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Abstract

The quadratic multiple knapsack problem (QMKP) is a challenging combinato-
rial optimization problem with numerous applications. In this paper, we propose
the first evolutionary path relinking approach (EPR) for solving the QMKP ap-
proximately. This approach combines advanced features both from the path
relinking (PR) method and the responsive threshold search algorithm. Thanks
to the tunneling property which allows a controlled exploration of infeasible
regions, the proposed EPR algorithm is able to identify very high quality so-
lutions. Experimental studies on the set of 60 well-known benchmarks and a
new set of 30 large-sized instances show that EPR outperforms several state-of-
the-art algorithms. In particular, it discovers 10 improved results (new lower
bounds) and matches the best known result for the remaining 50 cases. More
significantly, EPR demonstrates remarkable efficacy on the 30 new larger in-
stances by easily dominating the current best performing algorithms across the
whole instance set. Key components of the algorithm are analyzed to shed lights
on their impact on the proposed approach.

Keywords: Quadratic multiple Knapsack; Path relinking; Constrained optimiza-
tion; Responsive threshold search; Evolutionary computing.

1. Introduction

The quadratic multiple knapsack problem (QMKP) is a well-known combina-
torial optimization problem (Hiley & Julstrom, 2006). Given a set of knapsacks
of limited capacity and a set of objects (or items), each object is associated with
a weight, an individual profit and a pairwise profit with any other object. The
QMKP aims to determine a max-profit assignment (packing) of objects to the
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knapsacks subject to the capacity constraint of each knapsack. The QMKP has
a number of relevant applications where resources with different levels of inter-
action have to be distributed among different tasks (Hiley & Julstrom, 2006).

The QMKP belongs to a large family of the knapsack problems. Among
these, the basic linear 0-1 knapsack problem (KP) is probably the least dif-
ficult case since exact solution methods based on dynamic programming and
branch-and-bound can be easily applied (Kellerer et al., 2004). The KP can be
encountered in many other settings (Kellerer et al., 2004) (see (Kaleli, 2014) for
an example in knowledge based systems - collaborative filtering). The linear
multiple knapsack problem (MKP) (Pisinger, 1999) and the quadratic knapsack
problem (QKP) (Pisinger, 2007) generalize the basic KP. Between them, the
MKP where multiple knapsacks are available for packing objects is a relatively
easier problem for which state-of-the-art MKP solvers can find optimal solu-
tions for very large instances (with up to 100,000 items) in less than one second
(Pisinger, 1999). However, the QKP where pairwise profits are defined is more
computationally intractable and the most powerful exact solver can only deal
with instances with no more than 1500 items (Pisinger et al., 2007). The MKP
is not to be confused with the very popular multidimensional knapsack problem
(MDKP) (Vasquez & Hao, 2001; Wang et al., 2013) which has a single knapsack,
but multiple linear constraints. Finally, the QMKP is also related to another
variant of the basic KP – the discounted 0-1 knapsack problem (DKP) where
discounted profits are defined for a pair of items but the problem remains linear
(Rong et al., 2012).

The QMKP considered in this work generalizes both the QKP and the MKP
by allowing multiple knapsacks and pairwise profits between objects. On the
other hand, the QMKP also belongs to the still larger family of quadratic opti-
mization problems whose representative members include the quadratic assign-
ment problem (Misevicius, 2004), the quadratic knapsack problem (Pisinger,
2007), the unconstrained binary quadratic programming problem (Wang et al.,
2012) and specific non-linear programming problems (Boggs & Tolle, 2000;
Pasandideh et al., 2015). Due to their quadratic nature, these problems are
known to be extremely difficult. For this reason, approximate algorithms based
on metaheuristics like evolutionary algorithms, constitute a very popular ap-
proach for tackling these problems (Misevicius, 2004; Wang et al., 2012; Hiley
& Julstrom, 2006; Saraç & Sipahioglu, 2007; Singh & Baghel, 2007; Soak & Lee,
2012).

The QMKP is highly combinatorial with a solution space of order O((m +
1)n) for n objects and m knapsacks. Given the high computational complex-
ity of the problem, no exact approach for the QMKP has been published in
the literature to the best of our knowledge. On the other hand, some effort
has been devoted to develop heuristics which aim to provide satisfactory sub-
optimal solutions in acceptable computing time, but without provable opti-
mal guarantee of the attained solutions. Among these heuristics, neighbor-
hood search and constructive/destructive search approaches are very popular,
including hill-climbing (Hiley & Julstrom, 2006), tabu-enhanced iterated greedy
search (Garćıa-Mart́ınez et al., 2014a), strategic oscillation (Garćıa-Mart́ınez
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et al., 2014b) and responsive iterated threshold search (Chen & Hao, 2015).
Population-based algorithms constitute another class of popular tools for ad-
dressing the QMKP, such as genetic algorithms (Hiley & Julstrom, 2006; Saraç
& Sipahioglu, 2007), memetic algorithms (Singh & Baghel, 2007; Soak & Lee,
2012) and artificial bee colony algorithms (Sundar & Singh, 2010).

In this work, we are interested in developing improved solution methods
for the QMKP. For this purpose, we propose a new algorithm based on the
general evolutionary path-relinking (EPR) metaheuristic (Glover et al., 2004).
Our work is mainly motivated by two key observations.

• From the perspective of solution methods, the EPR framework provides a
variety of appealing features which have been demonstrated to be useful
for designing effective heuristic algorithms. Indeed, EPR has been suc-
cessfully applied to solve a number of challenging problems encountered in
diverse settings. Representative examples include location routing (Mari-
nakis & Magdalene, 2008), vehicle routing (Rahimi-Vahed et al., 2012),
max-min diversity (Resende et al., 2010), permutation flowshop (Vallada
& Rubén, 2010), warehouse layout (Zhang & Lai, 2006), unconstrained
quadratic programming (Wang et al., 2012), and quadratic assignment
(Yagiura et al., 2006). Often, local search/constructive heuristics such
as tabu search (Carrasco et al., 2015; Yagiura et al., 2006; Wang et al.,
2012) and GRASP (Resende et al., 2010) are combined with the path re-
linking method. Fundamentally, EPR operates with a population of (elite)
solutions and employs path relinking procedures to generate (many) inter-
mediate solutions (Glover et al., 2004). The process of path relinking can
help to discover better solutions along the paths or around some interme-
diate solutions (typically identified by local refinement). More generally,
EPR provides a unique framework for designing effective search algorithms
with a suitable balance of diversification and intensification.

• From the perspective of the problem under investigation, the QMKP is
a strongly constrained combinatorial optimization problem in which the
feasible region often consists of components which are separated from each
other by infeasible regions in the search space, especially when the capacity
constraints are tight. In this case, imposing solution feasibility during the
search, like most of the existing QMKP methods, can make it difficult for
the search process to locate global optima or high quality solutions. On
the other hand, methods that can tunnel through feasible and infeasible
regions are particularly attractive as a means to cope with such a situation
(Glover & Hao, 2011; Glover & Laguna, 1999). In this regard, EPR has
the useful property of generating new solution paths where both feasible
and infeasible solutions are eligible, thus providing an algorithm with the
desired tunneling property.

As a general metaheuristic (or algorithmic framework) (Gendreau & Potvin,
2010), EPR can theoretically be applied to any optimization problem. Still
in order to obtain an effective solution algorithm for the problem at hand, it
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is indispensable to carefully adapt EPR to the problem setting by considering
a set of algorithmic design issues such as the procedure for generating initial
solutions, the way of building solution paths from an initiating solution to a
guiding solution, the procedure for local refinement, the criterion for selecting
one or more solutions on a path for local optimization as well as the way of
managing the reference set of elite solutions. Within the context of the QMKP,
as shown in Section 3, our proposed EPR algorithm distinguishes itself from
existing studies by introducing specific strategies to address all these issues
and by devising dedicated techniques to handle infeasible solutions (see Section
3.8 for a summary of the main characteristics of the proposed approach). In
addition, as demonstrated in Section 4, the proposed EPR algorithm attains
a remarkable performance when it is assessed on well-known and hard QMKP
benchmark instances. We undertake to shed light on what makes the proposed
algorithm successful by providing an in-depth algorithmic analysis (see Section
5).

The following identifies the main contributions of the present work:

• The proposed EPR algorithm is the first adaptation of the general EPR
method tailored to the QMKP. The algorithm integrates a set of orig-
inal features including a probabilistic greedy construction procedure to
generate initial solutions of the reference set, a double-neighborhood path
relinking procedure to build diversified solution paths, an effective respon-
sive threshold search algorithm for local refinement, and a fitness-based
updating strategy to maintain a reference set with a healthy diversity.

• Of particular interest is the ability of the proposed EPR algorithm to make
a controlled exploration of infeasible solutions during the path relinking
process. By allowing the search to oscillate between feasible and infeasible
solutions, this strategy promotes exploration of large search zones and
helps to identify high quality solutions.

• The computational assessment on two sets of 90 QMKP benchmark in-
stances indicates a remarkable performance of the proposed algorithm.
For the first set of 60 well-known QMKP instances, the algorithm discov-
ers 10 improved best solutions (i.e., new lower bounds) and matches all
the remaining 50 best known results. For the 30 new large-sized instances,
the algorithm always dominates the state-of-the-art algorithms.

• Ideas of the proposed approach can readily be adapted to design effective
algorithms for other knapsack and constrained optimization problems.

The rest of the paper is organized as follows. Section 2 introduces the prob-
lem definition and the mathematical formulation. Section 3 describes the pro-
posed EPR approach in detail. Section 4 presents experimental results of our
algorithm, including comparisons with the state-of-the-art algorithms in the
literature. Section 5 analyzes several essential components of our proposed al-
gorithm, followed by a discussion of conclusions in Section 6.
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2. Modeling the quadratic multiple knapsack problem

Let N = {1, 2, ..., n} be a set of objects (or items) and M = {1, 2, ...,m} a
set of knapsacks. Each object i (i ∈ N) has a profit pi and a weight wi. Each
pair of objects i and j (1 ≤ i 6= j ≤ n) has a joint profit pij when both objects
i and j are allocated to the same knapsack. Each knapsack k (k ∈ M) has a
capacity Ck. The purpose of the QMKP is to assign the n objects to the m
knapsacks (some objects can remain unassigned) such that the overall profit of
the assigned objects is maximized subject to the following two constraints:

• Each object i (i ∈ N) can be allocated to at most one knapsack;

• The total weight of the objects assigned to each knapsack k (k ∈ M)
cannot exceed its capacity Ck.

Let S = {I0, I1, ..., Im} be an allocation of the n objects to the m knapsacks
where each Ik ⊂ N (k ∈ M) represents the set of objects assigned to knapsack
k and I0 is the set of unassigned objects. Then the QMKP can be formalized
as follows:

max f(S) =
∑
k∈M

∑
i∈Ik

pi +
∑
k∈M

∑
i6=j∈Ik

pij (1)

subject to: ∑
i∈Ik

wi ≤ Ck, k ∈M (2)

S ∈ {0, ...,m}n (3)

Note that the QMKP can be conveniently formulated as a 0-1 quadratic
program (Chen & Hao, 2015). However, as shown in (Chen & Hao, 2015), the
computational results of solving this quadratic model with the CPLEX 12.4
solver are quite disappointing since it cannot find an optimal solution even for
some of the smallest benchmark instances with only 100 objects.

3. An evolutionary path relinking algorithm for the QMKP

The general PR framework typically starts from a collection of diverse elite
solutions which are contained in a population called a reference set (RefSet). In
the most common version, pairs of solutions in RefSetare created and recorded
in a so-called pair set (PairSet). A Path Relinking method is then applied to
each pair of solutions in PairSet, to generate a path of intermediate solutions,
where the solution starting the path is called initiating solution, and the one
ending the path is called guiding solution. One or several solutions are picked
from the path to be submitted to a Local Refinement method in order to identify
enhanced solutions. One iteration (or generation) of PR terminates by updating
RefSet and PairSet with the improved solutions from Local Refinement. This
process is iterated until all pairs in PairSet are examined.

In what follows, we introduce our evolutionary path relinking (EPR) method
and provide an explanation of its ingredients.
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3.1. Main scheme

The main scheme of our EPR algorithm is descpribed in Algorithm 1 whose
operations are presented below.

Algorithm 1 Pseudo-code of the EPR algorithm for the QMKP.

1: Input:
P : an instance of the QMKP , p: reference set size;

2: Output: the best solution S∗ found so far;
3: repeat
4: RefSet = {S1, S2, ..., Sp} ← Initial−RefSet(p) /* Sect. 3.2 */
5: S∗ ← Best(RefSet) /* S∗ records the best solution found so far */
6: PairSet← {(i, g) : Si, Sg ∈ RefSet, f(Si) < f(Sg)}
7: Rank PairSet in descending order of f(Sg), for solutions with the same f(Sg),

rank PairSet in ascending order of f(Si)
8: while PairSet 6= ∅ do
9: S0 ← {0}n

10: Pick the first solution pair (i0, g0) ∈ PairSet /* Sect. 3.3 */
11: Sequence = {S1, S2, .., St} ← path−relink(Si0 , Sg0)

{Check if Sequence contains a solution better than the current best sol. S∗}
12: Sbf ← BestFeasible(Sequence) /* Identify the best feasible solution of Se-

quence */
13: if f(Sbf ) > f(S∗) then
14: S0 ← Sbf

15: end if
{The best of Sequence is no better than the best solution S∗ found so far}

16: if f(S0) = 0 then
17: Select Sr ∈ Sequence /* Sect. 3.4 */
18: if Sr is infeasible then
19: Sr ← repair(Sr) /* Repair infeasible Sr to be feasible, Sect.3.5 */
20: end if
21: if f(Sr) > f(S∗) then
22: S0 ← Sr

23: end if
24: if f(S0) = 0 then
25: S0 ← local−refine(S

r) /* Improve Sr by local refinement, Sect.3.6 */
26: end if
27: end if

{Offspring S0 is better than initiating sol Si0 , use S0 to update RefSet and
PairSet}

28: if f(S0) > f(Si0) then
29: (RefSet, PairSet)← pool−update(RefSet, PairSet) /* Sect. 3.7 */
30: if f(S0) > f(S∗) then
31: S∗ ← S0

32: end if
33: else
34: PairSet← PairSet\(i0, g0)
35: end if
36: end while
37: until stopping condition is reached
38: return S∗

At the beginning, an initial RefSet of elite solutions {S1, S2, ...Sp} are gen-
erated by a probabilistic greedy construction method (Line 4, see Sect. 3.2) and
are further improved by the Local Refinement procedure (Sect. 3.6). PairSet
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is then formed to contain all possible index pairs (i, g), (i, g ∈ {1, 2, ...p}) of
solutions of RefSet according to two conditions. First, the initiating solution
Si is worse than the guiding solution Sg (i.e., f(Si) < f(Sg)). Second, these
index pairs are ranked in descending order of the objective value f(Sg) of the
guiding solution Sg, and for solutions with the same f(Sg), the index pairs are
ranked in ascending order of the objective value f(Si) of the initiating solution
Si.

EPR then enters a while loop of the path relinking phase until PairSet
becomes empty. At the beginning of each loop, from an empty offspring solution
S0, the algorithm picks the first index pair (i0, g0) from the ranked PairSet, and
applies the Relinking Method to the two selected solutions (Si0 , Sg0) to generate
a Sequence of solutions (Line 11, see Sect. 3.3). This Sequence of solutions
forms a path connecting Si0 (initiating solution) and Sg0 (guiding solution).
From this Sequence, we select one solution and apply operations which differ
according to whether the selected solution is feasible or infeasible.

EPR first checks if Sequence contains a feasible solution Sbf whose quality
is better than the best solution S∗ found so far (Lines 12-13). If this is the case,
EPR records Sbf as the offspring solution S0 of the current EPR generation and
then updates RefSet and PairSet accordingly (Line 29, see Sect. 3.7).

Then, if no new best solution exists in Sequence, EPR selects, with the path
solution selection method of Sect. 3.4, a solution Sr from Sequence which can
be either feasible or infeasible (Line 17). If the selected solution Sr is infeasible,
EPR repairs it with the Repair Method of Sect. 3.5 (Lines 18-19). If the repaired
solution Sr is a new best solution, EPR records Sr as the offspring solution S0

(Lines 21-22) and then updates RefSet and PairSet accordingly (Line 29, see
Sect. 3.7).

If the offspring solution S0 is not updated by the repaired solution Sr since it
does not improve the best solution S∗ (i.e., S0 remains empty), EPR applies the
Local Refinement procedure (Line 25, see Sect. 3.6) to further improve Sr and
assigns the improved Sr to S0. EPR finishes the iteration at the pool updating
phase where it updates RefSet, PairSet and the best solution.

EPR applies the above operations to each paired solutions of RefSet. Upon
the completion of the path relinking process on all pairs ofRefSet, EPR rebuilds
a new RefSet which includes the best solution found so far S∗, and the process
repeats until a stopping condition is verified (e.g., a time cutoff, a maximum
number of allowed path relinking iterations).

3.2. RefSet initialization

In the reference set initialization phase, EPR uses a probabilistic greedy con-
struction method (PGCM) to build an initial solution which is further improved
by the Local Refinement procedure. Unlike deterministic greedy construction
methods such as those used in (Chen & Hao, 2015; Garćıa-Mart́ınez et al.,
2014a,b), PGCM employs a probabilistic choice rule which bears some resem-
blance to the popular GRASP method (Resende & Ribeiro, 2003) although
proposed earlier in (Glover, 1989, 1990). PGCM relies on the the notion of
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conditional attractiveness which extends the familiar bang-for-buck ratio of or-
dinary linear knapsack problems to the present setting.

Definition 1 Given a solution S = {I0, I1, ..., Im}, the conditional attrac-
tiveness of object i (i ∈ N) with respect to knapsack k (k ∈ M) in S is given
by:

CA(S, i, k) = (pi +
∑

j∈Ik,j 6=i

pij)/wi (4)

Starting from an empty solution S and the first knapsack (i.e., k = 1), PGCM
iteratively and probabilistically selects an unallocated object i from a restricted
candidate list RCL(S, k) and assigns i to knapsack k. Let R(S, k) denote the
set of unselected objects such that ∀i ∈ R(S, k), wi +

∑
j∈Ik wj ≤ Ck. To

build RCL(S, k), we first sort all objects in R(S, k) in descending order of their
conditional attractiveness values (calculated by Equation 4), and then we put
the first min{rcl, |R(S, k)|} (rcl is a parameter) objects into RCL(S, k). The
rth object in RCL(S, k) is associated with a bias br = 1/er and is selected with
a probability p(r) which is calculated as:

p(r) = br/

|RCL(S,k)|∑
j=1

bj (5)

PGCM skips to the next knapsack each time RCL(S, k) (∀k ∈ M) becomes
empty and this is repeated until the last knapsack (i.e., k = m) is examined.

Algorithm 2 Pseudo-code of the RefSet initialization procedure

1: Input: P : An instance of the QMKP, p: reference set size;
2: Output: The reference set RefSet
3: RefSet← ∅
4: maxTrial← 3 ∗ p, nTrial← 0, nIndi← 0
5: while nTrial < maxTrial do
6: S ← {0, ..., 0}
7: for k = 1→ m do
8: while RCL(S, k) 6= ∅ do
9: Select an object i ∈ RCL(S, k) according to the biased probability function

of Equation 5.
10: S(i) = k
11: Update RCL(S, k)
12: end while
13: end for
14: S ← local−refine(S)
15: if S is not a clone of any solution in RefSet then
16: RefSet← RefSet ∪ S
17: nIndi← nIndi+ 1
18: if nIndi = p then
19: break;
20: end if
21: end if
22: nTrial← nTrial + 1
23: end while
24: p← |RefSet|
25: return RefSet
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Algorithm 2 summarizes this RefSet initialization procedure. RefSet is set
to empty at first. Then a solution is generated using PGCM (Line 6-10) and then
improved by a Local Refinement procedure. The ameliorated solution is either
inserted to RefSet if it is not a clone of any solution of RefSet, or discarded
if it appears already in RefSet. The initialization procedure is iterated until
the population is filled with p (reference set size) nonclone individuals or the
number of iterations reaches the maxTrial value (set to 3∗p). Finally, p is reset
to the number of solutions eventually obtained.

3.3. The relinking method

The purpose of the relinking method is to generate a sequence of new solu-
tions by exploring trajectories that connect high quality solutions. Starting from
an initiating solution, the relinking method generates a solution path towards
the guiding solution by progressively introducing attributes into the initiating
solution that are contained in the guiding solution.

To ensure the efficacy of the relinking method, we consider two issues. First,
we need a distance measure to identify the difference between two solutions.
Second, we need a means to explore the trajectories connecting the initiating
solution and the guiding solution with the help of some neighborhoods and an
evaluation function. These issues are elaborated in the two next subsections.

3.3.1. Measuring the distance between two solutions

The QMKP can be viewed as a grouping problem in the sense that the n
objects are to be distributed into different knapsacks (unassigned objects are
kept in knapsack zero). Therefore, the well-known set-theoretic partition dis-
tance (Gusfield, 2002) appears to be appropriate for measuring the differences
between two solutions. Given solutions S1 and S2, we identify their distance
Dist(S1, S2) by resorting to a complementary measure Sim(S1, S2) called sim-
ilarity, i.e., Dist(S1, S2) = n− Sim(S1, S2). The similarity Sim(S1, S2) defines
the size of the identical part of two solutions which represents the maximum
number of elements of S1 that do not need to be displaced to obtain S2. Now
we explain how to identify the similarity Sim(S1, S2).

In the context of the QMKP, knapsack i of the first solution might corre-
spond to knapsack j (j 6= i) of the second solution where the two knapsacks
may have many objects in common. To find the similarity of two solutions, we
first match the knapsack zero of the first solution with the knapsack zero of the
second solution. Then we create a complete bipartite graph G = (V1, V2, E)
where V1 and V2 represent respectively the m knapsacks of solutions S1 and S2.
Each edge (k1

i , k
2
j ) ∈ E is associated with a weight wk1

i k
2
j
, which is defined as the

number of shared objects in knapsack k1
i of solution S1 and knapsack k2

j of so-
lution S2. From this bipartite graph, we find a maximum weight matching with
the well-known Hungarian algorithm (Kuhn, 1955) which can be accomplished
in O(m3). After the knapsack matching procedure, we adjust the knapsack
numbering of the two solutions according to the matching outcome. The simi-
larity Sim(S1, S2) can then be identified by simply summing up the number of
common objects of each matched knapsack pair of solutions S1 and S2.
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3.3.2. Building the path

The performance of the relinking method highly depends on the neighbor-
hoods and evaluation function to move from the initiating solution towards the
guiding solution. A suitable design of the relinking method seeks to create
inducements to favor solution transitions that lead to good attribute compo-
sitions of the initiating and guiding solutions. For this purpose, we propose a
double-neighborhood relinking method (denoted as DNRM).

DNRM jointly employs two restricted neighborhoods RNR and RNE in-
duced by two basic move operators: REALLOCATE (REAL for short) and
EXCHANGE (EXC for short). At each relinking step, the best neighboring
solution among both neighborhoods is selected for the transition. REAL(u, k)
displaces an object u from its current knapsack S(u) to knapsack k (k 6= S(u),
k, S(u) ∈ {0, 1, ...,m}) while EXC(u, v) exchanges a pair of objects that are
from two different knapsacks (i.e., S(u) 6= S(v), S(u), S(v) ∈ {0, 1, ...,m}). Let
S⊕OP denote the operation of applying move operator OP to S. Let Si and Sg

be the initiating and guiding solutions respectively. The two restricted neigh-
borhoods induced by the above two move operators are described as follows:

• RNR(S) = {S′ : S
′

= S ⊕ REAL(u, k), Si(u) 6= Sg(u), Sg(u) = k}.
RNR(S) contains a set of solutions that are closer to the guiding solution
by exactly one unit compared to the current solution S. These solutions
are obtained by moving an object u from its current knapsack Si(u) to
another knapsack Sg(u) to which it belongs in the guiding solution.

• RNE(S) = {S′ : S
′

= S ⊕ EXC(u, v), Si(v) = Sg(u), Si(v) 6= Sg(v)}.
RNE(S) contains a set of solutions that are closer to the guiding solution
by one or two units compared to the current solution S. These solutions
are obtained by moving an object u from its current knapsack Si(u) to
another knapsack Sg(u) to which it belongs in the guiding solution, and
moving an object v from its current knapsack Si(v) to another knapsack
Si(u) provided that Si(v) 6= Sg(v). If Si(u) = Sg(v), the solution obtained
is two units closer to the guiding solution, otherwise it is only one unit
closer.

It is known that allowing a controlled exploration of infeasible solutions may
enhance the performance of neighborhood-based search, which may facilitate
transitioning between structurally different feasible solutions (Glover & Hao,
2011). We thus allow our DNRM to tunnel through infeasible regions of the
solution space. Given a solution S = {I0, I1, ..., Im}, its total violation of the
knapsack capacity is computed as: V (S) =

∑m
k=1(max{0,

∑
i∈Ik wi − Ck}, and

its total weight of the allocated objects is given by: W (S) =
∑m

k=1

∑
i∈Ik wi.

The quality of the (infeasible) solution S is then assessed by considering both
the violation of the capacity constraint and the total profit:

φ(S) = f(S)− α ∗ V (S) (6)

where α is a penalty parameter that balances the tradeoff between total profit
and capacity violation. A larger value of φ(S) indicates a better solution. It
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would be possible to dynamically change the value of α during the search. How-
ever, according to our empirical outcomes, we observe that the proposed algo-
rithm performs well by fixing α to the following value throughout the relinking
process: α = f(Si)/W (Si), where Si is the initiating solution.

Algorithm 3 Pseudo-code of the double-neighborhood relinking method

1: Input: An initiating solution Si and a guiding solution Sg;
2: Output: A Sequence of intermediate solutions;
3: Perform a matching of the knapsacks of Si and Sg, and adjust the knapsack numbering

of Sg according the matching result.
4: Compute the distance Dist(Si, Sg).
5: α← f(Si)/W (Si)
6: count← 0
7: Sequence← ∅
8: S ← Si

9: while count < Dist(Si, Sg) do

10: Select a solution S
′
∈ RNR(S) ∪RNE(S) that maximizes φ(S

′
).

11: if Dist(S, Sg)−Dist(S
′
, Sg) = 2 then

12: count← count+ 2
13: else
14: count← count+ 1
15: end if
16: S ← S

′

17: Sequence ∪ S
′

18: end while
19: return Sequence

Algorithm 3 shows the pseudo-code of our double-neighborhood relinking
method (DNRM). Initially, DNRM performs a matching of the knapsacks of the
initiating solution Si and guiding solution Sg (see Section 3.3.1), and then ad-
justs the knapsack numbering of the guiding solution Sg according to the match-
ing result. When the knapsacks of the two solutions are matched, the distance
Dist(Si, Sg) can be identified easily by simply counting the number of different
assignments of the two matched solutions. Before entering the path building
loop, the penalty parameter α and counters are initialized, the Sequence is set
to an empty set, and the current solution is set to the initiating solution Si.
At each step towards the guiding solution, DNRM selects the best solution,
according to the penalized evaluation function (Equation 6), from the union
of the restricted reallocate neighborhood RNR(S) and the restricted exchange
neighborhood RNE(S). If the selected solution is two units closer to the guiding
solution compared to the current solution, the counter count is incremented by
two, otherwise it is incremented by one. The current solution is then set to the
selected best solution, and it is included into the Sequence as an intermediate
solution of the path. The number of steps needed by DNRM to accomplish
the path building process from the initiating solution to the guiding solution is
bounded by Dist(Si, Sg).
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3.4. Path solution selection

Following (Glover et al., 2004), once a relinking path is built from an initi-
ating solution Si to the guiding solution Sg, some intermediate solutions within
the path are selected and further improved by local refinement. Note that in
our case, two consecutive solutions on the relinking path differ only in the at-
tribute that was just introduced. Consequently, applying local optimization to
solutions close to Si or Sg would very probably lead to the same local optimum.
For this reason, we select the path solution by considering both its quality and
distance to Si or Sg according to the following two rules:

• Rule 1: We first try to select a best feasible solution from the middle
three fifths of the path. To do so, we first identify a subset of solutions
in Sequence denoted as subSeq (subSeq ⊂ Sequence) such that ∀S ∈
subSeq, Dist(Si, S) ≥ Dist(Si, Sg)/5 and Dist(Sg, S) ≥ Dist(Si, Sg)/5.
We then pick the best feasible solution S from subSeq with the largest
objective value f(S).

• Rule 2: If there is no feasible solution in subSeq, we select the infeasible
solution S in the middle of the path (i.e., Dist(Si, S) = Dist(Si, Sg)/2 or
Dist(Si, S) = Dist(Si, Sg)/2 + 1 given that the move step can be either
one unit or two units). We then apply a Repair Method (see Section 3.5) to
bring the infeasible solution back to the feasible region before submitting
it to the Local Refinement procedure.

3.5. The repair method

If the selected solution in the relinking path is infeasible, we apply an ag-
gressive neighborhood search method (ANSM) to repair this solution. Basically,
ANSM jointly employs two well-known operators REAL and EXC to carry out
a best improvement local search. At each iteration, all solutions that can be
reached by these two operators from the current solution (without confining to
any constraint) are examined according to the penalty-based evaluation function
(Equation (6)), and the best one (i.e., the one with the largest evaluation value)
is chosen as the output solution of this stage. The current solution will only be
replaced by the output solution if the latter is better than the current solution.
The output of the whole repairing procedure is assured to be a local optimum
since ANSM conducts a thorough search within the neighborhoods defined by
the two operators. We can thus expect that the repaired feasible solution could
be able to improve the best solution found so far as well.

To redirect the search towards feasible region, we initialize the penalty pa-
rameter α of Equation 6 with a relatively large value: α = 10i ∗ f(S)/W (S),
where S is the current solution and i is set to 1 at the beginning. The value of
α is kept unchanged during the search. If one round of aggressive neighborhood
search is not enough to repair the input solution, i is incremented by one and α
is recalculated. ANSM then restarts a new round of its search. This is repeated
until ANSM has been launched three consecutive times. If the resulting solution
is still infeasible (this happens rarely), a greedy repair procedure is triggered.
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The greedy repair procedure consists in simply removing the least conditionally
attractive objects from the capacity-violated knapsacks until this constraint be-
comes satisfied. The pseudo-code of the aggressive neighborhood search repair
method is presented in Algorithm 4.

Algorithm 4 Pseudo-code of the repair method

1: Input: An infeasible solution Sinf ;
2: Output: A feasible solution Sf ;
3: S ← Sinf

4: i← 1
5: while i <= 3 do
6: α← 10i ∗ f(S)/W (S)
7: S ← agressiveNeighSearch(S, α).
8: if S is feasible then
9: break

10: else
11: i← i+ 1
12: end if
13: end while
14: if S is infeasible then
15: S ← greedyRepair(S)
16: end if
17: return S

3.6. The local refinement method

The Local Refinement component has a significant impact to the overall
performance of the proposed EPR algorithm. For our purpose, we adopt the
responsive threshold search algorithm (RTS) introduced in (Chen & Hao, 2015).
RTS was originally proposed with a perturbation operation where the overall
algorithm is called iterated responsive threshold search (IRTS). The purpose
of the perturbation operation is to help the search escape from deep local op-
tima. In the case of EPR, such a functionality is realized by the path relinking
method coupled with the path solution selection rules in EPR. Therefore, the
perturbation operation is not useful and thus excluded from EPR.

RTS basically alternates between a threshold-based exploration phase (Ex-
ploration for short) and a descent-based improvement phase (Improvement for
short). Starting from an initial solution which is a feasible solution either picked
in the relinking path or produced by the Repair Method, RTS realizes an Ex-
ploration phase which is composed of L (L is a parameter) calls of the Thresh-
oldBasedExploration procedure which is based on three move operators (i.e.,
REAL, EXC and DROP ). Note that in RTS, the REAL operator excludes
the case of displacing an assigned object to knapsack 0, which is actually accom-
plished by the DROP operator. At each iteration, RTS accepts any encoun-
tered neighboring solution that satisfies a responsive quality threshold T . This
threshold is dynamically determined according to the recorded best local opti-
mum value (fp) and a threshold ratio r: T = (1−r)∗fp, where r is calculated by
an inverse proportional function with respect to fp (see (Chen & Hao, 2015) for
details). After an Exploration phase, RTS switches to the Improvement phase
for intensification purpose. In the Improvement phase, RTS continues accepting
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the first met improving neighboring solutions which are induced by REAL or
EXC operator until no improving solutions can be found. If the local optimum
eventually attained during the Improvement phase has a better objective value
than the recorded best local optimum value (fp), RTS updates fp as well as the
threshold ratio r, and then restarts a new round of Exploration-Improvement
phases. RTS terminates when fp has not been updated for a consecutive W
times of Exploration-Improvement phases.

To accelerate neighborhood examination, RTS restricts its search within the
feasible neighboring solutions when operators REAL and EXC are applied. No
restriction is needed for the DROP operator since it never generates infeasible
solution. The neighborhoods are explored in a token-ring way during both the
Exploration phase and the Improvement phase (Chen & Hao, 2015).

3.7. The pool updating strategy

For each new solution S0 which can be the best feasible solution in the
relinking path, the best feasible solution obtained by the Repair Method or the
best solution produced by the Local Refinement procedure, we need to decide
whether S0 should be inserted into RefSet or not. To make this decision, we
employ a fitness-based replacement strategy (FBRS) for updating both RefSet
and PairSet at each generation.

With FBRS, EPR replaces the initiating solution Si0 (which is always worse
than the guiding solution Sg0) with S0 if the following two conditions are simul-
taneously verified: 1) S0 is better than the initiating solution Si0 ; 2) S0 is not
a clone of any other solution in RefSet. Once S0 is inserted into RefSet, we
update PairSet accordingly by inserting all the previously removed index pairs
that are associated with S0 into PairSet. For each inserted index pair (i, g), we
ensure that the objective value of Si is smaller than that of Sg. Then, the index
pairs in PairSet are ranked in descending order of the objective value f(Sg) of
the guiding solution Sg, and for solutions with the same f(Sg), they are ranked
in ascending order of the objective value of the initiating solution f(Si). The
pool updating procedure is shown in Algorithm 5.

Algorithm 5 Pseudo-code of the pool updating procedure

1: Input: RefSet, PairSet, an offspring solution S0, an initiating solution Si0 , a guiding
solution Sg0 ;

2: Output: RefSet, PairSet;
3: if f(S0) > f(Si) and S0 is not a clone of any solution S ∈ RefSet then
4: RefSet← (RefSet ∪ {S0})\Si;
5: Update PairSet;
6: Rank index pairs in PairSet;
7: else
8: PairSet← PairSet\(i0, g0);
9: end if

10: return RefSet,PairSet

3.8. Discussion

By properly adapting the PR method to the QMKP at hand, the proposed
EPR algorithm has a number of notable characteristics. First, unlike other
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evolutionary frameworks where an improved offspring solution is typically pro-
vided by some variant of a local refinement procedure, our EPR algorithm uses
the path relinking procedure and the repair procedure as two complementary
means for generating improved offspring solutions. This is achieved thanks to
the mechanisms used in these two procedures which allow a controlled explo-
ration of infeasible solutions. We provide experimental data in Section 5.2 to
show that these two procedures help to identify high quality solutions.

Second, our EPR algorithm explores only one directional path starting from
a worse initiating solution and ends at a better guiding solution. A solution
in the path is picked for local refinement when suitable conditions (e.g., there
is no improved solution along the path) are verified. This is different from the
typical practice where two paths are usually built by reversing the initiating
solution and the guiding solution. According to our observations, building an
extra link seldom achieves improved solutions while consuming more computing
time. Therefore, our strategy to explore one directional path proves to be a
good choice when the allowed computing time is limited as in our case.

Third, we update both RefSet and PairSet at each generation when an
improved offspring solution is identified. This strategy accelerates the evolution
of our algorithm by dynamically transferring the improved solution pairs taken
from RefSet into PairSet which helps to maintain the elitism of the initiating
and guiding solution. Our strategy is different from the typical strategy where
one finishes examining all solution pairs in the current PairSet before proceed-
ing to examine the updated PairSet. We investigate the implications of these
differences in Section 5.3.

Finally, when all solution pairs in the PairSet have been examined, our
EPR algorithm starts a new round of evolutionary path relinking process. This
restart mechanism provides a form of diversification and is able to displace the
search to a distant unexplored region. Investigations presented in Section 5.3
show the usefulness of this mechanism.

4. Computational experiments

To evaluate the performance of the proposed EPR algorithm, we conducted
extensive experiments on 90 benchmark instances. The assessment was per-
formed by comparing our results to those of the state-of-the-art methods and
the current Best Known Results (BKR) ever reported in the literature.

4.1. Benchmark instances

The 90 benchmark instances used in our experiments belong to the two sets:

• Set I: This set consists of 60 well-known benchmarks which are commonly
used for the QMKP algorithm assessment in the literature (Chen & Hao,
2015; Garćıa-Mart́ınez et al., 2014a,b; Sundar & Singh, 2010; Saraç &
Sipahioglu, 2007; Singh & Baghel, 2007; Hiley & Julstrom, 2006). Built
from the quadratic knapsack problem (QKP) instances introduced in (Bil-
lionnet & Soutif, 2015) which can be download from: http://cedric.
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cnam.fr/~soutif/QKP/QKP.html, these instances are characterized by
their number of objects n ∈ {100, 200}, the density d ∈ {0.25, 0.75} (i.e.,
the number of non-zero coefficients of the objective function divided by
n(n + 1)/2), and the number of knapsacks m ∈ {3, 5, 10}. For each in-
stance, the capacities of the knapsacks are set to 80% of the sum of object
weights divided by the number of knapsacks. The optimal solutions of
these instances are unknown.

• Set II: The second set is composed of 30 new large instances with 300
objects (i.e., n = 300), with unknown optima. Like the instances of Set
I, they are also characterized by their density d ∈ {0.25, 0.75} and the
number of knapsacks m ∈ {3, 5, 10}. To build these 30 QMKP instances,
we first randomly generated 10 QKP instances (5 instances for each den-
sity) using the method introduced in (Billionnet & Soutif, 2015). Based
on each QKP instance, we then created 3 QMKP instances, each with a
different number of knapsacks, and a knapsack capacity set to 80% of the
sum of object weights divided by the number of knapsacks. These new
instances can be downloaded from: http://www.info.univ-angers.fr/
pub/hao/qmkp.zip.

4.2. Experimental settings

The proposed EPR algorithm was programmed in C++1, and compiled with
GNU g++ on an Intel Xeon E5440 processor (2.83Ghz and 2GB RAM) with
’-O3’ flag. Without using a compiler optimization flag, it requires respectively
0.44, 2.63 and 9.85 seconds to solve the well-known DIMACS machine bench-
mark graphs2 r300.5, r400.5 and r500.5 on our machine.

Like other QMKP algorithms, the proposed EPR algorithm has a number of
parameters to be tuned. Most of the parameters are required by the RTS local
refinement procedure for which we adopt the same values used in (Chen & Hao,
2015) (which were identified by conducting a careful statistical analysis). As
suggested in (Glover et al., 2004), EPR maintains a fairly small-sized reference
set of 10 elite solutions. Even if it would be possible to find a parameter setting
better than the setting used in this paper, the experimental results reported
in this section show that the adopted setting performs very well on the tested
benchmark instances.

Note that it is a common practice in the QMKP literature to use a time
cutoff as the stopping condition to evaluate the algorithm performance. In our
case, we imposed a time limit of 15 seconds, 90 seconds and 180 seconds for
instances with respectively 100 objects, 200 objects and 300 objects. The first
two time limits for the instances of Set I have been used in (Chen & Hao, 2015).
Under these stopping conditions, we focus primarily on comparing the solution

1The best solution certificates are available at http://www.info.univ-angers.fr/pub/hao/
EPRresults.zip.

2dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique
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quality, the deviation and the success rate over multiple runs of the competing
algorithms.

4.3. Comparative results on the instances of Set I

This section is dedicated to the computational results obtained by our EPR
algorithm on the 60 instances of Set I. EPR was run 40 times for each instance
and for each run the program was terminated with a time limit of 15 seconds
for the instances with 100 objects and 90 seconds for those with 200 objects.
We also included a comparative study of our results with respect to those of the
state-of-the-art algorithms.

Table 1 shows the results of our EPR algorithm along with the best known
results ever reported in the literature. The characteristics of each instance are
listed from Column 1 to 5: the number of objects n, density d, number of
knapsacks m, instance identity number I and knapsack capacity C. Column 6
gives the best known lower bounds which are extracted from the results reported
in (Chen & Hao, 2015). Column 7 to 11 show our results, including the overall
best lower bound (fbest), the average value of the 40 best lower bounds (favg),
the standard deviation of the 40 best lower bounds (sd), the number of runs
where EPR reaches fbest (hit) and the earliest CPU time in seconds over the 40
runs when fbest is first reached (CPU).

Table 1 shows that EPR achieves a very competitive performance by match-
ing (bold entries) or improving (starred bold entries) all the best known lower
bounds. Specifically, our EPR can reach the previous best known results for 50
out of 60 cases, and for 18 out of these 50 cases, EPR achieves a success rate
of 100% which means one run suffices for EPR to attain the best known lower
bound. More importantly, for 10 instances, EPR is able to attain an improved
result over the previous best known lower bound.

To further evaluate the performance of the proposed EPR algorithm, we
show a comparison of our results with those of 3 recent best performing algo-
rithms:

• TIG: A tabu-enhanced iterated greedy algorithm (Garćıa-Mart́ınez et al.,
2014a).

• SO: A strategic oscillation algorithm (Garćıa-Mart́ınez et al., 2014b).

• IRTS: An iterated responsive threshold search algorithm (Chen & Hao,
2015).

We divide the 60 instances of Set I into 12 classes, each containing 5 in-
stances, which are indicated in n − d − m where n is the number of objects,
d is the density and m is the number of knapsacks. Table 2 summarizes the
statistical results of our algorithm as well as those of the reference algorithms.
For each algorithm, we list the number of instances out of the 5 instances in
each class where the corresponding algorithm achieves the best known lower
bound (#Bests). The best known lower bounds used in this comparative study
are compiled from the previous best known lower bounds (Column fbk of Table

17



Table 1: Computational results of EPR on the 60 benchmark instances of Set I with 15 seconds
per run for instances with 100 objects and 90 seconds per run for instances with 200 objects)

.
Instance EPR

n d m I C
fbk

fbest favg sd hit CPU(s)
100 25 3 1 688 29286 29286 29286.00 0.00 40 0.10
100 25 3 2 738 28491 28491 28491.00 0.00 40 0.08
100 25 3 3 663 27179 27179 27179.00 0.00 40 0.25
100 25 3 4 804 28593 28593 28593.00 0.00 40 0.11
100 25 3 5 723 27892 27892 27892.00 0.00 40 0.16
100 25 5 1 413 22581 22581 22568.80 25.31 31 0.38
100 25 5 2 442 21704 21704 21671.70 8.43 1 4.78
100 25 5 3 398 21239 21239 21239.00 0.00 40 0.18
100 25 5 4 482 22181 22181 22180.95 0.31 39 0.16
100 25 5 5 434 21669 21669 21660.85 14.83 27 0.92
100 25 10 1 206 16221 16221 16205.17 8.10 4 4.27
100 25 10 2 221 15700 15700 15683.98 33.44 29 0.41
100 25 10 3 199 14927 14927 14866.50 28.92 3 7.36
100 25 10 4 241 16181 16181 16181.00 0.00 40 1.12
100 25 10 5 217 15326 15326 15297.52 36.37 24 0.92
200 25 3 1 1381 101471 101471 101467.10 6.87 24 9.25
200 25 3 2 1246 107958 107958 107958.00 0.00 40 0.22
200 25 3 3 1335 104589 104589 104581.68 7.22 19 11.04
200 25 3 4 1413 100098 100136∗ 100136.00 0.00 40 10.81
200 25 3 5 1358 102311 102311 102308.65 2.26 19 12.99
200 25 5 1 828 75623 75623 75578.35 37.77 12 25.07
200 25 5 2 747 80033 80033 80009.27 41.36 29 5.42
200 25 5 3 801 78043 78043 78036.10 20.82 36 3.56
200 25 5 4 848 74140 74140 74080.12 41.73 1 21.59
200 25 5 5 815 76610 76610 76610.00 0.00 40 1.10
200 25 10 1 414 52293 52293 52147.97 112.48 1 62.77
200 25 10 2 373 54830 54830 54696.15 76.22 7 8.48
200 25 10 3 400 53661 53678∗ 53596.60 38.09 1 64.25
200 25 10 4 424 51297 51302∗ 51096.15 78.88 1 60.67
200 25 10 5 407 53621 53621 53575.57 40.06 8 9.71
100 75 3 1 669 69977 69977 69977.00 0.00 40 0.08
100 75 3 2 714 69504 69504 69504.00 0.00 40 0.07
100 75 3 3 686 68832 68832 68832.00 0.00 40 0.07
100 75 3 4 666 70028 70028 70028.00 0.00 40 0.04
100 75 3 5 668 69692 69692 69692.00 0.00 40 0.12
100 75 5 1 401 49421 49421 49417.40 8.57 34 0.25
100 75 5 2 428 49365 49400∗ 49360.47 17.20 5 0.58
100 75 5 3 411 48495 48495 48495.00 0.00 40 0.11
100 75 5 4 400 50246 50246 50246.00 0.00 40 0.41
100 75 5 5 400 48753 48753 48749.25 8.93 16 0.62
100 75 10 1 200 30296 30296 30231.95 75.62 10 5.49
100 75 10 2 214 31207 31207 31120.22 41.50 3 1.39
100 75 10 3 205 29908 29908 29900.60 12.57 25 0.43
100 75 10 4 200 31762 31762 31717.47 41.55 18 0.57
100 75 10 5 200 30507 30507 30465.35 25.29 8 4.40
200 75 3 1 1311 270718 270718 270718.00 0.00 40 1.88
200 75 3 2 1414 257288 257288 257287.73 1.72 39 6.34
200 75 3 3 1342 270069 270069 270069.00 0.00 40 1.79
200 75 3 4 1565 246993 246993 246963.23 34.73 7 38.53
200 75 3 5 1336 279598 279598 279598.00 0.00 40 6.43
200 75 5 1 786 185493 185493 185487.58 28.10 37 7.06
200 75 5 2 848 174836 174836 174814.30 27.54 21 4.87
200 75 5 3 805 186774 186782∗ 186737.12 27.72 2 39.44
200 75 5 4 939 166990 167142∗ 166957.67 96.46 2 24.71
200 75 5 5 801 193310 193310 193219.40 40.89 1 37.23
200 75 10 1 393 113139 113324∗ 112972.98 158.98 1 84.97
200 75 10 2 424 105807 105966∗ 105554.00 143.34 1 69.09
200 75 10 3 402 114596 114860∗ 114397.62 141.19 1 82.61
200 75 10 4 469 99106 99422∗ 98875.45 146.35 1 39.89
200 75 10 5 400 117309 117309 116867.85 126.49 1 77.89
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Table 2: Comparison of EPR with three state-of-the-art methods on Set I: TIG (Garćıa-
Mart́ınez et al., 2014a), SO (Garćıa-Mart́ınez et al., 2014b), and IRTS (Chen & Hao, 2015)

TIG SO IRTS EPRInst.
#Bests Avg. #Bests Avg. #Bests Avg. SD #Bests Avg. SD

100-25-3 4 28198.56 5 28253.59 5 28288.20 0.00 5 28288.20 0.00
100-25-5 2 21773.08 2 21782.05 5 21854.16 15.93 5 21864.26 9.78
100-25-10 2 15541.86 0 15453.85 5 15638.42 24.53 5 15646.83 21.37
200-25-3 0 102635.96 1 102753.30 4 103273.20 5.45 5 103290.29 3.27
200-25-5 0 76086.16 0 76007.99 5 76853.04 28.84 5 76862.77 28.34
200-25-10 0 52261.18 0 51951.31 3 53004.66 57.09 5 53022.49 69.15
100-75-3 4 69592.90 4 69585.12 5 69605.72 2.07 5 69606.60 0.00
100-75-5 3 49147.68 2 49133.77 4 49220.42 50.42 5 49253.62 6.94
100-75-10 0 30413.96 0 30397.46 5 30679.14 41.47 5 30687.12 39.31
200-75-3 4 264833.60 3 264761.80 5 264866.20 111.56 5 264927.19 7.29
200-75-5 0 181082.40 0 180904.00 3 181246.00 130.11 5 181443.21 44.14
200-75-10 0 109161.98 0 108967.79 1 109682.30 130.96 5 109733.58 143.27

Table 3: Wilcoxon test for results of Set I

Best Result Average ResultAlgorithm Pair
R+ R- p-value Diff? R+ R- p-value Diff?

EPR vs TIG 861 0 2.52e-08 Yes 1483 2 1.87e-10 Yes
EPR vs SO 946 0 1.16e-08 Yes 1711 0 3.60e-11 Yes
EPR vs IRTS 55 0 5.92e-03 Yes 1082 94 4.16e-07 Yes

1) and the best lower bound obtained by our EPR algorithm (Column fbest of
Table 1). We also list in Table 2 the average of the average results (Avg., for all
algorithms) and the average of the standard deviation (SD, for IRTS and EPR)
across the 5 instances of each instance class. The detailed results of the reference
algorithms (TIG, SO, IRTS), which were obtained by running the source code of
each algorithm 40 times in our computing environment under exactly the same
stopping criterion as the one used in this paper, were extracted directly from
the results reported in (Chen & Hao, 2015). In this regard, we can say that the
comparison performed in this section is quite fair.

From Table 2, we observe that the proposed EPR algorithm competes very
favorably with the 3 reference state-of-the-art algorithms in all listed indicators.
Indeed, EPR easily dominates TIG and SO by obtaining a higher number of
best known lower bounds and a better average value for almost all 12 instance
classes. EPR also outperforms its competitive counterpart IRTS by attaining
more best known lower bounds (60 vs. 50). Moreover, compared to IRTS, EPR
always achieves a better average result and usually attains a smaller standard
deviation which demonstrates that EPR performs more stably. Given that EPR
uses a simplified version of IRTS as its local refinement procedure, this compar-
ison demonstrates the usefulness of the evolutionary path-relinking procedure
compared to the single trajectory counterpart.

To validate our conclusion, we applied the Wilcoxon test with a significance
factor of 0.05 for pairwise comparisons between our results (both best and av-
erage) and those of the reference algorithms. Table 3 shows the statistical test
outcomes where the left part is for the best result comparison and the right part
is for the average result comparison. For each comparison item and for each al-
gorithm pair, we list in Table 3 the positive rank sum (R+), the negative rank
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sum (R−), the resulting p-value (p − value) and whether they are significant
different (Diff?). From Table 3, we can see that EPR is statistically different
from any of the three reference algorithms both in terms of best result and av-
erage result. Moreover, the fact that the positive rank sum is consistently larger
than the negative rank sum in both comparison items confirms the dominance
of our EPR algorithm over the reference algorithms.

4.4. Comparative results on the instances of Set II

The computational results and comparative study of Section 4.3 demon-
strated that the proposed EPR algorithm performs very well on the set of com-
monly used instances with up to 200 objects. Now we are interested to know
how the proposed algorithm will perform on larger instances. For this purpose,
we conduct an additional experiment on the 30 instances of Set II with 300
objects. For this experiment, we adopt a time limit of 180 seconds and again
run our EPR algorithm 40 times for each instance. For comparative purposes,
we also provide the results obtained by TIG (Garćıa-Mart́ınez et al., 2014a),
SO (Garćıa-Mart́ınez et al., 2014b) and IRTS (Chen & Hao, 2015) by running
their source codes on our machine under exactly the same stopping condition.

Computational results of our EPR algorithm as well as those of the 3 refer-
ence algorithms are reported in Table 4 where we list for each instance the best
lower bound (fbest) and the average result (favg) obtained over 40 runs by each
algorithm. Table 4 discloses a dominance of our EPR algorithm over the refer-
ence algorithms. Indeed, EPR attains the best lower bound for all instances of
Set II. Such a performance is not matched by any of the 3 reference algorithms.
Moreover, EPR obtains a best average result for 27 out of 30 cases (90%). The
average performance is also the best among the compared algorithms. When
compared with TIG and SO, even our average results are better than their best
lower bounds for most cases.

In order to evaluate the statistical significance of our findings, we applied
the Wicoxon test with a significance factor of 0.05 for pairwise comparison of
our results with those of the reference algorithms on the instances of Set II.
Table 5 summarizes the test results where the left part of the table provides
the statistical data with the best results as input, and the right part shows
the statistical data with the average results as input. Table 5 discloses that a
statistical difference is detected for each compared case (between EPR and any
reference algorithm) with a p-value smaller than 0.05. The superiority of our
EPR algorithm over the best performing reference algorithms is confirmed by
the fact that the sum of the positive ranks is always significantly larger than
the sum of the negative ones.

Without bothering to give a detailed tabulation of additional results, we
mention that, when more computing time is allowed, EPR can further improve
its best results for some of the instances and the above conclusions still hold.
Indeed, when we set the time limit to 360 seconds for all methods, our EPR
algorithm always outperforms the reference algorithms.
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Table 5: Wilcoxon test for results of Set II

Best Result Average ResultAlgorithm Pair
R+ R- p-value Diff? R+ R- p-value Diff?

EPR vs TIG 460 0 4.00e-06 Yes 465 0 1.86e-09 Yes
EPR vs SO 435 0 2.70e-06 Yes 464 1 3.73e-09 Yes
EPR vs IRTS 210 0 9.57e-05 Yes 463 2 5.59e-09 Yes

5. Analysis

The computational outcomes and especially the comparisons of EPR with
its counterpart IRTS (Chen & Hao, 2015) presented in Section 4 have shown
the strength of the evolutionary path relinking framework. In this section, we
conduct additional experimental analyses to gain a deeper understanding of the
important ingredients of the proposed EPR algorithm.

5.1. The repair method

When an infeasible solution is picked from the relinking path, EPR adopts
an aggressive neighborhood search method (ANSM) to repair this solution. A
greedy procedure is triggered as a complement when the solution cannot be
repaired by ANSM. The greedy procedure simply drops the least conditionally
attractive objects from the capacity-violated knapsacks until each knapsack be-
comes satisfied. It would be interesting to determine if the greedy procedure
alone is sufficient for EPR to achieve its best performance. To test this, we
conduct an experiment to compare the performance of EPR with its alternative
version EPRGR which repairs an infeasible solution solely with the indicated
greedy procedure. Each algorithm is run 40 times on the instances of Set I. Ta-
ble 6 summarizes the computational results in the form of 12 instance classes.
In this experiment, we set the best known lower bound of each instance to the
one obtained by our EPR. For each instance class, we report the number of
instances for which the algorithm is able to achieve or improve the best known
lower bound (#Bests), the average of the 5 average results (Avg.), the average
of the 5 standard deviations (SD.) and the average of the 5 hits (Hit.). From
Table 6, we can see that EPR always attains a higher number of best known
lower bounds and a better average result than EPRGR. Moreover, EPR usu-
ally achieves a higher hit value than EPRGR even if EPR and EPRGR have
a comparable standard deviations. A Wilcoxon test with a significance factor
of 0.05 is applied to compare both the best results and the average results ob-
tained by these two algorithm variants. The resulting p− values of 2.48e-2 and
8.68e-4 clearly show the statistical difference between these two groups of data.
The superiority of EPR over EPRGR is validated by the larger positive rank
sum compared to the negative ones. This experiment confirms the merit of the
adopted repair method with respect to the greedy method for EPR.

5.2. Impact of searching infeasible solutions

EPR allows infeasible solutions to be generated during its path relinking pro-
cess. To handle this situation, the Repair Method takes an infeasible solution
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Table 6: Different strategies for the repairing procedure

Algo. #Bests Avg. SD. Hit.
100-25-3 EPR 5 28288.20 0.00 40.00

EPRGR 5 28288.20 0.00 40.00

100-25-5 EPR 5 21864.26 9.78 27.60
EPRGR 5 21862.51 10.84 26.80

100-25-10 EPR 5 15646.83 21.37 20.00
EPRGR 5 15644.08 22.73 19.60

200-25-3 EPR 5 103290.29 3.27 28.40
EPRGR 4 103273.96 6.39 15.60

200-25-5 EPR 5 76862.77 28.34 26.80
EPRGR 5 76860.14 23.18 23.20

200-25-10 EPR 5 53022.49 69.15 3.60
EPRGR 2 53008.23 69.01 4.40

100-75-3 EPR 5 69606.60 0.00 40.00
EPRGR 5 69606.60 0.00 40.00

100-75-5 EPR 5 49253.62 6.94 27.00
EPRGR 5 49253.45 6.00 28.80

100-75-10 EPR 5 30687.12 39.31 12.80
EPRGR 5 30681.94 39.05 12.20

200-75-3 EPR 5 264927.19 7.29 33.20
EPRGR 5 264921.86 22.93 32.20

200-75-5 EPR 5 181443.21 44.14 12.60
EPRGR 4 181391.65 90.60 10.20

200-75-10 EPR 5 109733.58 143.27 1.00
EPRGR 1 109709.86 112.50 1.00

as input and explores infeasible spaces around the feasibility boundary. Indeed,
with the evaluation function defined in Formula 6, the search always retains the
possibility of re-entering the infeasible region even if it is currently in the feasible
region. In the case where only improving solutions are accepted, a transition
from a feasible solution (say S) to an infeasible one (say S

′
) can be made when

the infeasible solution has a high objective value (f(S
′
)) and a low constraint

violation (V (S
′
)) which yields consequently a higher penalized objective value

(φ(S
′
)) compared to the current feasible solution, i.e., φ(S

′
) > φ(S). In this

section, we discuss how those features contribute to the overall performance of
our EPR algorithm. Indeed, it has long been recognized in the constrained op-
timization literature that it is useful to allow controlled exploration of infeasible
solutions in order to ease solution transitions between structurally different fea-
sible solutions. (The conjectured relevance of this outcome was the basis for the
version of the strategic oscillation approach that crosses feasibility boundaries.
See (Glover & Hao, 2011) for a historical discussion and an illustration of the
power of this strategy.) By introducing such a possibility in EPR, we expect
that EPR can identify high quality solutions when the search cross back and
forth the boundary between feasible and infeasible regions.

To support our expectation, we give some statistical data in Table 7 where
we select one representative instance from each instance class and report the
number of runs in which the relinking method achieves the best lower bound of
that run (RMHit), and the number of runs in which the repair method attains
the best lower bound of that run (RPMHit). From Table 7, we can see that
these two methods sometimes obtain the best lower bound in a single execution
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Table 7: Statistics on the relinking method and the repair method. For each representative
instance, we show the number of runs over 40 executions in which the relinking method attains
the best lower bound of that run (RMHit), and the number of runs in which the repair method
achieves the best lower bound of that run (RPHit)

Instance
n d m I

RMHit RPMHit

100 25 3 5 0/40 2/40
100 25 5 1 1/40 3/40
100 25 10 2 5/40 1/40
200 25 3 4 2/40 25/40
200 25 5 1 2/40 6/40
200 25 10 2 3/40 0/40
100 75 3 4 1/40 1/40
100 75 5 4 0/40 3/40
100 75 10 2 4/40 1/40
200 75 3 3 0/40 6/40
200 75 5 1 2/40 2/40
200 75 10 3 3/40 2/40

of our EPR algorithm. The relinking method can discover a best lower bound
up to 5 out of 40 runs for instance 100-25-10-2, and the repair method is able to
find a best lower bound upto 25 out of 40 runs for instance 200-25-3-4. Recall
that except for identifying improved solutions, another mission for the relinking
method and the repair method is to provide a good starting point for the Local
Refinement method (i.e., the responsive threshold search method, see Section
3.6). The excellent performance of EPR presented in Section 4 demonstrates
that these methods have fulfilled this mission.

5.3. The pool updating strategy

EPR maintains a reference set (RefSet) of elite solutions and a pair set
(PairSet) for path relinking. At each path relinking and Local Refinement,
RefSet is updated with the offspring solution if the offspring is better than the
initiating solution. Then PairSet is immediately updated according to the rule
presented in 3.7. This updating rule for PairSet (denoted by PUS1) is different
from the conventional strategy (denoted by PUS2) as suggested in (Glover et
al., 2004). Unlike PUS1 which updates PairSet after each path relinking, PUS2
updates PairSet only when all solution pairs in the current PairSet have been
examined, though RefSet is always updated by replacing the worst solution
with an improved offspring solution.

Apart from the pool updating strategy, we also introduce a restart mech-
anism within our EPR algorithm. When all solution pairs in PairSet have
been examined and if the stopping condition is not reached, EPR starts a new
round of the evolutionary path relinking process by reinitializing RefSet and
PairSet. The best solution found so far becomes a member of the new RefSet
and the remaining solutions are generated in the same way as in the first round.
To investigate the efficacy of our pool updating strategy and the restart mech-
anism, we carry out an experiment on the instances of Set I to compare the
performance of four algorithm variants EPR1R (PUS1 with restart), EPR1NR

(PUS1 without restart), EPR2R (PUS2 with restart), EPR2NR (PUS2 without
restart). These four algorithm variants are the same except in the pool updat-
ing part. We note that EPR1R corresponds to the EPR algorithm. Table 8

24



Table 8: Different strategies for the pool updating method

Restart NoRestart
PUS1 #Bests 60 55

Avg. 0.00 -0.52
PUS2 #Bests 51 51

Avg. -1.02 -1.14

summarizes the computational results which show that the algorithms with the
restart mechanism always perform better than those without restarts. When
comparing EPR1R (i.e., EPR) and EPR2R which differ only in the pool updat-
ing strategy, we observe that EPR1R outperforms EPR2R by attaining more
best known lower bounds and better average results. Based on these findings,
we conclude that our adopted pool updating strategy and restart mechanism
contribute to ensuring the high performance of EPR.

6. Conclusion

The quadratic multiple knapsack problem is a useful model in practical ap-
plications that represents an imposing computational challenge. We propose a
highly effective algorithm for the QMKP based on the general evolutionary path
relinking (EPR) framework. To ensure the efficacy of the proposed EPR algo-
rithm, we address four important issues: the construction method for creating
the initial reference set of elite solutions, the path relinking method for generat-
ing intermediate solutions from an initial solution to a guiding solution(s), the
threshold search for local optimization and the pool updating strategy for main-
taining the reference set. Given the highly constrained feature of the QMKP,
we also devised a method to explore infeasible regions during the path relink-
ing process which proves to be a critical strategy for the performance of the
algorithm.

Comprehensive experimental studies on two sets of 90 benchmarks show
that our EPR algorithm competes very favorably with the state-of-the-art algo-
rithms. On the first set of 60 well-known QMKP benchmark instances, EPR is
capable of matching or improving the best known lower bound for all 60 cases.
Notably, the proposed algorithm discovers an improved best solution (new lower
bound) for 10 challenging benchmarks. On the set of 30 new large-sized in-
stances, EPR achieves the best lower bounds as well as average results over
multiple runs that are much better than those of the state-of-the-art reference
methods.

There are several elements that account for the high performance of our
proposed EPR algorithm. First is its mechanism to explore infeasible solu-
tions. As shown in Sections 5.1 and 5.2, this mechanism allows the search to
transition between structurally different feasible solutions and helps the search
to locate high quality solutions. Second is manner in which we jointly use of
path relinking and local optimization provides the algorithm with a high-level
trade-off between diversification and intensification. As revealed by the compu-
tational results of Section 4, the path relinking procedure generates diversified
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(and possibly infeasible) solutions while the local optimization procedure with
responsive threshold search ensures an intensified examination of some selected
path solutions. Finally, the fitness-based pool updating strategy used in the
proposed algorithm maintains the elitism of the reference set while ensuring a
healthy diversity, as is shown in Section 5.3.

For future work, we can consider another form of path relinking called Ex-
terior Path Relinking as recently elaborated in (Glover, 2014). Exterior Path
Relinking offers the possibility of including characteristics that are not present
in the guiding solution during the relinking process. It would also be interest-
ing to adapt the path relinking approach to other constrained knapsack prob-
lems (e.g., the multidimensional knapsack problem (Wang et al., 2013), the
quadratic knapsack problem with multiple constraints (Wang et al., 2012)) and
other quadratic optimization problems (e.g., the quadratic assignment problem
(Misevicius, 2004)).
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