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Abstract 

Fruit fly optimization algorithm (FOA) is recently presented metaheuristic technique 

that is inspired by the behavior of fruit flies. This paper improves the standard FOA by 

introducing the novel parameter integrated with chaos. The performance of developed 

chaotic fruit fly algorithm (CFOA) is investigated in details on ten well known benchmark 

problems using ten different chaotic maps. Moreover, we performed comparison studies with 

basic FOA, FOA with Levy flight distribution, and other recently published chaotic algorithms. 

Statistical results on every optimization task indicate that the chaotic fruit fly algorithm 

(CFOA) has a very fast convergence rate. In addition, CFOA is compared with recently 

developed chaos enhanced algorithms such as chaotic bat algorithm, chaotic accelerated 

particle swarm optimization, chaotic firefly algorithm, chaotic artificial bee colony algorithm, 

and chaotic cuckoo search. Overall research findings show that FOA with Chebyshev map 

show superiority in terms of reliability of global optimality and algorithm success rate. 

Keywords: Fruit fly optimization algorithm, Chaos, Metaheuristic technique, Optimization 

 

1. Introduction 

Recently, a large number of complex nonlinear optimization problems are solved 

using mathematical tools inspired by phenomena found in nature. In such cases, traditional 

algorithms often may not produce desired outcomes and therefore the alternate methods 

must be employed. Metaheuristic techniques are a well known global optimization approach 

that has been widely used to solve many different optimization issues [1, 2]. These methods 

mimic the social behaviour of species or natural mechanisms in order to find the best 

possible result for the given problem. In majority of these techniques, an algorithm starts by 

creating a random population of units which is then manipulated by using iterations and 

stochastic processes.  

Many metaheuristic algorithms have been developed over the last few years. Most 

popular techniques in the field include harmony search [3], firefly algorithm [4], cuckoo 

search [5], bat algorithm [6], and krill heard [7], which are successfully applied for solving 

various optimization and real world problems [8]. One of the latest population-based 

techniques is the fruit fly optimization algorithm (FOA) [9]. So far, FOA has been used for: 

tuning of PID controller [10], semiconductor testing scheduling [11], power load forecasting 

[12], solving multidimensional knapsack problem [13] and continuous function optimization 

problem [14]. The algorithm proved to be very efficient, even in comparison with other state-

of-the art techniques, such as mentioned harmony search [14]. However, similarly to other 

metaheuristic approaches, determination of algorithm-dependent parameters is still one of 

the key issues that influence FOA performance. 

 Latest trend in developing more effective metaheuristic techniques lies in their 

integration with chaos. Chaos theory is related to the study of chaotic dynamical systems 

that are sensitive to initial conditions [15]. Due to the ergodicity and mixing properties of 

chaos, algorithms can potentially carry out iterative step search at higher speeds then 

standard stochastic search with standard probability distributions [16, 17]. Recent research 



  

in the field refers to employment of chaos in: genetic algorithms [18], particle swarm 

optimization [19], harmony search [20], ant colony optimization [21], bee colony optimization 

[22], simulated annealing [23], firefly algorithm [24], bat algorithm [17], krill heard technique 

[25], and biogeography-based optimization [15]. Empirical studies in all of these approaches 

show that methods with chaos have a high-level mixing capability, which results in solutions 

with higher diversity and mobility.  

Initial result of implementation of chaos in FOA is reported in [26]. In this study, FOA 

is integrated with logistic chaos map and such algorithm is tested in optimization of one 

function. However, it is known that different maps may lead to different behavior of 

algorithms, so the most of the aforementioned works in this domain investigate influence of 

various chaotic maps. Also, in order to obtain a full insight of the capabilities of the 

developed algorithm, it is necessary to test its performance on several different unimodal 

and multimodal nonlinear functions. Likewise, it is essential to compare the chaotic algorithm 

with the standard version, and also with other state-of-the-art techniques with chaos so as to 

obtain full insight in the capabilities of chaos enhanced algorithm.  

This paper presents novel FOA method based on chaotic mapping with the following 

main contributions: (i) FOA algorithm is integrated with ten different chaos maps in order to 

find the most appropriate one for the problem in hand; (ii) algorithm performance is tested on 

ten different nonlinear functions; (iii) the developed method is compared with standard FOA 

and FOA with Levy distribution, as well as with other state-of-the-art chaos based 

metaheuristic techniques. 

The rest of the paper is organized as follows. In Section 2 basic FOA is described. 

Section 3 presents developed chaotic levy FOA, with the detailed mathematical description 

of each of the employed map. Implementation details are stated in Section 4. Experimental 

results obtained for different unimodal and multimodal functions, comparison with other 

chaos optimization algorithms, as well as discussion of results are given in Section 5. Finally, 

Section 6 delivers the conclusion of this study. 

 

2. Basic fruit fly optimization algorithm 

 Fruit fly optimization algorithm is inspired by the behaviour of the fruit flies found in 

nature [9]. Fruit fly (lat. Drosophila) is superior in comparison with other similar species, 

especially in terms of food foraging using osphresis and vision characteristics. The smell 

foraging phase enables an individual to search and locate food sources around the fruit fly 

swarm. For each of the food sources the smell concentration that corresponds to the fitness 

value is evaluated next. In the vision foraging phase maximum smell concentration value is 

allocated, and then the swarm is directed towards it. This foraging behaviour of fruit flies is 

presented in Fig. 1. 

 



  

 

Fig.1. Iterative foraging process of fruit flies. 

 

 FOA can be summarized thorough 6 independent steps which are defined as follows 

[11]: (i) set the maximum number of iteration and population size; (ii) randomly initialize fruit 

fly swarm location using Eq. (1);  

 

( )j lower_bound upper_bound-lower_bound     rand()                            (1) 

 
(iii) randomly generate a number of fruit flies around the fruit fly swarm so as to form a 

population (osphresis search process) using Eq.2; 

, , 1,...,i j jx j n  rand() 
       

(2) 

(iv) evaluate the entire fruit fly population in order to obtain the smell concentration value of 
each fruit fly in swarm; (v) determine the fruit fly with the maximum smell concentration and 
then direct the swarm towards the location of this best individual (vision search process), 
and finally (vi) finish the algorithm if the maximum number of generation is reached, or go to 
step (iii) otherwise.  

 

The parameters ,i jx  and j  influence both search phases (osphresis and vision), 

and are responsible for generation of food sources. It is obvious that the way they are 
calculated in a significant manner determines the final algorithm solution. Numerous studies 
showed that random-based optimization algorithms perform better when using non-standard 
distributions (i.e. Gauss or uniform distribution) [16, 17]. Additionally, the properties of non-
repetition and ergodicity of chaos can force an algorithm to carry out overall searches at 
higher speeds [16]. These are the main reasons for the development of improved FOA 
described next. 
 



  

3. Chaotic fruit fly optimization algorithm 

This section presents novel FOA by introducing a new parameter enhanced by 
chaos. We start the explanation of the chaotic fruit fly optimization algorithm (CFOA) as 
follows. 

 

3.1 Algorithm initialization  
 

Initial swarm location may have major influence in faster convergence and final 
outcome. As a first improvement, CFOA determines the initial fruit fly swarm location by 
choosing the best one among PS randomly generated solutions. Similarly to what is found in 
[14], this calculation of initial swarm position results in a faster convergence and a better 
algorithm solution at the end of experimental run.  
 

3.2. Chaos FOA 

In FOA, crucial influence on algorithm performance refers to the calculation of food 

sources. Basic implementation of this metaheuristic technique assumes randomization of 

,i jx  variables using uniform distribution. This is often not a good choice, especially when 

dealing with complex nonlinear and multimodal problems. In order to enhance convergence 

and overall speed of FOA we introduce a new parameter, alpha , which is used for 

generation of food sources. Particularly, we modified the Eq. (2) so that it involves a chaotic 

variable as follows: 

*

, , ,( ), 1,..., , 1,...,i j i j i j jx x alpha x x  i PS j n     
    

(3) 
 

where X* is the currently best solution. In this manner, we force the individuals to move 
towards the best so far optimal solution in the chaotic manner. This proved to be a huge 
advantage in comparison with basic FOA and FOA with Levy distribution. The complete 
procedure of a novel CFOA is presented in Fig. 2. 
 
 
Algorithm 1. Chaotic FOA pseudocode 

// Algorithm initialization 

Set the population size PS and maximum number of iterations Imax 

// Initialize fruit fly swarm location in the search space n  

For i = 1,..,PS  

, ( ) , 1,...,i jx lower_bound upper_bound-lower_bound  j n   x rand()  

EndFor 

  
1,2,...,

arg min i
i PS

f X


   // Set swarm location 

// Set optimal solution and iteration counter:  

*X     



  

0Iter   

Repeat 

// Smell-based (osphresis) foraging phase 

   For j =1,…,PS 

       // Generate food source  ,1 ,2 ,, ,...,i i i i nX x x x
 

      ()alpha chaos  // Determine chaotic parameter 

       *

, , ,( ), 1,..., , 1,...,i j i j i j jx x alpha x x  i PS j n      

       // Limit the result 

        If , _i jx upper bound  then 

            , _i jx upper bound  

        EndIf 

         If , _i jx upper bound  then 

            , _i jx upper bound  

         EndIf 

   EndFor 

 

// Vision-based foraging phase  

     
1,..,

arg min ( )best i
i PS

X f X


   

// Find global best solution 

     If    bestf X f   then 

            
bestX   

      EndIf 

      If    *f f X   then 

            *X    

      EndIf 

Until the maximum number of iteration is reached:  
maxIter Iter  

Fig. 2 Procedure of Chaotic FOA 
  

In this paper, we investigate the influence of ten different one-dimensional non-

invertible chaotic maps, similarly to other recent studies [15]. A mathematical description and 

graphical presentation of these maps for 300 iterations are given in Table 1 and Fig. 3, 

respectively. It is important to note that the chaotic behavior is evident in Fig. 3 despite the 

lack of random component in equations given in Table 1. Each chaotic map presented in Fig. 

4 has the starting point of 0.7. The maps that do not produce values in range of [0, 1] are 

normalized to fit into this scale.  

 



  

Table 1. Chaotic maps used in this study 

No. Map name Equation 

1 
Chebyshev    1

1 cos cosi ix i x

    

2 Circle   1 mod 2 sin(2 ,1);  0.5, 0.2i i ix x b a x a b         

3 Gauss/Mouse 

 
1

  1,              0

1
,     

mod ,1

i

i

xi

x
otherwise

x






 



  

4 Iterative 

1 sin ,  0.7i

i

a
x a

x




 
  

 
  

5 Logistic  1 1 ,  4i i ix ax x a      

6 Piecewise  

1

,            0

,         0.5
0.5

 ,  0.41
,        0.5 1

0.5

1
,            1 1

i i

i
i

i i
i

i
i

x P x P

x P
P x

P
x PP x

x P
P

x
P x

P



 



  




   
  





  



  

7 Sine 
 1 sin ,  4

4
i i

a
x x a     

8 Singer  2 3 4

1 7.86 23.31 28.75 13.301875 ,  1.07i i i i ix x x x x         

9 Sinusoidal  1 sin ,  2.3i i ix ax x a     

10 Tent 

 
1

0.7,        0.7

10
1 ,  0.7

3

i i

i

i i

x x

x
x x






 
 



  

 
 

 
(a) 

 
(b) 



  
 

(c) 
 

(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 



  
 

(i) 
 

(j) 
Fig. 3. Visualization of implemented chaotic maps: (a) Chebyshev map, (b) Circle map, (c) 

Gauss/Mouse map, (d) Iterative map, (e) Logistic map, (f) Piecewise map, (g) Sine map, (h) 

Singer map, (i) Sinusoidal map, (j) Tent map 

 

4. Implementation details 
 

4.1 Test functions 
 

Chaotic FOA presented in this study is benchmarked using 14 different well-known 
functions [14, 15, 27]. Total optimization set contains seven unimodal and seven multimodal 
examples. The mathematical description and graphical presentation of these functions are 
given in Table 2 and Fig. 4, respectively.  

 

For all test problems global optimum is equal to  * 0f X  . Boundaries for functions 

are equal to their known initial ranges. After the every algorithm iteration, boundary 

constraint for each ,i jx parameter is applied. 

 

Table 2. Benchmark functions 

ID 
Function 
name 

Equation 

Upper 
and 

Lower 
Bound 

Dimensi
on n   

Type 

F1 Sphere   2

1

n

i

i

f x x


  
Ub=100 

Lb=-100 
30 Unimodal 

F2 
Schwefel’s 
problem 
2.22 

 
1 1

nn

i i

i i

f x x x
 

    Ub=10 
Lb=-10 

30 Unimodal 

F3 Quartic   4

1

rand
n

i

i

f x ix


   
Ub=1.28 
Lb=-1.28 

30 Unimodal 

F4 
Sum 
squares 

  2

1

n

i

i

f x ix


  Ub=10 
Lb=-10 

30 Unimodal 



  

F5 
Sum of 
different 
power 

 
1

1

n
i

i

i

f x x




  
Ub=1 
Lb=-1 

30 Unimodal 

F6 
Schwefel’s 
problem 
2.21 

   max ,1if x x i n  
 

Ub=100 
Lb=-100 

30 Unimodal 

F7 Rosenbrock       
1

2 22

1

1

100 1
n

i i i

i

f x x x x






   
 

Ub=30 
Lb=-30 

30 Unimodal 

F8 Ackley 

 

 

2

1

1

1
20exp 0.2

1
                exp cos 2 20

n

i

i

n

i

i

f x x
n

x e
n







 
   

 
 

 
   

 





 
Ub=32 
Lb=-32 

30 Multimodal 

F9 Griewank   2

1 1

1
cos 1

4000

nn
i

i

i i

x
f x x

i 

 
   

 
   

Ub=600 
Lb=-600 

30 Multimodal 

F10 Alpine    
1

sin 0.1
n

i i i

i

f x x x x


   
Ub=10 
Lb=-10 

30 Multimodal 

F11 Powell 

     

   

/4
2 2

4 3 4 2 4 1 4

1

4 4

4 2 4 1 4 3 4

10 5

               + 2 10

n

i i i i

i

i i i i

f x x x x x

x x x x

  



  

   


  



 

Ub=5 
Lb=-4 

30 Multimodal 

F12 Rastrigin     2

1

10cos 2 10
n

i i

i

f x x x


    
Ub=5.12 
Lb=-5.12 

30 Multimodal 

F13 
Generalized 
Penalized 1 

       

    

   

 

 

1
22 2

1 1

1

2

1

10sin 1 1 10sin

              + 1 ,10,100,4

,       >
1

1 1 ,  , , , 0,               -
4

,    

n

i i

i

n

n i

i

m

i i

i i i i

m

i i

f x y y y
n

y x

k x a x a

y x x a k m a x a

k x a x a


 













     

 

 


     


  





 

Ub=50 
Lb=-50 

30 Multimodal 

F14 
Solomon 
problem 

  2 2

1 1

1 cos 2 0.1
n n

i i

i i

f x x x
 

 
   

 
 

 
 

Ub=100 
Lb=-100 

30 Multimodal 

 
 
 
 
 
 
 
 
 
 
 
 



  

  

 

 

 

 

 

 

 

 

 

 

 
 

Fig.4 Visualization of benchmark functions for n=2 (column wise): F1-F7 in the first column,  
F8, F9, F10, F12, F13, F14 in the second row 

 
4.2 Success criterion 
 

Beside the usual measures for algorithm evaluations such as best, mean and median 
results, in this paper we additionally apply success rate criterion. The success rate 

parameter rS  is defined as [24]: 

 

100success
r

all

N
S

N
         (4) 

 

where successN  is the number of successful trials, and allN  is number of trials. Similarly to 

other studies [17,19], one experimental run is considered successful if the final algorithm 



  

solution is close to the searched optimum. The closeness criterion depends on the search 
space of a particular function, and is defined as [24]: 
 

4* ( _ _ ) 10gbestX X upper bound lower bound        (5) 

 

where gbestX is the obtained global best result of the developed algorithm. 
 
 

4.3. Test studies and initialization 
 

In this paper, we tested each function with 50 independent algorithm runs. The initial 
conditions of each test are completely different, so the algorithm outcome is practically 
independent of the starting position of the fruit fly swarm. To completely evaluate the CFOA 
performance, we used statistical measures such as median and mean objective values, as 
well as their standard deviations. This information is provided for each chaotic map and 
every tested function. 

 
Additionally, extensive studies regarding parameter settings are carried out. From 

conducted experiments, we concluded that a population of 50 individuals and 700 iterations 
per experimental run is sufficient for all testing cases. Likewise, in all of the experiments, 

initial value of 0.95 for parameter alpha  proved to be a good choice.  

 
Finally, it is also important to note that every reported result in this paper is obtained 

using Matlab software that runs on a desktop PC with 4GBs RAM and Windows 7 (64 bit) 
operating system. 

 
 

5. Experimental studies 
 
 

5.1.CFOA computational results on benchmark problems 
 

Computational results for all functions using all maps are given in Table 3 – Table 16 
(best result is given in bold font). Chaotic FOA is tested on 14 benchmark problems using 
Chebyshev, Circle, Gauss/Mouse, Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal, 
and Tent map. Beside the mentioned statistical measures, we added best and worst results 
obtained over 50 independent runs, as well as average time for one such test. 

 
Overall, the experimental results prove the usefulness of the implementation of chaos 

in FOA. In each tested case, CFOA final output was very close to the desired function 
optimum. For ten out of the fourteen functions, the best minimum value is obtained before 
the maximum number of iteration is reached. Algorithm also converged in case of F3 and F8, 
while CFOA did not solve minimization problems in functions F7 and F13. We also provide 
additional information on the exact iteration in which the function optimum is reached. 

 
Experiments show that Chebyshev, Iterative, Logistic, Sine and Singer map provide 

best results in all cases (Table 3 – Table 16). Particularly, these maps reached maximum 
algorithm performance before the end of one experimental cycle, except for F3 and F8 (for 
F7 and F13 algorithm did not converged). Among then, Chebyshev map yields the best 
results in terms of fastest algorithm convergence.  

 



  

Statistical results given in Table 8 for F6 show that all chaotic maps except map No. 
9 has the same influence on the algorithm performance. As the matter of fact, by observing 
Table 3 – Table 16 one should note that Sinusoidal map is the worst choice for generation of 

parameter alpha . This conclusion supports the results obtained for success rate showed in 

Table 17. Except for functions F6, F9 and F14, CFOA based on Sinusoidal map did not 
manage to successfully converge. All of the other types of CFOA show impressive 
performance in terms of algorithm performance and convergence. This is especially evident 
in comparison with other chaotic state-of-the-art algorithms, which did not succeed to 
achieve such a consistent, high level result. 
 
 

Table 3. Results of CFOA for Sphere function (F1) after 50 independent runs  

No. Chaotic map Best Mean Median Worst  Std. 
dev. 

Ave. 
time [s] 

1 Chebyshev 

map 

<1E-309 

(Iter. 540)* 

<1E-309 

 

<1E-309 

 

<1E-309 

 

N/A 0.5244 

2 Circle map 4.4913E-234 3.6272E-
230 

2.8973E-
229 

4.2116E-
228 

N/A 0.4009 

3 Gauss/Mouse 
map 

1.0276E-295 3.4043E-
295 

5.1591E-
295 

6.270E-
294 

N/A 0.3926 

4 Iterative map <1E-309 

(Iter. 659)* 

<1E-309 
 

<1E-309 
 

<1E-309 
 

N/A 0.4323 

5 Logistic map <1E-309 

(Iter. 630)* 

<1E-309 
 

<1E-309 
 

<1E-309 
 

N/A 0.4478 

6 Piecewise map 1.742E-278 5.4917E-
278 

1.4802E-
277 

1.3074E-
276 

N/A 0.3091 

7 Sine map <1E-309 

(Iter. 644)* 

<1E-309 
 

<1E-309 
 

<1E-309 
 

N/A 0.4426 

8 Singer map <1E-309 

(Iter. 606)* 

<1E-309 
 

<1E-309 
 

<1E-309 
 

N/A 0.4805 

9 Sinusoidal map 1.0889 1.9278 1.8828 2.4395 3.2092
E-1 

0.3946 

10 Tent map 1.0274E-268 1.0484E-
267 

1.3309E-
267 

5.2944E-
267 

N/A 0.3903 

* Iteration in which the best result is achieved.  
 

 
Table 4. Results of CFOA for Schwefel’s problem 2.22 (F2) after 50 independent runs  

No. Chaotic map Best Mean Median Worst Std. 
dev. 

Ave. 
time [s] 

1 Chebyshev 

map 

<1E-155 

(Iter. 540)* 

<1E-155 <1E-155 <1E-155 

 

N/A 0. 5753 



  

2 Circle map 7.3752E-117 3.2026E-115 1.1038E-
114 

1.0059E-
113 

1.9044
E-114 

0. 4546 

3 Gauss/Mouse 
map 

5.7087E-148 1.0723E-147 1.1916E-
147 

2.8293E-
147 

5.2981
E-148 

0. 4452 

4 Iterative map <1E-155 

(Iter. 655)* 

<1E-155 <1E-155 
 

<1E-155 
 

N/A 0. 4877 

5 Logistic map <1E-155 

(Iter. 628)* 

<1E-155 <1E-155 
 

<1E-155 N/A 0. 5025 

6 Piecewise map 1.5945E-139 5.6953E-139 5.7616E-
139 

1.0727E-
138 

1.8388
E-139 

0. 4441 

7 Sine map <1E-155 

(Iter. 643)* 

<1E-155 
 

<1E-155 <1E-155 N/A 0. 4951 

8 Singer map <1E-155 

(Iter. 604)* 

<1E-155 <1E-155 <1E-155 N/A 0. 5352 

9 Sinusoidal map 2.9735 3.6929 3.6606 3.9835 2.2755
E-001 

0. 4432 

10 Tent map 3.0217E-134 6.0680E-134 6.7105E-
134 

1.6321E-
133 

3.315E-
134 

0. 4456 

* Iteration in which the best result is achieved.  
 
 

Table 5. Results of CFOA for Quartic function (F3) after 50 independent runs  

No. Chaotic map Best Mean Median Worst  Std. 
dev. 

Ave. 
time [s] 

1 Chebyshev 

map 

8.7628E-006 2.2289E-004 2.4749E-
003 

3.8616
E-002 

6.1081
E-003 

0. 6125 

2 Circle map 4.4841E-007 2.1225E-005 2.8433E-
005 

1.2379
E-004 

2.8216
E-005 

0. 6384 

3 Gauss/Mouse 
map 

4.7370E-007 2.6933E-005 3.3066E-
005 

1.2131
E-004 

3.0446
E-005 

0. 6311 

4 Iterative map 1.8656E-007 1.5941E-005 2.3617E-
005 

8.6441
E-005 

2.2242
E-005 

0. 64 

5 Logistic map 4.6066E-007 1.9228E-005 2.4341E-
005 

1.114E-
004 

2.3347
E-005 

0. 6301 

6 Piecewise map 6.0483E-007 1.7433E-005 2.7048E-
005 

1.4334
E-004 

2.8233
E-005 

0. 6276 

7 Sine map 7.2192E-008 1.5060E-005 2.0866E-
005 

1.0440
E-004 

1.9906
E-005 

0. 6352 

8 Singer map 2.4731E-007 2.2611E-005 3.1783E-
005 

1.1282
E-004 

2.8293
E-005 

0. 6478 



  

9 Sinusoidal map 3.2799E+00
2 

6.9723E+00
2 

7.3836E+0
02 

1.2452
E+003 

2.3508
E+002 

0. 6049 

10 Tent map 7.0523E-007 1.8834E-005 2.4080E-
005 

8.0337
E-005 

2.1499
E-005 

0. 628 

 
 

Table 6. Results of CFOA for Sum squares function (F4) after 50 independent runs 

No. Chaotic map Best Mean Median Worst  Std. 
dev. 

Ave. 
time [s] 

1 Chebyshev 

map 

<1E-308 

(Iter. 539)* 

<1E-308 

 

<1E-308 

 

<1E-
308 

 

N/A 0.5009 

2 Circle map 9.5256E-232 9.8355E-230 2.5643E-
228 

6.8626
E-227 

N/A 0. 3779 

3 Gauss/Mouse 
map 

1.5323E-295 8.8688E-295 1.8718E-
294 

1.5569
E-293 

N/A 0. 369 

4 Iterative map <1E-308 

(Iter. 655)* 

<1E-308 
 

<1E-308 
 

<1E-
308 

 

N/A 0. 4124 

5 Logistic map <1E-308 

(Iter. 628)* 

<1E-308 
 

<1E-308 
 

<1E-
308 

 

N/A 0. 4255 

6 Piecewise map 6.3267E-278 2.4457E-277 5.6883E-
277 

1.0103
E-275 

N/A 0. 3683 

7 Sine map <1E-308 

(Iter. 642)* 

<1E-308 
 

<1E-308 
 

<1E-
308 

 

N/A 0. 4202 

8 Singer map <1E-308 

(Iter. 605)* 

<1E-308 
 

<1E-308 
 

<1E-
308 

 

N/A 0. 4587 

9 Sinusoidal map 4.2542 7.364 7.2234 9.4625 1.1496 0. 3717 

10 Tent map 6.4293E-268 2.9082E-267 3.9658E-
267 

1.6777
E-266 

N/A 0. 369 

* Iteration in which the best result is achieved.  
 
 

Table 7. Results of CFOA for Sum of different power function (F5) after 50 independent runs 

No. Chaotic map Best Mean Median Worst  Std. 
dev. 

Ave. 
time [s] 

1 Chebyshev 

map 

<1E-309 

(Iter. 541)* 

<1E-309 

 

<1E-309 

 

<1E-309 

 

N/A 0. 6196 

2 Circle map 1.3305E-231 4.3830E-230 2.6402E-
229 

4.7710E
-228 

N/A 0. 5956 



  

3 Gauss/Mouse 
map 

6.3003E-297 4.2919E-296 6.7760E-
296 

2.4588E
-295 

N/A 0. 5895 

4 Iterative map <1E-309 

(Iter. 656)* 

<1E-309 
 

<1E-309 
 

<1E-309 
 

N/A 0. 6175 

5 Logistic map <1E-309 

(Iter. 630)* 

<1E-309 
 

<1E-309 
 

<1E-309 
 

N/A 0. 6235 

6 Piecewise map 2.5570E-279 8.5835E-279 1.3152E-
278 

9.1050E
-278 

N/A 0. 5885 

7 Sine map <1E-309 

(Iter. 644)* 

<1E-309 
 

<1E-309 
 

<1E-309 
 

N/A 0. 6232 

8 Singer map <1E-309 

(Iter. 606)* 

<1E-309 
 

<1E-309 
 

<1E-309 
 

N/A 0. 6497 

9 Sinusoidal map 6.7858E+00
3 

7.2111E+00
6 

1.0157E+0
08 

2.1105E
+009 

3.3208
96E+0

08 

0. 5368 

10 Tent map 1.0233E-269 1.0813E-268 1.4729E-
268 

7.1666E
-268 

N/A 0. 5876 

* Iteration in which the best result is achieved.  
 
 

Table 8. Results of CFOA for Schwefel’s problem 2.21 (F6) after 50 independent runs  

No. Chaotic map Best Mean Median Worst Std. 
dev. 

Ave. 
time [s] 

1 Chebyshev 

map 

<1E-155 

(Iter. 535)* 

<1E-155 

 

<1E-155 <1E-155 N/A 0. 3465 

2 Circle map 2.5806E-118 3.504E-117 2.3144E-
117 

1.1603E-
116 

3.3689
E-117 

0. 3545 

3 Gauss/Mouse 
map 

2.6879E-150 1.9504E-149 1.6698E-
149 

6.4141E-
149 

1.3876
E-149 

0. 3387 

4 Iterative map <1E-155 

(Iter. 650)* 

<1E-155 
 

<1E-155 
 

<1E-155 N/A 0. 3447 

5 Logistic map <1E-155 

(Iter. 624)* 

<1E-155 <1E-155 
 

<1E-155 N/A 0. 3671 

6 Piecewise map 1.7012E-141 7.1163E-141 5.5271E-
141 

2.5251E-
140 

5.1416
E-141 

0. 3718 

7 Sine map <1E-155 

(Iter. 641)* 

<1E-155 <1E-155 <1E-155 
 

N/A 0. 3965 

8 Singer map <1E-155 

(Iter. 600)* 

<1E-155 <1E-155 <1E-155 N/A 0. 3757 

9 Sinusoidal map 1.8929E-002 2.454E-002 2.4369E-
002 

3.1503E-
002 

3.2026
E-003 

0.3375  



  

10 Tent map 1.8361E-136 5.4338E-136 5.3438E-
136 

1.0073E-
135 

2.3030
E-135 

0. 3385 

* Iteration in which the best result is achieved.  
 
 

 
Table 9. Results of CFOA for Rosenbrock function (F7) after 50 independent runs  

No. Chaotic map Best Mean Median Worst Std. 
dev. 

Ave. 
time [s] 

1 Chebyshev 

map 

2.8321 
E+001 

2.8611 
E+001 

2.8637 
E+001 

2.8746 
E+001 

1.1409
E-001 

0.4007 

2 Circle map 2.8484 
E+001 

2.8692 
E+001 

2.8704 
E+001 

2.8754 
E+001 

5.7014
E-002 

0.4028 

3 Gauss/Mouse 
map 

2.8524 
E+001 

2.8697 
E+001 

2.8713 
E+001 

2.8752 
E+001 

5.2389
E-002 

0.409 

4 Iterative map 2.8464 
E+001 

2.8679 
E+001 

2.8711 
E+001 

2.8758 
E+001 

7.8703
E-002 

0.3889 

5 Logistic map 2.8593 
E+001 

2.8702 
E+001 

2.8718 
E+001 

2.8763 
E+001 

5.0520
E-002 

0.3889 

6 Piecewise map 2.8531 
E+001 

2.8682 
E+001 

2.8704 
E+001 

2.8763 
E+001 

6.0911
E-002 

0.9436 

7 Sine map 2.8554 
E+001 

2.8710 
E+001 

2.8727 
E+001 

2.8769 
E+001 

5.1559
E-002 

0.3955 

8 Singer map 2.8625 
E+001 

2.8708 
E+001 

2.8719 
E+001 

2.8751 
E+001 

3.4434
E-002 

0.4885 

9 Sinusoidal map 3.0186 
E+001 

3.1651 
E+001 

3.1585 
E+001 

3.2725 
E+001 

6.4110
E-001 

0.4744 

10 Tent map 2.8566 
E+001 

2.869  
E+001 

2.8707 
E+001 

2.8761 
E+001 

5.8085
E-002 

0.3984 

 
 

 
Table 10. Results of CFOA for Ackley function (F8) after 50 independent runs  

No. Chaotic map Best Mean Median Worst Std. 
dev. 

Ave. 
time [s] 

1 Chebyshev 

map 

8.8818E-016 8.8818E-016 8.8818E-
016 

8.8818E-
016 

N/A 1.5635 

2 Circle map 8.8818E-016 8.8818E-016 8.8818E-
016 

8.8818E-
016 

N/A 1.5627 

3 Gauss/Mouse 
map 

8.8818E-016 8.8818E-016 8.8818E-
016 

8.8818E-
016 

N/A 1.5561 



  

4 Iterative map 8.8818E-016 8.8818E-016 8.8818E-
016 

8.8818E-
016 

N/A 1.5663 

5 Logistic map 8.8818E-016 8.8818E-016 8.8818E-
016 

8.8818E-
016 

N/A 1.5547 

6 Piecewise map 8.8818E-016 8.8818E-016 8.8818E-
016 

8.8818E-
016 

N/A 1.5548 

7 Sine map 8.8818E-016 8.8818E-016 8.8818E-
016 

8.8818E-
016 

N/A 1.5600 

8 Singer map 8.8818E-016 8.8818E-016 8.8818E-
016 

8.8818E-
016 

N/A 1.5686 

9 Sinusoidal map 6.4717E-002 1.3612E-001 1.0353E-
001 

1.0228E-
001 

1.5995
E-002 

1.5853 

10 Tent map 8.8818E-016 8.8818E-016 8.8818E-
016 

8.8818E-
016 

N/A 1.5534 

 
 

Table 11. Results of CFOA for Griewank function (F9) after 50 independent runs 

No. Chaotic map Best Mean Median Worst Std. 
dev. 

Ave. 
time [s] 

1 Chebyshev 

map 

<1E-16 

(Iter. 19)* 

<1E-16 

 

<1E-16 

 

<1E-16 

 

N/A 0. 4288 

2 Circle map 
<1E-16 

(Iter. 29)* 

<1E-16 
 

<1E-16 
 

<1E-16 
 

N/A 
0. 4269 

3 Gauss/Mouse 
map 

<1E-16 

(Iter. 23)* 

<1E-16 
 

<1E-16 
 

<1E-16 
 

N/A 
0. 42 

4 Iterative map 
<1E-16 

 (Iter. 22)* 

<1E-16 
 

<1E-16 
 

<1E-16 
 

N/A 0. 4256 

5 Logistic map 
<1E-16 

 (Iter. 21)* 

<1E-16 
 

<1E-16 
 

<1E-16 
 

N/A 0. 418 

6 Piecewise map 
<1E-16 

(Iter. 28)* 

<1E-16 
 

<1E-16 
 

<1E-16 
 

N/A 
0. 4193 

7 Sine map 
<1E-16 

 (Iter. 21)* 

<1E-16 
 

<1E-16 
 

<1E-16 
 

N/A 0. 4249 

8 Singer map 
<1E-16 

 (Iter. 21)* 

<1E-16 
 

<1E-16 
 

<1E-16 
 

N/A 0. 4302 

9 Sinusoidal map 5.3456E-006 8.331E-006 8.082E-006 1.0221E-
005 

1.1899
E-006 

0. 4356 

10 Tent map 
<1E-16 

(Iter. 27)* 

<1E-16 
 

<1E-16 
 

<1E-16 
 

N/A 
0. 4199 

 * Iteration in which the best result is achieved.  



  

Table 12. Results of CFOA for Alpine function (F10) after 50 independent runs 

No. Chaotic map Best Mean Median Worst  Std. 
dev. 

Ave. 
time [s] 

1 Chebyshev 

map 

<1E-156 

(Iter. 539)* 

<1E-156 <1E-156 <1E-156 

 

N/A 0. 5068 

2 Circle map 1.4005E-117 2.6463E-116 7.2709E-
116 

6.3057E
-115 

1.1476
E-115 

0. 383 

3 Gauss/Mouse 
map 

6.8852E-149 1.1367E-148 1.3004E-
148 

3.1424E
-148 

5.8945
E-149 

0. 3781 

4 Iterative map <1E-156 

(Iter. 655)* 

<1E-156 <1E-156 
 

<1E-156 
 

N/A 0. 4178 

5 Logistic map <1E-156 

(Iter. 628)* 

<1E-156 <1E-156 
 

<1E-156 N/A 0. 4347 

6 Piecewise map 2.1937E-140 5.5474E-140 6.5224E-
140 

2.1841E
-139 

3.6248
E-140 

0. 3776 

7 Sine map <1E-156 

(Iter. 643)* 

<1E-156 
 

<1E-156 <1E-156 N/A 0. 4257 

8 Singer map <1E-156 

(Iter. 605)* 

<1E-156 <1E-156 <1E-156 N/A 0. 4675 

9 Sinusoidal map 3.2171E-001 5.0950E-001 5.147E-001 6.8731E
-001 

7.5072
E-002 

0. 3844 

10 Tent map 2.2373E-135 5.7899E-135 6.5307E-
135 

1.3816E
-134 

2.5618
E-135 

0. 377 

* Iteration in which the best result is achieved.  
 
 
 
 

Table 13. Results of CFOA for Powell function (F11) after 50 independent runs  

No. Chaotic map Best Mean Median Worst  Std. 
dev. 

Ave. 
time [s] 

1 Chebyshev 

map 

<1E-309 

(Iter. 541)* 

<1E-309 

 

<1E-309 

 

<1E-309 

 

N/A 0. 6053 

2 Circle map 1.6305E-231 6.1197E-229 1.4662E-
227 

2.8049E
-226 

N/A 0. 4998 

3 Gauss/Mouse 
map 

1.4981E-294 6.3239E-294 1.5752E-
293 

1.5329E
-292 

N/A 0. 4930 

4 Iterative map <1E-309 

(Iter. 656)* 

<1E-309 
 

<1E-309 
 

<1E-309 
 

N/A 0. 53 

5 Logistic map <1E-309 

(Iter. 630)* 

<1E-309 
 

<1E-309 
 

<1E-309 
 

N/A 0. 5413 



  

6 Piecewise map 3.0790E-277 1.0412E-276 1.8439E-
276 

2.113E-
275 

N/A 0. 4943 

7 Sine map <1E-309 

(Iter. 645)* 

<1E-309 
 

<1E-309 
 

<1E-309 
 

N/A 0. 5387 

8 Singer map <1E-309 

(Iter. 606)* 

<1E-309 
 

<1E-309 
 

<1E-309 
 

N/A 0. 5692 

9 Sinusoidal map 3.2176E+00
1 

5.4547E+00
1 

5.5258E+0
01 

8.2022E
+001 

8.8919 0. 4778 

10 Tent map 2.2341E-267 1.8193E-266 2.4639E-
266 

1.1808E
-265 

N/A 0. 4919 

* Iteration in which the best result is achieved.  
 
 

Table 14. Results of CFOA for Rastrigin function (F12) after 50 independent runs 

No. Chaotic map Best Mean Median Worst Std. 
dev. 

Ave. 
time [s] 

1 Chebyshev 

map 

<1E-14 

(Iter. 28)* 

<1E-14 

 

<1E-14 

 

<1E-14 

 

N/A 0.4356 

2 Circle map 
<1E-14 

(Iter. 44)* 

<1E-14 
 

<1E-14 
 

<1E-14 
 

N/A 
0.4288 

3 Gauss/Mouse 
map 

<1E-14 

(Iter. 35)* 

<1E-14 
 

<1E-14 
 

<1E-14 
 

N/A 
0. 4209 

4 Iterative map 
<1E-14 

 (Iter. 34)* 

<1E-14 
 

<1E-14 
 

<1E-14 
 

N/A 0. 4264 

5 Logistic map 
<1E-14 

 (Iter. 32)* 

<1E-14 
 

<1E-14 
 

<1E-14 
 

N/A 0. 4187 

6 Piecewise map 
<1E-14 

(Iter. 41)* 

<1E-14 
 

<1E-14 
 

<1E-14 
 

N/A 
0. 4216 

7 Sine map 
<1E-14 

 (Iter. 32)* 

<1E-14 
 

<1E-14 
 

<1E-14 
 

N/A 0.4239 

8 Singer map 
<1E-14 

 (Iter. 31)* 

<1E-14 
 

<1E-14 
 

<1E-14 
 

N/A 0. 4334 

9 Sinusoidal map 1.7288E+00
2 

2.2372E+00
2 

2.2186E+0
02 

2.7775E+
002 

2.3696
E+001 

0. 4409 

10 Tent map 
<1E-14 

(Iter. 41)* 

<1E-14 
 

<1E-14 
 

<1E-14 
 

N/A 
0. 4201 

 * Iteration in which the best result is achieved.  
 
 
 



  

Table 15. Results of CFOA for Generalized Penalized 1 function (F13) after 50 independent 
runs 

No. Chaotic map Best Mean Median Worst Std. 
dev. 

Ave. 
time [s] 

1 
Chebyshev 

map 
1.1228 1.5302 1.5557 1.593 

8.7364
E-002 1.2749 

2 Circle map 1.2706 1.5181 1.5531 1.6084 
8.8587
E-002 

1.2476 

3 
Gauss/Mouse 

map 
1.4398 1.5413 1.5461 1. 5976 

4.1850
E-002 

1.3467 

4 Iterative map 1.3689 1.5397 1.5546 1.6112 
6.4712
E-002 

1.5209 

5 Logistic map 1.1022 1.502 1.5473 1.6018 
1.1446
E-001 

1.1897 

6 Piecewise map 1.1220 1.5191 1.5421 1.6027 
9.7464
E-002 

1.1677 

7 Sine map 1.2849 1.5158 1.5431 1.5921 
8.1600
E-002 

1.1703 

8 Singer map 1.1282 1.5022 1.5413 1.6061 
1.0507
E-001 

1.1879 

9 Sinusoidal map 1.1335 1.516 1.5368 1.6114 
9.1038
E-002 

1.1865 

10 Tent map 1.3973 1.5442 1.5574 1.5899 
5.1043
E-002 

1.1604 

 * Iteration in which the best result is achieved.  
 
 

Table 16. Results of CFOA for Solomon problem function (F14) after 50 independent runs  

No. Chaotic map Best Mean Median Worst Std. 
dev. 

Ave. 
time [s] 

1 Chebyshev 

map 

<1E-155 

(Iter. 532)* 

<1E-155 

 

<1E-155 <1E-155 N/A 0. 3866 

2 Circle map 3.5685E-119 1.9739E-117 7.5868E-
118 

1.262E-
116 

3.1014
E-117 

0. 3999 

3 Gauss/Mouse 
map 

1.1417E-150 2.904E-150 2.758E-150 5.6703E-
150 

1.1667
E-150 

0. 3857 

4 Iterative map <1E-155 

(Iter. 651)* 

<1E-155 
 

<1E-155 
 

<1E-155 N/A 0. 3954 

5 Logistic map <1E-155 

(Iter. 622)* 

<1E-155 <1E-155 
 

<1E-155 N/A 0. 4044 



  

6 Piecewise map 6.0266E-142 1.1025E-141 1.0353E-
141 

2.52E-141 4.4473
E-142 

0. 4699 

7 Sine map <1E-155 

(Iter. 644)* 

<1E-155 <1E-155 <1E-155 
 

N/A 0. 4261 

8 Singer map <1E-155 

(Iter. 598)* 

<1E-155 <1E-155 <1E-155 N/A 0. 4306 

9 Sinusoidal map 6.1731E-002 1.0683E-001 1.0454E-
001 

1.6998E-
002 

3.2026
E-003 

0.3965 

10 Tent map 5.4541E-137 1.4337E-136 1.0454E-
136 

6.7018E-
137 

2.3030
E-135 

0. 4127 

 * Iteration in which the best result is achieved.  
 
 
 

Table 17. Success rate of CFOA for different chaotic maps 

No. Chaotic map F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 

1 
Chebyshev 

map 
100 100 100 100 100 100 0 100 100 100 100 100 0 100 

2 Circle map 100 100 100 100 100 100 0 100 100 100 100 100 0 100 

3 
Gauss/Mouse 

map 
100 100 100 100 100 100 0 100 100 100 100 100 0 100 

4 Iterative map 100 100 100 100 100 100 0 100 100 100 100 100 0 100 

5 Logistic map 100 100 100 100 100 100 0 100 100 100 100 100 0 100 

6 Piecewise map 100 100 100 100 100 100 0 100 100 100 100 100 0 100 

7 Sine map 100 100 100 100 100 100 0 100 100 100 100 100 0 100 

8 Singer map 100 100 100 100 100 100 0 100 100 100 100 100 0 100 

9 
Sinusoidal 

map 
0 0 0 0 0 100 0 0 100 0 0 0 0 100 

10 Tent map 100 100 100 100 100 100 0 100 100 100 100 100 0 100 

 
 
 Additionally, the algorithm is tested using random values instead of chaotic 
sequences. Particularly, alpha parameter in Eq. (3) is drawn from the uniform distribution 
(within range [0,1]), and results are presented in Table 18. It is evident that this algorithm 
with random alpha successfully converged in same benchmark problems. However, 



  

employment of chaotic variable proved the be the optimal choice since it can be observed 
that in all cases algorithm with chaos alpha converged faster.   

 
 

Table 18. Results of CFOA for Solomon problem function (F14) after 50 independent runs  

Function 

No. 

Best Worst Median Mean Std. dev. Ave. time 
[s] 

F1 
<1E-309 

(Iter. 686)* <1E-309 <1E-309 <1E-309 N/A 0.34453 

F2 
<1E-155 

(Iter. 688)* 
<1E-155 <1E-155 <1E-155 N/A 0.3762 

F3 2.5522E-005 
8.31173E-

004 
2.7058E-004 

2.15436E-
004 

2.2342E-
004 

0.5472 

F4 
<1E-308 

(Iter. 677)* 
<1E-308 <1E-308 <1E-308 N/A 0.3736 

F5 
<1E-309 

(Iter. 688)* <1E-309 <1E-309 <1E-309 N/A 0.5144 

F6 
<1E-155 

(Iter. 669)* 
<1E-155 <1E-155 <1E-155 N/A 0.3457 

F7 
2.8544 
E+001 

2.8751 
E+001 

2.8692 
E+001 

2.8711 
E+001 

6.2931E-
002 

0.4075 

F8 8.8818E-016 8.8818E-016 8.8818E-016 8.8818E-016 N/A 2.8363 

F9 <1E-16 

(Iter. 36)* 
<1E-16 <1E-16 <1E-16 N/A 0.4037 

F10 
<1E-156 

(Iter. 680)* 
<1E-156 <1E-156 <1E-156 N/A 0.3862 

F11 
<1E-309 

(Iter. 677)* 
<1E-309 <1E-309 <1E-309 N/A 0.5064 

F12 <1E-14 

(Iter. 54)* 
<1E-14 <1E-14 <1E-14 N/A 0.3644 

F13 1.4117 1.6081 1.5587 1.565 
3.8052E-

002 
1.1292 

F14 
<1E-155 

(Iter. 674)* 
<1E-155 <1E-155 <1E-155 N/A 0.3856 

 * Iteration in which the best result is achieved.  

 
 
 
 



  

5.2. Comparison study 
 
5.2.1 Comparison with FOA based methods 

 
In order to further evaluate the developed algorithm, we compared CFOA with basic 

FOA and FOA with Levy distribution. We implemented Chebyshev map since the previous 
results indicate that this is the best choice in all test cases. Similarly to the experiment 
showed above, we tested these algorithms on ten selected benchmark problems with 50 
independent runs. Results are presented in Table 19. Convergence curves for obtained 
mean values of these algorithms are showed in Fig. 5 – Fig. 14. 

 
 From Table 19 it is evident that CFOA gives best results in comparison with other two 
algorithms. For each optimization function CFOA proved to be the best choice in terms of 
obtained statistical measures. Likewise, success rate of CFOA in each tested case reached 
maximum of 100%, while the FOA and LFOA showed much worse results. Only in the case 
of optimization of function F5, all of three algorithms converged with maximum rate. These 
results indicate that integration of chaos in FOA significantly improves overall algorithm 
performance. 

 
 

Table 19. Comparison results of CFOA, basic FOA, and Levy FOA on ten selected 
benchmark problems 

ID Algorithm Best Mean Median Worst Std. dev. Ave. time [s] 
Success 

rate 

F1 

FOA 
4.4457E-

005 
1.2112 1.6675 2.3415 

9.2286E-
001 

0.2913 38 

LFOA 
4.5391E-

001 
0.6892 

7.4226E-
001 

1.1459 
1.7101E-

001 
2.2122 0 

CFOA <1E-309 <1E-309 <1E-309 <1E-309 N/A 0.5244 100 

F2 

FOA 
3.6472E-

002 
1.0476 

3.70934E-
002 

3.9644 1.7267 0.3364 0 

LFOA 1.1649 1.6231 1.6224 1.9694 
1.7991E-

001 
2.2892 0 

CFOA <1E-155 <1E-155 <1E-155 <1E-155 N/A 0. 5753 100 

 

F3 

 

FOA 
1.1774E-

003 
8.6099E+00

1 
3.046E-003 

8.4905E+00
2 

2.5261E+00
2 

0.5436 36 

LFOA 
7.4109 
E+001 

1.9794E+00
2 

1.7291E+00
2 

5.0049E+00
2 

1.1246E+00
2 

 
2.4189 

 
0 

CFOA <1E-309 <1E-309 <1E-309 <1E-309 N/A 0. 6053 100 

F4 

FOA 
6.8805E-

004 
4.9840 

6.4152E+00
0 

9.1661E+00
0 

3.6883E+00
0 

0.3839 38 

LFOA 1.1915E+0 2.4598 2.3191E+00 3.393E+000 4.9255E- 2.2937 0 



  

00 0 001 

CFOA <1E-14 <1E-14 <1E-14 <1E-14 N/A 0.4356 100 

F5 

FOA 
1.48849E-

006 
1.5270E+00

4 
1.511703E-

006 
4.0388E+00

6 
5.8043E+00

5 
0.6464 80 

LFOA 
1.3391E+0

01 
2.3069E+00

4 
6.1164E+00

3 
1.1518E+00

3 
1.6189E+00

5 
2.4914 0 

CFOA 
7.2192E-

008 
1.0440E-

004 
2.0866E-

005 
1.5060E-

005 
1.9906E-

005 
0. 6352 100 

F8 

FOA 
5.3905E-

004 
7.7500E-

002 
9.3652E-

002 
1.2312E-

001 
4.7789E-

002 
3.052 30 

LFOA 
2.7445E-

002 
4.1907E-

002 
4.0171E-

002 
5.1889E-

002 
5.6992E-

003 
4.8830 100 

CFOA <1E-308 <1E-308 <1E-308 <1E-308 N/A 0.5009 100 

F9 

FOA 
2.3209E-

006 
6.4021E-

006 
7.1121E-

006 
9.7443E-

006 
2.1991E-

006 
0.4552 100 

LFOA 
1.2485E-

006 
2.4056E-

006 
2.3591E-

006 
3.4427E-

006 
4.979E-007 2.3726 100 

CFOA <1E-309 <1E-309 <1E-309 <1E-309 N/A 0. 6196 100 

 

 

F10 

FOA 
3.7878E-

001 
5.1800E-

001 
5.2334E-

001 
6.5158E-

001 
6.5343E-

002 
0.4397 0 

LFOA 
3.6139E-

001 
4.9140E-

001 
4.9818E-

001 
6.3516E-

001 
6.5539E-

002 
2.4056 0 

 CFOA 
8.8818E-

016 
8.8818E-

016 
8.8818E-

016 
8.8818E-

016 
N/A 1.5534 100 

F11 

FOA 
1.2561E-

003 
2.3872E+00

1 
1.3007E+00

1 
6.5019E+00

1 
2.5369E+00

1 
0.5163 54 

LFOA 
5.1671E+0

00 
1.0132E+00

1 
1.0344E+00

1 
2.0608E+00

1 
3.6303 2.4252 0 

CFOA <1E-16 <1E-16 <1E-16 <1E-16 N/A 0. 4288 100 

F12 

FOA 
8.8347E-

003 
1.2585E+00

2 
1.928E+002 

2.7090E+00
2 

1.0926E+00
2 

0.339 34 

LFOA 
6.088E+00

1 
7.7409E+00

1 
7.4376E+00

1 
1.0089E+00

2 
8.1507E+00

0 
2.2066 0 



  

 
 

Similarly to what is found in Table 14, results presented in Fig. 5- Fig.14 show the 
superiority of CFOA (note that values on x-axis and y-axis depicts iterations and fitness, 
respectively). For every optimization task proposed algorithm successfully found the optimal 
solution in minimal number of iterations. In comparison with FOA and LFOA, CFOA 
converge much faster and produce significantly better final outcome. It is also important to 
note that the CFOA initialization (as described in Section 3) has a major influence on 
algorithm performance and convergence.   

 

 
Fig.5 CFOA. LFOA, and FOA convergence curves for F1 

CFOA <1E-156 <1E-156 <1E-156 <1E-156 N/A 0. 5068 100 



  

 
Fig.6 CFOA. LFOA, and FOA convergence curves for F2 

 

 
Fig.7 CFOA. LFOA, and FOA convergence curves for F3 



  

 
Fig.8 CFOA. LFOA, and FOA convergence curves for F4 

 

 
Fig.9 CFOA. LFOA, and FOA convergence curves for F5 



  

 
Fig.10 CFOA. LFOA, and FOA convergence curves for F8 

 

 
Fig.11 CFOA. LFOA, and FOA convergence curves for F9 



  

 
Fig.12 CFOA. LFOA, and FOA convergence curves for F10 

 

 
Fig.13 CFOA. LFOA, and FOA convergence curves for F11 



  

 
Fig.14 CFOA. LFOA, and FOA convergence curves for F12 

 
  
 Furthermore, we compare developed CFOA with other recently introduced FOA 
based methods. Similarly to previous case, Table 20 show superiority of CFOA in 
comparison with algorithms presented in literature [14, 28]. 
 

Table 20. Comparison of CFOA with other recently introduced FOA-based algorithms 
 

        Algorithm 

Function 
iFOA [14] mFOA [28] CFOA 

F1 (Sphere) 4.96E-013 3.1E-004 <1E-309 

F7 (Rosenbrock) / 9.770 28.321 

F8 (Ackley) 4.85E-011 0.017 8.8818E-016 

F9 (Griewank) 1.23E-002 0.015 <1E-16 

F12 (Rastrigin) 4.78E-010 4.502 <1E-14 

 
 

 

5.2.2 Comparison with other chaos enchanced metaheuristic methods  
 

In addition to the above experiments, we compare the CFOA with recently developed 
state-of-the-art chaotic algorithms. Besides CFOA, we implemented chaotic bat algorithm 
(CBA), chaotic accelerated particle swarm optimization (CAPSO), chaotic firefly algorithm 
(CFA), chaotic artificial bee colony algorithm (CABC), and chaotic cuckoo search (CCS). 



  

Population size, maximum number of iterations, and specific algorithm parameters are 
presented in Table 21, while comparison results are given in Table 22. All aforementioned 
algorithms are implemented and tested in Matlab software under the same initial conditions. 
The algorithms are tested on 3 unimodal and 3 multimodal functions with global optimum 
equal to zero. Best chaotic maps are employed for each individual algorithm: Sinusoidal map 
for CBA and CAPSO [17,19], Logistic map for CCS [29], and Gauss map for CABC and CFA 
[22, 24]. Results indicate that the CFOA outperforms all other algorithms in terms of mean 
final optimization result, except for the F8 and F9 in which the identical result is obtained as 
with employed CABC. This is an additional proof that the implementation of chaotic 
component remarkably improves the standard FOA. Finally, Friedman test also confirms the 
superiority of CFOA (Table 22). 

 

Table 21. Setup for comparison experiments 

Algorithm 
Population 
size (PS) 

Max number 
of iterations 

Specific algorithm parameters 

CBA  50 700 0.5A  ; min 0Q  ; max 2Q  ; r  is chaotic variable 

CAPSO 50 700 0.7  ; ,i  i iteration   ;   is chaotic variable 

CFA 50 700 0.2  ; 1  ; 0.97  ; 0 1  ;   is chaotic variable  

CABC 50 700 
_ / 2 25food numner PS  ; 100limit  ; 

,i jc  is chaotic variable 

CCS 50 700 0.25ap  ; sc  is chaotic variable 

 

 
Table 22. Comparison of CFOA with other recent chaotic algorithms (best results are given 

in bold). 

        Algorithm 

Function 
CBA CAPSO CFA CABC CCS CFOA 

F1 (Sphere) 5.73E-012 9.74E-221 4.65E-023 1.55E-024 4.76E-031 <1E-309 

F2 (Schwefel’s 

problem 2.22) 
3.27E-006 2.38E-110 8.07E-012 1.02E-018 9.68E-017 <1E-155 

F5 (Sum of  
1.98E-014 6.49E-018 2.43E-015 7.00E-022 3.24E-040 <1E-309 

different power) 

F8 (Ackley) 1.71E-005 4.44E-015 3.67E-012 
8.8818E-

016 
6.13E-014 

8.8818E-

016 

F9 (Griewank) 4.65E-012 7.40E-003 2.96E-002 <1E-16 3.31E-014 <1E-16 

F10 (Alpine) 5.32E-007 1.73E-111 4.88E-013 2.22E-016 2.66E-010 <1E-156 

Friedman test  

rank 
5.6667 3.0 5.0 2.6667 3.5 1.1667 

 



  

 

6. Conclusions 
 

Implementation of chaos in metaheuristic algorithms has become increasingly 
popular in research community. Because of the ergodicity and mixing property of chaos, 
these types of algorithms show better behavior than original variants in terms of final 
outcome. In this paper we investigate the effectiveness of ten different chaotic maps in 
improving the performance of recently developed fruit fly optimization algorithm (FOA). In 
order to fairly compare these maps, we employ fourteen different well known unimodal and 
multimodal functions. By introducing new chaotic parameter and different initialization setting 
in basic FOA, novel algorithm is enhanced in terms of convergence speed and overall 
performance. Statistical results on every optimization task indicate that the chaotic fruit fly 
algorithm (CFOA) has a very fast convergence. Moreover, Chebyshev map proved to be the 
best map in terms of final algorithm solution. Likewise, we compare the CFOA with the 
standard FOA and Levy flight FOA as well as other FOA based approaches in terms of 
finding global optimum of a particular function. Additionally, the comparison study with other 
state-of-the-art chaos enhanced algorithms such as chaotic bat algorithm, chaotic 
accelerated particle swarm optimization, chaotic firefly algorithm, chaotic artificial bee colony 
algorithm, and chaotic cuckoo search is provided. CFOA proved to be better or at least as 
equal to the performance of aforementioned algorithm in all test cases. Finally, it can be 
concluded that overall findings confirm the superiority of CFOA in terms of statistical results, 
reliability of global optimality, and algorithm success rate. 

In future research studies, CFOA could be applied for solving real world engineering 
problems. Specifically, the performance of the CFOA in structural model updating, gear train 
design, and pressure vessel design needs to be investigated. Likewise, it would be 
interesting to see the influence of other chaotic maps on the developed algorithm.  
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Graphical Abstract



  

Highlights: 
 

 

 Development of new method named chaotic fruit fly optimization algorithm (CFOA) 

 

 Fruit fly algorithm (FOA) is integrated with ten different chaos maps  

 

 Novel algorithm is tested on ten different well known benchmark problems 

 

 CFOA is compared with FOA, FOA with Levy distribution, and similar chaotic methods 

 

 Experiments show superiority of CFOA in terms of obtained statistical results  


