
Accepted Manuscript

Chaotic fruit fly optimization algorithm

Marko Mitić, Najdan Vuković, Milica Petrović, Zoran Miljković

PII: S0950-7051(15)00314-7

DOI: http://dx.doi.org/10.1016/j.knosys.2015.08.010

Reference: KNOSYS 3251

To appear in: Knowledge-Based Systems

Received Date: 12 September 2014

Revised Date: 15 August 2015

Accepted Date: 17 August 2015

Please cite this article as: M. Mitić, N. Vuković, M. Petrović, Z. Miljković, Chaotic fruit fly optimization algorithm,

Knowledge-Based Systems (2015), doi: http://dx.doi.org/10.1016/j.knosys.2015.08.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.knosys.2015.08.010
http://dx.doi.org/http://dx.doi.org/10.1016/j.knosys.2015.08.010

Chaotic fruit fly optimization algorithm

Dr. Marko Mitić, Corresponding Author

Assistant Research Professor

University of Belgrade - Faculty of Mechanical Engineering

Production Engineering Department

Kraljice Marije 16; 11120 Belgrade 35; Serbia

Phone: +381 642835 287

e-mail: mmitic@mas.bg.ac.rs or miticm@gmail.com

Dr. Najdan Vuković

Assistant Research Professor

University of Belgrade - Faculty of Mechanical Engineering

Innovation Center

Kraljice Marije 16; 11120 Belgrade 35; Serbia

Phone: +381 63363 858

e-mail: nvukovic@mas.bg.ac.rs or najdanvuk@gmail.com

Milica Petrović, MSc

Teaching and Research Assistant

University of Belgrade - Faculty of Mechanical Engineering

Production Engineering Department

Kraljice Marije 16; 11120 Belgrade 35; Serbia

e-mail: mmpetrovic@mas.bg.ac.rs

Dr. Zoran Miljković

Full Professor

University of Belgrade - Faculty of Mechanical Engineering

Production Engineering Department

Kraljice Marije 16; 11120 Belgrade 35; Serbia

Phone: +381 11 3302 468

e-mail: zmiljkovic@mas.bg.ac.rs

url: http://cent.mas.bg.ac.rs/english/staff/zmiljkovic.htm

mailto:mmitic@mas.bg.ac.rs
mailto:miticm@gmail.com
mailto:nvukovic@mas.bg.ac.rs
mailto:najdanvuk@gmail.com
mailto:mmpetrovic@mas.bg.ac.rs
mailto:zmiljkovic@mas.bg.ac.rs
http://cent.mas.bg.ac.rs/english/staff/zmiljkovic.htm

Abstract

Fruit fly optimization algorithm (FOA) is recently presented metaheuristic technique

that is inspired by the behavior of fruit flies. This paper improves the standard FOA by

introducing the novel parameter integrated with chaos. The performance of developed

chaotic fruit fly algorithm (CFOA) is investigated in details on ten well known benchmark

problems using ten different chaotic maps. Moreover, we performed comparison studies with

basic FOA, FOA with Levy flight distribution, and other recently published chaotic algorithms.

Statistical results on every optimization task indicate that the chaotic fruit fly algorithm

(CFOA) has a very fast convergence rate. In addition, CFOA is compared with recently

developed chaos enhanced algorithms such as chaotic bat algorithm, chaotic accelerated

particle swarm optimization, chaotic firefly algorithm, chaotic artificial bee colony algorithm,

and chaotic cuckoo search. Overall research findings show that FOA with Chebyshev map

show superiority in terms of reliability of global optimality and algorithm success rate.

Keywords: Fruit fly optimization algorithm, Chaos, Metaheuristic technique, Optimization

1. Introduction

Recently, a large number of complex nonlinear optimization problems are solved

using mathematical tools inspired by phenomena found in nature. In such cases, traditional

algorithms often may not produce desired outcomes and therefore the alternate methods

must be employed. Metaheuristic techniques are a well known global optimization approach

that has been widely used to solve many different optimization issues [1, 2]. These methods

mimic the social behaviour of species or natural mechanisms in order to find the best

possible result for the given problem. In majority of these techniques, an algorithm starts by

creating a random population of units which is then manipulated by using iterations and

stochastic processes.

Many metaheuristic algorithms have been developed over the last few years. Most

popular techniques in the field include harmony search [3], firefly algorithm [4], cuckoo

search [5], bat algorithm [6], and krill heard [7], which are successfully applied for solving

various optimization and real world problems [8]. One of the latest population-based

techniques is the fruit fly optimization algorithm (FOA) [9]. So far, FOA has been used for:

tuning of PID controller [10], semiconductor testing scheduling [11], power load forecasting

[12], solving multidimensional knapsack problem [13] and continuous function optimization

problem [14]. The algorithm proved to be very efficient, even in comparison with other state-

of-the art techniques, such as mentioned harmony search [14]. However, similarly to other

metaheuristic approaches, determination of algorithm-dependent parameters is still one of

the key issues that influence FOA performance.

 Latest trend in developing more effective metaheuristic techniques lies in their

integration with chaos. Chaos theory is related to the study of chaotic dynamical systems

that are sensitive to initial conditions [15]. Due to the ergodicity and mixing properties of

chaos, algorithms can potentially carry out iterative step search at higher speeds then

standard stochastic search with standard probability distributions [16, 17]. Recent research

in the field refers to employment of chaos in: genetic algorithms [18], particle swarm

optimization [19], harmony search [20], ant colony optimization [21], bee colony optimization

[22], simulated annealing [23], firefly algorithm [24], bat algorithm [17], krill heard technique

[25], and biogeography-based optimization [15]. Empirical studies in all of these approaches

show that methods with chaos have a high-level mixing capability, which results in solutions

with higher diversity and mobility.

Initial result of implementation of chaos in FOA is reported in [26]. In this study, FOA

is integrated with logistic chaos map and such algorithm is tested in optimization of one

function. However, it is known that different maps may lead to different behavior of

algorithms, so the most of the aforementioned works in this domain investigate influence of

various chaotic maps. Also, in order to obtain a full insight of the capabilities of the

developed algorithm, it is necessary to test its performance on several different unimodal

and multimodal nonlinear functions. Likewise, it is essential to compare the chaotic algorithm

with the standard version, and also with other state-of-the-art techniques with chaos so as to

obtain full insight in the capabilities of chaos enhanced algorithm.

This paper presents novel FOA method based on chaotic mapping with the following

main contributions: (i) FOA algorithm is integrated with ten different chaos maps in order to

find the most appropriate one for the problem in hand; (ii) algorithm performance is tested on

ten different nonlinear functions; (iii) the developed method is compared with standard FOA

and FOA with Levy distribution, as well as with other state-of-the-art chaos based

metaheuristic techniques.

The rest of the paper is organized as follows. In Section 2 basic FOA is described.

Section 3 presents developed chaotic levy FOA, with the detailed mathematical description

of each of the employed map. Implementation details are stated in Section 4. Experimental

results obtained for different unimodal and multimodal functions, comparison with other

chaos optimization algorithms, as well as discussion of results are given in Section 5. Finally,

Section 6 delivers the conclusion of this study.

2. Basic fruit fly optimization algorithm

 Fruit fly optimization algorithm is inspired by the behaviour of the fruit flies found in

nature [9]. Fruit fly (lat. Drosophila) is superior in comparison with other similar species,

especially in terms of food foraging using osphresis and vision characteristics. The smell

foraging phase enables an individual to search and locate food sources around the fruit fly

swarm. For each of the food sources the smell concentration that corresponds to the fitness

value is evaluated next. In the vision foraging phase maximum smell concentration value is

allocated, and then the swarm is directed towards it. This foraging behaviour of fruit flies is

presented in Fig. 1.

Fig.1. Iterative foraging process of fruit flies.

 FOA can be summarized thorough 6 independent steps which are defined as follows

[11]: (i) set the maximum number of iteration and population size; (ii) randomly initialize fruit

fly swarm location using Eq. (1);

()j lower_bound upper_bound-lower_bound    rand() (1)

(iii) randomly generate a number of fruit flies around the fruit fly swarm so as to form a

population (osphresis search process) using Eq.2;

, , 1,...,i j jx j n  rand()

(2)

(iv) evaluate the entire fruit fly population in order to obtain the smell concentration value of
each fruit fly in swarm; (v) determine the fruit fly with the maximum smell concentration and
then direct the swarm towards the location of this best individual (vision search process),
and finally (vi) finish the algorithm if the maximum number of generation is reached, or go to
step (iii) otherwise.

The parameters ,i jx and j influence both search phases (osphresis and vision),

and are responsible for generation of food sources. It is obvious that the way they are
calculated in a significant manner determines the final algorithm solution. Numerous studies
showed that random-based optimization algorithms perform better when using non-standard
distributions (i.e. Gauss or uniform distribution) [16, 17]. Additionally, the properties of non-
repetition and ergodicity of chaos can force an algorithm to carry out overall searches at
higher speeds [16]. These are the main reasons for the development of improved FOA
described next.

3. Chaotic fruit fly optimization algorithm

This section presents novel FOA by introducing a new parameter enhanced by
chaos. We start the explanation of the chaotic fruit fly optimization algorithm (CFOA) as
follows.

3.1 Algorithm initialization

Initial swarm location may have major influence in faster convergence and final
outcome. As a first improvement, CFOA determines the initial fruit fly swarm location by
choosing the best one among PS randomly generated solutions. Similarly to what is found in
[14], this calculation of initial swarm position results in a faster convergence and a better
algorithm solution at the end of experimental run.

3.2. Chaos FOA

In FOA, crucial influence on algorithm performance refers to the calculation of food

sources. Basic implementation of this metaheuristic technique assumes randomization of

,i jx variables using uniform distribution. This is often not a good choice, especially when

dealing with complex nonlinear and multimodal problems. In order to enhance convergence

and overall speed of FOA we introduce a new parameter, alpha , which is used for

generation of food sources. Particularly, we modified the Eq. (2) so that it involves a chaotic

variable as follows:

*

, , ,(), 1,..., , 1,...,i j i j i j jx x alpha x x i PS j n    

(3)

where X* is the currently best solution. In this manner, we force the individuals to move
towards the best so far optimal solution in the chaotic manner. This proved to be a huge
advantage in comparison with basic FOA and FOA with Levy distribution. The complete
procedure of a novel CFOA is presented in Fig. 2.

Algorithm 1. Chaotic FOA pseudocode

// Algorithm initialization

Set the population size PS and maximum number of iterations Imax

// Initialize fruit fly swarm location in the search space n

For i = 1,..,PS

, () , 1,...,i jx lower_bound upper_bound-lower_bound j n   x rand()

EndFor

  
1,2,...,

arg min i
i PS

f X


 // Set swarm location

// Set optimal solution and iteration counter:

*X  

0Iter 

Repeat

// Smell-based (osphresis) foraging phase

 For j =1,…,PS

 // Generate food source  ,1 ,2 ,, ,...,i i i i nX x x x

 ()alpha chaos // Determine chaotic parameter

 *

, , ,(), 1,..., , 1,...,i j i j i j jx x alpha x x i PS j n    

 // Limit the result

 If , _i jx upper bound then

 , _i jx upper bound

 EndIf

 If , _i jx upper bound then

 , _i jx upper bound

 EndIf

 EndFor

// Vision-based foraging phase

  
1,..,

arg min ()best i
i PS

X f X




// Find global best solution

 If    bestf X f  then

bestX 

 EndIf

 If    *f f X  then

 *X  

 EndIf

Until the maximum number of iteration is reached:
maxIter Iter

Fig. 2 Procedure of Chaotic FOA

In this paper, we investigate the influence of ten different one-dimensional non-

invertible chaotic maps, similarly to other recent studies [15]. A mathematical description and

graphical presentation of these maps for 300 iterations are given in Table 1 and Fig. 3,

respectively. It is important to note that the chaotic behavior is evident in Fig. 3 despite the

lack of random component in equations given in Table 1. Each chaotic map presented in Fig.

4 has the starting point of 0.7. The maps that do not produce values in range of [0, 1] are

normalized to fit into this scale.

Table 1. Chaotic maps used in this study

No. Map name Equation

1
Chebyshev   1

1 cos cosi ix i x

 

2 Circle   1 mod 2 sin(2 ,1); 0.5, 0.2i i ix x b a x a b      

3 Gauss/Mouse

 
1

 1, 0

1
,

mod ,1

i

i

xi

x
otherwise

x






 



4 Iterative

1 sin , 0.7i

i

a
x a

x




 
  

 

5 Logistic  1 1 , 4i i ix ax x a   

6 Piecewise

1

, 0

, 0.5
0.5

 , 0.41
, 0.5 1

0.5

1
, 1 1

i i

i
i

i i
i

i
i

x P x P

x P
P x

P
x PP x

x P
P

x
P x

P



 



  




   
  





  



7 Sine
 1 sin , 4

4
i i

a
x x a  

8 Singer  2 3 4

1 7.86 23.31 28.75 13.301875 , 1.07i i i i ix x x x x      

9 Sinusoidal  1 sin , 2.3i i ix ax x a  

10 Tent

 
1

0.7, 0.7

10
1 , 0.7

3

i i

i

i i

x x

x
x x






 
 



(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)
Fig. 3. Visualization of implemented chaotic maps: (a) Chebyshev map, (b) Circle map, (c)

Gauss/Mouse map, (d) Iterative map, (e) Logistic map, (f) Piecewise map, (g) Sine map, (h)

Singer map, (i) Sinusoidal map, (j) Tent map

4. Implementation details

4.1 Test functions

Chaotic FOA presented in this study is benchmarked using 14 different well-known
functions [14, 15, 27]. Total optimization set contains seven unimodal and seven multimodal
examples. The mathematical description and graphical presentation of these functions are
given in Table 2 and Fig. 4, respectively.

For all test problems global optimum is equal to  * 0f X  . Boundaries for functions

are equal to their known initial ranges. After the every algorithm iteration, boundary

constraint for each ,i jx parameter is applied.

Table 2. Benchmark functions

ID
Function
name

Equation

Upper
and

Lower
Bound

Dimensi
on n

Type

F1 Sphere   2

1

n

i

i

f x x



Ub=100

Lb=-100
30 Unimodal

F2
Schwefel’s
problem
2.22

 
1 1

nn

i i

i i

f x x x
 

   Ub=10
Lb=-10

30 Unimodal

F3 Quartic   4

1

rand
n

i

i

f x ix


 
Ub=1.28
Lb=-1.28

30 Unimodal

F4
Sum
squares

  2

1

n

i

i

f x ix


 Ub=10
Lb=-10

30 Unimodal

F5
Sum of
different
power

 
1

1

n
i

i

i

f x x





Ub=1
Lb=-1

30 Unimodal

F6
Schwefel’s
problem
2.21

   max ,1if x x i n  

Ub=100
Lb=-100

30 Unimodal

F7 Rosenbrock       
1

2 22

1

1

100 1
n

i i i

i

f x x x x






   

Ub=30
Lb=-30

30 Unimodal

F8 Ackley

 

 

2

1

1

1
20exp 0.2

1
 exp cos 2 20

n

i

i

n

i

i

f x x
n

x e
n







 
   

 
 

 
   

 





Ub=32
Lb=-32

30 Multimodal

F9 Griewank   2

1 1

1
cos 1

4000

nn
i

i

i i

x
f x x

i 

 
   

 
 

Ub=600
Lb=-600

30 Multimodal

F10 Alpine    
1

sin 0.1
n

i i i

i

f x x x x


 
Ub=10
Lb=-10

30 Multimodal

F11 Powell

     

   

/4
2 2

4 3 4 2 4 1 4

1

4 4

4 2 4 1 4 3 4

10 5

 + 2 10

n

i i i i

i

i i i i

f x x x x x

x x x x

  



  

   


  




Ub=5
Lb=-4

30 Multimodal

F12 Rastrigin     2

1

10cos 2 10
n

i i

i

f x x x


  
Ub=5.12
Lb=-5.12

30 Multimodal

F13
Generalized
Penalized 1

       

    

   

 

 

1
22 2

1 1

1

2

1

10sin 1 1 10sin

 + 1 ,10,100,4

, >
1

1 1 , , , , 0, -
4

,

n

i i

i

n

n i

i

m

i i

i i i i

m

i i

f x y y y
n

y x

k x a x a

y x x a k m a x a

k x a x a


 













     

 

 


     


  





Ub=50
Lb=-50

30 Multimodal

F14
Solomon
problem

  2 2

1 1

1 cos 2 0.1
n n

i i

i i

f x x x
 

 
   

 
 

 

Ub=100
Lb=-100

30 Multimodal

Fig.4 Visualization of benchmark functions for n=2 (column wise): F1-F7 in the first column,
F8, F9, F10, F12, F13, F14 in the second row

4.2 Success criterion

Beside the usual measures for algorithm evaluations such as best, mean and median
results, in this paper we additionally apply success rate criterion. The success rate

parameter rS is defined as [24]:

100success
r

all

N
S

N
  (4)

where successN is the number of successful trials, and allN is number of trials. Similarly to

other studies [17,19], one experimental run is considered successful if the final algorithm

solution is close to the searched optimum. The closeness criterion depends on the search
space of a particular function, and is defined as [24]:

4* (_ _) 10gbestX X upper bound lower bound     (5)

where gbestX is the obtained global best result of the developed algorithm.

4.3. Test studies and initialization

In this paper, we tested each function with 50 independent algorithm runs. The initial
conditions of each test are completely different, so the algorithm outcome is practically
independent of the starting position of the fruit fly swarm. To completely evaluate the CFOA
performance, we used statistical measures such as median and mean objective values, as
well as their standard deviations. This information is provided for each chaotic map and
every tested function.

Additionally, extensive studies regarding parameter settings are carried out. From

conducted experiments, we concluded that a population of 50 individuals and 700 iterations
per experimental run is sufficient for all testing cases. Likewise, in all of the experiments,

initial value of 0.95 for parameter alpha proved to be a good choice.

Finally, it is also important to note that every reported result in this paper is obtained

using Matlab software that runs on a desktop PC with 4GBs RAM and Windows 7 (64 bit)
operating system.

5. Experimental studies

5.1.CFOA computational results on benchmark problems

Computational results for all functions using all maps are given in Table 3 – Table 16
(best result is given in bold font). Chaotic FOA is tested on 14 benchmark problems using
Chebyshev, Circle, Gauss/Mouse, Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal,
and Tent map. Beside the mentioned statistical measures, we added best and worst results
obtained over 50 independent runs, as well as average time for one such test.

Overall, the experimental results prove the usefulness of the implementation of chaos

in FOA. In each tested case, CFOA final output was very close to the desired function
optimum. For ten out of the fourteen functions, the best minimum value is obtained before
the maximum number of iteration is reached. Algorithm also converged in case of F3 and F8,
while CFOA did not solve minimization problems in functions F7 and F13. We also provide
additional information on the exact iteration in which the function optimum is reached.

Experiments show that Chebyshev, Iterative, Logistic, Sine and Singer map provide

best results in all cases (Table 3 – Table 16). Particularly, these maps reached maximum
algorithm performance before the end of one experimental cycle, except for F3 and F8 (for
F7 and F13 algorithm did not converged). Among then, Chebyshev map yields the best
results in terms of fastest algorithm convergence.

Statistical results given in Table 8 for F6 show that all chaotic maps except map No.
9 has the same influence on the algorithm performance. As the matter of fact, by observing
Table 3 – Table 16 one should note that Sinusoidal map is the worst choice for generation of

parameter alpha . This conclusion supports the results obtained for success rate showed in

Table 17. Except for functions F6, F9 and F14, CFOA based on Sinusoidal map did not
manage to successfully converge. All of the other types of CFOA show impressive
performance in terms of algorithm performance and convergence. This is especially evident
in comparison with other chaotic state-of-the-art algorithms, which did not succeed to
achieve such a consistent, high level result.

Table 3. Results of CFOA for Sphere function (F1) after 50 independent runs

No. Chaotic map Best Mean Median Worst Std.
dev.

Ave.
time [s]

1 Chebyshev

map

<1E-309

(Iter. 540)*

<1E-309

<1E-309

<1E-309

N/A 0.5244

2 Circle map 4.4913E-234 3.6272E-
230

2.8973E-
229

4.2116E-
228

N/A 0.4009

3 Gauss/Mouse
map

1.0276E-295 3.4043E-
295

5.1591E-
295

6.270E-
294

N/A 0.3926

4 Iterative map <1E-309

(Iter. 659)*

<1E-309

<1E-309

<1E-309

N/A 0.4323

5 Logistic map <1E-309

(Iter. 630)*

<1E-309

<1E-309

<1E-309

N/A 0.4478

6 Piecewise map 1.742E-278 5.4917E-
278

1.4802E-
277

1.3074E-
276

N/A 0.3091

7 Sine map <1E-309

(Iter. 644)*

<1E-309

<1E-309

<1E-309

N/A 0.4426

8 Singer map <1E-309

(Iter. 606)*

<1E-309

<1E-309

<1E-309

N/A 0.4805

9 Sinusoidal map 1.0889 1.9278 1.8828 2.4395 3.2092
E-1

0.3946

10 Tent map 1.0274E-268 1.0484E-
267

1.3309E-
267

5.2944E-
267

N/A 0.3903

* Iteration in which the best result is achieved.

Table 4. Results of CFOA for Schwefel’s problem 2.22 (F2) after 50 independent runs

No. Chaotic map Best Mean Median Worst Std.
dev.

Ave.
time [s]

1 Chebyshev

map

<1E-155

(Iter. 540)*

<1E-155 <1E-155 <1E-155

N/A 0. 5753

2 Circle map 7.3752E-117 3.2026E-115 1.1038E-
114

1.0059E-
113

1.9044
E-114

0. 4546

3 Gauss/Mouse
map

5.7087E-148 1.0723E-147 1.1916E-
147

2.8293E-
147

5.2981
E-148

0. 4452

4 Iterative map <1E-155

(Iter. 655)*

<1E-155 <1E-155

<1E-155

N/A 0. 4877

5 Logistic map <1E-155

(Iter. 628)*

<1E-155 <1E-155

<1E-155 N/A 0. 5025

6 Piecewise map 1.5945E-139 5.6953E-139 5.7616E-
139

1.0727E-
138

1.8388
E-139

0. 4441

7 Sine map <1E-155

(Iter. 643)*

<1E-155

<1E-155 <1E-155 N/A 0. 4951

8 Singer map <1E-155

(Iter. 604)*

<1E-155 <1E-155 <1E-155 N/A 0. 5352

9 Sinusoidal map 2.9735 3.6929 3.6606 3.9835 2.2755
E-001

0. 4432

10 Tent map 3.0217E-134 6.0680E-134 6.7105E-
134

1.6321E-
133

3.315E-
134

0. 4456

* Iteration in which the best result is achieved.

Table 5. Results of CFOA for Quartic function (F3) after 50 independent runs

No. Chaotic map Best Mean Median Worst Std.
dev.

Ave.
time [s]

1 Chebyshev

map

8.7628E-006 2.2289E-004 2.4749E-
003

3.8616
E-002

6.1081
E-003

0. 6125

2 Circle map 4.4841E-007 2.1225E-005 2.8433E-
005

1.2379
E-004

2.8216
E-005

0. 6384

3 Gauss/Mouse
map

4.7370E-007 2.6933E-005 3.3066E-
005

1.2131
E-004

3.0446
E-005

0. 6311

4 Iterative map 1.8656E-007 1.5941E-005 2.3617E-
005

8.6441
E-005

2.2242
E-005

0. 64

5 Logistic map 4.6066E-007 1.9228E-005 2.4341E-
005

1.114E-
004

2.3347
E-005

0. 6301

6 Piecewise map 6.0483E-007 1.7433E-005 2.7048E-
005

1.4334
E-004

2.8233
E-005

0. 6276

7 Sine map 7.2192E-008 1.5060E-005 2.0866E-
005

1.0440
E-004

1.9906
E-005

0. 6352

8 Singer map 2.4731E-007 2.2611E-005 3.1783E-
005

1.1282
E-004

2.8293
E-005

0. 6478

9 Sinusoidal map 3.2799E+00
2

6.9723E+00
2

7.3836E+0
02

1.2452
E+003

2.3508
E+002

0. 6049

10 Tent map 7.0523E-007 1.8834E-005 2.4080E-
005

8.0337
E-005

2.1499
E-005

0. 628

Table 6. Results of CFOA for Sum squares function (F4) after 50 independent runs

No. Chaotic map Best Mean Median Worst Std.
dev.

Ave.
time [s]

1 Chebyshev

map

<1E-308

(Iter. 539)*

<1E-308

<1E-308

<1E-
308

N/A 0.5009

2 Circle map 9.5256E-232 9.8355E-230 2.5643E-
228

6.8626
E-227

N/A 0. 3779

3 Gauss/Mouse
map

1.5323E-295 8.8688E-295 1.8718E-
294

1.5569
E-293

N/A 0. 369

4 Iterative map <1E-308

(Iter. 655)*

<1E-308

<1E-308

<1E-
308

N/A 0. 4124

5 Logistic map <1E-308

(Iter. 628)*

<1E-308

<1E-308

<1E-
308

N/A 0. 4255

6 Piecewise map 6.3267E-278 2.4457E-277 5.6883E-
277

1.0103
E-275

N/A 0. 3683

7 Sine map <1E-308

(Iter. 642)*

<1E-308

<1E-308

<1E-
308

N/A 0. 4202

8 Singer map <1E-308

(Iter. 605)*

<1E-308

<1E-308

<1E-
308

N/A 0. 4587

9 Sinusoidal map 4.2542 7.364 7.2234 9.4625 1.1496 0. 3717

10 Tent map 6.4293E-268 2.9082E-267 3.9658E-
267

1.6777
E-266

N/A 0. 369

* Iteration in which the best result is achieved.

Table 7. Results of CFOA for Sum of different power function (F5) after 50 independent runs

No. Chaotic map Best Mean Median Worst Std.
dev.

Ave.
time [s]

1 Chebyshev

map

<1E-309

(Iter. 541)*

<1E-309

<1E-309

<1E-309

N/A 0. 6196

2 Circle map 1.3305E-231 4.3830E-230 2.6402E-
229

4.7710E
-228

N/A 0. 5956

3 Gauss/Mouse
map

6.3003E-297 4.2919E-296 6.7760E-
296

2.4588E
-295

N/A 0. 5895

4 Iterative map <1E-309

(Iter. 656)*

<1E-309

<1E-309

<1E-309

N/A 0. 6175

5 Logistic map <1E-309

(Iter. 630)*

<1E-309

<1E-309

<1E-309

N/A 0. 6235

6 Piecewise map 2.5570E-279 8.5835E-279 1.3152E-
278

9.1050E
-278

N/A 0. 5885

7 Sine map <1E-309

(Iter. 644)*

<1E-309

<1E-309

<1E-309

N/A 0. 6232

8 Singer map <1E-309

(Iter. 606)*

<1E-309

<1E-309

<1E-309

N/A 0. 6497

9 Sinusoidal map 6.7858E+00
3

7.2111E+00
6

1.0157E+0
08

2.1105E
+009

3.3208
96E+0

08

0. 5368

10 Tent map 1.0233E-269 1.0813E-268 1.4729E-
268

7.1666E
-268

N/A 0. 5876

* Iteration in which the best result is achieved.

Table 8. Results of CFOA for Schwefel’s problem 2.21 (F6) after 50 independent runs

No. Chaotic map Best Mean Median Worst Std.
dev.

Ave.
time [s]

1 Chebyshev

map

<1E-155

(Iter. 535)*

<1E-155

<1E-155 <1E-155 N/A 0. 3465

2 Circle map 2.5806E-118 3.504E-117 2.3144E-
117

1.1603E-
116

3.3689
E-117

0. 3545

3 Gauss/Mouse
map

2.6879E-150 1.9504E-149 1.6698E-
149

6.4141E-
149

1.3876
E-149

0. 3387

4 Iterative map <1E-155

(Iter. 650)*

<1E-155

<1E-155

<1E-155 N/A 0. 3447

5 Logistic map <1E-155

(Iter. 624)*

<1E-155 <1E-155

<1E-155 N/A 0. 3671

6 Piecewise map 1.7012E-141 7.1163E-141 5.5271E-
141

2.5251E-
140

5.1416
E-141

0. 3718

7 Sine map <1E-155

(Iter. 641)*

<1E-155 <1E-155 <1E-155

N/A 0. 3965

8 Singer map <1E-155

(Iter. 600)*

<1E-155 <1E-155 <1E-155 N/A 0. 3757

9 Sinusoidal map 1.8929E-002 2.454E-002 2.4369E-
002

3.1503E-
002

3.2026
E-003

0.3375

10 Tent map 1.8361E-136 5.4338E-136 5.3438E-
136

1.0073E-
135

2.3030
E-135

0. 3385

* Iteration in which the best result is achieved.

Table 9. Results of CFOA for Rosenbrock function (F7) after 50 independent runs

No. Chaotic map Best Mean Median Worst Std.
dev.

Ave.
time [s]

1 Chebyshev

map

2.8321
E+001

2.8611
E+001

2.8637
E+001

2.8746
E+001

1.1409
E-001

0.4007

2 Circle map 2.8484
E+001

2.8692
E+001

2.8704
E+001

2.8754
E+001

5.7014
E-002

0.4028

3 Gauss/Mouse
map

2.8524
E+001

2.8697
E+001

2.8713
E+001

2.8752
E+001

5.2389
E-002

0.409

4 Iterative map 2.8464
E+001

2.8679
E+001

2.8711
E+001

2.8758
E+001

7.8703
E-002

0.3889

5 Logistic map 2.8593
E+001

2.8702
E+001

2.8718
E+001

2.8763
E+001

5.0520
E-002

0.3889

6 Piecewise map 2.8531
E+001

2.8682
E+001

2.8704
E+001

2.8763
E+001

6.0911
E-002

0.9436

7 Sine map 2.8554
E+001

2.8710
E+001

2.8727
E+001

2.8769
E+001

5.1559
E-002

0.3955

8 Singer map 2.8625
E+001

2.8708
E+001

2.8719
E+001

2.8751
E+001

3.4434
E-002

0.4885

9 Sinusoidal map 3.0186
E+001

3.1651
E+001

3.1585
E+001

3.2725
E+001

6.4110
E-001

0.4744

10 Tent map 2.8566
E+001

2.869
E+001

2.8707
E+001

2.8761
E+001

5.8085
E-002

0.3984

Table 10. Results of CFOA for Ackley function (F8) after 50 independent runs

No. Chaotic map Best Mean Median Worst Std.
dev.

Ave.
time [s]

1 Chebyshev

map

8.8818E-016 8.8818E-016 8.8818E-
016

8.8818E-
016

N/A 1.5635

2 Circle map 8.8818E-016 8.8818E-016 8.8818E-
016

8.8818E-
016

N/A 1.5627

3 Gauss/Mouse
map

8.8818E-016 8.8818E-016 8.8818E-
016

8.8818E-
016

N/A 1.5561

4 Iterative map 8.8818E-016 8.8818E-016 8.8818E-
016

8.8818E-
016

N/A 1.5663

5 Logistic map 8.8818E-016 8.8818E-016 8.8818E-
016

8.8818E-
016

N/A 1.5547

6 Piecewise map 8.8818E-016 8.8818E-016 8.8818E-
016

8.8818E-
016

N/A 1.5548

7 Sine map 8.8818E-016 8.8818E-016 8.8818E-
016

8.8818E-
016

N/A 1.5600

8 Singer map 8.8818E-016 8.8818E-016 8.8818E-
016

8.8818E-
016

N/A 1.5686

9 Sinusoidal map 6.4717E-002 1.3612E-001 1.0353E-
001

1.0228E-
001

1.5995
E-002

1.5853

10 Tent map 8.8818E-016 8.8818E-016 8.8818E-
016

8.8818E-
016

N/A 1.5534

Table 11. Results of CFOA for Griewank function (F9) after 50 independent runs

No. Chaotic map Best Mean Median Worst Std.
dev.

Ave.
time [s]

1 Chebyshev

map

<1E-16

(Iter. 19)*

<1E-16

<1E-16

<1E-16

N/A 0. 4288

2 Circle map
<1E-16

(Iter. 29)*

<1E-16

<1E-16

<1E-16

N/A
0. 4269

3 Gauss/Mouse
map

<1E-16

(Iter. 23)*

<1E-16

<1E-16

<1E-16

N/A
0. 42

4 Iterative map
<1E-16

 (Iter. 22)*

<1E-16

<1E-16

<1E-16

N/A 0. 4256

5 Logistic map
<1E-16

 (Iter. 21)*

<1E-16

<1E-16

<1E-16

N/A 0. 418

6 Piecewise map
<1E-16

(Iter. 28)*

<1E-16

<1E-16

<1E-16

N/A
0. 4193

7 Sine map
<1E-16

 (Iter. 21)*

<1E-16

<1E-16

<1E-16

N/A 0. 4249

8 Singer map
<1E-16

 (Iter. 21)*

<1E-16

<1E-16

<1E-16

N/A 0. 4302

9 Sinusoidal map 5.3456E-006 8.331E-006 8.082E-006 1.0221E-
005

1.1899
E-006

0. 4356

10 Tent map
<1E-16

(Iter. 27)*

<1E-16

<1E-16

<1E-16

N/A
0. 4199

 * Iteration in which the best result is achieved.

Table 12. Results of CFOA for Alpine function (F10) after 50 independent runs

No. Chaotic map Best Mean Median Worst Std.
dev.

Ave.
time [s]

1 Chebyshev

map

<1E-156

(Iter. 539)*

<1E-156 <1E-156 <1E-156

N/A 0. 5068

2 Circle map 1.4005E-117 2.6463E-116 7.2709E-
116

6.3057E
-115

1.1476
E-115

0. 383

3 Gauss/Mouse
map

6.8852E-149 1.1367E-148 1.3004E-
148

3.1424E
-148

5.8945
E-149

0. 3781

4 Iterative map <1E-156

(Iter. 655)*

<1E-156 <1E-156

<1E-156

N/A 0. 4178

5 Logistic map <1E-156

(Iter. 628)*

<1E-156 <1E-156

<1E-156 N/A 0. 4347

6 Piecewise map 2.1937E-140 5.5474E-140 6.5224E-
140

2.1841E
-139

3.6248
E-140

0. 3776

7 Sine map <1E-156

(Iter. 643)*

<1E-156

<1E-156 <1E-156 N/A 0. 4257

8 Singer map <1E-156

(Iter. 605)*

<1E-156 <1E-156 <1E-156 N/A 0. 4675

9 Sinusoidal map 3.2171E-001 5.0950E-001 5.147E-001 6.8731E
-001

7.5072
E-002

0. 3844

10 Tent map 2.2373E-135 5.7899E-135 6.5307E-
135

1.3816E
-134

2.5618
E-135

0. 377

* Iteration in which the best result is achieved.

Table 13. Results of CFOA for Powell function (F11) after 50 independent runs

No. Chaotic map Best Mean Median Worst Std.
dev.

Ave.
time [s]

1 Chebyshev

map

<1E-309

(Iter. 541)*

<1E-309

<1E-309

<1E-309

N/A 0. 6053

2 Circle map 1.6305E-231 6.1197E-229 1.4662E-
227

2.8049E
-226

N/A 0. 4998

3 Gauss/Mouse
map

1.4981E-294 6.3239E-294 1.5752E-
293

1.5329E
-292

N/A 0. 4930

4 Iterative map <1E-309

(Iter. 656)*

<1E-309

<1E-309

<1E-309

N/A 0. 53

5 Logistic map <1E-309

(Iter. 630)*

<1E-309

<1E-309

<1E-309

N/A 0. 5413

6 Piecewise map 3.0790E-277 1.0412E-276 1.8439E-
276

2.113E-
275

N/A 0. 4943

7 Sine map <1E-309

(Iter. 645)*

<1E-309

<1E-309

<1E-309

N/A 0. 5387

8 Singer map <1E-309

(Iter. 606)*

<1E-309

<1E-309

<1E-309

N/A 0. 5692

9 Sinusoidal map 3.2176E+00
1

5.4547E+00
1

5.5258E+0
01

8.2022E
+001

8.8919 0. 4778

10 Tent map 2.2341E-267 1.8193E-266 2.4639E-
266

1.1808E
-265

N/A 0. 4919

* Iteration in which the best result is achieved.

Table 14. Results of CFOA for Rastrigin function (F12) after 50 independent runs

No. Chaotic map Best Mean Median Worst Std.
dev.

Ave.
time [s]

1 Chebyshev

map

<1E-14

(Iter. 28)*

<1E-14

<1E-14

<1E-14

N/A 0.4356

2 Circle map
<1E-14

(Iter. 44)*

<1E-14

<1E-14

<1E-14

N/A
0.4288

3 Gauss/Mouse
map

<1E-14

(Iter. 35)*

<1E-14

<1E-14

<1E-14

N/A
0. 4209

4 Iterative map
<1E-14

 (Iter. 34)*

<1E-14

<1E-14

<1E-14

N/A 0. 4264

5 Logistic map
<1E-14

 (Iter. 32)*

<1E-14

<1E-14

<1E-14

N/A 0. 4187

6 Piecewise map
<1E-14

(Iter. 41)*

<1E-14

<1E-14

<1E-14

N/A
0. 4216

7 Sine map
<1E-14

 (Iter. 32)*

<1E-14

<1E-14

<1E-14

N/A 0.4239

8 Singer map
<1E-14

 (Iter. 31)*

<1E-14

<1E-14

<1E-14

N/A 0. 4334

9 Sinusoidal map 1.7288E+00
2

2.2372E+00
2

2.2186E+0
02

2.7775E+
002

2.3696
E+001

0. 4409

10 Tent map
<1E-14

(Iter. 41)*

<1E-14

<1E-14

<1E-14

N/A
0. 4201

 * Iteration in which the best result is achieved.

Table 15. Results of CFOA for Generalized Penalized 1 function (F13) after 50 independent
runs

No. Chaotic map Best Mean Median Worst Std.
dev.

Ave.
time [s]

1
Chebyshev

map
1.1228 1.5302 1.5557 1.593

8.7364
E-002 1.2749

2 Circle map 1.2706 1.5181 1.5531 1.6084
8.8587
E-002

1.2476

3
Gauss/Mouse

map
1.4398 1.5413 1.5461 1. 5976

4.1850
E-002

1.3467

4 Iterative map 1.3689 1.5397 1.5546 1.6112
6.4712
E-002

1.5209

5 Logistic map 1.1022 1.502 1.5473 1.6018
1.1446
E-001

1.1897

6 Piecewise map 1.1220 1.5191 1.5421 1.6027
9.7464
E-002

1.1677

7 Sine map 1.2849 1.5158 1.5431 1.5921
8.1600
E-002

1.1703

8 Singer map 1.1282 1.5022 1.5413 1.6061
1.0507
E-001

1.1879

9 Sinusoidal map 1.1335 1.516 1.5368 1.6114
9.1038
E-002

1.1865

10 Tent map 1.3973 1.5442 1.5574 1.5899
5.1043
E-002

1.1604

 * Iteration in which the best result is achieved.

Table 16. Results of CFOA for Solomon problem function (F14) after 50 independent runs

No. Chaotic map Best Mean Median Worst Std.
dev.

Ave.
time [s]

1 Chebyshev

map

<1E-155

(Iter. 532)*

<1E-155

<1E-155 <1E-155 N/A 0. 3866

2 Circle map 3.5685E-119 1.9739E-117 7.5868E-
118

1.262E-
116

3.1014
E-117

0. 3999

3 Gauss/Mouse
map

1.1417E-150 2.904E-150 2.758E-150 5.6703E-
150

1.1667
E-150

0. 3857

4 Iterative map <1E-155

(Iter. 651)*

<1E-155

<1E-155

<1E-155 N/A 0. 3954

5 Logistic map <1E-155

(Iter. 622)*

<1E-155 <1E-155

<1E-155 N/A 0. 4044

6 Piecewise map 6.0266E-142 1.1025E-141 1.0353E-
141

2.52E-141 4.4473
E-142

0. 4699

7 Sine map <1E-155

(Iter. 644)*

<1E-155 <1E-155 <1E-155

N/A 0. 4261

8 Singer map <1E-155

(Iter. 598)*

<1E-155 <1E-155 <1E-155 N/A 0. 4306

9 Sinusoidal map 6.1731E-002 1.0683E-001 1.0454E-
001

1.6998E-
002

3.2026
E-003

0.3965

10 Tent map 5.4541E-137 1.4337E-136 1.0454E-
136

6.7018E-
137

2.3030
E-135

0. 4127

 * Iteration in which the best result is achieved.

Table 17. Success rate of CFOA for different chaotic maps

No. Chaotic map F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

1
Chebyshev

map
100 100 100 100 100 100 0 100 100 100 100 100 0 100

2 Circle map 100 100 100 100 100 100 0 100 100 100 100 100 0 100

3
Gauss/Mouse

map
100 100 100 100 100 100 0 100 100 100 100 100 0 100

4 Iterative map 100 100 100 100 100 100 0 100 100 100 100 100 0 100

5 Logistic map 100 100 100 100 100 100 0 100 100 100 100 100 0 100

6 Piecewise map 100 100 100 100 100 100 0 100 100 100 100 100 0 100

7 Sine map 100 100 100 100 100 100 0 100 100 100 100 100 0 100

8 Singer map 100 100 100 100 100 100 0 100 100 100 100 100 0 100

9
Sinusoidal

map
0 0 0 0 0 100 0 0 100 0 0 0 0 100

10 Tent map 100 100 100 100 100 100 0 100 100 100 100 100 0 100

 Additionally, the algorithm is tested using random values instead of chaotic
sequences. Particularly, alpha parameter in Eq. (3) is drawn from the uniform distribution
(within range [0,1]), and results are presented in Table 18. It is evident that this algorithm
with random alpha successfully converged in same benchmark problems. However,

employment of chaotic variable proved the be the optimal choice since it can be observed
that in all cases algorithm with chaos alpha converged faster.

Table 18. Results of CFOA for Solomon problem function (F14) after 50 independent runs

Function

No.

Best Worst Median Mean Std. dev. Ave. time
[s]

F1
<1E-309

(Iter. 686)* <1E-309 <1E-309 <1E-309 N/A 0.34453

F2
<1E-155

(Iter. 688)*
<1E-155 <1E-155 <1E-155 N/A 0.3762

F3 2.5522E-005
8.31173E-

004
2.7058E-004

2.15436E-
004

2.2342E-
004

0.5472

F4
<1E-308

(Iter. 677)*
<1E-308 <1E-308 <1E-308 N/A 0.3736

F5
<1E-309

(Iter. 688)* <1E-309 <1E-309 <1E-309 N/A 0.5144

F6
<1E-155

(Iter. 669)*
<1E-155 <1E-155 <1E-155 N/A 0.3457

F7
2.8544
E+001

2.8751
E+001

2.8692
E+001

2.8711
E+001

6.2931E-
002

0.4075

F8 8.8818E-016 8.8818E-016 8.8818E-016 8.8818E-016 N/A 2.8363

F9 <1E-16

(Iter. 36)*
<1E-16 <1E-16 <1E-16 N/A 0.4037

F10
<1E-156

(Iter. 680)*
<1E-156 <1E-156 <1E-156 N/A 0.3862

F11
<1E-309

(Iter. 677)*
<1E-309 <1E-309 <1E-309 N/A 0.5064

F12 <1E-14

(Iter. 54)*
<1E-14 <1E-14 <1E-14 N/A 0.3644

F13 1.4117 1.6081 1.5587 1.565
3.8052E-

002
1.1292

F14
<1E-155

(Iter. 674)*
<1E-155 <1E-155 <1E-155 N/A 0.3856

 * Iteration in which the best result is achieved.

5.2. Comparison study

5.2.1 Comparison with FOA based methods

In order to further evaluate the developed algorithm, we compared CFOA with basic

FOA and FOA with Levy distribution. We implemented Chebyshev map since the previous
results indicate that this is the best choice in all test cases. Similarly to the experiment
showed above, we tested these algorithms on ten selected benchmark problems with 50
independent runs. Results are presented in Table 19. Convergence curves for obtained
mean values of these algorithms are showed in Fig. 5 – Fig. 14.

 From Table 19 it is evident that CFOA gives best results in comparison with other two
algorithms. For each optimization function CFOA proved to be the best choice in terms of
obtained statistical measures. Likewise, success rate of CFOA in each tested case reached
maximum of 100%, while the FOA and LFOA showed much worse results. Only in the case
of optimization of function F5, all of three algorithms converged with maximum rate. These
results indicate that integration of chaos in FOA significantly improves overall algorithm
performance.

Table 19. Comparison results of CFOA, basic FOA, and Levy FOA on ten selected
benchmark problems

ID Algorithm Best Mean Median Worst Std. dev. Ave. time [s]
Success

rate

F1

FOA
4.4457E-

005
1.2112 1.6675 2.3415

9.2286E-
001

0.2913 38

LFOA
4.5391E-

001
0.6892

7.4226E-
001

1.1459
1.7101E-

001
2.2122 0

CFOA <1E-309 <1E-309 <1E-309 <1E-309 N/A 0.5244 100

F2

FOA
3.6472E-

002
1.0476

3.70934E-
002

3.9644 1.7267 0.3364 0

LFOA 1.1649 1.6231 1.6224 1.9694
1.7991E-

001
2.2892 0

CFOA <1E-155 <1E-155 <1E-155 <1E-155 N/A 0. 5753 100

F3

FOA
1.1774E-

003
8.6099E+00

1
3.046E-003

8.4905E+00
2

2.5261E+00
2

0.5436 36

LFOA
7.4109
E+001

1.9794E+00
2

1.7291E+00
2

5.0049E+00
2

1.1246E+00
2

2.4189

0

CFOA <1E-309 <1E-309 <1E-309 <1E-309 N/A 0. 6053 100

F4

FOA
6.8805E-

004
4.9840

6.4152E+00
0

9.1661E+00
0

3.6883E+00
0

0.3839 38

LFOA 1.1915E+0 2.4598 2.3191E+00 3.393E+000 4.9255E- 2.2937 0

00 0 001

CFOA <1E-14 <1E-14 <1E-14 <1E-14 N/A 0.4356 100

F5

FOA
1.48849E-

006
1.5270E+00

4
1.511703E-

006
4.0388E+00

6
5.8043E+00

5
0.6464 80

LFOA
1.3391E+0

01
2.3069E+00

4
6.1164E+00

3
1.1518E+00

3
1.6189E+00

5
2.4914 0

CFOA
7.2192E-

008
1.0440E-

004
2.0866E-

005
1.5060E-

005
1.9906E-

005
0. 6352 100

F8

FOA
5.3905E-

004
7.7500E-

002
9.3652E-

002
1.2312E-

001
4.7789E-

002
3.052 30

LFOA
2.7445E-

002
4.1907E-

002
4.0171E-

002
5.1889E-

002
5.6992E-

003
4.8830 100

CFOA <1E-308 <1E-308 <1E-308 <1E-308 N/A 0.5009 100

F9

FOA
2.3209E-

006
6.4021E-

006
7.1121E-

006
9.7443E-

006
2.1991E-

006
0.4552 100

LFOA
1.2485E-

006
2.4056E-

006
2.3591E-

006
3.4427E-

006
4.979E-007 2.3726 100

CFOA <1E-309 <1E-309 <1E-309 <1E-309 N/A 0. 6196 100

F10

FOA
3.7878E-

001
5.1800E-

001
5.2334E-

001
6.5158E-

001
6.5343E-

002
0.4397 0

LFOA
3.6139E-

001
4.9140E-

001
4.9818E-

001
6.3516E-

001
6.5539E-

002
2.4056 0

 CFOA
8.8818E-

016
8.8818E-

016
8.8818E-

016
8.8818E-

016
N/A 1.5534 100

F11

FOA
1.2561E-

003
2.3872E+00

1
1.3007E+00

1
6.5019E+00

1
2.5369E+00

1
0.5163 54

LFOA
5.1671E+0

00
1.0132E+00

1
1.0344E+00

1
2.0608E+00

1
3.6303 2.4252 0

CFOA <1E-16 <1E-16 <1E-16 <1E-16 N/A 0. 4288 100

F12

FOA
8.8347E-

003
1.2585E+00

2
1.928E+002

2.7090E+00
2

1.0926E+00
2

0.339 34

LFOA
6.088E+00

1
7.7409E+00

1
7.4376E+00

1
1.0089E+00

2
8.1507E+00

0
2.2066 0

Similarly to what is found in Table 14, results presented in Fig. 5- Fig.14 show the
superiority of CFOA (note that values on x-axis and y-axis depicts iterations and fitness,
respectively). For every optimization task proposed algorithm successfully found the optimal
solution in minimal number of iterations. In comparison with FOA and LFOA, CFOA
converge much faster and produce significantly better final outcome. It is also important to
note that the CFOA initialization (as described in Section 3) has a major influence on
algorithm performance and convergence.

Fig.5 CFOA. LFOA, and FOA convergence curves for F1

CFOA <1E-156 <1E-156 <1E-156 <1E-156 N/A 0. 5068 100

Fig.6 CFOA. LFOA, and FOA convergence curves for F2

Fig.7 CFOA. LFOA, and FOA convergence curves for F3

Fig.8 CFOA. LFOA, and FOA convergence curves for F4

Fig.9 CFOA. LFOA, and FOA convergence curves for F5

Fig.10 CFOA. LFOA, and FOA convergence curves for F8

Fig.11 CFOA. LFOA, and FOA convergence curves for F9

Fig.12 CFOA. LFOA, and FOA convergence curves for F10

Fig.13 CFOA. LFOA, and FOA convergence curves for F11

Fig.14 CFOA. LFOA, and FOA convergence curves for F12

 Furthermore, we compare developed CFOA with other recently introduced FOA
based methods. Similarly to previous case, Table 20 show superiority of CFOA in
comparison with algorithms presented in literature [14, 28].

Table 20. Comparison of CFOA with other recently introduced FOA-based algorithms

 Algorithm

Function
iFOA [14] mFOA [28] CFOA

F1 (Sphere) 4.96E-013 3.1E-004 <1E-309

F7 (Rosenbrock) / 9.770 28.321

F8 (Ackley) 4.85E-011 0.017 8.8818E-016

F9 (Griewank) 1.23E-002 0.015 <1E-16

F12 (Rastrigin) 4.78E-010 4.502 <1E-14

5.2.2 Comparison with other chaos enchanced metaheuristic methods

In addition to the above experiments, we compare the CFOA with recently developed
state-of-the-art chaotic algorithms. Besides CFOA, we implemented chaotic bat algorithm
(CBA), chaotic accelerated particle swarm optimization (CAPSO), chaotic firefly algorithm
(CFA), chaotic artificial bee colony algorithm (CABC), and chaotic cuckoo search (CCS).

Population size, maximum number of iterations, and specific algorithm parameters are
presented in Table 21, while comparison results are given in Table 22. All aforementioned
algorithms are implemented and tested in Matlab software under the same initial conditions.
The algorithms are tested on 3 unimodal and 3 multimodal functions with global optimum
equal to zero. Best chaotic maps are employed for each individual algorithm: Sinusoidal map
for CBA and CAPSO [17,19], Logistic map for CCS [29], and Gauss map for CABC and CFA
[22, 24]. Results indicate that the CFOA outperforms all other algorithms in terms of mean
final optimization result, except for the F8 and F9 in which the identical result is obtained as
with employed CABC. This is an additional proof that the implementation of chaotic
component remarkably improves the standard FOA. Finally, Friedman test also confirms the
superiority of CFOA (Table 22).

Table 21. Setup for comparison experiments

Algorithm
Population
size (PS)

Max number
of iterations

Specific algorithm parameters

CBA 50 700 0.5A ; min 0Q  ; max 2Q  ; r is chaotic variable

CAPSO 50 700 0.7  ; ,i i iteration   ;  is chaotic variable

CFA 50 700 0.2  ; 1  ; 0.97  ; 0 1  ;  is chaotic variable

CABC 50 700
_ / 2 25food numner PS  ; 100limit  ;

,i jc is chaotic variable

CCS 50 700 0.25ap  ; sc is chaotic variable

Table 22. Comparison of CFOA with other recent chaotic algorithms (best results are given

in bold).

 Algorithm

Function
CBA CAPSO CFA CABC CCS CFOA

F1 (Sphere) 5.73E-012 9.74E-221 4.65E-023 1.55E-024 4.76E-031 <1E-309

F2 (Schwefel’s

problem 2.22)
3.27E-006 2.38E-110 8.07E-012 1.02E-018 9.68E-017 <1E-155

F5 (Sum of
1.98E-014 6.49E-018 2.43E-015 7.00E-022 3.24E-040 <1E-309

different power)

F8 (Ackley) 1.71E-005 4.44E-015 3.67E-012
8.8818E-

016
6.13E-014

8.8818E-

016

F9 (Griewank) 4.65E-012 7.40E-003 2.96E-002 <1E-16 3.31E-014 <1E-16

F10 (Alpine) 5.32E-007 1.73E-111 4.88E-013 2.22E-016 2.66E-010 <1E-156

Friedman test

rank
5.6667 3.0 5.0 2.6667 3.5 1.1667

6. Conclusions

Implementation of chaos in metaheuristic algorithms has become increasingly
popular in research community. Because of the ergodicity and mixing property of chaos,
these types of algorithms show better behavior than original variants in terms of final
outcome. In this paper we investigate the effectiveness of ten different chaotic maps in
improving the performance of recently developed fruit fly optimization algorithm (FOA). In
order to fairly compare these maps, we employ fourteen different well known unimodal and
multimodal functions. By introducing new chaotic parameter and different initialization setting
in basic FOA, novel algorithm is enhanced in terms of convergence speed and overall
performance. Statistical results on every optimization task indicate that the chaotic fruit fly
algorithm (CFOA) has a very fast convergence. Moreover, Chebyshev map proved to be the
best map in terms of final algorithm solution. Likewise, we compare the CFOA with the
standard FOA and Levy flight FOA as well as other FOA based approaches in terms of
finding global optimum of a particular function. Additionally, the comparison study with other
state-of-the-art chaos enhanced algorithms such as chaotic bat algorithm, chaotic
accelerated particle swarm optimization, chaotic firefly algorithm, chaotic artificial bee colony
algorithm, and chaotic cuckoo search is provided. CFOA proved to be better or at least as
equal to the performance of aforementioned algorithm in all test cases. Finally, it can be
concluded that overall findings confirm the superiority of CFOA in terms of statistical results,
reliability of global optimality, and algorithm success rate.

In future research studies, CFOA could be applied for solving real world engineering
problems. Specifically, the performance of the CFOA in structural model updating, gear train
design, and pressure vessel design needs to be investigated. Likewise, it would be
interesting to see the influence of other chaotic maps on the developed algorithm.

Acknowledgement

This research is supported by the Serbian Government – the Ministry of Education, Science

and Technological Development under grant TR35004 (2011-2015).

References

1. Gendreau, M, Potvin, J. Y. Handbook of metaheuristics (Vol. 2). New York: Springer; 2010

2. Yang XS. Nature-inspired metaheuristic algorithms. Luniver Press; 2008

3. Lee KS, Geem ZW. A new meta-heuristic algorithm for continuous engineering
optimization: harmony search theory and practice. Comput Meth Appl Mech Eng 2005;194:
3902–33.

4. Yang XS. Engineering optimization: an introduction with metaheuristic applications. John
Wiley & Sons; 2010

5. Yang XS, Deb S. Engineering optimisation by cuckoo search. Int J Math Model Num Opt
2010;1(4):330-43.

6. Yang XS. A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative
strategies for optimization (NICSO 2010) 2010, p.65-74.

7. Gandomi AH, Alavi AH. Krill herd: a new bio-inspired optimization algorithm. Commun
Nonlinear Sci Numer Simulat 2012;17(12):4831-45.

8. Yang XS, Gandomi AH, Talatahari S., Alavi AH (Eds.). Metaheuristics in water,
geotechnical and transport engineering. Elsevier; 2012

9. Pan WT. A new fruit fly optimization algorithm: taking the financial distress model. Knowl
Based Syst 2012;26:69–74.

10. Li C, Xu S, Li W, Hu L. A novel modified fly optimization algorithm for designing the self-
tuning proportional integral derivative controller. J Converg Inform Technol 2012;7:69–77.

11. Zheng XL, Wang L, Wang, SY. A novel fruit fly optimization algorithm for the
semiconductor final testing scheduling problem. Knowl Based Syst 2014;57:95-103.

12. Li H, Guo S, Li C, Sun J. A hybrid annual power load forecasting model based on
generalized regression neural network with fruit fly optimization algorithm. Knowl Based Syst
2013;37:378–87.

13. Wang L, Zheng XL, Wang SY. A novel binary fruit fly optimization algorithm for solving
the multidimensional knapsack problem. Knowl Based Syst 2013;48:17–23.

14. Pan QK, Sang HY, Duan JH, Gao L. An improved fruit fly optimization algorithm for
continuous function optimization problems. Knowl Based Syst 2014;62:69-83.

15. Saremi S, Mirjalili S, Lewis A. Biogeography-based optimisation with chaos. Neural
Comput Appl 2014; doi: 10.1007/s00521-014-1597-x

16. Coelho L, Mariani VC. Use of chaotic sequences in a biologically inspired algorithm for
engineering design optimization. Expert Syst Appl 2008;34:1905–13.

17. Gandomi AH., Yang XS. Chaotic bat algorithm. J Comput Sci 2014;5(2):224-32.

18. Gharoonifard G, Moein-darbari F, Deldari H, Morvaridi A. Scheduling of scientific
workflows using a chaos-genetic algorithm. Proc Comput Sci 2010;1:1445–54.

19. Gandomi AH, Yun GJ, Yang XS, Talatahari S. Chaos-enhanced accelerated particle
swarm algorithm. Commun Nonlinear Sci Numer Simulat 2013;18(2):327–40.

20. Alatas B. Chaotic harmony search algorithms. Appl Math Comput 2010;216:2687–99

21. Gong W, Wang S. Chaos ant colony optimization and application. In: 4th International
Conference on Internet Computing for Science and, Engineering, 2009, p.301–303.

22. Alatas B. Chaotic bee colony algorithms for global numerical optimization. Expert Syst
Appl 2010;37:5682–7.

23. Mingjun J, Huanwen T. Application of chaos in simulated annealing. Chaos Soliton Fract
2004;21:933–41.

24. Gandomi AH, Yang XS, Talatahari S, Alavi AH. Firefly algorithm with chaos. Commun
Nonlinear Sci Numer Simulat 2013;18(1):89–98.

25. Saremi S, Mirjalili SM, Mirjalili S. Chaotic krill herd optimization algorithm. Proc Techn
2014;12:180-5.

26. Cheng H, Liu CZ. Mixed Fruit Fly Optimization Algorithm Based on Chaotic
Mapping. Comput Eng 2013;5:050.

27. Yao X, Liu Y, Lin G. Evolutionary programming madefaster. IEEE Trans Evol Comput
1999;3:82–102.

28. Pan WT. Using modified fruit fly optimisation algorithm to perform the function test and
case studies. Connection Sci, 2013;25(2-3):151-160.

29. Lin JH, Lee HC. Emotional chaotic cuckoo search for the reconstruction of chaotic
dynamics. Latest advances in systems science & computational intelligence, WSEAS Press,
Athens, 2012, p.123-128.

Graphical Abstract

Highlights:

 Development of new method named chaotic fruit fly optimization algorithm (CFOA)

 Fruit fly algorithm (FOA) is integrated with ten different chaos maps

 Novel algorithm is tested on ten different well known benchmark problems

 CFOA is compared with FOA, FOA with Levy distribution, and similar chaotic methods

 Experiments show superiority of CFOA in terms of obtained statistical results

