still unable to remove redundant features. Redundant features are considered to have negative effects

on the accuracy and speed of classification methods, hence many feature selection methods are proposed to

address this problem by statistic-based merics [36, 37, 30, 23, 22]. For example, Correlation based Feature

Selection (CFS) algorithm proposed by Hall et al. [23] adopts cor value to simultaneously measure a feature

subset’s correlation to the class and inter-correlation among features in it. CFS selects the subset which

obtains the maximum cor value. However CFS does not designate specific search approaches, thus how to

select feature subsets still remains to be a problem.

Minimum Redundancy and Maximum Relevance (mRMR) criterion and its variants [17, 32, 38, 30]

apply information theoretic metrics to separately measure class-relevance and pairwise correlation between

features. A comprehensive score consisting of the two indices is applied to evaluate and select features.

Fast Correlation Based Feature selection algorithm (FCBF) proposed by Yu and Liu [22] is another typical

method that separately handles relevance and redundancy. FCBF utilizes Symmetrical Uncertainty (SU)

as the merci to represent class-relevance and pairwise correlation. If the class-relevance of a feature is lower

than that of another and the correlation between them, it would be identified as a redundant features and

thus to be removed. Recently, an extenuation of FCBF was proposed in order to identify redundant features

more precisely [39]. All of the above mentioned methods take pairwise correlation as the redundancy index

and identify features with high such index to be redundant, while ignoring 1) complementary correlation

between features (which we will discuss detailed in section 3.2) and 2) correlation among more than two

features, which still remain to be problems that impair the performance of feature selection.
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Much effort has been made to tackle the former problem mentioned above [24, 40, 41, 42, 43, 20, 21,

11, 44, 45]. Flueret [24] and Wang et al. [40] propose Conditional Mutual Information Maximization

(CMIM) criterion for feature selection. CMIM harnesses Conditional Mutual Information (CMI) to measure

the intensity of relevance and redundancy since CMI can implicitly identify complementary correlation

between features, i.e. a large value of CMI(F ;C|F̃ ) implies 1) F is relevant to class C, and 2) F is highly

complementary with F̃ , many information theoretic feature selection methods apply it to build up their

evaluation criteria [46, 42, 41, 47]. There are also several methods explicitly identifying redundancy and

complementary correlation without CMI. Algorithms based on Joint Mutual Information (JMI) criterion

[43, 44] take into account mutual information between pairs of features and class. Since the feature relevant

to class and the one complementary to salient features will obtain high JMI values, they both will be identified

as salient features and thus is more possible to be selected. Although the above mentioned methods try

to recognize complementariness from the pairwise correlation of features, measuring pairwise correlation

is actually an approximation to measuring the correlation among more than two features. Under this

circumstance, features that is strongly complementary to the certain selected feature(s) but not significantly

correlated with the feature group are possible to be selected using such approximation, which will in turn

intervene the later selection process.

3. Information theoretic metrics and evaluation criteria

3.1. Entropy, mutual information, and conditional mutual information

In this section, some essential information theoretic metrics used in our method will be described. The

entropy, a fundamental unit of information, is used to quantify the uncertainty preset in the distribution of

X , which is formed as

H(X) = −
∑

x∈X

p(x) log p(x),

where x ∈ X denotes the possible value assignments of X , p(x) is the distribution of x (for convenience, we

hereafter use the notation log to denote the base 2 logarithm instead of log2). According to the probability

theory, one can use conditional entropy to quantify the uncertainty one variable conditioned on another one.

The conditional entropy of X given Y is defined as

H(X |Y ) = −
∑

y∈Y

∑

x∈X

p(xy) log p(x|y),

Mutual Information (MI) between two random variables X and Y can be described as follows

I(X ;Y ) =
∑

x∈X

∑

y∈Y

p(xy) log
p(xy)

p(x)p(y)
,

where x ∈ X and y ∈ Y are the possible value assignments of X and Y , respectively. MI can be considered

as the amount of information shared by two variables. In feature selection field, it is one of the most widely
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used metrics for measuring the correlation intensity of two features. Note that the MI is a symmetric merci,

i.e. I(X ;Y ) = I(Y ;X). I(X ;Y ) = 0 implies that X and Y are statistically independent. Conditional

mutual information (CMI), which is an extension of MI for measuring the conditional dependence between

two random variables given the third, is defined as

I(X ;Y |Z) =
∑

z∈Z

p(z)
∑

x∈X

∑

y∈Y

p(xy|z) log
p(xy|z)

p(x|z)p(y|z)
.

I(X ;Y |Z) can be interpreted as the information shared between X and Y given the value of a third

variable (Z). MI and CMI can also be expressed with entropies as follows:

I(X ;Y ) = H(X)−H(X |Y )

and

I(X ;Y |Z) = H(X |Z)−H(X |Y, Z).

3.2. Relevance, redundancy, and complementariness analysis

The motivation of using MI to solve feature selection problem is that a larger MI between the feature

and class should imply a potentially greater discrimination ability when using the feature. In addition, a

commonly cited justification for using MI in feature selection is that MI can be used to write both an upper

and lower bound on the Bayes error rate [48]. It can simply be applied as the criterion of a filter taking the

form of

J(F ) = I(F ;C), (1)

where J(·) denotes the evaluation criterion, F denotes a candidate feature and C denotes the class. Intu-

itively, the top m candidates which maximize J(·) could be selected, where m is a predefined number or

decided by some stop criterion. In fact, this criterion takes the assumption that each feature is independent

to all other features, which makes the criterion very efficient. However, such an assumption is so strong in

practice that almost all the features may be mutually dependent to others, which makes the criterion shown

in Eq.(1) be far from optimal. In general, it is widely recognized that a salient set of features should not

only be individually relevant to class, but also should not be redundant to other features in the set. In order

to identify redundancy, mRMR and its variants are proposed which can be generally formed as

J(F ) = D(F )−R(F ) (2)

where D(F ) represents relevance between F and class C, R(F ) describes redundancy between F and the

selected features in the subset S. Usually, like in mRMR [17], D(F ) and R(F ) take the forms of MI.

This criterion can efficiently find the features with high class-relevance and low dependence with respect

to each other in S. However, term “redundancy” not only implies that features are highly dependent to
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each other, but also indicates which one would be substitutable, i.e. their discrimination power would

be significantly impaired when some other feature(s) are(is) given. From this viewpoint, only considering

dependence between features is not enough to effectively identify redundancy. In other words, a feature

which is dependent on another may not definitely imply to be redundant. Instead, the two features may

complementary to each other, i.e they would have stronger discriminatory power as a group (but may weak

as individuals), particularly in microarray data analysis [49, 50]. To this end, a complementary modification

item is introduced as

J(F ) = D(F )− (R(F )−M(F )) (3)

where M(F ) is an item to identify complementary correlation between F and selected features in S. In the

context of MI, if R(C) takes the form of
∑

Fs∈S
I(F ;Fs) (as in mRMR), M(F ) could thus be denoted as

∑
Fs∈S

I(F ;Fs|C), which represents the information shared between F and Fs given class C. In order to

illustrate this, we first show the relationship between R(F ) and M(F ) as follows

R(F )−M(F ) = I(F ;Fs)− I(F ;Fs|C)

=
∑

fs∈Fs

∑

f∈F

p(ffs) log
p(ffs)

p(f)p(fs)
−
∑

c∈C

p(c)
∑

fs∈Fs

∑

f∈F

p(ffs|c) log
p(ffs|c)

p(f |c)p(fs|c)

=
∑

c∈C

∑

f∈F

∑

fs∈Fs

p(ffsc) log

(
p(ffs)

p(f)p(fs)
·
p(f |c)p(fs|c)

p(ffs|c)

)

=
∑

c∈C

∑

f∈F

∑

fs∈Fs

p(ffsc) log
p(ffs)p(fc)p(fsc)

p(f)p(fs)p(c)p(ffsc)

=
∑

c∈C

∑

f∈F

∑

fs∈Fs

p(ffsc) log

(
p(fc)

p(f)p(c)
·
p(ffs)p(fsc)

p(ffsc)p(fs)

)

=
∑

f∈F

∑

c∈C

p(fc) log
p(fc)

p(f)p(c)
−
∑

fs∈Fs

∑

f∈F

∑

c∈C

p(ffsc) log
p(fc|fs)

p(f |fs)p(c|fs)

= I(F ;C) − I(F ;C|Fs). (4)

We now explain R(F ) − M(F ) using Eq.(4), since the relationship between I(F ;C) and I(F ;C|Fs) is

straightforward: If I(F ;C) is much great than I(F ;C|Fs), the relevance between F and classC would become

significantly weak after given the information of Fs. In other words, F is redundant to Fs. Conversely, if

I(F ;C) is much small than I(F ;C|Fs), the relevance between F and class C would become significantly

strong after given the information of Fs. i.e. F is complementary to Fs. Thus, R(F ) −M(F ) could be

applied to simultaneously measure redundancy and complementary correlation: When R(F ) −M(F ) > 0,

it captures the magnitude of redundancy between F and Fs; when R(F ) − M(F ) < 0, it captures the

magnitude of complementary correlation between F and Fs. In the context of MI, the following expression

could be applied to be the evaluation criterion according to Eq.(3)

J(·) = I(F ;C)− Pair Cor(F ;S) (5)
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where Pair Cor(F ;S) takes the form of

Pair Cor(F ;S) =
∑

Fs∈S

(I(F ;Fs)− I(F ;Fs|C)) . (6)

For the sake of convenience for the discussion in the following sections, we denote cor(F ;Fs) = I(F ;Fs)−

I(F ;Fs|C) and thus Eq.6 can be rewriten as

Pair Cor(F ;S) =
∑

Fs∈S

cor(F ;Fs). (7)

It is noted that although Eq.(7) can measure both redundancy and complementary correlation, it is still

a pariwise-based criterion since it only catches the relationship between two features. Criteria that only

concern pairwise correlation among features is also called first-order approximation in literature [51]. We

will further discuss the limitation of Eq.(7) in detail in the next section.

4. Feature selection with redundancy-complementariness dispersion

4.1. Interference effect of false positives

First-order approximation is a prevailing strategy that seems to bring the best trade-off between exe-

cutional efficiency and the selected features quality. Yet ignoring the group effect of features is still known

to be suboptimal although taking the pairwise relevance effect into account. As mentioned before, feature

selection methods that only handle individual relevance take the assumption of mutual independence among

features. Similarly, first-order approximation in redundancy analysis only concentrates on individual re-

dundancy. In other words, it takes the assumption that all the selected features are mutually independent.

Since the first-order approximation only identify pairwise correlation, it is not able to take high inter-feature

correlation into account, thus may misidentify and select actually-redundant features (i.e. False Positives,

which is denoted as FPs hereafter in the paper; Similarly, we use the term True Positives (TPs) to denote

the selected actually-salient features hereafter in the paper), which will in turn intervene the later selection

process.

More specifically, only focusing on pairwise correlation may give chance to FPs to intervene the evaluation

of candidates. Suppose the selected feature subset already contains FPs, the pairwise correlation between

the candidate and each FP is an interference that prompts the candidate to be given unduly high status if

such correlation is influential to the value of the evaluation criterion J(·). recall that the correlation between

candidate and each selected features is denoted as cor(F ;Fs) where Fs ∈ S (S is the selected feature subset)

and thus Pair Cor(F ;S) =
∑

Fs∈S
cor(F ;Fs), the interference effect of FPs can be illustrated in two possible

scenarios shown in Figs.1 (a) and (b), where node in yellow, nodes in red, and nodes in green denote the

candidate, FPs, and TPs, respectively. Distance between yellow node and any other node is in proportion to
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Figure 1: Toy examples of interference effect of FPs.

the strength of their pairwise correlation, e.g. a short distance corresponds to the complementary correlation,

while long corresponds to the redundant correlation.

Scenario 1: FPs are close to the candidate. As shown in Fig.1 (a), most of TPs are distant to the

candidate, which implies that the candidate is more likely to be redundant rather than complementary

to FPs (which corresponds to positive cor value in terms of Eq.(4)) and thus it is possibly a redundant

feature. However, as FPs are very close to the candidate, they are more likely to be complementary and

the corresponding cor value tend to be negative. Under this circumstance, the complementary correlation

between candidate and FPs impairs the reliability of the estimation of Pair Cor(F ;S) and thus makes the

candidate to be overestimated.

Scenario 2: FPs are distant to the candidate. Fig.1 (b) shows that most of TPs are close to the candidate.

This implies that the candidate is more complementary to TPs and thus more likely to be a salient feature

that should be selected. However, it is redundant to the distant FPs and the corresponding cor value tend

to be positive, thus also impairs the reliability of the estimation of Pair Cor(F ;S) and makes the candidate

to be underestimated.

Actually, the interference effect of FPs revealed in the above scenarios can be depicted by the dissimilarity

of the selected features. That is, the intensity of the interference effect of FPs depends on the amount of

the dispersion of the correlation between candidate and the selected features. When a certain value of

Pair Cor(F ;S) is given, the correlation between F and FPs in S which is more likely to be complementary

corresponding to larger negative cor values would lead to the correlation between F and TPs in S which

is more likely to be redundant corresponding to larger positive cor values, and vice versa. We call such

dissimilarity as redundancy-complementariness dispersion. As a heuristic, we apply standard deviation of
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cor to capture such dispersion in order to possibly identify the interference effect of FPs, for standard

deviation is always the best index for risk estimation and instability identification. The standard deviation

of cor(F ;Fs) given the selected feature subset S takes the form of

σ(F ;S) =

(∑
Fs∈S

(cor(F ;Fs)− µ(F ;S))
2

|S|

) 1

2

, (8)

where µ(F ;S) is the mean value of cor(F ;Fs) calculated as

µ(F ;S) =
Pair Cor(F ;S)

|S|
. (9)

Thus, the smaller the value of σ(F ;S), the less influential the interference effect of FPs. We try to find

salient candidates not only with more complementariness and less redundancy, but also less redundancy-

complementariness dispersion, i.e. a small value of σ(F ;S), to heuristically avoid the interference effect

of FPs. To this end, we use σ(F ;S) to adjust the value of Pair Cor. Recall that Pair Cor simultane-

ously measures two types of correlation, i.e. redundancy (where the value of Pair Cor is positive) and

complementariness (where the value is negative). Taking this into account, we use the following criterion

JRID = D(F ;C)− φ(F ;S) · Pair Cor(F ;S) (10)

where

φ(F ;S) =





1 + σ(F ;S) Pair Cor(F ;S) ≥ 0

1− σ(F ;S) Pair Cor(F ;S) < 0

(11)

to evaluate and select features among candidates. Note that φ(F ;S) is defined piecewise for different types of

correlation. Also, we use 1+σ(F ;S) and 1−σ(F ;S) rather than σ(F ;S) as the coefficient of Pair Cor(F ;S)

in order to reduce the estimation bias for σ(F ;S) particularly when there are only a few features selected

in S.

4.2. Proposed method

Based on the above analysis, we propose our feature selection framework shown in Fig.2. It not only

consider class-relevance and pairwise inter-correlation of features, but also take into account the effect

of redundancy-complementariness dispersion. Similar to most of the feature selection methods, proposed

method also applies a sequential forward searching strategy to select features. That is, only one candidate

would be selected at each iteration.

We show the pseudo code of proposed algorithm in Algorithm 1.

Algorithm 1 contains a ‘repeat’ loop and two ‘for’ loops and a calculation process of σ(F ;S) (line 11 in

Algorithm 1) which takes at least |S| loops for the calculation. Thus the iteration complexity of Algorithm

1 is O(δ · |F|2), where δ is the predefined number of selected features. Since there is only one candidate to be

9
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Figure 2: A new framework for feature selection.

selected at the end of each iteration when traversing Fs ∈ S, we only need to get the additional information

of the newly-added feature rather than traversing S again. As for the calculation of σ(F ;S) (i.e. the variance

of cor), we could taking an alternative formulation of variance, i.e. V ar(X) = E(X2)−E2(X) to make use

of the loops in Algorithm 1. That is, to get σ(F ;S) , we designate P to record the summation of cor2 and

Q to record the summation of cor, and then we have

σ(F ;S) =

(
P −Q2/|S|

|S|

) 1

2

.

Taking the above into account, we show the fast implementation of Algorithm 1 as Algorithm 2.

By utilizing the additional information gained at the latest iteration, the complexity of Algorithm 2

reduces to O(δ · |F|), which is more efficient than Algorithm 1. Thus, we implement proposed method

according to Algorithm 2 in the experiments to verify the performance of RCDFS.

5. Experiment study

In order to evaluate the performance and effectiveness of proposed method, the most representative and

well-performed feature selection methods (CMIM [24], mRMR [17], FCBF [22],MIM [31] and ReliefF [35])

are used to compare with proposed algorithm. The brief reviews on above five selected feature selection

algorithm are described as follows.

• CMIM (Conditional Mutual Information Maximization) [24]: This well-known algorithm makes use of

CMI to simultaneously measure class-relevance and inter-correlation of features, applying the following

function

J(F ) = min
F̃∈S

I(F ;C|F̃ )

as the evaluation criterion, taking the heuristic that F̃ satisfying minF̃∈S
I(F ;C|F̃ ) could best represent

the conditioning set S.
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Input: D /*dataset*/, F /*feature set*/, C /*class*/, δ /*expected # features to be selected*/

Output: S /*selected feature subset*/

1 Initialize S← ∅, k ← 1

2 repeat

3 foreach F ∈ F do

4 Relevance← I(F ;C)

5 Pair Cor ← 0

6 foreach Fs ∈ S do

7 cor ← I(F ;Fs)− I(F ;Fs|C)

8 Pair Cor ← Pair Cor + cor

9 end

10 Calculate σ(F ;S) according to Eq.(8)

11 if Pair Cor ≥ 0 then

12 φ← 1 + σ(F ;S)

13 else

14 φ← 1− σ(F ;S)

15 end

16 J(F )← Relevance− φ · Pair Cor

17 end

18 S← S ∪ {F̃} satisfying F̃ = argmaxF∈F J(F )

19 F← F− {F̃}

20 k ← k + 1

21 until k ≥ δ;

22 return S

Algorithm 1: RCDFS: Redundancy-Complementariness Dispersion-based Feature Selection

• mRMR (minimum Redundancy and Maximum Relevance) [17]: It is a very famous feature selection

algorithm that uses MI to measure class-relevance and pairwise dependence. It selects feature satisfying

J(F ) = I(F ;C)−
1

|S|

∑

Fs∈S

I(F ;Fs)

in a greedy manner, where I(F ;C) measures the class-relevance of F and 1
|S|

∑
Fs∈S

I(F ;Fs) measures

the average pairwise dependence between F and Fs ∈ S. Note that we have already introduced it in

section 3.2.

• FCBF (Fast Correlation-Based Feature selection) [22]: In this algorithm, Symmetrical Uncertainty
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Input: D /*dataset*/, F /*feature set*/, C /*class*/, δ /*expected # features to be selected*/

Output: S /*selected feature subset*/

1 Initialize S← ∅, Fnew ← ∅, ∆(F )← 0 for ∀F ∈ F, Pair Cor(F )← 0 for ∀F ∈ F, k ← 0

2 foreach F ∈ F do

3 Relevance(F )← I(F ;C)

4 end

5 Fnew ← F̃ satisfying F̃ = argmaxF∈F Relevance(F )

6 S← S ∪ {Fnew}

7 F← F− {Fnew}

8 k ← k + 1

9 repeat

10 foreach F ∈ F do

11 Relevance← I(F ;C)

12 cor ← I(F ;Fnew)− I(F ;Fnew |C)

13 ∆(F )← ∆(F ) + cor2

14 Pair Cor(F )← Pair Cor(F ) + cor

15 σ(F ;S)←
(

∆(F )−Pair Cor(F )2/|S|
|S|

) 1

2

16 if Pair Cor(F ) ≥ 0 then

17 φ← 1 + σ(F ;S)

18 else

19 φ← 1− σ(F ;S)

20 end

21 J(F )← Relevance(F )− φ · Pair Cor(F )

22 end

23 Fnew ← F̃ satisfying F̃ = argmaxF∈F J(F )

24 S← S ∪ {Fnew}

25 F← F− {Fnew}

26 k ← k + 1

27 until k ≥ δ;

28 return S

Algorithm 2: A fast implementation of RCDFS

(SU) is used as the evaluation merci. It first ranks features in descending order. Then it eliminates

redundant features in terms of an approximate Markov blanket criterion: If SU(F1;C) > SU(F2;C)
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and SU(F1;C) > SU(F1;F2), F2 is thus identified as a redundant feature of F1 and thus would be

eliminated. For this method, we set the predefined threshold γ = 0 as suggested by [22].

• MIM (Mutual Information Maximization) [31]: It is the most basic feature ranking algorithms based

on mutual information that only concerns the class-relevance of features. We have also introduced it

in section 3.2. It applies

J(F ) = I(F ;C)

as the criterion to select the top m features with the highest value of I(F ;C). It is one of the most

typical benchmark algorithms in the field of feature selection.

• ReliefF [35]: It is a well-known distance-based feature ranking method that searches nearest neighbors

of samples for each class label and then weights features in terms of how well they differentiate samples

for different class labels. As for the parameter settings, we use 5 neighbors and 30 instances throughout

the experiments as suggested by [35].

Weka (Waikato environment for knowledge analysis) [52] is chosen as the classification platform. Since

FCBF, MIM, and ReliefF have already been integrated in Weka, we directly use them to generate datasets

with their selected features before classification. CMIM, mRMR, and the proposed method are implemented

in Java and with Weka interfaces. All experiments are conducted on a 2.60 GHz CPU, 8GB RAM personal

computer with Windows 7.

5.1. Datasets

In order to validate the performance of the proposed method, ten frequently used datasets are applied

in our experiments, where six of them (mushroom, kr-vs-kp, sonar, multiple features ka, DNA, and isolet5)

are well known UCI datasets and the rest (Colon Tumor, BCR ABL, Prostate Cancer, and Breast Cancer)

are gene microarray datasets with high dimensionality (i.e. containing more than 2000 features). General

information of these datasets are summarized in Tab.1. For the continuous and mixed datasets, a supervised

discretization method called MDL [53] is employed to discrete continuous features before feature selection

and classification.

5.2. Classifiers and Experimental settings

5.2.1. Classifiers

In our experiments, four famous and most frequently used classifiers – Näıve Bayesian Classifier (NBC)

[52], Support Vector Machine (SVM) [54], k-Nearest Neighbor (kNN) [55] and C4.5 decision tree [56] are

adopted to generate classification error rate on the datasets with selected features preprocessed by different

feature selection methods. We set k = 1 for kNN and employ Gaussian RBF kernels for SVM.
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Table 1: Description of datasets

# Name # samples # features Type # classes

1 mushroom 8124 22 nominal 2

2 kr-vs-kp 3196 36 nominal 2

3 sonar 208 60 nominal 2

4 multiple features kahunen 2000 64 numeric 10

5 DNA 3186 180 nominal 3

6 isolet5 1559 617 mixed 26

7 Colon Tumor 62 2000 numeric 2

8 BCR ABL 112 12559 numeric 2

9 Prostate Cancer 34 12601 numeric 2

10 Breast Cancer 19 24482 numeric 2

5.2.2. Experimental settings

First, we show the classification results of the four classifiers on 1, ...,m selected features for each feature

selection method, wherem in our experiments is set to be min
{
50,
⌊
|F|
2

⌋}
. 10-fold cross validation is applied

in this part. Note that the nature of the learning process of each classifier is different. Since we are interested

in checking the quality of the selected features, independently from the type of classification rule applied,

the average result of the four classifiers is thus reported.

In addition, we compare the best classification results for the six feature selection methods among their

selected features. That is, we check the average classification results for each feature selection method on

the datasets with selected features ranging from 1 to min {50, |F|}, and report the best one. In order to

achieve stable results, a (M = 10) × (N = 10)-fold cross-validation is applied, i.e. 10-fold validation will

be conduct ten times for each classifier on each dataset. Thus, a total of one hundred result samples (i.e.

average results from four classifiers) can be collected where each sample is an average classification result of

the four classifiers. Finally, the average of one hundred samples is reported in our paper. Wilcoxon rank-sum

test is applied to determine the statistical significance of the difference of the results (where the significant

level is set to be 0.05).

At last, to test the stability of the performance on different datasets, average classification results of

different datasets, in ranges from 1 to 5, from 1 to 10, from 1 to 15, from 1 to 20, from 1 to 25, from

1 to 30, from 1 to 35, from 1 to 40,from 1 to 45, and from 1 to 50 selected features, are reported and

analyzed respectively for each classifier and feature selection method. Friedman test is applied to analyze

the statistical significance of the results. These ten average classification results have been considered to be

the approximate transitory period to reach a stable performance for the datasets used.
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5.3. Experimental results and discussion

Figs.3–12 show the 10-fold cross-validation average test error rate of the different types of classifiers

(NBC, SVM, kNN, and C4.5) on the ten datasets to illustrate the effectiveness of proposed method RCDFS,

where the consecutive numbers of selected features are described by X axis, and the average test error

rate is represented by Y axis. According to the results shown in Figs.3–12, the superiority of RCDFS can

be verified in the majority of cases. Particularly on seven datasets namely mushroom (Fig.3), kr-vs-kp

(Fig.4), sonar (Fig.5), DNA (Fig.7), Colon Tumor (Fig.9), BCR ABL (Fig.10), and Breast Cancer (Fig.12),

RCDFS significantly outperforms CMIM, mRMR, FCBF, MIM, and ReliefF. More precisely, RCDFS usually

perform better at the beginning of feature selection process on several datasets such as sonar (Fig.5) and

Colon Tumor (Fig.9). This is probably because the redundancy and complementariness are both considered

by RCDFS, rather than only measuring pairwise redundancy like mRMR and CMIM or ignoring redundancy

among features like MIM, FCBF and ReliefF. For other datasets, e.g. BCR ABL dataset, the test error

rate corresponding to RCDFS is higher than that to CMIM and mRMR on the first five selected features,

whereas after the sixth feature being selected, RCDFS performs better (i.e. the test error is lower) than

other methods and it is never exceeded, which is possibly due to the fact that the dispersion of redundancy-

complementariness correlation becomes influential to feature evaluation process after several features being

selected, i.e. the interference effect of FPs in the selected subset impairs the evaluation ability of the selected

compared algorithms except for RCDFS. On the whole, it can also be seen that RCDFS selects less features

corresponding to the lowest error rate than other methods (e.g. it corresponds to the best classification

results only selecting five and sixteen features on Colon Tumor and DNA, respectively). It is also found that

the performance of RCDFS is not always outstanding and sometimes inferior to CMIM (such as Fig.11).

This may also lie in the dispersion of the redundancy-complementariness correlation since there also exist

alternative conditions leading to high dispersion rather than the variance between TPs and FPs.

Tab.2 records the number of features selected by each feature selection algorithm. We observe from the

table that the average number of selected features of RCDFS (18.7) is smaller compared to other algorithms

used in our experiment. This indicates the advantage of RCDFS that the best classification result can be

obtained with a sufficiently small set of features.

Tab.3 show the average test error rate of NBC, SVM, kNN, and C4.5 on ten datasets over (M =

10)× (N = 10)-fold cross validation, respectively. For each dataset, Wilcoxon test is conducted to evaluate

the statistical significance of the difference between the two groups of result samples, i.e. groups of the

result samples that corresponds to RCDFS and any other feature selection method. In Tab.3, “Err” column

records the average test error rate of (M = 10)× (N = 10)-fold cross-validation. “p-val” column records the

p-value associated with Wilcoxon test, where p-value less than 0.05 indicates the statistical significance of

the difference between the two average values. Notation “•”/“◦” are used to show that the test error rate

corresponding to the current feature selection method is significantly lower/higher than that to proposed

15



Number of selected features
0 5 10 15 20

T
es
t
er
ro
r
(%

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
mushroom

CMIM
mRMR
FCBF
MIM
ReliefF
RCDFS

Figure 3: Accuracy comparison with different number of selected features on mushroom.
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Figure 4: Accuracy comparison with different number of selected features on kr-vs-kp.
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Figure 5: Accuracy comparison with different number of selected features on sonar.

Table 2: Number of selected features corresponding to best performance

Datesets
# features

RCDFS CMIM mRMR FCBF MIM ReliefF

mushroom 9 5 12 3 8 7

kr-vs-kp 21 35 27 4 35 34

sonar 10 15 11 9 17 18

multiple feature kahunen 34 31 25 32 25 23

DNA 16 26 18 17 18 25

isolet5 49 47 50 31 49 48

Colon Tumor 5 7 15 13 5 46

BCR ABL 8 14 10 48 31 42

Prostate Cancer 19 16 3 34 40 8

Breast Cancer 16 21 20 32 50 36

Avg. 18.7 21.7 19.1 22.3 27.8 28.7

method (corresponding to “RCDFS” column) under the test. Bold value in each row indicates that it is the

best result among six feature selection methods. The average error rate of ten datasets is given in the last

row.

As can be seen from Tab.3, the average value of test error rate for the ten datasets shows that RCDFS

outperforms other methods on mushroom, sonar, DNA, BCR ABL, Prostate Cancer, and Breast Cancer
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Figure 6: Accuracy comparison with different number of selected features on multiple features kahunen.

datasets. According to the average test error rate of ten datasets given in the last row, the best one is

obtained by our method (7.89) and the worst is by MIM (12.57). Also, the average test error rate of CMIM

(8.12) is better than other algorithms (mRMR (8.71), FCBF (11.1), and ReliefF (11.62)).

For further analysis, the diagram (Fig.13) is applied to visualize the statistical significance of RCDFS

comparing with the selected methods under four classifiers on ten datasets. The blue box in Fig.13 describes

that the test error rate of RCDFS is significantly better than the compared algorithms in current dataset.

The yellow box represents that there is no significant difference between the results of RCDFS and the

compared algorithm. The red box implies that the test error rate of RCDFS is significantly worse than the

compared algorithms. The results shown in Fig.13 indicate that RCDFS achieves better performance in

most of datasets compared with selected feature selection algorithms.

Tabs.4–7 show the statistical significance of average error using Friedman test under different classifiers

on ten datasets. Results in column k = 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 represents the average

classification error in ranges from 1 to 5, from 1 to 10, from 1 to 15, from 1 to 20, from 1 to 25, from 1 to 30,
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Figure 7: Accuracy comparison with different number of selected features on DNA.
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Figure 8: Accuracy comparison with different number of selected features on isolet5.
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Figure 9: Accuracy comparison with different number of selected features on Colon Tumor.
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Figure 11: Accuracy comparison with different number of selected features on Prostate Cancer.
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Figure 12: Accuracy comparison with different number of selected features on Breast Cancer.
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Table 3: Average classification error rate of the six classifiers on selected features with NBC, SVM, kNN and C4.5,

and the result of Wilocxon test.

# Dataset
RCDFS CMIM mRMR FCBF MIM ReliefF

Err Err p-val Err p-val Err p-val Err p-val Err p-val

1 0.32 0.37 0.207 0.47 0.000◦ 23.26 0.000◦ 20.57 0.000◦ 0.39 0.000◦

2 5.32 5.61 0.015◦
5.14 0.231 5.91 0.000◦ 5.61 0.015◦ 5.21 0.449

3 14.05 16.05 0.025◦ 17.44 0.000◦ 18.63 0.000◦ 17.38 0.001◦ 16.56 0.006◦

4 10.05 9.89 0.317 9.81 0.143 10.08 0.874 9.81 0.143 9.83 0.144

5 5.98 5.99 0.959 6.46 0.011◦ 8.16 0.000◦ 6.46 0.011◦ 10.79 0.000◦

6 25.13 23.19 0.000• 27.06 0.000◦ 23.62 0.000• 37.89 0.000◦ 37.11 0.000◦

7 3.32 2.83 0.105 4.02 0.715 2.37 0.103 7.26 0.001◦ 8.35 0.000◦

8 5.98 5.99 0.959 6.46 0.011◦ 8.16 0.000◦ 6.46 0.011◦ 10.79 0.000◦

9 5.13 5.58 0.070 5.71 0.113 5.96 0.960 6.71 0.758 8.54 0.053

10 3.66 5.65 0.000◦ 4.52 0.106 4.86 0.021◦ 7.58 0.000◦ 8.63 0.000◦

Avg. 7.89 8.12 8.71 11.10 12.57 11.62

◦ statistical degradation at significant level of 0.05.

• statistical improvement at significant level of 0.05.
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Figure 13: Average classification error rate comparison between RCDFS and the selected methods on the selected ten datasets.

from 1 to 35, from 1 to 40,from 1 to 45, and from 1 to 50 features, respectively. Note that FCBF may select

less features than other methods, e.g. it only selects 4 features on mushroom dataset, thus the average up to

4 features is described in row k = 25, 30, 35, 40, 45, and 50. A very small p-val (i.e. p-val < 0.05) indicates

the significant difference among the average values. In addition, we use S/N given in the last row of the

tables to represent statistically significant/insignificant difference among the average values under Friedman

test with significant level 0.05. Bold value in each column shows the best classification result among six
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feature selection methods.

Tab.4 shows that the average test error rate of Na ive Bayesian Classifier (NB) corresponding to RCDFS

is lowest among all methods and p-val is smaller than 0.05. This indicates that the performance of RCDFS

is best using NBC classifiers with the number of selected features in all ranges. Similar to NB, the average

test error rate of SVM corresponding to RCDFS shown in Tab.5 is also lowest with the number of selected

features in most of the ranges. In addition, the CMIM is superior to other methods with SVM in the ranges

of k = 1 to 45 and to 50. From Tab.6 and Tab.7, the average error rates of kNN and C4.5 corresponding

to RCDFS are both the lowest and the p-val is also smaller than 0.05, which verifies the effectiveness of

proposed method.

Table 4: Average classification error rate for all databases with NB classifiers, and the result of the Friedman test.

NB k = 5 k = 10 k = 15 k = 20 k = 25 k = 30 k = 35 k = 40 k = 45 k = 50

RCDFS 18.91 13.92 11.66 10.45 10.56 9.93 9.48 8.87 8.59 8.34

CMIM 19.34 14.70 12.68 11.43 11.48 10.88 10.40 9.82 9.51 9.25

mRMR 19.42 15.32 13.23 12.07 12.30 11.73 11.32 10.88 10.57 10.29

FCBF 20.26 15.51 13.22 12.04 12.30 11.60 11.26 10.72 10.59 10.48

MIM 27.01 21.11 18.64 17.11 17.38 16.50 15.78 15.52 15.00 14.56

ReliefF 29.28 23.04 19.99 18.35 18.95 18.02 17.29 17.08 16.43 15.87

p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

S S S S S S S S S S

Table 5: Average classification error rate for all databases with SVM classifiers, and the result of the Friedman test.

SVM k = 5 k = 10 k = 15 k = 20 k = 25 k = 30 k = 35 k = 40 k = 45 k = 50

RCDFS 18.83 13.65 11.41 10.15 10.34 9.72 9.32 9.34 9.24 9.20

CMIM 18.87 14.24 12.14 10.75 10.85 10.12 9.57 9.37 8.96 8.64

mRMR 19.64 15.20 12.83 11.38 11.57 10.82 10.25 10.08 9.71 9.41

FCBF 20.81 15.80 13.49 12.20 12.46 11.70 11.29 10.78 10.59 10.43

MIM 27.28 21.15 18.53 16.60 16.79 15.61 14.67 14.75 14.06 13.49

ReliefF 29.10 22.17 18.68 16.52 16.86 15.82 14.92 15.09 14.40 13.87

p-val 0.003 0.000 0.000 0.000 0.000 0.001 0.002 0.001 0.001 0.002

S S S S S S S S S S
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Table 6: Average classification error rate for all databases with kNN classifiers, and the result of the Friedman test.

kNN k = 5 k = 10 k = 15 k = 20 k = 25 k = 30 k = 35 k = 40 k = 45 k = 50

RCDFS 18.72 14.27 12.38 11.22 11.62 11.11 10.77 11.19 11.01 10.89

CMIM 19.10 14.90 13.04 12.02 12.59 12.21 11.87 12.37 12.19 12.03

mRMR 19.56 15.61 13.68 12.64 13.22 12.64 12.21 12.63 12.38 12.17

FCBF 20.54 16.45 14.52 13.51 14.22 13.70 13.42 13.27 13.07 12.92

MIM 26.94 21.28 18.88 17.40 18.14 17.36 16.74 17.44 16.97 16.57

ReliefF 28.98 22.81 19.87 18.05 18.72 17.91 17.29 18.02 17.49 17.04

p-val 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

S S S S S S S S S S

Table 7: Average classification error rate for all databases with C4.5 classifiers, and the result of the Friedman test.

C4.5 k = 5 k = 10 k = 15 k = 20 k = 25 k = 30 k = 35 k = 40 k = 45 k = 50

RCDFS 19.23 15.50 13.84 12.91 13.83 13.50 13.27 14.22 14.13 14.08

CMIM 19.50 16.48 15.04 14.12 15.10 14.78 14.53 15.51 15.40 15.29

mRMR 20.26 17.72 16.19 15.33 16.36 15.97 15.68 16.83 16.71 16.57

FCBF 21.34 17.91 16.57 16.05 17.40 17.18 17.07 17.57 17.56 17.57

MIM 27.47 22.76 20.84 19.34 20.37 19.57 18.91 20.13 19.77 19.52

ReliefF 29.65 24.22 21.95 20.68 21.94 21.32 20.69 21.90 21.29 20.81

p-val 0.019 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

S S S S S S S S S S

6. Conclusions & future work

Relevance and redundancy are two important feature properties attracting much attention in the study

of feature selection. Many algorithms eliminate redundancy by measuring pairwise inter-correlation between

features, while they cannot identify the complementariness of features and the correlation among more than

two features. Although the former problem can be effectively addressed by introducing a modification item,

high inter-correlation of features still makes the result far from optimal. Specifically, pairwise approximation

of high inter-correlation may misidentify and select FPs which will in turn impair the effectiveness of feature

evaluation. In order to identify the interference effect of FPs, the redundancy-complementariness dispersion

is taken into account in proposed method to adjust the measurement of pairwise inter-correlation of features.

To illustrate the effectiveness of proposed method RCDFS, classification experiments are conducted with four

frequently used classifiers on ten datasets. In the experiments, RCDFS is compared with five representative
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feature selection methods namely CMIM, mRMR, FCBF, MIM, and ReliefF. Classification results have

been proven to perform satisfactorily of RCDFS. To verify the stability of RCDFS, Wilcoxon test as well as

Friedman test are adopted to assess the statistical significance of the differences among the results of the

feature selection method. According to the test results, RCDFS performs better than the selected methods

in most of the cases.

Although the superiority of RCDFS has been verified in the experiments, there still remain challenges

which are imperative to be solved in our future work. One is that how to properly set the weights of

three objectives, i.e. coordinate relevance, redundancy-complementary, and dispersion of pairwise inter-

correlation, is still needed to be studied. Possible directions include multi-objective programming and

multi-index evaluation techniques such as data envelopment analysis. Additionally, since their is no causal

relationship between FPs and the dispersion of pairwise inter-correlation, only concerning such dispersion

may not always be effective in feature evaluation. Thus how to design more effective heuristics in the context

of first-order approximation will be further studied in future.
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