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Particle Swarm Optimization for Time Series
Motif Discovery
Joan Serrà and Josep Lluis Arcos

Abstract—Efficiently finding similar segments or motifs in time
series data is a fundamental task that, due to the ubiquity of
these data, is present in a wide range of domains and situations.
Because of this, countless solutions have been devised but, to
date, none of them seems to be fully satisfactory and flexible. In
this article, we propose an innovative standpoint and present a
solution coming from it: an anytime multimodal optimization
algorithm for time series motif discovery based on particle
swarms. By considering data from a variety of domains, we show
that this solution is extremely competitive when compared to
the state-of-the-art, obtaining comparable motifs in considerably
less time using minimal memory. In addition, we show that it is
robust to different implementation choices and see that it offers
an unprecedented degree of flexibility with regard to the task. All
these qualities make the presented solution stand out as one of
the most prominent candidates for motif discovery in long time
series streams. Besides, we believe the proposed standpoint can
be exploited in further time series analysis and mining tasks,
widening the scope of research and potentially yielding novel
effective solutions.

Index Terms—Particle swarm, multimodal optimization, time
series streams, motifs, anytime.

I. INTRODUCTION

T IME SERIES are sequences of real numbers measured
at successive, usually regular time intervals. Data in the

form of time series pervade science, business, and society.
Examples range from economics to medicine, from biology to
physics, and from social to computer sciences. Repetitions or
recurrences of similar phenomena are a fundamental charac-
teristic of non-random natural and artificial systems and, as
a measurement of the activity of such systems, time series
often include pairs of segments of strikingly high similarity.
These segment pairs are commonly called motifs [1], and their
existence is unlikely to be due to chance alone. In fact, they
usually carry important information about the underlying sys-
tem. Thus, motif discovery is fundamental for understanding,
characterizing, modeling, and predicting the system behind
the time series [2]. Besides, motif discovery is a core part of
several higher-level algorithms dealing with time series, in par-
ticular classification, clustering, summarization, compression,
and rule-discovery algorithms (see, e.g., references in [2], [3]).

Identifying similar segment pairs or motifs implies examin-
ing all pairwise comparisons between all possible segments
in a time series. This, specially when dealing with long
time series streams, results in prohibitive time and space
complexities. It is for this reason that the majority of motif
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discovery algorithms resort to some kind of data discretization
or approximation that allows them to hash and retrieve seg-
ments efficiently. Following the works by Lin et al. [1] and
Chiu et al. [4], many of such approaches employ the SAX rep-
resentation [5] and/or a sparse collision matrix [6]. These allow
them to achieve a theoretically low computational complexity,
but sometimes at the expense of very high constant factors. In
addition, approximate algorithms usually suffer from a number
of data-dependent parameters that, in most situations, are not
intuitive to set (e.g., time/amplitude resolutions, dissimilarity
radius, segment length, minimum segment frequency, etc.).

A few recent approaches overcome some of these lim-
itations. For instance, Castro & Azevedo [7] propose an
amplitude multi-resolution approach to detect frequent seg-
ments, Li & Lin [8] use a grammar inference algorithm
for exploring motifs with lengths above a certain threshold,
Wilson et al. [9] use concepts from immune memory to
deal with different lengths, and Floratou et al. [10] combine
suffix trees with segment models to find motifs of any length.
Nevertheless, in general, these approaches still suffer from
other data-dependent parameters whose correct tuning can
require considerable time. In addition, approximate algorithms
are restricted to a specific dissimilarity measure between seg-
ments (the one implicit in their discretization step) and do not
allow easy access to preliminary results, which is commonly
known as anytime algorithms [11]. Finally, to the best of our
knowledge, only [12]–[14] consider the identification of motif
pairs containing segments of different lengths. This can be
considered a relevant feature, as it produces better results in a
number of different domains [13].

In contrast to approximate approaches, algorithms that do
not discretize the data have been comparatively much less pop-
ular, with low efficiency generally. Exceptions to this statement
achieved efficiency by sampling the data stream [15] or by
identifying extreme points that constrained the search [16]. In
fact, until the work of Mueen et al. [17], the exact identification
of time series motifs was thought to be intractable for even
time series of moderate length. In said work, a clever segment
ordering was combined with a lower bound based on the
triangular inequality to yield the true, exact, most similar
motif. According to the authors, the proposed algorithm was
more efficient than existing approaches, including all exact
and many approximate ones [17]. After Mueen et al.’s work,
a number of improvements have been proposed, the majority
focusing on eliminating the need to set a fixed segment
length [18]–[20].

Mueen himself has recently published a variable-length
motif discovery algorithm which clearly outperforms the it-
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erative search for the optimal length using [17] and, from the
reported numbers, also outperforms further approaches such
as [18]–[20]. This algorithm, called MOEN [3], is essentially
parameter-free, and is believed to be one of the most efficient
motif discovery algorithms available nowadays. However, its
complexity is still quadratic in the length of the time series [3],
and hence its applicability to large-scale time series streams
remains problematic. Furthermore, in order to derive the lower
bounds used, the algorithm is restricted with regard to the
dissimilarity measure used to compare time series segments
(Euclidean distance after z-normalization). In general, exact
motif discovery algorithms have important restrictions with
regard to the dissimilarity measure, and many of them still
suffer from being non-intuitive and tedious to tune parameters.
Moreover, few of them allow for anytime versions and, to the
best of our knowledge, not one of them is able to identify
motif pairs containing segments of different lengths.

In this article, we propose a new standpoint to time se-
ries motif discovery by treating the problem as an anytime
multimodal optimization task. To the best of our knowl-
edge, this standpoint is completely unseen in the literature.
Here, we firstly reason and discuss its multiple advantages
(Sec. II). Next, we present SWARMMOTIF (Sec. III), an
anytime algorithm for time series motif discovery based on
particle swarm optimization (PSO). We subsequently evaluate
the performance of the proposed approach using 9 different
real-world time series from distinct domains (Sec. IV). Our
results show that SWARMMOTIF is extremely competitive
when compared to the state-of-the-art, obtaining motif pairs
of comparable similarity in considerably less time and with
minimum storage requirements (Sec. V). Moreover, we show
that SWARMMOTIF is significantly robust against different
implementation choices. To conclude, we briefly comment
on the application of multimodal optimization techniques to
time series analysis and mining, which we believe has great
potential (Sec. VI). The data and code used in our experiments
will available online.

II. TIME SERIES MOTIF DISCOVERY AS AN ANYTIME
MULTIMODAL OPTIMIZATION TASK

A. Definitions and Task Complexity

From the work by Mueen et al. [3], [17], we can derive a
formal, generic similarity-based definition [2] of time series
motifs. Given a time series z of length n, z = [z1, . . . zn], a
normalized segment dissimilarity measure D, and a temporal
window of interest between wmin and wmax samples, the top-
k time series motifs M = {m1, . . .mk} correspond to the k
most similar segment pairs zwa

a = [za, . . . za+wa−1] and zwb

b =
[zb, . . . zb+wb−1], for wa, wb ∈ [wmin, wmax], a ∈ [1, n−wa+1],
and b ∈ [1, n − wb + 1] where, in order to avoid repeated
and trivial matches [1], a + wa < b. Thus, the i-th motif
can be fully described by the tuple mi = {a,wa, b, wb}. The
motifs in M are non-overlapping1 and ordered from lowest
to highest dissimilarity such that D(m1) ≤ D(m2) ≤ · · · ≤
D(mk) where D(mi) = D({a,wa, b, wb}) = D(zwa

a , zwb

b ).

1Notice that, following [3], this definition can be trivially extended to
different degrees of overlap.
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Fig. 1. Example of a time series motif pair found in the WILDLIFE time
series of [21] using SWARMMOTIF and normalized dynamic time warping
as the dissimilarity measure: a = 248, wa = 244, b = 720, and wb = 235.
Note that wa 6= wb and, hence, a warping of the two segments needs to
take place. This specific solution cannot be found by any of the approaches
mentioned in Sec. I.

An example of a time series motif pair from a real data set is
shown in Fig. 1.

It is important to stress that D needs to normalize with
respect to the lengths of the considered segments. Otherwise,
we would not be able to compare motifs of different lengths.
There are many ways to normalize with respect to the length of
the considered segments. Ratanamahatana & Keogh [22] list
a number of intuitive normalization mechanisms for dynamic
time warping that can easily be applied to other measures. For
instance, in the case of a dissimilarity measure based on the
Lp norm [23], we can directly divide by the segment length2,
using brute-force upsampling to the largest length [22] when
wa 6= wb.

From the definitions above, we can see that a brute-force
search in the motif space for the most similar motifs is of
O(n2w∆

2), where w∆ = wmax − wmin + 1 (for the final
time complexity one needs to further multiply by the cost
of calculating D). Hence, for instance, in a perfectly feasible
case where n = 107 and w∆ = 103, we have 1020 possibilities.
Magnitudes like this challenge the memory and speed of any
optimization algorithm, specially if we have no clue to guide
the search [24]. However, it is one of our main objectives to
show here that time series generally provide some continuity
to this search space, and that this continuity can be exploited
by optimization algorithms.

B. Continuity

A fundamental property of time series is autocorrelation,
implying that consecutive samples in a time series have some
degree of resemblance and that, most of the time, we do not
observe extremal differences between them3. This property,
together with the established ways of computing similarity
between time series [23], is what gives continuity to our search
space. Consider a typical dissimilarity measure like dynamic
time warping between z-normalized segments and the time
series of Fig. 1. If we fix the motif starting points a and b
to some random values, we can compute D(zia, z

j
b) for i, j =

wmin, . . . , wmax (Fig. 2A). We see that these two dimensions

2The only exception is with L∞, which could be considered as already
being normalized.

3If a time series had no autocorrelation, we might better treat it as an
independent random process.
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Fig. 2. Visualizations of the search space obtained with the WILDLIFE time
series [21] and dynamic time warping as the dissimilarity measure: (A) fixing
a = 110 and b = 602 but i, j = 200, . . . 250 and (B) fixing wa = 222 and
wb = 240 but i, j = 1, . . . 500. Darker colors corresponds to more similarity.

have a clear continuity, i.e., that D(zia, z
j
b) ∼ D(zi+1

a , zjb) ∼
D(zia, z

j+1
b ) ∼ D(zi+1

a , zj+1
b ), and so forth. Similarly, if we fix

the motif lengths wa and wb to some random values, we can
compute D(zwa

i , zwb
j ) for i = 1, . . . n−wa and j = 1, . . . n−

wb (Fig. 2B). We see that the remaining two dimensions of
the problem also have some continuity, i.e., D(zwa

i , zwb+j
j ) ∼

D(zwa
i+1, z

wb
j ) ∼ D(zwa

i , zwb
j+1) ∼ D(zwa

i+1, z
wb
j+1), and so forth.

The result is a four-dimensional, multimodal, continuous but
noisy4 motif space, where the dissimilarity D acts as the fitness
measure and the top-k valley peaks (considering dissimilarity)
correspond to the top-k motifs in M.

C. Anytime Solutions

Finding an optimization algorithm that can locate the global
minima of the previous search spaces faster than existing motif
discovery algorithms can be a difficult task. However, we
have robust and established algorithms for efficiently locating
prominent local minima in complex search spaces [25]–[27].
Hence, we can intuitively devise a simple strategy: if we
keep the best found minima and randomly reinitialize the
optimization algorithm every time it stagnates, we should,
sooner or later, start locating the global minima. In the mean-
time, we could have obtained relatively good candidates. This
corresponds to the basic paradigm of anytime algorithms [11].

Anytime algorithms have recently been highlighted as
“very beneficial for motif discovery in massive [time series]
datasets” [19]. In an anytime algorithm for motif discovery,
D(mi) improves over time, until it reaches the top-k dis-
similarity values D(mi)

∗ obtained by a brute-force search
approach. Thus, we gradually improve M until we reach
the true exact solution M∗. A good anytime algorithm will
quickly find low D(mi), ideally reaching D(mi)

∗ earlier than
its non-anytime competitors (Fig. 3).

Note that a sufficiently good M may suffice in most situa-
tions, without the need thatM =M∗. This is particularly true
for more exploratory tasks, where one is typically interested
in data understanding and visual inspection (see [2]), and can
also hold for other tasks, as top-k motifs can be very similar
among themselves. In the latter situation, given a seed within

4We use the term noisy here to stress that the continuity of the space may
be altered at some points due to potential noise in the time series. It is not
the case that we have a noisy, unreliable dissimilarity measurement D that
could change in successive evaluations.
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Fig. 3. Schema of a plot to assess the performance of an anytime motif
discovery algorithm (blue curve). Error bars indicate 5 and 95 percentiles
of D(mi), their central marker indicates the median, and the isolated dots
indicate maximum and minimum values. The gray area at the bottom denotes
the area where D(mi)

∗ lie. The top-left black error bar acts as a reference
and shows the range of D(mi) obtained by random sampling the motif
space. The bottom-right red error bar is placed at the time that the baseline
algorithm spent in the calculations. Better performing anytime algorithms have
a curve closer to the bottom left corner, quickly entering the gray area as their
execution time increases. Notice that both axes are logarithmic.

M∗, we can easily and efficiently retrieve further repetitions
via common established approaches [28], [29]. Thus, only
non-frequent or singular motifs may be missed. These can
be valuable too, as the fact that they are non-frequent does
not imply that they cannot carry important information (think
for example of extreme events of interest that perhaps only
happen twice in a measurement). For those singular motifs,
we can wait longer if using an anytime algorithm, or we can
resort to the state-of-the-art if that is able to provide its output
within an affordable time limit.

D. Particle Swarm Optimization

The continuity and anytime observations above (Secs. II-B
and II-C) relax the requirements for the optimization algorithm
to be employed in the considered motif spaces. In fact, if
we do not have to assess the global optimality of a solution,
we have a number of approaches that can deal with large,
multimodal, continuous but noisy search spaces [25]–[27].
Among them, we choose PSO [30]–[34]. PSO is a population-
based stochastic approach for solving continuous and discrete
optimization problems [33] which has been applied to multi-
modal problems [35]. It is a metaheuristic [27], meaning that
it cannot guarantee whether the found solution corresponds to
a global optimum. The original PSO algorithm cannot even
guarantee the convergence to a local optimum, but adapted
versions of it have been proven to solve this issue [36]. Other
versions guarantee the convergence to the global optimum, but
only with the number of iterations approaching infinity [36].

PSO has gained increasing popularity among researchers
and practitioners as a robust and efficient technique for solving
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difficult optimization problems. It makes few or no assump-
tions about the problem being optimized, does not require it
to be differentiable, can search very large spaces of candidate
solutions, and can be applied to problems that are irregular,
incomplete, noisy, dynamic, etc. (see [30]–[35] and references
therein). PSO iteratively tries to improve a candidate solution
with regard to a given measure of quality or fitness function.
Hence, furthermore, it can be considered an anytime algorithm.

E. Advantages of an Optimization-Based Solution Using Par-
ticle Swarms

Notice that treating time series motif discovery as an
optimization problem naturally yields several advantages:
1) We do not require much memory, as we can basically store

only the stream time series and preprocess the required
segments at every fitness evaluation.

2) We are able to achieve a certain efficiency, as optimization
algorithms do not usually explore the full solution space
and perform few fitness evaluations [24].

3) We can employ any dissimilarity measure D as our fitness
function. Its only requirements are segment length indepen-
dence and a minimal search space continuity. Intuitively,
this holds for the high majority of time series dissimilarity
measures that are currently used (Secs. II-A and II-B).
Additionally, we can straightforwardly incorporate notions
of ‘interestingness’, hubness, or complexity (see references
in [23]). This flexibility is very uncommon in current time
series motif discovery algorithms (Sec. I).

4) We do not need to force the two segments of the motif to
be of the same length. The dissimilarity function D can
expressly handle segments of different lengths or we can
simply upsample to the largest length (see [22]). Although
considering different segment lengths has been highlighted
as an objectively better approach, practically none of the
current time series motif discovery algorithms contemplates
this option (Sec. I).

5) Since we search for the optimal wa and wb, together with
a and b, we do not need to set the exact segment lengths
as a parameter. Instead, we can use a more intuitive and
easier to set range of lengths wa, wb ∈ [wmin, wmax].

6) We can easily modify our fitness criterion to work with
different task settings. Thus, just by replacing D, we are
able to work with multi-dimensional time series [37], detect
sub-dimensional motifs [38], perform a constrained motif
discovery task [16], etc.

7) We can incorporate notions of motif frequency to our
fitness function and hence expand our similarity-based
definition of motif to incorporate both notions [2]. For
instance, instead of optimizing for individual motifs mi,
we can optimize sets of motifs M′i of size ri such that
1
ri

∑
mj∈M′

i
D(mj) is minimal. We can choose ri to be a

minimum frequency of motif appearance or we can even
decide to optimize it following any suitable criterion.

In addition, using PSO has a number of interesting properties,
some of which may be shared with other metaheurisics:
1) We have a straightforward mapping to the problem at hand

(Sec. III-A).

2) By construction, we have an anytime algorithm (Sec. II-D).
3) We can obtain accurate and much faster solutions, as com-

pared to the state-of-the-art in time series motif discovery
(Sec. V-C).

4) We have an essentially parameter-free algorithm [33]. As
will be shown, all our parameter choices turn out to be
non-critical to achieve the most competitive performances
(Secs. V-A and V-B).

5) We have an easily parallelizable algorithm. The agent-
based nature of PSO naturally yields to parallel implemen-
tations [32].

6) We still have the possibility to apply lower bounding tech-
niques to D in order to reduce its computational cost [2],
[29]. Among others, we may exploit the particles’ best-so-
far values or spatially close dissimilarities.

7) All of these use a simple, easy to implement algorithm
requiring low storage capabilities (Sec. III-B).

III. SWARMMOTIF

A. Main Algorithm

Our PSO approach to time series motif discovery is based on
the combination of two well-known extensions to the canonical
PSO [31]. On one hand, we employ multiple reinitializations
of the swarm on stagnation [39]. On the other hand, we exploit
the particles’ “local memories” with the intention of forming
stable niches across different local minima [40]. The former
emulates a parallel multi-swarm approach [35] without the
need of having to define the number of swarms and their
communication. The latter, when combined with the former,
results in a low-complexity niching strategy [35] that does
not require niching parameters (see the related discussion
in [41], [42]). SWARMMOTIF, the implementation of the two
extensions, is detailed in Algorithm 1.

SWARMMOTIF takes a time series z of length n as input,
together with a segment dissimilarity measure D, and the
range of segment lengths of interest, limited by wmin and
wmax. The user also needs to specify k, the desired number of
motifs, and tmax, the maximum time spent by the algorithm
(in iterations5). SWARMMOTIF outputs a set of k non-
overlapping motifsM. We implementM as a priority queue,
which typically stores more than k elements to ensure that it
contains k non-overlapping motifs. This way, by sorting the
motif candidates as soon as they are found, we allow potential
queries toM at any time during the algorithm’s execution. In
that case, we only need to dynamically check the candidates’
overlap (Sec. III-B). Notice that n, D, wmin, wmax, k, and
tmax are not parameters of the algorithm, but requirements
of the task (they depend on the data, the problem, and the
available time). The only parameters to be set, as specified
in Algorithm 1’s requirements, are the number of particles κ,
the topology θ, the constriction constant φ, and the maximum
amount of iterations at stagnation τ . Nevertheless, we will
show that practically none of the possible parameter choices

5The number of iterations is easy to infer from the available time as, for
the same input, the elapsed time will be roughly directly proportional to the
number of iterations.
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Algorithm 1 SWARMMOTIF(z,D,wmin,wmax,k,tmax)

Input: Time series z of length n, dissimilarity measure D,
minimum and maximum segment length wmin and wmax,
number of motifs k, and maximum amount of time (num-
ber of iterations) tmax.

Require: Number of particles κ, topology θ, constriction
constant φ, and maximum amount of time at stagnation
(number of iterations) τ .

Output: A set of motifs M.
1: c0, c1, c2 ← GETCONSTANTS(φ)
2: X ,V,S,P ← INITIALIZESWARM(n,wmin,wmax,κ)
3: Θ← INITIALIZETOPOLOGY(θ,κ)
4: s∗ ←∞
5: M← EMPTYPRIORITYQUEUE()
6: for t = 1, . . . tmax
7: for i = 1, . . . κ
8: if VALIDPOSITION(xi)
9: d← D(xi)

10: if d < si
11: si ← d
12: pi ← xi
13: M.PUSH(d,xi)
14: if d < s∗

15: s∗ ← d
16: tupdate ← t
17: for i = 1, . . . κ
18: g ← i
19: for j in Θi

20: if sj ≤ sg
21: g ← j
22: vi ← c0vi + c1u1 ⊗ (pi − xi) + c2u2 ⊗ (pg − xi)
23: xi ← xi + vi
24: if t− tupdate = τ
25: X ,V,S,P ← INITIALIZESWARM(n,wmin,wmax,κ)
26: s∗ ←∞
27: return NONOVERLAPPING(M,k)

introduces a significant variation in the reported performance
(Sec. V-A).

Having clarified SWARMMOTIF’s input, output, and re-
quirements, we now elaborate on its procedures. Algorithm 1
starts by computing the velocity update constants (line 1)
following Clerc’s constriction method [43], i.e.,

c0 =
2∣∣∣2− φ−√φ2 − 4φ

∣∣∣
and

c1 = c2 = c0φ/2. (1)

Next, a swarm with κ particles is initialized (line 2). The
swarm is formed by four data structures: a set of particle
positions X = {x1, . . . xκ}, a set of particle velocities V =
{v1, . . . vκ}, a set of particle best scores S = {s1, . . . sκ},
and a set of particle best positions P = {p1, . . .pκ} (the
initialization of these four data structures is detailed in Algo-
rithm 2). Particles’ positions xi and pi completely determine

Algorithm 2 INITIALIZESWARM(n,wmin,wmax,κ)

Input: Time series length n, minimum and maximum seg-
ment length wmin and wmax, and number of particles κ.

Output: Particle positions X , velocities V , best scores S, and
best positions P .

1: for i = 1, . . . κ
2: xi,2 ← wmin + (wmax + 1− wmin)u
3: xi,4 ← wmin + (wmax + 1− wmin)u
4: xi,1 ← 1 + (n− xi,2)(1−

√
u)

5: xi,3 ← 1 + (n− xi,4 − (xi,1 + xi,2))u
6: x′ ← As in lines 2–5
7: vi ← x′ − xi
8: si ←∞
9: pi ← xi

10: return X ,V,S,P

a motif candidate, and have a direct correspondence with mi

(see Sec. III-B). A further data structure Θ indicates the indices
of the neighbors of each particle according to a given social
topology θ (line 3). Apart from the swarm, we also initialize a
global best score s∗ (line 4) and the priority queueM (line 5).
We then enter the main loop (lines 6–26). In it, we perform
three main actions. Firstly, we compute the particles’ fitness
and perform the necessary updates (lines 7–16). Secondly, we
modify the particles’ position and velocity using their personal
and neighborhood best positions (lines 17–23). Thirdly, we
control for stagnation and reinitialize the swarm if needed
(lines 24–26). Finally, when we exit the loop, we return the
first k non-overlapping motif candidates from M (line 27).

The particles’ fitness loop (lines 7–16) can be described
as follows. For the particles that have a valid position within
the ranges used for particle initializations (line 8; see also
Algorithm 2 for initializations), we calculate their fitness D
(line 9) and, if needed, update their personal bests si and pi
(lines 10–12). As mentioned, D needs to be independent of
the segments’ lengths, which is typically an easy condition
for time series dissimilarity measures (Sec. II-A). In the case
that the particles find a new personal best, we save the motif
dissimilarity d and its position xi into M (line 13). Next, we
update tupdate, the last iteration when an improvement of the
global best score s∗ has occurred (lines 14–16).

The particles’ update loop (lines 17–23) is straightforward.
We first select each particle’s best neighbor g using the
neighborhood personal best scores sj (lines 18–21). Then,
we use the positions of the best neighbor’s personal best
pg and the particle’s personal best pi to compute its new
velocity and position (lines 22–23). We employ component-
wise multiplication, denoted by ⊗, and two random vectors u1

and u2 whose individual components ui,j = U(0, 1), being
U(l, h) a uniform real random number generator such that
l ≤ U(l, h) < h. Note that by considering the particles’ neigh-
borhood personal bests pg we follow the aforementioned local
neighborhood niching strategy [40]. At the end of the loop we
control for stagnation by counting the number of iterations
since the last global best update and applying a threshold τ
(line 24). Note that this is the mechanism responsible for the
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aforementioned multiple reinitialization strategy [39].
The initialization of the swarm used in Algorithm 1 (lines 2

and 25) is further detailed in Algorithm 2. In it, for each
particle, two random positions xi and x′ are drawn (lines 2–6)
and the initial velocity is computed as the subtraction of the
two (line 7). To obtain xi and x′, uniform real random numbers
u = U(0, 1) are subsequently generated. The personal best
score si is set to infinite (line 8) and xi is taken as the current
best position pi (line 9). Note that

√
u (line 4) is used to ensure

a uniform distribution of the particles across the triangular
subspace formed by xi,1 and xi,3 (line 5; see also Sec. II-A).

B. Implementation Details

Some implementation details are missing in Algorithms 1
and 2. Firstly, positions xi are floored component-wise in-
side VALIDPOSITION, D, and M (thus obtaining motif mi).
Secondly, the motif priority queue M is implemented as an
associative container (logarithmic insertion time) that sorts its
elements according to d and stores mi. Thirdly, the last visited
positions are cached into a hash table (constant lookup time)
in order to avoid some of the possible repeated dissimilarity
computations. Fourthly, we incorporate the option to constrain
the motif search by specifying a maximum segment stretch in
Algorithm 2 and VALIDPOSITION. Finally, the function that
returns the non-overlapping top-k motifs employs a boolean
array of size n in order to avoid O(k2) comparisons between
members of the queue (cf. [3]). Notice that we have a memory-
efficient implementation, as we basically only need to store z
and the boolean array (both of O(n) space), M (of O(k)
space, k � n), and X , V , S, P , and Θ (all of them of O(κ)
space, κ� n). The aforementioned hash table (optional) can
be allocated in any predefined, available memory segment. For
the sake of brevity, the interested reader is referred to the pro-
vided code for a full account of the outlined implementation
details.

C. Variants

Given the main Algorithm 1, we consider a number of
variations that may potentially improve SWARMMOTIF’s
performance without introducing too much algorithmic com-
plexity:
• Sociability: We study whether a “cognitive-only” model, a

“social-only” one, or different weightings of the two yield to
some improvements [44]. To do so, we just need to introduce
a parameter α ∈ [0, 1] controlling the degree of ‘sociability’
of the particles, and implement lines 1–2 of Algorithm 3
instead of Eq. 1.

• Stochastic: We investigate the use of a random inertia
weight [39]. This may alleviate the need of using the same
c0 in different environments, providing a potentially more
adaptive trade-off between exploration and exploitation (also
controlled by α in the previous point). To consider this
variant, we just need to replace line 22 in Algorithm 1 by
line 3 in Algorithm 3.

• Velocity clamping: In addition to constriction, we study lim-
iting the maximum velocity of the particles [45]. Empirical
studies have shown that the simultaneous consideration of a

Algorithm 3 Variations to Algorithm 1: sociability (lines 1–2),
stochastic (line 3), velocity clamping (lines 4–6), and craziness
(lines 7–10).

1: c1 ← c0φ(1− α)
2: c2 ← c0φα

3: vi ← (1−2(1−c0))uvi+c1u1⊗(pi−xi)+c2u2⊗(pg−xi)

4: vrange ← [n,w∆, n, w∆]/2
5: for vrange

j in vrange

6: vi,j ← min(vrange
j ,max(−vrange

j , vi,j))

7: v′i ← As in Algorithm 2
8: for vi,j in vi
9: if u < ρ

10: vi,j ← v′i,j .

constriction factor and velocity clamping results in improved
performance on certain problems [46]. To apply velocity
clamping we add lines 4–6 of Algorithm 3 between lines 22
and 23 of Algorithm 1.

• Craziness: We introduce so-called “craziness” or “perturba-
tion” in the particles’ velocities, as initially suggested by
Kennedy & Eberhart [45]. In such variant, inspired by the
sudden direction changes observed in flocking birds, the
particles’ velocity is altered with a certain probability ρ, with
the aim of favoring exploration by increasing directional
diversity and discouraging premature convergence [47]. We
coincide with [47] in that, in some sense, this can be seen
as a mutation operation. To implement craziness we add
lines 7–10 of Algorithm 3 between lines 22 and 23 of
Algorithm 1.

IV. EVALUATION METHODOLOGY

To evaluate SWARMMOTIF’s speed and accuracy we con-
sider plots like the one presented in Fig. 3. As a reference, we
draw uniform random samples from the motif search space
and compute their dissimilarities (we take as many samples as
the length n of the time series). As a baseline, we use the top-
25 motifs found by MOEN [3], which we will denote byM∗.
Existing empirical evidence [3], [17] suggests that MOEN is
the most efficient algorithm to retrieve the top exact similarity-
based motifs in a range of lengths6 (Sec. I). Notice furthermore
that here we are not that interested in obtaining all top-25
true exact motifs, but more concerned on obtaining good seed
motifs within these using an anytime approach (Sec. II-C).

As its competitors, MOEN has however some limitations
(Sec. I). Thus, to fairly compare results, we have to apply
some constrains to our algorithm. Since MOEN can only
use the Euclidean distance between z-normalized segments,
here we also adopt this formulation for D. In addition, as
MOEN only considers pairs of segments of the same length
(without resampling), we have to constrain SWARMMOTIF so

6Besides, we could not find any other promising exact or anytime approach
with some available code, nor with sufficient detail to allow a reliable
implementation.
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TABLE I
CHARACTERISTICS OF THE TIME SERIES USED FOR EVALUATION,
TOGETHER WITH THE CONSIDERED SEGMENT LENGTH RANGES.

Name Duration Sample Rate n wmin wmax

DOWJONES 129 y 1 d−1 35503 30 300
CARCOUNT 175 d 1/5 min−1 47534 270 320
INSECT 32 min 38 Hz 73929 300 500
EEG 1 h 50 Hz 180214 150 250
FIELDRECORDING 3 h 21.5 Hz 226383 50 150
WIND 4 y 1/6 min−1 369138 200 280
POWER 32 months 1/5 min−1 410608 250 620
EOG 9 h 25 Hz 809948 150 200
RANDOMWALK - - 1000000 100 250

that xi,2 = xi,4. Therefore, the reported motif dissimilarities
D(mi) correspond to the Euclidean distance between two z-
normalized segments of the same length (we divide by the
length of the segments to compare different segment lengths,
Sec. II-A). In the reported experiments, SWARMMOTIF is
run 10 times with k = 10. We stop its execution when we
find 95% of D(mi) within M∗. This way, we assess the time
taken to retrieve any 10 motifs from those with at least 95%
confidence. All experiments are performed using a single core
of an Intel R© Xeon R© CPU E5-2620 at 2.00 GHz.

To demonstrate that SWARMMOTIF is not biased towards
a particular data source, time series length, or motif length,
we consider 9 different time series of varying length, coming
from distinct domains, and a number of arbitrary but source-
consistent motif lengths (Table I). As mentioned, we make
these time series and our code available online (Sec. I). Four of
the time series have been used for motif discovery in previous
studies [17], [48], while the other five are employed here for
the first time for this task:
1) DOWJONES: The daily closing values of the Dow Jones

average in the USA from May 2, 1885 to April 22,
2014 [49].

2) CARCOUNT: The number of cars measured for the Glen-
dale on ramp for the 101 North freeway in Los Angeles,
CA, USA [50]. The measurement was carried out by the
Freeway Performance Measurement System7 and the data
was retrieved from the UCI Machine Learning Repos-
itory [51]. Segments of missing values were manually
interpolated or removed.

3) INSECT: The electrical penetration graph of a beet leafhop-
per (circulifer tenellus) [17]. The time series was retrieved
from Mueen’s website8.

4) EEG: A one hour electroencephalogram (in µV) from a
single channel in a sleeping patient [17]. The time series
was retrieved from Mueen’s website9 and, according to the
authors, was smoothed and filtered using domain-standard
procedures.

5) FIELDRECORDING: The spectral centroid (in Hz) of a
field recording retrieved from Freesound10 [52]. We used
the mean of the stereo channels and the spectral centroid

7http://pems.dot.ca.gov
8http://www.cs.ucr.edu/∼mueen/MK
9http://www.cs.ucr.edu/∼mueen/OnlineMotif
10http://www.freesound.org/people/JeffWojo/sounds/121250

(linear frequency) Vamp SDK example plugin from Sonic
Visualizer [53]. We used a Hann window of 8192 samples
at 44.1 KHz with 75% overlap.

6) WIND: The wind speed (in m/s) registered in the buoy of
Rincon del San Jose, TX, USA, between January 1, 2010
and April 11, 2014. The time series was retrieved from
the Texas Coastal Ocean Observation Network website11.
Segments of missing values were manually interpolated or
removed.

7) POWER: The electric power consumption (in KW) of an
individual household12. The data was retrieved from the
UCI Machine Learning Repository [51]. We took the global
active power, removed missing values, and downsampled
the original time series by a factor of 5 using averaging
and 50% overlap.

8) EOG: An electrooculogram tracking the eye movements
of a sleeping patient [54]. We took the downsampled time
series [48] from Mueen’s web page13.

9) RANDOMWALK: A random walk time series. This was
artificially synthesized using zi+1 = zi + N(0, 1) for
i = 2, . . . n and z1 = 0, where N(0, 1) is a real Gaus-
sian random number generator with zero mean and unit
variance.

To assess the statistical significance of the differences
between alternative parameter settings, we employ a two stage
approach. First, we consider all settings at the same time and
perform the Friedman’s test [55], which is a non-parametric
statistical test used to detect differences in treatments across
multiple test attempts. We use as inputs the median values for
all settings for 25 equally-spaced time steps. In the case some
difference between settings is detected (i.e., we reject the null
hypothesis that the settings’ performances come from the same
distribution), we proceed to the second stage. In it, we perform
all possible pairwise comparisons between settings using the
Wilcoxon signed-rank test [55], another non-parametric statis-
tical hypothesis test used for comparing matched samples. To
counteract the problem of multiple comparisons and control
the so-called family-wise error rate, we employ the Holm-
Bonferroni correction [56]. In all statistical tests, we consider
a significance level of 0.01.

V. RESULTS

A. Configuration

In pre-analysis, and according to common practice, we set
κ = 100, φ = 4.1, and τ = 2000. We then experimented
with 6 different static topologies θ [57]: global best, local best
(two neighbors), Von Neumann, random (three neighbors),
wheel, and binary tree. The results showed the qualitative
equivalence of all topologies except, perhaps, global best
and wheel (Fig. 4). In some data sets, these two turned
out to yield slightly worse performances for short-time runs
of the algorithm (small t), although for longer runs they
gradually became equivalent to the rest. However, in general,

11http://lighthouse.tamucc.edu/pq
12http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+

power+consumption
13http://www.cs.ucr.edu/∼mueen/DAME

http://www.cs.ucr.edu/~mueen/MK
http://www.cs.ucr.edu/~mueen/OnlineMotif
http://www.freesound.org/people/JeffWojo/sounds/121250
http://lighthouse.tamucc.edu/pq
http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
http://www.cs.ucr.edu/~mueen/DAME
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Fig. 4. Effect of θ on the EEG time series. Equivalent results were observed
with the other time series.

no systematic statistically significant difference was detected
between topologies. With this in mind, we chose the local best
topology to further favor exploration and parallelism, and to be
more consistent with our local neighborhood design principle
of Sec. III-A.

Next, we studied the effect of the number of particles
κ and the stagnation threshold τ . To do so, we kept the
previous configuration with the local best topology and sub-
sequently evaluated κ = {20, 40, 80, 160, 320} and τ =
{500, 1000, 2000, 4000, 8000}. Essentially, we observed al-
most no performance changes under these alternative settings
(Figs. 5 and 6). We only found a statistically significant
difference in the case of the CARCOUNT data set. Specifically,
the performance with τ = 500 was found to be statistically
significantly worse than τ ≥ 2000. Regarding κ, and after
considering different n, w∆ and k, a partial tendency seemed
to emerge: an increasing number of particles κ was slightly
beneficial for increasing lengths n, increasing w∆, and increas-
ing k. Unfortunately, we could not obtain strong empirical
evidence nor formal proof for this statement. Nonetheless, in
subsequent experiments, we decided to use a value for κ and
τ that dynamically adapts SWARMMOTIF’s configuration to
such predefined task parameters. We arbitrarily set τ propor-
tional to κ, and κ proportional to n and in direct relation
to w∆ and k (we refer to the provided code for the exact
formulation).

To conclude our pre-analysis, we studied the influence of
the constriction constant φ. Following common practice, we
considered φ = {4.02, 4.05, 4.1, 4.2, 4.4, 4.8}. In this case, we
saw that high values had a negative impact on performance
(Fig. 7). In particular, values of φ ≥ 4.2 or φ ≥ 4.4, depending
on the data set, statistically significantly increased the motif
dissimilarities at a given t. Contrastingly, values 4 < φ < 4.2
yielded stable dissimilarities with no statistically significant
variation (in some data sets, this range could be extended
to 4 < φ ≤ 4.4). It is well-known that higher φ values
favor exploitation rather than exploration [43]. Hence, it is not
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Fig. 5. Effect of κ on the WIND time series. Equivalent results were observed
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Fig. 6. Effect of τ on the FIELDRECORDING time series. Equivalent results
were observed with the other time series.

strange to observe that low φ values are more appropriate for
searching the large motif spaces we consider here. We finally
chose φ = 4.05.

Overall, the result of our pre-analysis suggests a high degree
of robustness with respect to the possible configurations. The
topology θ, the number of particles κ, the stagnation threshold
τ , and the constriction constant φ have, in general, no signif-
icant influence on the obtained results. The only consistent
exception is observed for values of φ ≥ 4.4, which are not
the most common practice [34]. The global best and wheel
topologies could also constitute a further exception. However,
as we have shown, these become qualitatively equivalent to
the rest as execution time t increases, yielding no statistically
significant difference. We believe that the reported stability
of SWARMMOTIF against the tested configurations and data
sets justifies the use of our setting for finding motifs in diverse
time series coming from further application domains.
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B. Variants

Using the configuration resulting from the previous section,
we subsequently assessed the performance of the variations
considered in Sec. III-C. We started with the sociability
variant, experimenting with social-only models, α = 1,
cognitive-only models, α = 0, and intermediate configura-
tions, α = {0.2, 0.33, 0.66, 0.8}. Apart from the fact that no
clear tendency could be observed, none of the previous settings
was able to consistently reach the performance achieved by the
original variant (α = 1/2, Eq. 1) in all time series. That is,
none of the previous settings could statistically significantly
outperform α = 1/2 in the majority of the data sets.

Next, we experimented with the stochastic and the velocity
clamping variants. While the former did not improve our
results, the latter led to a statistically significant improvement
for some time series. Because of that, we decided to discard the
use of a stochastic variant but to incorporate velocity clamping
to our main algorithm. The former could be difficult to justify
while the latter has empirical evidence behind it (Sec. III-C).

Finally, we experimented with craziness and its probability
ρ. The results showed a similar performance for 0 ≤ ρ <
0.001, a slightly better performance for 0.001 ≤ ρ ≤ 0.01, and
an increasingly worse performance for ρ > 0.01 (Fig. 8). A
statistically significant difference was found between ρ ≤ 0.01
and ρ > 0.1, being ρ > 0.1 a consistently worse setting.
These results were expected, as the swarm performs a more
random search with increasing ρ, being completely random in
the limiting case of ρ = 1. The slightly better performance for
0.001 ≤ ρ ≤ 0.01 was not found to be statistically significant
under our criteria. However, it was visually noticeable for
some data sets. For instance, with the EEG data set, we see
that curves 33 and 34 hit the dissimilarities of the true exact
motif setM∗ (gray area) two or three times earlier than curves
30, 31, and 32 (Fig. 8). With these results, and seeing that ρ
values between 0.001 and 0.01 never harmed the performance
of the algorithm, we chose ρ = 0.002.
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Fig. 8. Effect of ρ on the EEG time series. Equivalent results were observed
with the other time series.

C. Final Performance

After extending SWARMMOTIF with velocity clamping
and craziness, we assess its performance on all considered
time series using the default parameter combination resulting
from the previous two sections. As can be seen, the obtained
motif dissimilarities are far from the random sampling in all
cases (Fig. 9; notice the logarithmic axes). In addition, we see
that SWARMMOTIF is able to already obtain dissimilarities
withinM∗ as soon as its execution begins. Specifically, motif
dissimilarities inM start to overlap the ones inM∗ at t < 10 s
for practically all time series. The only exceptions are EOG
and RANDOMWALK, where M starts to overlap with M∗ at
t < 100 s. We hypothesize that taking a smaller number of
particles κ could make M overlap with M∗ earlier, but leave
the formal assessment of this hypothesis for future work.

Finally, as execution time t progresses, we see that
SWARMMOTIF consistently retrieves lower dissimilarities, up
to the point that M ' M∗ (Fig. 9 and Table II). Following
the condition we specify in Sec. IV, this means that the
distances in the motif set obtained by SWARMMOTIF are not
statistically worse than the ones of the true exact motif set.
With respect to MOEN’s execution time, this happens 1487
(DOWJONES), 184 (CARCOUNT), 50 (INSECT), 179 (EEG),
100 (FIELDRECORDING), 241 (WIND), 286 (POWER), 74
(EOG), and 287 (RANDOMWALK) times faster. This implies
between one and three orders of magnitude speedups (more
than that for DOWJONES). Overall, we believe this is an
extremely competitive performance for an anytime motif dis-
covery algorithm.

VI. CONCLUSION

In this article, we propose an innovative standpoint to the
task of time series motif discovery by formulating it as an
anytime multimodal optimization problem. After a concise
but comprehensive literature review, we reason out the new
formulation and the development of an approach based on
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Fig. 9. SWARMMOTIF performance on the considered time series: (A) DOWJONES, (B) CARCOUNT, (C) INSECT, (D) EEG, (E), FIELDRECORDING, (F)
WIND, (G) POWER, (H) EOG, and (I) RANDOMWALK.

evolutionary computation. We then highlight the several ad-
vantages of this new formulation, many of which relate to a
high degree of flexibility of the solutions that come from it.
To the best of our knowledge, such a degree of flexibility is
unseen in previous works on time series motif discovery.

We next present SWARMMOTIF, an anytime multimodal
optimization algorithm for time series motif discovery based
on particle swarms. We show that SWARMMOTIF is ex-
tremely competitive when compared to the best approach we
could find in the literature. It obtains motifs of comparable
similarities, in considerably less time, and with minimum
memory requirements. This is confirmed with 9 independent
real-world time series of increasing length coming from a
variety of domains. Besides, we find that the high majority
of the possible implementation choices lead to non-significant
performance changes in all considered time series. Thus, given
this robustness, we can think about the proposed solution
as being parameter-free from the user’s perspective. Over-
all, if we add the aforementioned, unprecedented degree of

flexibility, SWARMMOTIF stands out as one of the most
prominent choices for motif discovery in long time series
streams. Since the used data and code are available online
(Sec. I), the research presented here is fully reproducible,
and SWARMMOTIF is freely available to researchers and
practitioners.

We believe that the consideration of multimodal optimiza-
tion algorithms is a relevant direction for future research in
the field of time series analysis and mining. Not only with
regard to motif discovery, but also in other tasks such as
querying for segments of unknown length [28] or determining
optimal alignments and similarities [23]. With regard to the
latter, we envision powerful approaches to variable-length
local similarity calculations, in the vein of existing dynamic
programming approaches [58], [59]. Finally, we believe that
considering the search spaces and the time constraints de-
rived from time series problems can be a challenge for the
evolutionary computation community. We look forward to
exploring all these topics in forthcoming works, together with



11

TABLE II
COMPARISON BETWEEN MOEN AND SWARMMOTIF RESULTS. THE LATTER ARE TAKEN AT THE TIME WHEN THE DEFINED STOPPING CRITERION IS

MET (SEC. IV). RESULTS FOR OTHER TIME STEPS ARE AVAILABLE ONLINE (SEC. I).

Approach Result DOWJONES DODGERS INSECT EEG FIELDRECORDING WIND POWER EOG RANDOMWALK
MOEN t [s] 2933.9 838.0 9051.1 21596.0 76415.0 70727.2 672161.9 430790.3 430676.6

D(mi)
∗ median 0.0147 0.0260 0.0140 0.0119 0.0301 0.0117 0.0199 0.0206 0.0091

D(mi)
∗ min 0.0084 0.0225 0.0102 0.0081 0.0240 0.0102 0.0102 0.0137 0.0080

D(mi)
∗ max 0.0191 0.0279 0.0168 0.0131 0.0347 0.0124 0.0232 0.0218 0.0094

SWARMMOTIF t [s] 2.0 4.6 180.0 120.6 764.8 293.1 2346.5 5807.7 1497.3
D(mi) median 0.0132 0.0259 0.0135 0.0119 0.0315 0.0117 0.0214 0.0195 0.0090
D(mi) 5th percentile 0.0087 0.0234 0.0121 0.0090 0.0239 0.0102 0.0142 0.0163 0.0079
D(mi) 95th percentile 0.0182 0.0278 0.0162 0.0130 0.0341 0.0122 0.0230 0.0212 0.0092

other multimodal optimization techniques that could be easily
mapped to the problem of time series motif discovery.
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