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Abstract

This paper offers a multi-disciplinary review of knowledge acquisition methods in human activity systems. The review captures
the degree of involvement of various types of agencies in the knowledge acquisition process, and proposes a classification with
three categories of methods: the human agent, the human-inspired agent, and the autonomous machine agent methods. In the first
two categories, the acquisition of knowledge is seen as a cognitive task analysis exercise, while in the third category knowledge
acquisition is treated as an autonomous knowledge-discovery endeavour. The motivation for this classification stems from the
continuous change over time of the structure, meaning and purpose of human activity systems, which are seen as the factor that
fuelled researchers’ and practitioners’ efforts in knowledge acquisition for more than a century.

We show through this review that the KA field is increasingly active due to the higher and higher pace of change in human
activity, and conclude by discussing the emergence of a fourth category of knowledge acquisition methods, which are based on
red-teaming and co-evolution.
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List of abbreviations

KA Knowledge Acquisition
HAS Human Activity System
CTA Cognitive Task Analysis
SME Subject Matter Expert
KD Knowledge Discovery
EC Evolutionary Computation
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1. Introduction

Knowledge Acquisition (KA) refers in a very broad view to
gaining understanding about the processes underlying the ob-
servable behaviour of an entity. The immediate output of KA,
the knowledge, is a representation of the real phenomenon at
the level of detail and abstraction required by the purpose of
the KA exercise. The representation takes the form of an on-
tological construct, i.e. a set of concepts considered necessary
and sufficient to capture the understanding about the real phe-
nomenon, which offers the possibility to re-instantiate it (repli-
cate it in a different context), to improve it, or to further com-
municate the understanding about it to peers. The range of pur-
poses for knowledge acquisition exercises is very broad, from
the basis of learning in itself, to the creation of computational
models and applications that improve the behaviours of the en-
tities under investigation or solve problems on behalf of them
(e.g. knowledge-based systems, expert systems).

1Corresponding author: E-mail: G.Leu@adfa.edu.au Ph: +61262688424

The entities the KA can be performed on fall into three major
categories - natural, man-made and humans - further referred to
throughout the paper as natural systems, technical systems, and
human activity systems. An example of KA applied to natu-
ral systems can be the weather cycle in a certain region of the
Earth, which one needs to understand in order to ensure safe air-
craft operation over that region in different periods of the year.
The tools available for gaining understanding about the weather
are observations and measurements. The weather cycle is ob-
served, measurements are taken on some relevant aspects such
as air speed, temperature, pressure or humidity, and records of
these observations and measurements are analysed and struc-
tured in order to understand how and why the weather behaves
the way it does. This further allows the representation of the
weather cycle in a manner that can be communicated to and
used by aircraft operators. The same tools, i.e. observations
and measurements, are available when applying KA to man-
made technical systems, like in the case of an aircraft life-cycle.
During its life-cycle, from design to manufacturing, operation
and decommissioning, an aircraft is under permanent observa-
tion, and large amounts of measurements are performed in order
to gain understanding on all possible aspects that allow normal
operation. For example, before commissioning into operation,
the design is tested in simulations, then in controlled realistic
environments (e.g. wind tunnels) and finally in real flight tests
in order to gain understanding about how all system compo-
nents interact internally within the aircraft and externally with
other systems such as the weather or the operators. The resul-
tant knowledge can be used to improve the design if the initial
design assumptions are not met, or to release the aircraft into
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operation and communicate this knowledge to its operators.
Unlike natural and technical systems, in the case of human

activity the processes underlying the observable behaviour can
be unveiled not only through observations and measurements,
but also by asking. Weather can be observed and measured, but
cannot be asked about why it is the way it is. Similarly, the
operation of an aircraft can be observed and measured, but the
aircraft cannot be asked why it manifested a certain behaviour
in some particular weather conditions. Humans instead, can be
asked and thus knowledge can be elicited through various tech-
niques that are unavailable in the case of natural and technical
systems. For example, we assume an activity such as piloting
an aircraft. This is a human activity system through that it in-
volves the existence and the interaction of all types of entities:
natural - the weather, technical - the aircraft and human - pi-
lot’s actions and decision making, with the human being the
pertinent entity that steers the whole resultant system and is ac-
countable for its behaviour. The pilot in this case makes use of
its knowledge about the natural system, its knowledge about the
technical system, and its innate or acquired cognitive-motor and
decision-making skills in order to perform the task of flying the
aircraft in good conditions. If one intends to improve the skills
of this pilot (for purposes such as safety, flight duration, pas-
senger comfort) or to transfer the existing skills to other pilots
(through creation of training programs), then it is paramount to
gain understanding about how and why the pilot takes decisions
and performs various actions, and how are these yielding from
the subsequent interactions with the natural and technical coun-
terparts (the weather and the aircraft). Further, it is paramount
to create and commit to an ontological construct that represents
this understanding effectively, in order to be able to use it for
fulfilling the established purposes.

In the light of the above examples, in this paper we con-
centrate on knowledge acquisition in relation to the generalised
concept of human activity (described in the third example - the
pilot), a research direction in which knowledge acquisition is
employed as a facilitator for finding ways to improve human
performance in various tasks in real-world contexts [142, 182].
Historically, this research direction emerged in response to the
need for improving the “workplace”, where the word workplace
has a broad meaning, referring to the physical work-place it-
self, but also encompassing the tasks performed by humans as
part of their lucrative activity, their proficiency in accomplish-
ing those tasks, their interaction with the technology they use
in support of that lucrative activity, and the artefacts resulting
from their activity. Roth et al. [182] see knowledge acquisi-
tion through a cognitive task analysis (CTA) lens, and note that
KA is nowadays an indispensable tool used to understand the
“cognitive and collaborative demands” that contribute to per-
formance and facilitate the formation of expertise. They also
note that KA is used as a support for designing ways to improve
individual performance through various forms of training, user
interfaces, human-machine interaction or decision-making sup-
port systems.

Today KA in relation to human activity systems is addressed
in multiple fields of activity. In Cognitive Systems Engineering
the KA methods are used to analyse the work environment in

order to inform the design of various systems, focusing on the
integration of humans, technologies and physical work space
[142]. In Cognitive Work Analysis [181, 101] the KA exercise
is used for making real-world constraints more visible to human
operators in order for them to make better-informed decisions in
unanticipated circumstances. In Naturalistic Decision Making
[157], some researchers proposed KA methods for investigating
how human decision-making emerges in real world tasks, as a
result of time pressure and risk [191, 142]. Human-Centered
Computing is another major field of research where KA tech-
niques were used as a support for designing technology that
amplifies or extend human capabilities [195]. KA was also con-
sidered essential for general Knowledge Engineering [49, 51],
where KA can be used in any or all of the knowledge elicita-
tion, analysis and representation stages. In addition, in Knowl-
edge Discovery and Data Mining [105] computational intelli-
gence instantiations of KA exercises are used for autonomous
knowledge discovery in problem domains that only offer access
to inexact and imprecise artefactual data resulting from human
activity systems. While this list is not exhaustive, it shows the
magnitude of the KA paradigm and its importance in the inves-
tigation of what we can broadly consider, virtually any human
activity system.

Figure 1: The shaded area shows the position and scope of the review within
the larger KA field.

Figure 1 summarises the above discussion in a visual man-
ner, presenting broadly the position and scope of this study
within the larger field of knowledge acquisition. More specifi-
cally, the review sees the human activity KA literature from an
agent perspective and classifies it into three major categories of
methods: human agents, human-inspired agents, and machine
agents. In the most general view, KA exercises assume vari-
ous degrees of interaction between one or more elicitor entities
and one or more subject matter expert (SME) entities. In the
proposed classification the human agent category refers to the
classic Cognitive Task Analysis exercises, in which both the
eliciting entities and the subject matter expert entities are hu-
mans. However, advances in computational intelligence and
digital technologies made possible the replacement of either or
both sides involved in the CTA exercise with their computer-
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based counterparts. Thus, the second category, human-inspired
agents, consists of the classic CTA exercises in which the hu-
man elicitor entities are replaced by computer programs that
emulate well-established human elicitors’ actions (e.g. auto-
mated interviews, automated protocol analysis). The third cate-
gory, the machine agents, include those KA exercises in which
both the eliciting entity and the SME entity are replaced by
computer programs with independent behaviour and no domain
knowledge regarding the two entities. That means, the eliciting
programs do not implement known behaviour of human elici-
tors, instead, they act autonomously for extracting knowledge
from the SME entity. In the same time the SME entities are
not any more human experts or known recorded behaviour of
them, but rather unstructured and unsorted artefactual data re-
sulted from unattended records of the human activity. Thus, in
this category, the KA exercise becomes a Knowledge Discovery
(KD) endeavour, in which the machine agents attempt to estab-
lish causal relations and meaning in an unstructured collection
of artefactual data believed to be related to a task or human ac-
tivity system of interest.

The paper is organised as follows. In the second section, we
present a historical view on KA, which provides an intrinsic
chronology-based categorisation of the methods and provides
the motivation for this study. Section 3 presents a discussion
that highlights the fundamental stages of the KA process and
sketches an architectural schema capturing general KA exer-
cises. The fourth section presents the existing classifications of
the KA methods and provides the foundation for the following
sections. Sections 5, 6 and 7 review the methods according to
the three proposed categories, human agents, human-inspired
agents and machine agents, respectively. In Section 8 we dis-
cuss major findings, the contribution of this paper, and future
research directions. Section 9 briefly concludes the study.

2. A historical view

The KA concept has its roots in a long history of research
on human activity, researchers tracing the work in the field to
as early as 19th century. A brief historical view can be found
in [142], while a comprehensive and in-depth discussion can be
found in [98] in relation to four major periods acknowledged
in the studies related to HAS: pre-1900, 1900-1920’s, 1920’s
- 1960’s, and 1970’s to present. The first three are related to
precursors of KA, while the fourth one represents the modern
KA. The pre-1900 period was focused on self-reporting meth-
ods based on introspection and retrospection, in which knowl-
edge about task and task performance was obtained from human
subjects by asking them to perform the task and then provide
retrospective reports. The second period, 1900 to 1920’s, was
dominated by the concept of “psychotechnics” which emerged
as a result of the increased pace of industrialisation, which in
turn generated the need for improving the human performance
at work in order to increase productivity. Studies were con-
centrated on analysis of tasks, usually physical in nature, and
targeted timing and motion during one task, or between sev-
eral tasks, throughout the work place. Seminal for this pe-
riod was the time and motion study of Taylor, first published

in 1911 [200], where the focus was on understanding how pro-
ficient workers performed their tasks. The third period, 1920’s
to 1960’s, was under the influence of large scale manufacturing,
when mass production in various industries introduced automa-
tion and high productivity assembly lines, changing dramati-
cally the HAS. Task analysis shifted towards the study of hu-
man factors, work safety and human-machine systems, where
the analysis of human activity was made with the purpose of
adapting the tools and processes to the human operators for in-
creasing productivity.

The fourth period, starting in the 1970’s, is when KA in
human activity systems emerged as a standalone high-level
methodology covering all the fields previously addressed by
precursor methods [77, 49]. The technological advances shifted
once more the human activities from predominantly physical to
predominantly cognitive tasks, and consequently the human-
technology interaction and integration problem reached lev-
els unseen before [142]. We consider that the fourth period
marks the most important contributions to the KA body of re-
search, establishing the concept solidly in the scientific world
through qualitative and quantitative studies. The fourth period,
which continues today, was when most of the human agent (i.e.
human-based or manual) KA methods and techniques were pro-
posed and largely accepted by both researchers and practition-
ers. However, we note that since the early 2000’s the amount of
new methods and methodologies in the human agent KA area
slightly declined, as evident through our inspection of the liter-
ature [49, 207, 142], while the amount of work on applications
of the existing methods increased significantly. This is, we ar-
gue, due to the fact there was yet another shift in the HAS.
It was the unprecedented development of the internet, the mo-
bile communications, and lately virtual environments and so-
cial media/networks that gave birth to the information age, and
transformed human activity systems to such extent that classi-
cal human agent KA exercises were no longer efficient or con-
venient. First, the physical interaction of human elicitors with
human SMEs became less and less plausible and possible due
to the nature of the new types of human activity. Then, the new
range of activities generate behavioural artefacts in quantities
and shapes no longer treatable with the capabilities provided by
human-based methods.

As a response to the emergence of these new types of human
activity, the human-inspired KA agents appeared as one direc-
tion of research, trying to implement some of the human agent
methods in computer programs in order to replace human elic-
itors with their automated versions. However, these methods
are still computer implementations of classical methods. A sec-
ond direction of response consisted of methods that diverged
from the human-related KA, bringing into the KA field human-
independent approaches, the machine agents, which managed
to better cope with acquisition of knowledge in cases where the
human element became inefficient. This direction is marked
by the full inclusion of agent-enabling technologies based on
computational intelligence, such as statistical analysis, machine
learning or evolutionary computation, into the KA exercises.
We consider these two directions as belonging to a fifth sig-
nificant period in the historical view on KA, starting from the
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1990’s to present days, which adds to the four historical peri-
ods acknowledged in the literature. We also note that despite
the reduction in the amount of new methods belonging to the
human agent methods, the fourth period did not cease to ex-
ist. Research on the classic human agent KA continued until
the present days with valuable reiterations of the established
methods in new contexts and application fields. Thus, the fifth
period, which brings the human-inspired and machine agents to
KA comes not as a replacement, but as an addition to existing
paradigms, fuelled by the continuous expansion of the concept
of human activity.

In the light of the above historical view on the KA research,
and motivated by the historical evolution of the concept of hu-
man activity, we consider pertinent and useful to discuss the lit-
erature based on the three categories we mentioned in the intro-
ductory section: the human agents, the human-inspired agents
and the machine agents. In order to keep the scientific discourse
pertinent and related to the KA concept, we provide in the next
section a discussion on the core process of a KA exercise. This
discussion will guide our review, and will ensure that the meth-
ods we describe throughout the paper are only included if they
belong to the core KA process and suit the purpose of the KA
exercises in relation with the concept of human activity.

3. Agent-enabled KA exercises: core process and roadmap

To date, the literature focused more on the internal mecha-
nism of the KA methods, and less on establishing an accurate
description of the KA process, or a relation between the pro-
cess and the purpose of the exercise [49, 207, 51, 210, 211].
Thus, the choice on how to conduct a KA exercise is strongly
dependant on the purpose of the exercise. In [182] the authors
consider, from a CTA perspective, that KA is still a task-related
paradigm, “with no best practice, or general methodology in
place”. Also, from a KD perspective Kurgan and Musilek [124]
identified and reviewed the existing models for the KA process,
where the models assumed a number of discrete activities or
stages. They identified models consisting of 3 to 9 stages, and
commented on the lack of guidance in defining the knowledge
discovery process.

However, a certain consensus exists on the major stages of
a KA process, regardless of the purpose. A majority of the
studies assumes a “big 3 model” in support for the introduc-
tion of various KA methods. In [22] the three stages in KA
are data elicitation from a human expert, data interpretation
(which infers the underlying knowledge from the data) and
knowledge modelling (which transfers the domain knowledge
of the human expert into a computational model). In [49] KA is
considered by Cooke as the front-end of knowledge engineer-
ing, which in turn is seen as part of the process of building a
knowledge-based system in general. The author considers that
the KA process consists of three major steps: knowledge elic-
itation, knowledge explication, and knowledge formalisation.
She states that the final goal of the knowledge acquisition ex-
ercise is “to externalise the knowledge into a form that can be
later implemented in a computer”, or in other words the cre-
ation of computational models; this idea is also present in [22],

[118] and [85]. This is achieved through the three stages of the
process, where the elicitation provides the psychological data
from human experts, the explication categorises and sorts those
data and the formalisation transforms them into a computational
model. The author also makes a distinction in the first stage be-
tween the knowledge elicited from humans and that extracted
from other sources [53, 71] such as task documentation, histor-
ical data, procedure manuals, etc. However, Cooke notes that
the knowledge resultant from this extraction process should be
verified, and enriched with that coming from elicitation in hu-
man SMEs. A decade later, the KA process is presented in [51]
by Crandall et al. in a similar manner, with the three stages
named knowledge elicitation, data analysis and knowledge rep-
resentation. The authors enrich the description of the stages
and also slightly shift their understanding. The elicitation stage
is no longer differentiated in elicitation from humans and ex-
traction from alternative sources, and is seen as the activity
of collecting information about “judgements, strategies, knowl-
edge, and skills that underlie performance”. The view of data
analysis stage is similar to that of Cooke - it encompasses the
set of actions taken for “structuring data, identifying findings,
and discovering meaning”. However, the knowledge represen-
tation stage is focused on externalising and presenting the data,
which in Cooke’s study was the goal of the whole knowledge
acquisition process. In Cooke’s study, the formalisation stage
is explicitly associated with the formulation of a computational
model, while Crandall and colleagues state that representation
means “displaying data, presenting findings, and communicat-
ing meaning” that is, communicating the output of the analy-
sis step. In a different approach to the ones described above,
Yates and colleagues [210, 211] acknowledge the three stages
in the KA process; however, they note that the last two, analysis
and representation, are usually treated together, being insepara-
ble in the context of modelling the knowledge acquired through
elicitation. Researchers in Knowledge Discovery also acknowl-
edge the three stages model, with the three stages named: data
preprocessing, data mining, and knowledge interpretation and
evaluation [29, 152, 148, 147]. The above discussion is sum-
marised in Table 1, which shows the main studies supporting
the three stage model of the KA process, from various perspec-
tives.

In general, the need of a universal process model to support
the KA exercises is obvious, and we showed in this section that
there is no lack of preoccupation in the scientific world for in-
vestigating in this direction. In particular for this paper, it was
necessary to summarise the existing work and to commit to a
process model in order to highlight the relation between the
proposed classification and the KA process. Assume that one
must gain knowledge about how and why aircraft pilots perform
various actions, in order to communicate this knowledge to pi-
lot schools for purposes such as improving training programs.
The first question is if the pilots are available in person for the
KA exercise or the exercise is performed on artefacts of their
activity, such as flight data from the on-board computers. If the
pilots are available then it is important to establish how many
of them will be participating in the KA exercise. In the case of
one or few pilots, a team of human elicitors (i.e. human agency)
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is sufficient for performing the KA exercise, but if a large num-
ber of pilots needs to be involved, such as the whole population
of pilots of an airline, then automated/computerised versions of
human elicitors (i.e. human-inspired agency) may be needed in
order to deal with the amount of data and analysis required. If
on the other hand only artefactual data of pilot’s activity is avail-
able then again the amount of the available data triggers further
choice options. If these data are in a low amount, such as sim-
ple tables with only the very important decisions like change of
course, these can be analysed by humans, but if these data mean
detailed records of all maneuvers, then machine agents should
be chosen in order to mine the vast amounts of resultant data.
In Figure 2 we generalise this example and present in a visual
manner how the proposed classification can contribute to a KA
exercise by creating a preliminary decision tree that facilitates
the choice of the appropriate methods to be used within the KA
process. Thus, another merit of the agent perspective on KA is
that it plays a decision support role in the KA exercises.

4. Brief review of the existing KA classifications

As discussed in previous sections, KA is used in a very broad
range of research fields and practitioner activities, and while
having a fairly short history as a standalone concept, it includes
numerous precursor techniques inherited from previous theo-
retical or practical approaches. This generated diverse paths
of development for KA, which further generated numerous ap-
proaches customised for every field of research, purpose of the
exercise, and even problem or task. This makes KA a highly
problem-dependent concept, whose classification into a com-
prehensive taxonomy was very difficult. In [182] the authors
note that while the need of conducting KA exercises is well es-
tablished and acknowledged across many fields and problems,
there is not much guidance about how to conduct it or evaluate
its quality. The number of KA methods identified in the lit-
erature over the years is in the range of hundreds, as reported
by some of the reviews of the field [49, 190, 207, 98] which
attempted to provide the basis for classifications of KA tech-
niques. In the following, we provide a brief description of the
most important classifications proposed over time in relation to
the KA paradigm.

One of the first notable attempts to categorise KA meth-
ods belongs to Bainbridge [13], where the author proposed a
matrix relating the acquisition method to the type of knowl-
edge/information needed to be acquired. She introduced seven
categories of “desired information”: general information on the
effect of variables, general information on control strategy, nu-
meric information on control strategy, the process, decision se-
quences, general types of cognitive processes and full range
of behaviours. These were linked to acquisition methods such
as observation and interviews, verbal protocol, questionnaires,
etc. Later, Yates [210] notes that Bainbridge was also the first
to suggest that a combination of techniques must be used in
the KA process in order to ensure validity of the exercise; this
became a common practice in KA, with a majority of the re-
searchers in the field supporting the idea [49, 143, 190, 214].

From a different perspective Embrey [67] divided the KA
techniques into two major categories: action oriented and cog-
nition oriented. The action oriented techniques concentrate on
describing and structuring the observed behaviours and tasks,
while the cognition oriented techniques focus on the cogni-
tive processes underpinning the observable behaviour. We add
that this classification resembles the historical evolution of KA,
which we briefly presented earlier in the paper, where in the re-
search on human activity the initial work on studying the tasks
was gradually enriched through the inclusion of cognition in the
analysis process.

Another classification of KA techniques was based on the
type of knowledge acquired by the KA exercise [49, 70, 211].
This classification uses the “differential access hypothesis”
[95], that is, the belief that different acquisition methods un-
cover different types of knowledge. Most studies consider
two categories of knowledge in this classification: declarative
and procedural [210, 46]. In [46] the authors state that com-
plex human activity requires the seamlessly integrated use of
both declarative (conscious, deliberative) and procedural (un-
conscious, automatic) knowledge. Thus, the resultant KA re-
search focuses on either or both aspects, depending on the pur-
pose of KA exercise. In a different view, substantive and strate-
gic knowledge terms were first proposed by Gruber [88, 87] and
later discussed in [70] and [210]. The substantive knowledge is
related to analytic activity, being used for describing and draw-
ing conclusions about the domain of activity and/or state of the
world, while the strategic knowledge is used at the decisional
stage for deciding what action to perform next, based on the
perceived state of the world. If we use the same aircraft pilot
example we used earlier in the paper, a pilot uses substantive
knowledge to conclude that the flight is in a high risk situation
based on the weather data showing a potential storm, and uses
strategic knowledge for deciding to descend in order to avoid
the turbulent area.

A different taxonomy is based on the stage in the KA process
in which the method is performed, where each stage is associ-
ated with an output of the acquisition exercise [156], e.g. data
acquisition, analysis, representation. This categorisation is also
indirectly presented by Cook in [49], even though the study is
focused on classifying the internal mechanisms of the methods.

Recently, Yates and colleagues [210, 211] proposed a tax-
onomy of KA methods which shows how different categories
of purposes require the use of specific categories of methods.
In essence, the authors assume that in practice the methods are
not used individually, but rather in pairs of elicitation methods
and analysis/representation methods coupled with specific pur-
poses/activity types.

The most important, and perhaps most recognised and well-
established classification of KA methods is based on the in-
ternal mechanism of the methods (the mechanism-based clas-
sification), that is, the way they acquire the knowledge. A
classification that is generally accepted and largely used in the
field [51, 210, 46, 98, 211, 201] assumes four broad families
of KA methods: informal techniques (observation and inter-
views), process tracing techniques, conceptual techniques, and
formal models. The first three were proposed by Cooke [49],
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Perspective Process stages References
KA data elicitation data interpretation knowledge modelling [22]
KA knowledge elicitation knowledge explication knowledge formalisation [49]
CTA knowledge elicitation data analysis knowledge representation [51], [210]
KD data preprocessing data mining knowledge interpretation [29], [152], [148]

Table 1: The three stage KA process model

Figure 2: The KA excercise - architectural schema

while the fourth is a later addition by Wei and Salvendy [207].
As we stated earlier in the paper, in this study we classify

the KA methods from the point of view of the type of agency
involved in the KA exercise. However, in each of the categories
belonging to the proposed classification we discuss the methods
based on the way they implement the KA exercise, that is, based
on the internal mechanism of the methods. Consequently, we
will also use in our review the mechanism-based classification,
and will redistribute the methods from this classification into
our classification, accordingly. This redistribution is presented
visually in Figure 3 in support of the next sections. The diagram
summarises the main categories in the proposed KA method
classification and shows how the subcategories discussed for
each category fall into the existing KA literature.

5. The human agents

The knowledge acquisition using human agents has been ex-
tensively covered in the literature, with numerous stand-alone
methodologies, methods and techniques proposed in the last

decades [49, 46]. Very well documented reviews of these tech-
niques have been published over the years, especially during
the 1990’s and early 2000’s [22, 49, 190, 207], however, several
important reviews which include aspects related to more recent
human agent techniques have been also published in the last
decade [210, 46, 98, 201]. From the point of view of the classi-
fication we propose in this paper, the human agent methods fall
in general into the first three families of the mechanism-based
classification [49]: informal methods, process tracing methods
and conceptual methods. In this section, we provide for each
of these categories a summary description of the category and a
brief presentation of the most important methods belonging to
it. Also, in order to guide the review of the literature on human
agency in KA, in Figure 4 we provide a mapping of the human
agent methods onto the KA process.

5.1. Informal methods - observations and interviews
Informal techniques are usually methods used for direct ac-

quisition, in which a human elicitor watches human experts
and/or talks with them in order to extract knowledge about task
performance either from their observed actions, or from their
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Figure 3: The proposed classification and its relation to the existing mechanism-based classification.

Figure 4: Mapping of he human agent methods to the KA core process: solid
line - ample explicit coverage, dashed line - limited implied coverage.

active response to tasks-related enquiries. Methods in this cate-
gory are highly informal, and are highly verbal and descriptive,
requiring the elicitor to either possess certain levels of expertise
in the task that is under assessment, or otherwise to be highly
qualified and experienced in interviewing techniques. These
methods are useful in the initial stage (elicitation) of the knowl-
edge acquisition exercise (Figure 4) for forming an initial view
on the problem domain, however, the results may be difficult to
interpret.

Observation methods involve extracting features from the ob-
served human behaviour occurring during the performance of a
task. The observation can be applied to the actual tasks or to
records (video, audio, etc.) of the task performance [63, 96].
In [141] the author states that observation is used in “manual”
knowledge acquisition to familiarise the knowledge engineer
with the domain. This familiarisation takes place before other
techniques are applied, such as interviews or more formal meth-
ods, and facilitates further construction of knowledge models
and representation. Observation is used to gather information

about conscious and unconscious behaviour of subjects and to
investigate the processes involved in the development of exper-
tise. Cooke [49] identifies three observation methods: the ac-
tive participation, the focused observation and the structured
observation. While observation is by nature seen as a passive
elicitation procedure, the active participation method assumes
that the elicitor is involved together with the subjects in task
performance. Hoffman [96] also provides a list of task types
that can be subject to observations. He describes six families
of tasks: familiar tasks, simulated familiar tasks, limited infor-
mation tasks, constraint processing tasks, combined constraints
tasks, and tough cases. In the elicitation process the subject is
gradually exposed to situations belonging to various levels of
familiarity and difficulty in relation to the domain of interest
for the elicitor.

Interviews are another major type of informal human agent
methods. They classify in unstructured and structured and can
be direct or indirect, with questions that are explicit or implied
[96, 49, 207]. In general they are retrospective - subjects are
asked to retrieve information about certain tasks they performed
in the past. The unstructured interviews are suitable for early
stages of knowledge elicitation [49] due to the fact they do not
require domain knowledge for the elicitor. The interviews do
not follow a predetermined sequence or topic; the elicitor pro-
ceeds freely, and uncovers whatever information the subject can
recall. For this reason they seem to be the preferred methods for
initial stages of knowledge elicitation. However, the drawback
is that the elicitor needs previous training and/or skills to fa-
cilitate the conversation and guide the interview. In addition,
the data provided by unstructured interviews can be “copious
and unwieldy”, as noted in [207]. The structured interviews
are different from unstructured ones through that they follow
a process that is in some extent predefined in terms of content
and sequencing [49]. Depending on how strictly the process
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follows the predetermined format, they can be structured, semi-
structured or prompted. The advantage of structured interviews
over the unstructured ones is that they provide systematic, and
thus, more complete views of the domains of interest. Also, the
structured process tends to take less time, and the participants,
both the elicitors and the experts tend to be more comfortable
throughout the elicitation exercise. However, structured inter-
views require more preparation time before the interview actu-
ally takes place. Nine types of structured interviews have been
identified in the literature [141, 49, 46], as follows: focused dis-
cussions, teach-back, role play, twenty-questions, Cloze exper-
iment, Likert scale items, question answering protocols, ques-
tionnaires and group interview techniques.

Starting from these broad families of techniques, in the fol-
lowing we describe the most popular methods, which generated
the most important body of research to date.

Critical Decision Method [120, 207] was proposed in the
1980’s and is based on semi-structured interviews, using inci-
dents as facilitators for testing decisions, judgements and gen-
eral problem solving. The method is time consuming and re-
quires elicitors to possess high level of expertise in the domain
of interest, involving multiple-pass retrospection of past events
guided by probe questions. However, the method generates in-
formation that is very rich and very specific in the same time.
It is considered a method for high level KA, and was exten-
sively used by both researchers and practitioners. Reviews of
the method and its applications from various historical peri-
ods can be found in [49, 97, 51, 78]. Recently, the method
has been extensively applied especially in psychology and gen-
eral medical practice [162, 79, 161, 198, 205, 140], but also
in ergonomics and human factors [168, 169] or general critical
decision-making problems [155, 4].

PARI (Precursor-Action-Result-Interpretation) [91, 92, 207]
is a nine stages structured interview methodology which elicits
detailed information about procedural skills. The method was
proposed in the 1980’s and uses multiple experts on a set of
problems, being considered to be time consuming and not fea-
sible for usual operational contexts. However, it is considered
a highly effective method which provides very detailed anal-
ysis of human skills. A simplified version of PARI (S-PARI)
reduces the number of stages of the standard PARI from nine
to three, and uses pairs of experts in relation to a specific prob-
lem. The method breaks down action, precursor and interpre-
tation data into cognitive processes and investigates subtasks
on only one task specific problem. The method is considered
to be highly effective in analysing procedural skills, and easily
usable in operational settings. Reviews of the PARI method-
ology and its applications from various historical periods can
be found in [49, 207, 201], the literature showing that the most
important body of research related to PARI methodology was
concentrated in the 1990’s and early 2000’s. However, several
important studies using PARI have been also reported in the re-
cent years in instructional design in domains such as healthcare
or engineering [160, 45] or in virtual environments applications
[47].

The Task Diagram approach [119, 207] combines the
diagram-based focused discussions with structured interviews

and is used for generating task diagrams when a roadmap for
task analysis is not in place for the task of interest. The Task
Diagram techniques generate an initial overview of the task,
providing support for the rest of the cognitive task analysis;
however, they have the disadvantage that they cannot han-
dle very complex tasks. Comprehensive reviews of the major
body of TD techniques and their applications can be found in
[49, 190, 207, 98]. Recently, task diagram methods have been
used extensively in various fields, such as in medical domain
in clinical research and pathology [209, 205], in serious games
[10, 193], in ergonomics and human factors [149] or in instruc-
tional design [214] applications. In the last decade the classic
task diagram methods also evolved towards a different elici-
tation approach called Graphic Elicitation [202] in which dia-
grams, photos or various forms of visual arts are used for stim-
ulating experts’ thoughts on task structure and performance, or
in the reverse process experts are asked to provide visual repre-
sentation of the personal understanding of tasks, concepts, ex-
periences and behaviours. The literature on Graphic Elicitation
reported a substantial number of studies in the recent years, in
a variety of application fields [52, 62, 122, 154, 179].

The Knowledge Audit [119, 207] is a structured interview
method used in general when the elicitor needs to identify
quickly the essential cognitive aspects associated with the task
of interest. The method uses six compulsory probes related to
past and future, big picture, noticing, task tricks, opportunities
for improvement and expert-novice differences, and three op-
tional probes related to anomalies in the task, equipment chal-
lenges and tough scenarios. The method is thought to be elicit-
ing very detailed and specific information about the task perfor-
mance, however the outcome is subjective and hence, may not
be very accurate. The method was proposed in the 1980’s and
a number of reviews on knowledge acquisition describing vari-
ous knowledge audit techniques and their applications are avail-
able in the literature [49, 190, 44, 98]. Recently the knowledge
audit methods have been used in various fields such as seri-
ous games [10, 193], business and organisational development
[174, 83, 54], transportation and energy sectors [44, 173], and
learning and instructional design [214].

The Simulation Interview method [119] is used for under-
standing the task process in which the elicitor brings out the
major events throughout the task performance for highlighting
the main cognitive elements of the task in relation to a specific
incident. The method shows how the subjects perform the task,
and also how they think about it, thus, it can deal with both
experts and novices. Detailed description, historical notes and
reviews on the simulation interview techniques can be found in
[49, 207]. In recent years simulation interviews have been used
especially as part of ACTA (the Applied Cognitive Task Analy-
sis methodology) [143], in fields such as clinical research [172],
welfare [21, 27, 170] or ergonomics and human factor [56].

Another approach largely used in the classic human agent
KA exercises is the Cognitive Demands Table method, which
synthesises data from multiple interviews, finds patterns and
organises them taking into account difficult elements, common
errors, cues and strategies from SMEs’ behaviour [119, 207].
The method identifies the components of a task that are cog-
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nitively demanding and facilitates their further application in
the task design cycles. Versions of the Cognitive Demands
Table have been also used as part of ACTA [143], especially
in very recent studies providing extensive coverage of a wide
range of applications in numerous fields, such as medicine, er-
gonomics and human factors, psychology, economics, learn-
ing and instructional design, or games and virtual environments
[172, 83, 214, 54, 21, 56, 27, 170].

A recently emerging approach, thoroughly reviewed in [41],
applicable in conjunction with any of the methods and family
of methods described above, is the Elicitation by Critiquing,
in which third party participants in the elicitation process are
asked to critique SMEs actions or the resultant products of
their actions in order to generate meaningful knowledge about
the tasks. The approach have been used especially, but not
exclusively, in studies related to recommender system design
[171, 213, 107].

5.2. Process tracing techniques

Process tracing techniques typically capture an expert’s per-
formance of a specific task through a think-aloud protocol dur-
ing the performance of the task, or through a subsequent recall
of it. Similar to the informal methods, these methods are also
highly customised and task-dependant, requiring the elicitor to
possess certain expertise in the problem domain. However, un-
like the informal methods, they do not necessarily require di-
rect interaction (i.e. subjects can be recorded), and the data
to be monitored and extracted from the expert are predefined.
Process tracing techniques have a slightly higher degree of for-
malisation compared to observations and interviews, and can
be used in either or both the elicitation and the analysis stages
of knowledge acquisition (Figure 4), allowing the exploration
of the cognitive structure of task performance. In the literature
most of the classic KA studies consider that the process tracing
approaches can be split into five major approaches: verbal re-
ports, non-verbal reports, protocol analysis, decision analysis,
and cognitive walk-through [49, 207]. Several detailed descrip-
tions and historical notes on process tracing can be found in
[49, 207, 98], while a very recent, thorough and comprehensive
review can be found in [17]. In the following we briefly de-
scribe the five main categories and provide references to their
most recent applications.

The Verbal Report methods assume that the elicitors extract
knowledge from SMEs based on what the latter are able to ex-
press through verbal description of what they believe they do
for accomplishing the tasks of interest. The verbal commu-
nication can be on-line, if the expert provides a verbal report
in real-time while performing the task, or off-line if the expert
comments retrospectively on how they performed the task in
the past. It can be also self-reported, when the expert reports
own experience, or shadowed, when a second expert reports the
facts experienced by the expert performing the task. Verbal re-
ports are used in the initial stage of knowledge elicitation, and
provide the raw data which is further used for protocol analysis.
Recent studies on verbal reports have been reported especially
in psychology related applications [75, 129, 89].

The Non-Verbal Report methods [49, 75, 188, 84] assume
the collection of data other then verbal, for process trac-
ing purposes. Examples of non-verbal data can be bodily
communication (e.g. eye movement, facial expression), in-
puts for computer-based tasks (e.g. keystrokes, mouse, touch
screen), or physiological data from sources such as EEG (elec-
troencephalography), EOG (electrooculography), EMG (elec-
tromyography), X-Ray etc. Non-verbal reports are also used
in the initial stage of knowledge elicitation, like their verbal
counterparts, especially when the verbal communication of the
process involved in task performance is impaired due to various
reasons. The data provided by non-verbal reports is then further
used for protocol analysis [49].

The Protocol Analysis methods [49, 46] emerged from the
need of improving the consistence of data resulted from knowl-
edge elicitation process. Informal methods, as well as the ver-
bal and non-verbal reports are in general time-consuming and
generate large amounts of data that are qualitative in nature,
complex and unordered, which are usually interpreted with a
certain amount of subjectivity by the elicitors, depending on
the methods and/or their skills. Protocol analysis methods are
in general ways of organising large amounts of so-called “open-
ended” [49] material through objective and systematic identifi-
cation of specific characteristics. Various techniques have been
proposed over time, since the approach emerged in the 1970’s,
such as content analysis [13], which searches for predefined
patterns as part of the hypothesis testing process, interaction
analysis [156], which parses the recorded interaction between
the elicitor and the expert for identifying patterns in the expert’s
statements, or grounded theory [167], which is similar to con-
tent analysis except the patterns are not predetermined. Recent
applications in various fields of the protocol analysis methods
can be found in [206, 132, 164].

The Decision Analysis methods emerged in the 1980’s [25,
49, 207] and are used for producing quantitative analysis of de-
cision points within a task, when such points are previously
identified using verbal and non-verbal protocols or protocol
analysis. Thus, these methods are applied in the analysis stage
of the KA process, after the initial raw data extraction. Decision
analysis uses formal statistical methods and probability theory
in order to provide quantitative information and prediction in
relation to the decision points of interest. Recent work on de-
cision analysis can be found in [64, 114], including a compre-
hensive review of the period between 2000 and 2011 in [102].

Another category of techniques, is the Cognitive Walk-
through [207, 136, 55, 125] in which one or more elicitors work
through the task of interest ask a set of questions from the per-
spective of the user. The procedure involves a task analysis
that establishes the sequence of steps a human subject needs
to take for performing the task, and the system responses to
subject’s actions. This is followed by the actual questioning
sequence, when the elicitor goes through the task steps asking
questions to itself at each step. The data obtained through the
walk-through exercise are also in the form of verbal protocols,
and can be further analysed with one of the protocol analysis
methods. However, the method is an exploratory process and
is believed to be easy to implement, having low time and cost
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requirements [207].

5.3. Conceptual Techniques
In contrast to the first two categories, conceptual techniques

produce structured, interrelated representations of relevant con-
cepts within a problem domain. They are mostly indirect, re-
quiring less or no introspection and verbalisation, and can use
multiple sources of problem domain expertise, such as multiple
human experts and/or task documentation and logs, historical
data, practitioner’s literature etc. The output of these sources
can be aggregated in order to generate a composite structural
representation of the acquired knowledge (Figure 4).

Several broad families of methods are described in the lit-
erature in relation to conceptual methods [49, 196]. Concept
Elicitation methods focus on establishing a set of key concepts
that are essential for understanding the domain/task of interest.
These concepts and their interaction can be inferred using var-
ious informal techniques, such as structured interviews or fo-
cused discussions, if the techniques are adapted for elicitation
of essential elements of the domain, rather than the extraction
of general data. Cooke [49] identifies structured interviews as
the most appropriate to be used for concept elicitation. The in-
terviews are adapted to concept elicitation through that the ex-
perts/subjects are guided towards building dictionaries of con-
cepts related to the task of interest, in which the concepts are
grouped based on a set of criteria relevant to the associated do-
main. The concept elicitation methods can be also based on
goal decomposition, involving the construction of hierarchies
of concepts which generate taxonomies of concepts. Another
notable family of conceptual methods is the Data Collection,
which involves the estimation of the degree of correlation be-
tween two concepts belonging to a domain of interest. In [49]
the author refers to this correlation as “relatedness” or “prox-
imity”. These methods are used in general after the initial elic-
itation of concepts, in conjunction with informal methods or
through process tracing, and constitute the immediate support
for representation stage of the KA process. The data collec-
tion techniques generate one or several matrices of proximity,
depending on the number of experts involved in the elicita-
tion exercise, in which the rows and columns represent vari-
ous domain concepts. Methods in this family include “rating
and ranking” [57, 93], repertory grid [26], sorting [184, 57],
event co-occurence [49], and correlation/covariance [49]. An-
other important group of methods is gathered in the Structural
Analysis family, where the techniques are based on descriptive
multi-variative statistics [49] and are in general used for reduc-
ing the taxonomies of concepts and the subsequent relatedness
estimate matrices to simpler forms which are more appropriate
for further knowledge representation. Important methods for
structural analysis are multidimensional scaling [24], discrete
techniques (e.g. clustering) [106], direct structure elicitation
[196], and structure interpretation [156].

In the following we describe a number of conceptual tech-
niques considered to be of major importance in a variety of
fields of research from a human agent KA perspective.

The Conceptual Graph Analysis [82] method creates a con-
ceptual map of the task in the form of graphs, in which nodes

represent conceptualised states, events, goals or actions, and
directional links represent relations between the concepts cap-
tured in nodes. The graphs can represent taxonomic, spatial
and causal structures of the concepts and create the support for
knowledge representation through information integration and
organisation. The method represents a structured framework
for transferring knowledge from an implicit form to an explicit
one.

The Consistent Component methods [73, 207] investigate
procedural knowledge and are used in the intermediate or late
stages of analysis. They decompose the task of interest and
identify decision points and the automated skills associated to
them, providing in the same time measurements for the degree
of interference between simultaneous tasks and detailed infor-
mation about action and skill performance timing [186].

The Diagramming methods are knowledge representation
techniques which show the key concepts that tie all the other
concepts related to the task/domain of interest [177, 207]. Di-
agrams are very intuitive and in general require low time and
cost, being simple ways to represent fairly complex tasks. How-
ever, above a certain level of task complexity the diagrams
themselves may become too complex to provide good represen-
tation of the domain, and require the analysts to employ other
methods in order to produce better representations.

The Error Analysis methods [207] focus on identifying er-
ror sources and on classifying these errors. The errors made by
subjects throughout the task performance process are systemat-
ically analysed in order to establish their relationship with the
cognitive processing, i.e. they are mapped to the corresponding
cognitive processing failures. Error analysis produces in-depth
insights into the intimate cognitive processes and functions and
create the premises for realistic representation of thought pro-
cesses. However, their use is in general appropriate for tasks
which are susceptible to errors, such as critical incidents or
safety critical domains [116].

The Psychological Scaling methods belong to the rating and
ranking class described in [49], and focus on the relations be-
tween concepts related to a task/domain of interest, with inclu-
sion of subjective aspects such as individual preference and per-
ception. The relations are expressed using estimated proximity
between concepts, which are mapped into proximity matrices.
The concepts are ranked by using each of them at a time as
reference and measuring the similarity with the remaining ones
[187, 207].

The Paired Comparison methods are also part of the rating
and ranking class, and involve the rating of pairs of concepts in
relation to a standard pair [49]. Based on relatedness/proximity
measures, the techniques generate magnitude estimations for
each pair; however, if the number of concepts increases [207]
the methods may become time consuming. Another drawback
of the methods is that they only consider relatedness along one
specified dimension.

The Repertory Grid methods [26, 207] are particular cases
of general rating and ranking methods, in which the concepts
related to the task of interest are rated along “dichotomous di-
mensions” called constructs [49]. The constructs can be organ-
ised in hierarchies and used for separating the domain concepts.
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The subjects provide to the elicitor ratings of various constructs,
which are then placed into grids, on rows and columns. Overall
relatedness/proximity is then extracted from the grid, by calcu-
lating the correlation between ratings constructs and concepts.
The result of repertory grid methods is usually further used for
knowledge modelling, through structural modelling techniques
such as hierarchical clustering.

The Sensori-Motor Process Charts are techniques that focus
on mental activities [207, 109]. They take into account sensors
and sensory information and their relation to the task of interest
and produce skill charts based on the patterns observed during
the task performance. In general they follow a predefined set of
steps, equivalent to the key mental activities involved in psycho-
motor tasks: plan, initiate, control, end, and check [207].

The Sorting methods focus on high-level conceptual struc-
tures [184, 49, 207, 57]. The experts are required to order con-
cepts based on relatedness/proximity and place them into piles,
accordingly. In addition, due to the fact the experts are not re-
stricted in terms of number and content of piles (one concept
can be placed in multiple piles), these can be also asked to label
the piles. In general the sorting techniques are considered to be
less time-consuming then the paired comparison, with which
they are alike, but instead they have a lower level of sensitivity
to relatedness/proximity differences. In general sorting tech-
niques are considered fast and simple ways of eliciting concep-
tual information of a quality that is good enough to be used
reliably in further analysis of data.

5.4. Summary of human agents

We included in this section those methods which suited the
perspective depicted earlier in the paper in Figure 2. In Table 2
we summarise this section in a tabular manner and through this,
we emphasise the contribution of this class of methods to the
creation of the roadmap that facilitates the KA process, and we
show how each of the methods can fill an appropriate branch
in the decision tree, corresponding to human agency. Thus,
overall, this section contributes to demonstrating the decision
support role of the human agent class of methods in the KA
exercises.

6. The human-inspired agents

As we explained earlier in the paper, we consider the human-
inspired agent methods as those methods that automate some
of the human agent methods in order to increase the speed of
the exercises or to allow the exercises to be performed in cases
where physical presence or participation of human elicitors in
the KA exercise is impeded or inefficient/inconvenient due to
various reasons. From the point of view of the classification
we discuss in this study, the human-inspired agents represent
a significant contribution to the KA body of research through
that they are a significant step in the process of advancing the
KA field from purely human-based activities to purely human-
independent activities. While the human-inspired agent meth-
ods have been extensively used for a variety of KA exercises,
they do not present novel approaches regarding the intrinsic

mechanisms of the acquisition, but rather they bring novelty in
the way the human-based methods, such as interviews or analy-
sis of verbal protocols, are implemented in computer programs.
Thus, the contribution stays in the ability of those programs to
accurately emulate and automate the well-known human elic-
itor actions, and to increase the speed and convenience of the
KA exercises.

In this category, the literature contains a variety of human-
inspired agent methods which are used for implementing auto-
mated versions of some of the informal methods (especially au-
tomated interviews), process tracing methods (especially analy-
sis of verbal and non-verbal protocols) and conceptual methods
(especially psychological scaling and repertory grid implemen-
tations) [76, 49]. However, from the mechanism of the method
point of view, most of the human-inspired agents are those be-
longing to the class of formal KA methods proposed by Wei and
Salvendy [207, 46]. In order to guide the review of the litera-
ture on human-inspired agency in KA, in Figure 5 we provide
a mapping of the human-inspired agent methods onto the KA
process.

Figure 5: Mapping of he human-inspired agent methods to the KA core process:
solid line - ample explicit coverage, dashed line - limited implied coverage.

6.1. Automation of human agent methods

For the human agent informal methods most of the human-
inspired counterparts consist of computer-based tools which
include support for fully automated or mixed-initiative (semi-
automated) interviews. Some of the most important tools re-
ported in the literature [49] are Cognosys [208], which trans-
fers the SME domain knowledge into a graph structure, MORE
[111] and its enhanced version MOLE [69] which were largely
used for generating models of diagnosis knowledge able to dis-
ambiguate under-specified domains and to refine incomplete
knowledge bases, SALT [137], which was used for problems
such as configuration and scheduling for generating expert sys-
tems able to handle propose-and-revise problem-solving strate-
gies, and ASK [88] which interviews the SMEs for eliciting
strategic knowledge about the domain of interest. Other com-
puter based tools containing automated interviews have been
also reported in the literature, such as ETS (expertise trans-
fer system) and its enhanced version AQUINAS [23] which
were mainly used by Boeing, IRA-Grid [133] which acquires

11



Agent perspective KA
KA roadmap process model References

approach Amount of Richness of Elicitation Analysis Representation
activity analysis

Critical Decision very low very rich yes yes no [49, 97, 51, 78]
PARI very low very rich yes yes no [49, 207, 201]

Task Diagram very low moderate yes partial no [119, 190, 207, 98]
Knowledge Audit low rich yes partial no [49, 190, 44, 98]

Simulation Interview moderate moderate yes partial no [49, 143, 207]
Cognitive Demands Table high moderate yes yes partial [119, 143, 207]

Elicitation by Critique very low moderate yes no no [171, 213, 41, 107]
Verbal Reports very low low yes no no [75, 129, 17, 89]

Non-Verbal Reports very low moderate yes no no [49, 75, 188, 84]
Protocol Analysis moderate rich no yes no [13, 49, 46]
Decision Analysis moderate rich no yes no [25, 207, 102]

Cognitive Walk-through very low low yes yes no [207, 136, 55, 125]
Conceptual Graph Analysis high rich no yes no [82, 49]

Consistent Component moderate rich yes yes no [73, 186, 207]
Diagramming moderate rich no partial yes [177, 207]
Error Analysis low moderate yes yes no [207, 116]

Psychological Scaling moderate rich no yes yes [187, 49, 207]
Paired Comparison moderate moderate no yes yes [49, 207]

Repertory Grid moderate rich no yes partial [26, 207]
Sensori-Motor Process Charts low moderate yes yes partial [207, 109]

Sorting high moderate yes no no [184, 49, 207, 57]

Table 2: Summary of human agent methods: agent perspective roadmap and KA process

descriptions of prototypical situations through a grid-based in-
terview component, or KRIMB (Knowledge Representation for
Intelligent Model Building), which acquires descriptive infor-
mation about complex reliability systems [59].

For human agent process tracing category of techniques,
most of the human-inspired counterparts concentrate on im-
plementing computer-based verbal protocol analysis methods
in order to automatically record and analyse transcripts from
SMEs thinking aloud about tasks. Popular tools reported in
the literature were Cognosys, which contained a protocol anal-
ysis component in addition to the automated interview capabil-
ities, and KRITON [59] which transforms verbal protocols into
propositions based on pauses in the speech, along with other
tools such as LAPS [99], MACAO [12], or MEDKAT [104].

Conceptual human agent methods were also addressed by
various automated tools. Automated counterparts of psycholog-
ical scaling, including multi-dimensional scaling, were largely
used in the literature for structuring knowledge, i.e. AQUINAS,
KRITON, IRA-Grid with variations such as FLEXIGrid, KSS0
and others [22, 37]. Also a consistent body of research concen-
trated on repertory grids and used various personal-construct
psychology-related methods to elicit and analyse knowledge,
such as AQUINAS, ETS and IRA-Grid, FLEXIGrid, KRITON,
KSS0, KITTEN, SMEE [150, 74].

Recent work that applies the above methods has been re-
ported especially in domains that are new and less explored
by the classic KA community, such as games and virtual en-
vironments, virtual worlds and societies, or serious games

[14, 166, 159, 94], where the knowledge is not acquired (au-
tomated or not) from entities that are humans or artefactual
data of human activity, but rather from computer generated ar-
tificial entities. Such an approach was used in [159], where
the authors created automated data collection entities for vir-
tual worlds, which they tested in the Second Life environment.
They demonstrated that the entities were capable to capture a
variety of behavioural data about various avatars populating
the Second Life, data that were further analysed using Social
Network Analysis methods. They concluded that a combined
approach utilising manual and automated techniques can pro-
vide valuable knowledge about elements of interest in virtual
worlds and social networks, such as structural and functional
aspects, or key players. In a different study Yee and Bailen-
son [212] describe a method for collection of longitudinal be-
havioural data from virtual worlds, and introduce a technical
framework for capturing avatar-related data for several weeks
in real-time, at a resolution of less than one minute. Also,
in [94], the authors used the game Second Life to implement
human-inspired agents in embodied survey “bots”, in the form
of software-controlled avatars, in order to obtain automated
data collection in 3D virtual worlds. In their framework a hu-
man elicitor controlling an avatar and a “bot” artificial elicitor
controlling another avatar cooperated to perform a survey in-
terview on various characters (both human-controlled avatars
and computer generated avatars) populating the game Second
Life. They found that both the human-based and the bot inter-
viewer performed the survey in good conditions, however, the
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bot had a slightly lower response rate compared to the human.
While a difference existed, the authors concluded that the find-
ings provided sufficient support for the idea of using bots as
virtual research assistants.

6.2. The formal methods in the mechanism-based KA classifi-
cation

The formal methods use computer simulations to model hu-
man activity, thus they account for the knowledge representa-
tion stage only (Figure 5), in the KA process. The acquisi-
tion of knowledge does not rely on actual performance of the
tasks or records of it, instead is based on cognitive models
built on various assumptions which lead to descriptions of the
tasks/domains of interest convenient for the purpose of the KA
exercise [207]. The methods in this category are considered by
Wei and Salvendy [207], and further acknowledged by other
authors [46, 51, 98] as KA methods inspired from assumed un-
derstanding of the human mind and cognition, and formalised
into computational models that plausibly emulate human activ-
ity. We complement this view by saying that the methods in this
category consist of attempted cognitive architectures for gen-
eral intelligence, emerging from the corresponding cognitive
theories, and aiming to emulate human problem-solving and
decision-making capabilities. Thus, these methods are inher-
ently automated, without human agent counterparts, and there-
fore, we discuss them in our classification (1) as part of the
category of human-inspired agents and (2) separate from the
automated versions of the human agent methods. In the follow-
ing we present the most notable approaches belonging to this
category.

The ACT model (Adaptive Character of Thought) comes
from the “ACT*” cognitive theory initially proposed by Ander-
son in 1983 [8], and further instantiated as a cognitive agent ar-
chitecture [9, 28, 189]. In ACT the authors consider that cogni-
tion emerges from the interplay between procedural and declar-
ative knowledge. Procedural knowledge is modelled through
units called production rules encoding transformations in the
environment. Declarative knowledge is modelled through units
called chunks encoding objects in the environment. The ACT
model is focused on skill acquisition and can be applied only
to problem solving domain, assuming a “means-ends” problem
solving structure [207]. It can represent both declarative and
procedural knowledge and represents a way to understand the
learning of complex problem solving skills.

The ARK model (ACT-based Representation of Knowledge)
[80, 139, 49, 207] is a technique similar to the goal decompo-
sition, which is part of the informal methods in Cooke’s tax-
onomy [49]. The model uses a process that breaks goals into
sub-goals and/or actions and generates a network of objects
and their interaction by using ACT-inspired production rules for
modelling goal-subgoal and goal-action relations. The model is
thus able to emulate both the network-based representation of
the domain knowledge and the corresponding procedures per-
formed on that knowledge.

The Human Processor model is based on the theory of human
information processor [33, 34]. It was developed as a model of
human-computer interaction, and consists of a series of three

processors - perceptual, cognitive and motor - and a set of gen-
eral purpose memory stores [134]. From a KA perspective the
approach can model various parameters which participate in
breaking down of complex tasks into relevant components, tak-
ing into account timing attributes. The task decomposition is
very detailed, with the associate cognitive processes and skills
reaching an “atomistic” level [207]. The model is considered to
be very accurate, especially for modelling simple tasks, where
detailed task decomposition can be easily done.

GOMS (Goals, Operators, Methods and Selection rules) was
also developed as a human-computer interaction model, based
on human information processor [115, 36, 66, 11, 86]; how-
ever, the task modelling and decomposition focuses on higher
levels of cognitive processes, i.e. goals, operators, methods and
selection. From a KA perspective GOMS is applicable to error-
free tasks for which the sequence of actions needed to perform
them is known. Based on that particular sequence GOMS is
able to provide good understanding of the cognitive interac-
tion between the system user and the system, based on that
particular sequence. Consequently, the model is functional for
the specificity of the task and needs major rework in order to
be ported to different tasks. A number of versions of GOMS
model have been proposed over time, such as Basic GOMS,
Keystroke Model, Model Unit Task, Natural GOMS Language
or Cognitive-Perceptual-Motor GOMS [207, 197].

The Grammar methods [65, 207], such as Cognitive Gram-
mar [178] or Task-Action Grammar [163], describe the tasks
requiring human-computer interaction in a formal language, in
which a syntax is associated to the actions taken throughout
the task performance. Grammars are considered appropriate
for complex systems, and fairly easy ways of modelling lan-
guages for human-computer interaction. In Cognitive Grammar
methods the grammar is modelled using five types of symbols:
terminal - are associated to actions that involve learning and
remembering, non-terminal - represent sets of actions that can
be grouped based on their similarity, starter - are associated to
high-level tasks, meta-symbols - refer to operators/operations
such as and, or, inclusion, and rules - which define interac-
tions within the grammar structure. The Task-Action Grammar
methods usually identify primitive tasks that do not require con-
trol frameworks, and can be performed without involvement of
problem solving skills. These tasks are then described in a dic-
tionary using semantic categorisation. Based on the dictionary,
rules that associate the simple tasks to actions are generated.

The Object-Oriented Models use object oriented technolo-
gies for integrating procedural models, such as GOMS and se-
mantic models, such as grammars [20, 207, 197]. In general it is
considered that GOMS-type models are limited to specific types
of tasks and subsequent functionality, while semantic models
are entirely task-dependant. Object Oriented modelling allows
variation of functionality through addition/removal of classes
and methods, and due to this flexibility can generate semantic
structures for virtually any task. From the KA point of view
it can handle both declarative and procedural knowledge, es-
pecially in human-computer interaction contexts, and bridges
a gap between high-level semantic description of task domain
and procedural description of the sequence of actions.
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The standalone Cognitive Simulation methods [183, 207] use
inputs from domain scenarios to generate realistic cognitive
computational models which can then be compared to observed
human behaviour for the same scenarios. In general, such mod-
els evolved towards cognitive agent architectures for general in-
telligence, where the resultant cognitive models were intended
to produce behaviour not limited to the same scenarios used
for building the models. However, from a KA perspective, the
cognitive simulation limits its scope to reproducing, through
simulation, plausible behaviours related to the tasks of inter-
est; behaviour that can be be further analysed and decomposed
towards increasing levels of detail. CES (Cognitive Environ-
ment Simulation) is a Cognitive Simulation approach proposed
by Roth and colleagues [183] for modelling the cognitive activ-
ity of operators in nuclear power plants, in order to capture the
cognitive demands involved in dynamic fault-management sit-
uations. CES monitors and tracks process changes, identifies
unexpected behaviours and formulates hypotheses related to
these, builds and revises a situation assessment, and formulates
proposed actions based this assessment. Other important cog-
nitive simulation approaches such as SOAR [126], CLARION
[199], CogAff [48] or SoM (Society of Mind) [130] have been
also proposed and continuously improved over time, emerging
towards complex cognitive architectures largely used nowadays
for modelling knowledge and behaviour in a variety of applica-
tion fields [130].

6.3. Summary of human-inspired agents
We included in this section those methods which suited the

perspective depicted earlier in the paper in Figure 2. In Table 3
we summarise this section in a tabular manner and through this,
we emphasise the contribution of this class of methods to the
creation of the roadmap that facilitates the KA process, and we
show how each of the methods can fill an appropriate branch
in the decision tree, corresponding to human-inspired agency.
Thus, overall, this section contributes to demonstrating the de-
cision support role of the human-inspired agent class of meth-
ods in the KA exercises.

7. The machine agents

In the previous two categories (human agents and human-
inspired agents) the KA relies on human or human-like agents
to extract the underpinnings of the observable behaviour of hu-
mans. The third category, machine agents, opposes to them
in two aspects, as we explained in the introductory section.
First, the machine agents acquire knowledge in ways that no
longer resemble or depend on the human ways of perform-
ing the acquisition tasks. Thus, the acquisition process imple-
mented by the machine agents is not intended to be plausible
from the point of view of human elicitor actions, while still de-
livering consistent results in terms of the KA output. Second,
the machine agents no longer acquire knowledge from humans
or planned/attended records of their behaviour, but rather from
unattended artefactual data resulted from human activity sys-
tems. Thus, the machine agents employ a variety of computa-
tional intelligence technologies that enable them to perform a

human-independent autonomous knowledge discovery process,
in order to generate models of the knowledge hidden in the arte-
factual data. In order to proceed with the survey on the machine
agent KA literature, we first describe in a brief manner the most
important of these agent-enabling technologies.

7.1. Agent-enabling technologies

In this study we consider three classes of computational intel-
ligence methods which are of high importance in enabling the
machine agents for KA: statistical analysis, machine learning,
and evolutionary computation. The methods in these categories
are used either individually or combined in order to implement
agents capable to act autonomously for performing the acquisi-
tion process.

7.1.1. Statistical analysis
Numerous statistical methods have been used over the years

for knowledge acquisition, especially in autonomous knowl-
edge discovery contexts, for extracting both the structure [108]
and the causal relations [100] existing in artefactual data. Sta-
tistical analysis can be seen in the KA perspective as the math-
ematical way to capture and disseminate data, with the purpose
of defining models for prediction.

Bayesian networks [151], rule sets (crisp, rough or fuzzy)
[105], k-means techniques [113], regression analysis [61], or
decision tree analysis [180] are some of the most popular ap-
proaches, which generated a significant body of research in the
general KA field, as well as in the KA related to human activity
systems, which is of interest in this paper. Comprehensive re-
views of these techniques can be found in [2] in relation to their
mathematical foundation, and in [19, 112] in relation to their
application in the KA field.

Methods in the statistical analysis family of agent-enabling
technologies benefit from a strong mathematical foundation,
through which they can provide well defined and reliable in-
sights into the mechanisms underpinning the artefactual data.
However, [18] they can only infer the knowledge models from
well structured data, while they produce less clear results when
dealing with complex and highly non-linear data or multidi-
mensional datasets.

In machine agents for KA, the statistical analysis methods are
mainly used as part of the inference modules [110, 40], espe-
cially for the early stages in the knowledge discovery process,
such as data preprocessing, but also in clustering or rule mining.

7.1.2. Machine learning technologies
Machine learning technologies employ a variety of tech-

niques in order to endow artificial entities (machines) with the
ability to autonomously learn facts about various phenomena,
which from a KA perspective equals to the ability to uncover
and understand the inherent structures and causal relations un-
derlying the artefactual data of interest. The machine learn-
ing techniques may be supervised, where the supervised learn-
ing methods assume the existence of prior (historical) domain
knowledge, or unsupervised, where the machine entities act en-
tirely independent in the knowledge discovery process.
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Agent perspective KA
KA roadmap process model References

approach Amount of Richness of Elicitation Analysis Representation
activity analysis

Automated Informal Methods high rich yes yes no [69, 59, 23, 88]
[137, 208, 133]

Automated Process Tracing high rich yes yes partial [104, 59, 12, 99]
Automated Conceptual Methods high rich no yes partial [150, 22, 74, 37]

ACT moderate moderate no no yes [8, 9, 28, 189]
ARK moderate moderate no no yes [80, 139, 49]

Human Processor low rich no no yes [33, 34, 134]
GOMS moderate moderate no no yes [36, 66, 86, 197]

Grammars moderate moderate no no yes [178, 163, 65]
Object-Oriented Models moderate low no no yes [20, 207, 197]

Cognitive Simulation low rich no no yes [199, 126, 48, 130]

Table 3: Summary of human-inspired agent methods: agent perspective roadmap and KA process

Inductive Logic Programming [50, 153], Support Vector Ma-
chines [158, 176], Reinforcement Learning [128, 121], and Ar-
tificial Neural Networks [105, 35, 38] are the most popular ap-
proaches in machine learning which generated the largest body
of research in the KA field. Detailed reviews of the machine
learning field and techniques can be found in [112], [144] and
[138].

Often machine learning techniques are used in conjunction
with statistical methods for extracting the meaningful informa-
tion out of the non-linear and multidimensional datasets, i.e.
neural networks can be used in conjunction with symbolic pro-
duction systems in the form of a rule sets, where the rules can
be crisp (if-then), rough or fuzzy. Consequently, the machine
agent methods for KA can employ one or more machine learn-
ing techniques, which in turn may make use of statistical meth-
ods, resulting in complex integrated machine agents covering
more than one stage/sub-process in the KA process.

7.1.3. Evolutionary Computation technologies
The motivation for applying evolutionary computation (EC)

techniques to knowledge acquisition is that they are robust and
adaptive search techniques that perform a global search in the
solution space. Evolutionary computation techniques are not
used per se as standalone methods to implement acquisition
tasks such as feature selection, rule mining, clustering or classi-
fication. Rather, they are used to evolve the parameters of other
methods in order to improve the quality of the incipient knowl-
edge extracted by those methods. Thus, evolutionary compu-
tation techniques have been found particularly useful in auto-
matic processing of large quantities of raw noisy data, where
large numbers of parameters used by various other KA tech-
niques needed to be optimally set in order for those methods to
be able to discover, extract and represent significant and mean-
ingful information [72, 152].

The largest body of research on EC in the KA consists of
EC methods that can be included in the standard genetic algo-
rithms (GA) category, either in single or multi-objective vari-
ants. The algorithms follow in general the broad guidelines of

classic GAs, i.e. they use classic encoding methods such as bi-
nary or decimal (real, integer) with one feature in one chromo-
some, fixed sized populations with no sub-populations, genetic
operators such as single-point and multi-point crossover and
mutation, classic selection techniques such as roulette wheel
selection or stochastic universal selection, etc. [81]. Applica-
tions and reviews of these algorithms can be found in [123],
[16], [58], [117] and [146].

Apart from those considered standard GAs, a number of non-
standard evolutionary techniques have been largely employed
in KA tasks, such as the Non-dominated Sorting Genetic Algo-
rithm [103, 7], the Niched Pareto Genetic Algorithm [68], the
Evolutionary Multi-Objective algorithm for Feature Selection
[203], or the Evolutionary Local Search Algorithm [117, 215].

A very recent and comprehensive review of the EC methods
employed in KA is offered in [148] and [147], where the au-
thors identify the most used evolutionary techniques for feature
selection, classification, clustering and association rule mining,
and provide detailed guidance for adapting the design of each
component of the evolutionary algorithms (e.g. encoding, ge-
netic operators, selection strategies, objective functions) to the
desired knowledge acquisition task.

Similar to the other agent-enabling technologies, in the EC
technology case too the machine agents can employ one or
more EC techniques, which in turn can make use of either or
both statistical methods and machine learning methods, result-
ing in complex integrated machine agents covering more than
one stage/sub-process in the KA process.

7.2. The mining machine agents

The machine agents have been extensively used in KA as part
of the autonomous KD paradigm. In [31, 30] the authors note
that agents - generally seen through the lens of autonomous
agents and multi-agent systems, and knowledge discovery -
generally seen as a data mining exercise, initially emerged and
established as separate standalone research fields but in the last
two decades methods from both fields merged into a new field
of research, the “agent mining”. The agent mining concept
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was largely supported by numerous studies in the literature
[15, 32, 145, 110, 40], which proposed agents for agent min-
ing applications under various names such as knowledge driven
agents [15], knowledge collector agents [145], or miner agents
[6, 40]. In [30] Cao et al. identify three approaches on agents
and knowledge discovery that are essential for the emergence
and establishment of the machine agents in knowledge acquisi-
tion: the data mining-driven agents, the agent-driven data min-
ing, and the agent mining itself, where the former two were
precursors of the latter. In the data mining-driven agents, the
agents are empowered and their capabilities are enhanced by
data mining and knowledge discovery techniques. Conversely,
in the agent-driven data mining the agents or agent technologies
in general are used to improve data mining processes. The agent
mining encompasses both paradigms, and merges agent and
multi-agent technologies with data mining and knowledge dis-
covery techniques. This brief historical view on agent mining
is important for understanding the convergence of the research
interest towards autonomous knowledge discovery through the
use of machine agents.

However, from the point of view of this paper we are inter-
ested in the mechanics of the methods and therefore we iden-
tified in the literature two categories of machine agents for au-
tonomous KD, the interaction-based and the integration-based
agents, which we describe in the following. However, in order
to guide the review of the literature on machine agency in KA,
in Figure 6 we provide a mapping of the machine agent methods
onto the KA process.

Figure 6: Mapping of he machine agent methods to the KA core process: solid
line - ample explicit coverage, dashed line - limited implied coverage.

7.2.1. Interaction-based agents
The interaction-based methods present multi-agent ap-

proaches in which the learning mechanisms underlying the
knowledge acquisition process are implemented using vari-
ous types of social interactions and behaviours, such as col-
laboration, cooperation, negotiation, competition or imitation
[90, 185, 216, 175]. However, we found that of the many types
of agent interactions reported in the general agent literature,
only collaboration, cooperation and negotiation have been used
in a significant amount for knowledge acquisition as part of the
autonomous knowledge discovery paradigm, while the rest are
only implied by some methods, rather than explicitly used as
standalone methods.

In [90] the authors proposed a Collaborative Exploration Sys-
tem for knowledge discovery in biomedical multivariate time
series data, in the form of a multi-agent system in which the
subsequent learning is the result of cooperation between five
types of agents (a data segmentation agent, a data classifica-
tion agent, a symbolic translation agent, a scenario construc-
tion agent, and a system agent), which are grouped in two “tri-
ads”: the symbolic triad and the system triad. In the symbolic
triad the segmentation, classification and symbolic translation
agents mutually interact to generate a symbolic representation
of the raw data. In the system triad the symbolic interpretation,
scenario construction and system agents interact to generate the
knowledge representation. Further, a triad-to-triad interaction
is also implemented in the form of a feedback cycle in order
to refine and improve the resultant knowledge representation.
Another collaborative system, MAS-KS (the Multi-Agent Sys-
tem based on Knowledge Sharing), was proposed by Schroeder
and Bazzan [192], for improving individual learning models
through knowledge sharing. In their approach each agent is de-
rived from a machine learning algorithm which generates a set
of rules. The method considers collaboration through a pair-
wise interaction, in which two agents can match or merge their
rules based on their performance in the knowledge extraction.
Through this they update parameters of their models in order
to improve the quality of the generated rules. A collabora-
tive multi-agent system based on fitness-proportional knowl-
edge sharing was also used in [131] for cognitive skill mod-
elling in the context of puzzle solving, where for the extrac-
tion of clue patterns from puzzles, procedural visual scanning
skills must be developed by human players. The authors model
computationally the cognitive skill acquisition process through
a society of agents that search the puzzle grids and learn socially
from the knowledge discovered and shared by fellow searching
agents. An agent in the society updates its features by borrow-
ing new features from another agent in the society considered to
be its best fit. The amount of features borrowed is proportional
to the fitness level, where the fitness considers agent feature
compatibility and searching proficiency in the same time. In
web search and web content mining, Chau et al. [39] propose
CS (the Collaborative Spider), a multi-agent system that allows
user search collaboration for more accurate search results based
on own and shared search history. Another collaborative envi-
ronment was used in [175] for gaining knowledge about the
dynamic strategies of companies involved in cartel formation.
The authors introduced the AGent-MIning tool consisting of a
society of collaborating agents grouped in specialised teams,
and defined the interaction within and between the teams based
on a standard released by the Foundation for Intelligent Physi-
cal Agents, called the “FIPA Contract Net Interaction Protocol”
[3].

Cooperation and negotiation were also addressed in a num-
ber of studies [60, 43, 127]. A cooperative approach is used in
[6], where Albashiri and colleagues introduce EMADS, an ex-
tendible multi-agent data mining system. The authors describe
the proposed system as “an anarchic collection of persistent,
autonomous (but cooperating) KD agents operating across the
Internet”, in which individual agents of different types, such as
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data agents, user agents, task agents, mining agents and “house-
keeping” agents interact to provide pertinent knowledge models
to whomever lodges a knowledge discovery request. In [60] the
authors use cooperative negotiation in a multi-agent distributed
learning system consisting of several learning agents and a me-
diator agent, where the former implement different machine
learning algorithms and the latter controls the negotiation-based
interaction of the former. Using their own predefined sub-
sets of the total available data, the learning agents extract rules
and construct their own models of knowledge, which are then
evaluated based on rule accuracy and used in negotiation. In
the negotiation process the mediator agent collects proposals
(models) from each learning agent, and filters them based on a
threshold value. The models above the threshold are returned to
the society of agents to be used in further search of rules with
better accuracy. In [127] a multi-agent system using adaptive
probabilistic negotiation agents is proposed for knowledge dis-
covery in e-marketplaces. The method uses a Bayesian learn-
ing mechanism that enables the agents to dynamically improve
their negotiation skills by discovering key negotiation knowl-
edge through mining and monitoring the interaction with and
between the opponent agents. Further, a similar approach to
negotiating agents has been presented in a different study by
Cheng et al. [43] who discussed the concept of automated ne-
gotiation by autonomous agents. The automated negotiation
agents jointly search for a mutually acceptable solution in the
space formed by negotiable issues, where the negotiable issues
are knowledge discovery aspects such as the fuzzy rules ex-
tracted by individual agents, if agents are seen as fuzzy infer-
ence systems.

7.2.2. Integration-based agents
The integration-based methods describe complex intelligent

(autonomous) agents which fulfil the mining role individu-
ally, by implementing the learning mechanism implied by the
knowledge discovery exercise through integration of one or
more techniques from various fields, such as machine learn-
ing or evolutionary computation in order to implement one or
more of the knowledge discovery tasks, such as rule extraction,
classification or clustering [42, 145, 110]. From the integration
point of view, Chemchem and Drias identify three major types
of agents [40]: agents based on expert systems, which use infer-
ence engines for constructing knowledge, agents based on ma-
chine learning, which extract knowledge using machine learn-
ing techniques, and agents based on data mining which rely
on knowledge discovery methods for extracting the knowledge
more efficiently. Most of the work on integrated mining agents
uses various frameworks that in essence integrate in more or
less extent these three major types of agents under different
names, such as sub-agents, modules, components, units or pro-
cesses [15, 110, 40].

In [40], based on the classification they proposed, the authors
integrate the three approaches and introduce the Miner Intelli-
gent Agent (MIA), a scalable knowledge-base cognitive agent
that consists of a knowledge base, a meta-knowledge base, an
induction rule mining module, and an inference engine. The
knowledge base contains all the knowledge perceived and de-

veloped by the agent in the form of if-then rules. the rules are
clustered and relations between the rules are found in the form
of meta-rules. The meta-knowledge base contains the cluster-
ing information related to the clusters of knowledge, as well as
the meta-rules associated to the clusters. The induction rule
mining module continuously re-clusters new knowledge and
the subsequent meta-knowledge, using two different K-means
based algorithms for each of the knowledge base and meta-
knowledge base. The Inference Engine creates the feedback
loop that reinforce the rule base in order to emulate the reason-
ing process. Following the same type of integration framework
as the one described in [40], Kadhim et al. [110] proposed MI-
AKDD, a multi-intelligent agent for knowledge discovery in
databases in cooperation with human experts. The MIAKDD
agent integrates a combined rule generation-classification com-
ponent which uses classification based on association. The out-
put of rule generation and classification process is stored in a
knowledge-base component which is accessed and reviewed by
domain experts. The modified rules update the knowledge base,
which is further accessed by the MIAKDD agent for refining
the results.

In [72], the authors proposed an agent that integrates a ge-
netic programming method for acquiring the knowledge under-
pinning tactical behaviours of both own and opponent forces in
military and game simulations. The objective of the study was
to learn the tactical behaviours of observed humans and cre-
ate a tactical agent able to emulate those behaviours in a plau-
sible manner. The genetic programming method was used in
conjunction with context-based reasoning for evolving tactical
agents using data acquired from humans performing missions
on simulators. The agent proposed by Fernlund and colleagues
was able to adopt the behaviour of the observed entity only from
interpretation of the data collected through observation. A simi-
lar approach was used in [15] where the authors proposed an in-
tegrated framework for knowledge discovery from electromyo-
graphy (EMG) data. They used artefactual data from 1000 med-
ical cases and over 25000 neurological tests for extracting per-
tinent medical information for diagnosis. Their miner agent
framework uses a the EMG data module that ensures storage
and update of raw data, a data-mining module that uses clas-
sic threshold-based association rule engine to gain knowledge
about the medical domain, a knowledge-base module that stores
the discovered knowledge, and a dissemination module that fur-
ther refines the results in order to provide accurate individually
customised feedback to users.

Fuzzy systems were also used in integrated mining agents.
In [145] the authors propose a framework for capturing, stor-
ing, disseminating and utilising marketing knowledge, in which
agent technology is combined with a fuzzy Analytical Hierar-
chy Process (fAHP) and fuzzy logic. The resultant fAHP miner
agent uses the fuzzy AHP for allocating the weight of deter-
minant criteria for the fuzzy rules, and the fuzzy logic refines
the final decision for three situations: pessimistic, moderate and
optimistic.

In [42] the authors integrate a Bayesian network in a miner
agent capable to discover causal relations between data objects
in heterogeneous data sets. The proposed integrated agent en-
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vironment embeds a data warehousing module, an on-line an-
alytical processing (OLAP) module, and a knowledge discov-
ery module for supporting the knowledge modelling tasks. The
warehousing and OLAP modules implement the gathering, or-
ganising and storing information from various data resources.
The knowledge discovery module uses a cross-reference tech-
nique for performing an informed search, and a Bayesian net-
work for representing the association rules and knowledge pat-
terns extracted from data. The authors note that the Bayesian
network representation facilitates a non-monotonic reasoning
process which, through integration with the other modules, fa-
cilitates data analysis (1) in a multidimensional data space and
(2) at different levels of abstractions. A Bayesian approach was
also used in [194], where Secretan et al. propose an agent archi-
tecture for private and high-performance integrated data min-
ing. The authors describe a miner agent that uses a Naive Bayes
classifier for data classification and a data perturbation method
- SMC (the secure multi-party computation), for privacy pre-
serving in order to implement the knowledge discovery mod-
ule, which in their study is called the privacy preserving data
mining module.

7.3. Summary of machine agents
We included in this section those methods which suited the

perspective depicted earlier in the paper in Figure 2. In Table 2
we summarise this section in a tabular manner and through this,
we emphasise the contribution of this class of methods to the
creation of the roadmap that facilitates the KA process, and we
show how each of the methods can fill an appropriate branch
in the decision tree, corresponding to machine agency. Thus,
overall, this section contributes to demonstrating the decision
support role of the machine agent class of methods in the KA
exercises.

8. Discussion

8.1. The proposed perspective on KA
The review provided in this paper captures the existing work

on KA in human activity systems from an agent perspective,
motivated by the continuous evolution of human activity over
time. The section where we presented the historical view on
KA and human activity showed how this evolution changed sig-
nificantly the amount and the type of activity on one side, and
the amount and availability of the SMEs and/or data that were
subject to KA exercises. In these conditions, the KA exercise
becomes subject to choosing not only the techniques, but in the
first place the type of elicitor that will make use of those tech-
niques. Thus, it becomes useful and pertinent to discuss the lit-
erature taking into consideration how the eliciting agency will
be able to cope with the amount of activity to be analysed, given
a certain level of analysis detail required by the goals of the KA
exercise. We believe that having in place a classification that
appropriately places the existing KA techniques into the port-
folio of one or more of the human, human-inspired or machine
agents, will allow one to decide the amount and the type of elic-
iting entities to be employed by the KA exercise, depending on
the availability and size of the source of knowledge.

Early in the paper, before proceeding with the core review of
the techniques for each agency, we provided in Figure 2 a sum-
mary of this assumption and discussed how the proposed classi-
fication can be used as decision support for the KA exercise by
facilitating the generation of a roadmap, in the form of a deci-
sion tree, associated to the KA process model. After reviewing
the relevant techniques for each category of agents and sum-
marising their role and scope in Table 2, Table 3 and Table 4,
we are able to refine the assumption presented in Figure 2. Ar-
guably, apart from providing decision support in the KA exer-
cise, the proposed classification can describe the performances
that can be achieved by each type of agent, taking into account
the trade-off between the size of the knowledge source and the
level of detail for analysis and representation. Figure 7 sum-
marises this idea visually, depicting a trade-off curve for each
agency.

The human agency has the lowest performance curve, due
to obvious limitations in both analysis detail and knowledge
source size. At one extreme, techniques like observations or
unstructured interviews allow human elicitors to analyse SMEs
and represent knowledge at high level of detail, however the
amount of activity (i.e. number of SMEs) is drastically limited.
For example, a human elicitor cannot handle large numbers of
experts, such as hundreds of thousands, due to time and effort
limitations. At the other extreme techniques like questionnaires
or surveys can handle large numbers of subjects, eliminating
much of the face-to-face elicitation time and effort; however,
their contents cannot be excessively long or detailed. Thus,
only low levels of detail for analysis and resultant representa-
tion can be achieved. Human-inspired agents can obtain a better
trade-off curve, but only on the amount of activity (data) direc-
tion. In the activity/data direction, the number of questionnaires
that can be analysed by an automated computer program is vir-
tually unlimited compared to human analyst case. On the level
of analysis direction though, due to the fact the human-inspired
agents are mainly computer-based automated versions of the
human elicitors, the highest level of analysis or representation
detail cannot exceed that of human agents (i.e automated inter-
views compared to human elicitor interviews). Machine agent
curve is, arguably, the one providing highest performances due
to the ability of human-independent methods to analyse large
amounts of data at high levels of detail. We consider that in this
case both extremes of the curve can exceed their human and
human-inspired counterparts through their very nature, gener-
ating better KA outputs in situations where the other types of
agents have severe limitations (either technical or cognitive).

The trade-off view on the proposed classification completes
the position we have regarding agents and the KA in human
activity systems. Apart from summarising the contribution of
the proposed classification as a model of choice in support for
the KA exercise, the trade-off view also includes implicitly the
historical evolution of the field and the KA process model. It
includes the historical evolution through that it shows how the
increase in the amount of activity (and resultant data) and the
increasing level of analysis details created the need of new tech-
niques, which moved the focus from human agents to human-
inspired and then further to machine agents. It includes the KA
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Agent perspective KA
KA roadmap process model References

approach Amount of Richness of Elicitation Analysis Representation
activity analysis

Interaction-based very high rich partial partial yes [192, 39, 90, 175, 131]
Collaborative agents

Interaction-based very high rich partial partial yes [60, 6]
Cooperative agents
Interaction-based very high rich partial partial yes [43, 127]
Negotiative agents
Integration-based very high very rich yes yes yes [15, 72, 110, 40]

Miner Intelligent Agents
Integration-based very high very rich yes yes yes [145]

Fuzzy Miner Agents
Integration-based very high very rich yes yes yes [42, 194]

Bayesian Miner Agents

Table 4: Summary of machine agent methods: agent perspective roadmap and KA process

process through that we discuss the trade-off using the elements
of the three stage process model: elicitation (amount of activ-
ity/data direction), and analysis and representation (richness of
analysis direction).

Figure 7: The proposed agent perspective: a data size - analysis/representation
trade-off.

8.2. Future potential perspectives on KA

The literature presented in this study suggests that the pro-
cess of migrating from the classic human agent CTA methods
to the human-independent machine agents is not only still open,
but is far from being ended and has not yet reached its peak.
We expect a significant increase in the conversion and appli-
cation of the classical human agent methods to the new chal-
lenges raised by the broad concept of “human activity”, in the
conditions of higher and higher dynamics of change in this re-
spect. Thus, we speculate on two possible directions of research

that are candidates for inclusion in future reviews on “human
activity”-related KA, provided our expectation of growth mate-
rialises: the co-evolutionary KA, and the challenge-based KA.

We note that the categories we considered in this study, and
the subsequent methods, do not take into account the change
in the knowledge acquiring entity as a result of the interaction
with the knowledge sourcing entity. While these methods may
describe acquirer entities that can handle dynamic knowledge
sources, they do not include mechanisms for treating the change
in their own level of knowledge, that is, the way their perception
about the acquired knowledge changes throughout the acquisi-
tion process, with an impact on the way they generate the onto-
logical construct for representing the knowledge. We consider
that the acquisition process is essentially a co-evolution pro-
cess in which both parties evolve and gradually improve their
understanding of the domain through interaction. Few very re-
cent studies that relate co-evolutionary learning to knowledge
acquisition exist [135, 204], however, reviews and explicit clas-
sification of the work are not yet in place. We expect a growth
of the amount of work in this direction, which will lead in the
future to significant advances in the knowledge acquisition.

Another aspect that we note in relation to the KA field is
that the methods usually describe the “extraction” of knowl-
edge from a knowledge sourcing entity. While certain degrees
of interaction are described by the methods, this interaction
does not reach the level where the knowledge acquiring entity
challenges the knowledge sourcing entity (the SME) towards
knowledge improvement, in order to be able to acquire better
knowledge as a result of SME’s improvement. A scenario ex-
plaining this concept is an elicitor that seeks knowledge about
a domain but the available SME is not knowledgeable enough
to satisfy elicitors’ needs. Thus, the elicitor must first challenge
the SME towards learning about the domain, in order to even-
tually acquire knowledge of a better quality. This approach was
recently described as part of the Computational Red Teaming
(CRT) paradigm [5, 165, 1], however the amount of work ex-
plicitly positioned as contribution to the KA field is still low.
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We expect that the future will bring an increased interest in this
direction and we foresee a growth in the amount of published
work.

Overall, we consider that the two research directions men-
tioned above, coevolution-based KA and CRT-based KA, can
add in the future to the proposed agent view on KA by generat-
ing a complementary agent-based classification which captures
two aspects of KA less present in the KA literature so far: (1)
the amount of autonomy involved in the interaction between
knowledge sourcing and knowledge acquiring entities and (2)
the potential of the existing KA techniques to offer support for
this interaction.

The first aspect refers to the ability of the agent to actively
and autonomously seek for and fill the agreed ontological con-
struct with the necessary and sufficient component elements.
At one extreme passive agents can only receive the data that
are made available to them, and thus can only fill the agreed
ontological construct using those data. An example can be an
automated interview in which a computer-based emulator of
a human elicitor performs an interview with a SME. The em-
ulator follows a fixed sequence of questions and receives an-
swers from the SME, and is incapable of seeking clarifications
if SME’s answers do not fit in the agreed ontological construct.
As a result, the knowledge representation will contain gaps cor-
responding to those parts of the ontological construct that were
not filled due to incomplete or incorrect answers. At the other
extreme, an active agent can seek autonomously for data that
contribute to filling the gaps in the ontological construct, such
as in the case of a human agent that performs an interview with
an SME. In this case the human elicitor can actively seek for
clarifications whenever SME’s answers are not filling the onto-
logical construct as required.

The second aspect refers to the potential offered by KA tech-
niques to negotiate the ontological construct in order to achieve
the agreed goals of KA exercise. An example can be acquisition
of knowledge about diagnosing heart conditions in patients. If
the only KA technique used for this purpose is a questionnaire
using as an ontological construct the height and weight of the
patient, then there is no chance of representing the knowledge
about patients in a more detailed manner. However, if an un-
structured interview is used for this purpose, then there is the
potential of unveiling extra details due to the interaction be-
tween the elicitor and the patient, during which a set of elements
that are essential for diagnosing the correct condition (i.e. the
ontological construct) is gradually established. Thus, in this
case the ontological construct is not fixed, being the result of a
negotiation between the agents.

We further consider that these two aspects are subject to a
trade-off that generates a potential three-tier classification using
co-evolution and Computational Red-Teaming. In Figure 8 we
display this potential classification in the form of three trade-off

curves: the lowest performance curve corresponds to what we
could call the classic (or existent to date) views on KA, while
the other two are the co-evolutionary and CRT-based views in
increasing order of performance, respectively.

Figure 8: A future perspective on KA: the Autonomy-Negotiation trade-off.

9. Conclusions

In this paper we provided a multi-disciplinary review which
investigated from an agent perspective the knowledge acquisi-
tion in human activity systems, where knowledge acquisition is
seen as the process of acquiring understanding about the under-
pinnings of human activity with the fundamental purpose of im-
proving this activity. We proposed a classification of the meth-
ods based on the type of agency involved in the KA process,
with a focus on the degree of involvement of human element.
The motivation for this classification stays in the continuous
change over time of the concept of human activity, as the factor
that fuelled researchers’ and practitioners’ efforts for more than
a century. Thus, we discussed the concept of knowledge acqui-
sition under three categories - the human agents, the human-
inspired agents, and the machine agents - and we showed how
this classification can play a decision-support role in relation to
the KA exercises.

Acknowledgement

This work has been funded by the Australian Research Coun-
cil (ARC) discovery grant, number DP140102590: Challeng-
ing systems to discover vulnerabilities using computational red
teaming.

This is a pre-print of an article published in
Knowledge-Based Systems, vol. 105, Elsevier. The
final authenticated version is available online at:
https://doi.org/10.1016/j.knosys.2016.02.012

20



References

References

[1] Abbass, H. A., 2015. Computational Red Teaming. Springer Interna-
tional Publishing.

[2] Afifi, A. A., Azen, S. P., 1972. Statistical analysis: a computer oriented
approach. Academic Press, NY.

[3] Agents, F. f. I. P., 03.12.2002 2002. Fipa contract net interaction proto-
col.

[4] Ahn, B. S., Yager, R. R., 2014. The use of ordered weighted averaging
method for decision making under uncertainty. International Transac-
tions in Operational Research 21 (2), 247–262.

[5] Alam, S., Zhao, W., Tang, J., Lokan, C., Ellejmi, M., Kirby, S., Abbass,
H., 2012. Discovering delay patterns in arrival traffic with dynamic con-
tinuous descent approaches using co-evolutionary red teaming. Air Traf-
fic Control Quarterly 20 (1), 47.

[6] Albashiri, K. A., Coenen, F., Leng, P., 2009. Emads: An extendible
multi-agent data miner. Knowledge-Based Systems 22 (7), 523 – 528,
artificial Intelligence 2008 AI-2008 The twenty-eighth {SGAI} Interna-
tional Conference on Artificial Intelligence.

[7] Alcala, R., Nojima, Y., Herrera, F., Ishibuchi, H., 2011. Multiobjective
genetic fuzzy rule selection of single granularity-based fuzzy classifi-
cation rules and its interaction with the lateral tuning of membership
functions. Soft Computing 15 (12), 2303–2318.

[8] Anderson, J. R., 1983. A spreading activation theory of memory. Journal
of Verbal Learning and Verbal Behavior 22 (3), 261 – 295.

[9] Anderson, J. R., 1996. Act: A simple theory of complex cognition.
American Psychologist 51, 355–365.

[10] Antonova, A., Stefanov, K., 2011. Applied cognitive task analysis in
the context of serious games development. In: Dicheva, D., Markov,
Z., Stefanova, E. (Eds.), Third International Conference on Software,
Services and Semantic Technologies S3T 2011. Vol. 101 of Advances
in Intelligent and Soft Computing. Springer Berlin Heidelberg, pp. 175–
182.

[11] Arend, U., 1991. Analyzing complex tasks with an extended GOMS
model. Elsevier, B.V. North-Holland, pp. 115–133.

[12] Aussenac-Gilles, N., Matta, N., 1994. Making a method of prob-
lem solving explicit with {MACAO}. International Journal of Human-
Computer Studies 40 (2), 193 – 219.

[13] Bainbridge, L., 1979. Verbal reports as evidence of the process opera-
tor’s knowledge. International Journal of Man-Machine Studies 11, 411–
436.

[14] Bainbridge, W. S., 2007. The scientific research potential of virtual
worlds. Science 317 (5837), 472–476.

[15] Balter, J., Labarre-Vila, A., Ziebelin, D., Garbay, C., 2002. A
knowledge-driven agent-centred framework for data mining in {EMG}.
Comptes Rendus Biologies 325 (4), 375 – 382.

[16] Bandyopadhyay, S., Maulik, U., Mukhopadhyay, A., May 2007. Mul-
tiobjective genetic clustering for pixel classification in remote sensing
imagery. Geoscience and Remote Sensing, IEEE Transactions on 45 (5),
1506–1511.

[17] Beach, D., Pedersen, R. B., 2013. Process-Tracing Methods: Founda-
tions and Guidelines. University of Michigan Press, Ann Arbor:.

[18] Begoli, E., Horey, J., Aug 2012. Design principles for effective knowl-
edge discovery from big data. In: Software Architecture (WICSA) and
European Conference on Software Architecture (ECSA), 2012 Joint
Working IEEE/IFIP Conference on. pp. 215–218.

[19] Benjamini, Y., Leshno, M., 2010. Statistical methods for data mining. In:
Maimon, O., Rokach, L. (Eds.), Data Mining and Knowledge Discovery
Handbook. Springer US, pp. 523–540.

[20] Beringer, J., Wandmacher, J., 1991. Object-based action planning.
Vol. 2. Elsevier, B.V. North-Holland, pp. 135–155.

[21] Bogo, M., Shlonsky, A., Lee, B., Serbinski, S., 2014. Acting like it mat-
ters: A scoping review of simulation in child welfare training. Journal of
Public Child Welfare 8 (1), 70–93.

[22] Boose, J. H., 1989. A survey of knowledge acquisition techniques and
tools. Knowledge Acquisition 1 (1), 3 – 37.

[23] Boose, J. H., Shema, D. B., Bradshaw, J. M., 1989. Recent progress in
aquinas: A knowledge acquisition workbench. Knowledge Acquisition
1 (2), 185 – 214.

[24] Borg, I., Groenen, P. J. F., 2005. Modern multidimensional scaling: The-
ory and applications, 2nd Edition. Springer Series in Statistics. Springer-
Verlag New York.

[25] Bradshaw, J. M., Boose, J. H., 1990. Decision analysis techniques for
knowledge acquisition: Combining information and preferences using
aquinas and axotl. International Journal of Man-Machine Studies 32 (2),
121–186.

[26] Bradshaw, J. M., Ford, K. M., Adams-Webber, J. R., Boose, J. H., 1993.
Beyond the repertory grid: new approaches to constructivist knowledge
acquisition tool development. International Journal of Intelligent Sys-
tems 8 (2), 287–333.

[27] Brubacher, S. P., Powell, M., Skouteris, H., Guadagno, B., 2015. The
effects of e-simulation interview training on teachers’ use of open-ended
questions. Child Abuse & Neglect accepted - in press (0), –.

[28] Byrne, M. D., Anderson, J. R., 1997. Enhancing act-r’s perceptual-motor
abilites. In: the 19th Annual Conference of the Cognitive Science Soci-
ety. Mahwah, NJ: Erlbaum, p. 880.

[29] Cano, J., Herrera, F., Lozano, M., Dec 2003. Using evolutionary algo-
rithms as instance selection for data reduction in kdd: an experimental
study. Evolutionary Computation, IEEE Transactions on 7 (6), 561–575.

[30] Cao, L., Gorodetsky, V., Mitkas, P., May 2009. Agent mining: The syn-
ergy of agents and data mining. Intelligent Systems, IEEE 24 (3), 64–72.

[31] Cao, L., Luo, C., Zhang, C., 2007. Agent-mining interaction: An emerg-
ing area. In: Gorodetsky, V., Zhang, C., Skormin, V., Cao, L. (Eds.),
Autonomous Intelligent Systems: Multi-Agents and Data Mining. Vol.
4476 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
pp. 60–73.

[32] Cao, L., Weiss, G., Yu, P., 2012. A brief introduction to agent mining.
Autonomous Agents and Multi-Agent Systems 25 (3), 419–424.

[33] Card, S. K., Moran, T. P., Newell, A. L., 1983. The psychology of
the human-computer interface. Lawrence Erlbaum Associates, Hillsdale,
NJ.

[34] Card, S. K., Moran, T. P., Newell, A. L., 1986. The model human pro-
cessor: an engineering model of human performance. Vol. 2. John Wiley
and Sons, New York.

[35] Carpenter, G. A., Martens, S., Ogas, O. J., 2005. Self-organizing infor-
mation fusion and hierarchical knowledge discovery: a new framework
using artmap neural networks. Neural Networks 18 (3), 287–295.

[36] Carroll, J., Olson, J. R., 1988. Handbook of human-computer interac-
tion. Amsterdam: Elsevier, Ch. Mental models in human-computer in-
teraction.

[37] Chao, C., Salvendy, G., Lightner, N. J., 1999. Development of a method-
ology for optimizing elicited knowledge. Behaviour & Information
Technology 18 (6), 413–430.

[38] Chattopadhyay, M., Dan, P. K., Mazumdar, S., 2014. Comparison of vi-
sualization of optimal clustering using self-organizing map and growing
hierarchical self-organizing map in cellular manufacturing system. Ap-
plied Soft Computing 22 (0), 528 – 543.

[39] Chau, M., Zeng, D., Chen, H., Huang, M., Hendriawan, D., 2003. De-
sign and evaluation of a multi-agent collaborative web mining system.
Decision Support Systems 35 (1), 167 – 183, web Retrieval and Mining.

[40] Chemchem, A., Drias, H., 2015. From data mining to knowledge min-
ing: Application to intelligent agents. Expert Systems with Applications
42 (3), 1436 – 1445.

[41] Chen, L., Pu, P., 2012. Critiquing-based recommenders: survey and
emerging trends. User Modeling and User-Adapted Interaction 22 (1-2),
125–150.

[42] Chen, M., Zhu, Q., Chen, Z., 2001. An integrated interactive environ-
ment for knowledge discovery from heterogeneous data resources. In-
formation and Software Technology 43 (8), 487 – 496.

[43] Cheng, C.-B., Chan, C.-C. H., Lin, K.-C., 2006. Intelligent agents for
e-marketplace: Negotiation with issue trade-offs by fuzzy inference sys-
tems. Decision Support Systems 42 (2), 626 – 638.

[44] Cheung, C., Li, M., Shek, W., Lee, W., Tsang, T., 2007. A systematic
approach for knowledge auditing: a case study in transportation sector.
Journal of Knowledge Management 11 (4), 140–158.

[45] Clark, R., 2014. Cognitive task analysis for expert-based instruction in
healthcare. In: Spector, J. M., Merrill, M. D., Elen, J., Bishop, M. J.
(Eds.), Handbook of Research on Educational Communications and
Technology. Springer New York, pp. 541–551.

[46] Clark, R. E., Feldon, D., Van Merrienboer, J. J. G., Yates, K., Early,

21



S., 2008. Cognitive task analysis, 3rd Edition. Mahwah, NJ: Lawrence
Erlbaum Associates.

[47] Code, J., Clarke-Midura, J., Zap, N., Dede, C., 2012. Virtual perfor-
mance assessment in immersive virtual environments. Information Sci-
ence Reference (IGI Global), Hershey, PA, pp. 230–252.

[48] CogAff, 2013.
URL http://www.cs.bham.ac.uk/research/projects/

cogaff/

[49] Cooke, N. J., 1994. Varieties of knowledge elicitation techniques. Inter-
national Journal of Human-Computer Studies 41 (6), 801¢849.

[50] Corapi, D., Russo, A., Lupu, E., 2012. Inductive logic programming in
answer set programming. In: Muggleton, S. H., Tamaddoni-Nezhad, A.,
Lisi, F. A. (Eds.), Inductive Logic Programming. Vol. 7207 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, pp. 91–97.

[51] Crandall, B., Klein, G., Hoffman, R. R., 2006. Working minds: A prac-
titioner’s guide to cognitive task analysis. MIT Press, Cambridge, MA.

[52] Crilly, N., Blackwell, A. F., Clarkson, P. J., 2006. Graphic elicitation:
using research diagrams as interview stimuli. Qualitative Research 6 (3),
341–366.

[53] Cullen, J., Bryman, A., 1988. The knowledge acquisition bottleneck:
Time for reassessment? Expert Systems 5 (3), 216–225.

[54] Daghfous, A., Ahmad, N., Angell, L. C., 2013. The kcrm knowledge
audit: model and case illustration. VINE 43 (2), 185–209.

[55] David, F., David, C. M., 2014. Adapting cognitive walkthrough to sup-
port game based learning design. International Journal of Game-Based
Learning (IJGBL) 4 (3), 23–34.

[56] Davidsson, S., Alm, H., 2014. Context adaptable driver information - or,
what do whom need and want when? Applied Ergonomics 45 (4), 994 –
1002.

[57] Davis, A., Dieste, O., Hickey, A., Juristo, N., Moreno, A. M., 2006.
Effectiveness of requirements elicitation techniques: Empirical results
derived from a systematic review. In: Requirements Engineering, 14th
IEEE International Conference.

[58] Dehuri, S., Patnaik, S., Ghosh, A., Mall, R., 2008. Application of eli-
tist multi-objective genetic algorithm for classification rule generation.
Applied Soft Computing 8 (1), 477 – 487.

[59] Diederich, J., Ruhmann, I., May, M., 1987. Kriton: a knowledge-
acquisition tool for expert systems. International Journal of Man-
Machine Studies 26 (1), 29 – 40.

[60] dos Santos, C., Bazzan, A., 2005. Integrating knowledge through coop-
erative negotiation - a case study in bioinformatics. In: Gorodetsky, V.,
Liu, J., Skormin, V. (Eds.), Autonomous Intelligent Systems: Agents
and Data Mining. Vol. 3505 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 277–288.

[61] Draper, N. R., Smith, H., 2014. Applied regression analysis, 3rd Edition.
John Wiley & Sons.

[62] Driessnack, M., Furukawa, R., 2012. Arts-based data collection tech-
niques used in child research. Journal for Specialists in Pediatric Nursing
17 (1), 3–9.

[63] Drury, C. G., 1990. Evaluation of human work: a practical ergonomics
methodology. London: Taylor & Francis, Ch. Methods for direct obser-
vation of performance, pp. 35–57.

[64] Durbach, I. N., Stewart, T. J., 2012. Modeling uncertainty in multi-
criteria decision analysis. European Journal of Operational Research
223 (1), 1 – 14.

[65] Eberts, R., 1997. Cognitive Modeling, 2nd Edition. John Wiley & Sons,
New York, book section 40, pp. 1–47.

[66] Elkerton, J., Palmiter, S. L., 1991. Designing help using a goms model:
An information retrieval evaluation. Human Factors: The Journal of the
Human Factors and Ergonomics Society 33 (2), 185–204.

[67] Embrey, D., 2000. Task analysis techniques. Tech. rep., Human Realia-
bility Associates.

[68] Emmanouilidis, C., Batsalas, C., Papamarkos, N., July 2009. Devel-
opment and evaluation of text localization techniques based on struc-
tural texture features and neural classifiers. In: Document Analysis and
Recognition, 2009. ICDAR ’09. 10th International Conference on. pp.
1270–1274.

[69] Eshelman, L., Ehret, D., McDermott, J., Tan, M., 1987. Mole: a tena-
cious knowledge-acquisition tool. International Journal of Man-Machine
Studies 26 (1), 41 – 54.

[70] Essens, P. J., Fallesen, J. J., McCann, C. A., Cannon-Bowers, J. A.,

Dorfel, G., 1995. Coade: A framework for cognitive analysis, design,
and evaluation. Tech. rep., Brussels, Belgium: NATO Defence Research
Group.

[71] Fan, J., Kalyanpur, A., Gondek, D. C., Ferrucci, D. A., 2012. IBM J.
Res. & Dev. 56 (3/4).

[72] Fernlund, H. K. . G., Gonzalez, A. J., Georgiopoulos, M., DeMara, R. F.,
Feb 2006. Learning tactical human behavior through observation of hu-
man performance. Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on 36 (1), 128–140.

[73] Fisk, A. D., Eggemeier, F. T., 1988. Application of automatic/controlled
processing theory to training tactical command and control skills: 1.
background and task analytic methodology. Proceedings of the Human
Factors and Ergonomics Society Annual Meeting 32 (18), 1227–1231.

[74] Ford, K. M., Bradshaw, J. M., Adams-Webber, J. R., Agnew, N. M.,
1993. Knowledge acquisition as a constructive modeling activity. Inter-
national Journal of Intelligent Systems 8 (1), 9–32.

[75] Fox, M. C., Ericsson, K. A., Best, R., 2011. Do procedures for verbal
reporting of thinking have to be reactive? a meta-analysis and recom-
mendations for best reporting methods. Psychological Bulletin 137 (2),
316–344.

[76] Gaines, B., Shaw, M., 1992. Integrated knowledge acquisition architec-
tures. Journal of Intelligent Information Systems 1 (1), 9–34.

[77] Gallagher, J., 1979. Cognitive/information processing psychology and
instruction: Reviewing recent theory and practice. Instructional Science
8 (4), 393–414.

[78] Gazarian, P. K., 2013. Use of the critical decision method in nursing
research: An integrative review. Advances in Nursing Science 36 (2),
106–117.

[79] Geis, G., Wheeler, D., Bunger, A., Taylor, R., Militello, L., Patterson,
M., 2013. 137: Leveraging critical decision method and simulation-
based training to accelerate sepsis recognition. Critical Care Medicine
41 (12), A28.

[80] Geiwitz, J., Klatsky, R. L., P., M. B., 1988. Knowledge acquisition for
expert systems: conceptual and empirical comparisons. Anacapa Sci-
ences, Santa Barbara, CA.

[81] Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization and
Machine Learning, 1st Edition. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

[82] Gordon, S. E., Schmierer, K. A., Gill, R. T., 1993. Conceptual graph
analysis: knowledge acquisition for instructional systems design. Hu-
man Factors 35, 459–481.

[83] Gourova, E., Toteva, K., Todorova, Y., 2012. Audit of knowledge flows
and critical business processes. In: Proceedings of the 17th European
Conference on Pattern Languages of Programs. EuroPLoP ’12. ACM,
New York, NY, USA, pp. 1:1–1:10.

[84] Govaerts, M., Van de Wiel, M., Schuwirth, L., Van der Vleuten, C.,
Muijtjens, A., 2013. Workplace-based assessment: raters’ performance
theories and constructs. Advances in Health Sciences Education 18 (3),
375–396.

[85] Gray, W. D., 2008. Cognitive architectures: Choreographing the dance
of mental operations with the task environment. Human Factors: The
Journal of the Human Factors and Ergonomics Society 50 (3), 497–505.

[86] Gray, W. D., John, B. E., Atwood, M. E., 1993. Project ernestine: Val-
idating a goms analysis for predicting and explaining real-world task
performance. Human-Computer Interaction 8 (3), 237–309.

[87] Gruber, T. R., 1989. The acquisition of strategic knowledge. Vol. 4 of
Perspectives in Artificial Intelligence. Academic Press.

[88] Gruber, T. R., 1989. Automated knowledge acquisition for strategic
knowledge. Machine Learning 4 (3-4), 293–336.

[89] Guhde, J. A., 2014. An evaluation tool to measure interdisciplinary criti-
cal incident verbal reports. Nursing Education Perspectives 35 (3), 180–
184.

[90] Guyet, T., Garbay, C., Dojat, M., 2007. Knowledge construction from
time series data using a collaborative exploration system. Journal of
Biomedical Informatics 40 (6), 672 – 687, intelligent Data Analysis in
Biomedicine.

[91] Hall, E. M., Gott, S. P., Pokorny, R. A., 1994. A procedural guide to
cognitive task analysis: the PARI methodology. Brooks AFB, TX.

[92] Hall, E. P., Gott, S. P., Pokorny, R. A., 1995. A procedural guide to cog-
nitive task analysis: The pari methodology. Report, Air Force Materiel
Command.

22

http://www.cs.bham.ac.uk/research/projects/cogaff/
http://www.cs.bham.ac.uk/research/projects/cogaff/


[93] Harzing, A.-W., Baldueza, J., Barner-Rasmussen, W., Barzantny, C.,
Canabal, A., Davila, A., Espejo, A., Ferreira, R., Giroud, A., Koester, K.,
Liang, Y.-K., Mockaitis, A., Morley, M. J., Myloni, B., Odusanya, J. O.,
O’Sullivan, S. L., Palaniappan, A. K., Prochno, P., Choudhury, S. R.,
Saka-Helmhout, A., Siengthai, S., Viswat, L., Soydas, A. U., Zander, L.,
2009. Rating versus ranking: What is the best way to reduce response
and language bias in cross-national research? International Business Re-
view 18 (4), 417 – 432.

[94] Hasler, B. S., Tuchman, P., Friedman, D., 2013. Virtual research as-
sistants: Replacing human interviewers by automated avatars in virtual
worlds. Computers in Human Behavior 29 (4), 1608 – 1616.

[95] Hoffman, R., 1992. Doing psychology in an ai context: A personal per-
spective and introduction to this volume. In: Hoffman, R. (Ed.), The
Psychology of Expertise. Springer New York, pp. 3–11.

[96] Hoffman, R. R., 1987. The problem of extracting the knowledge of ex-
perts from the perspective of experimental-psychology. Ai Magazine
8 (2), 53–67.

[97] Hoffman, R. R., Crandall, B., Shadbolt, N., 1998. Use of the critical
decision method to elicit expert knowledge: A case study in the method-
ology of cognitive task analysis. Human Factors: The Journal of the
Human Factors and Ergonomics Society 40 (2), 254–276.

[98] Hoffman, R. R., Militello, L., 2008. Perspectives on cognitive task
analysis: Historical origins and modern communities of practice. CRC
Press/Taylor and Francis, Boca Raton, FL.

[99] Hoffman, R. R., Shadbolt, N. R., Burton, A., Klein, G., 1995. Elicit-
ing knowledge from experts: A methodological analysis. Organizational
Behavior and Human Decision Processes 62 (2), 129 – 158.

[100] Holland, P. W., 1986. Statistics and causal inference. Journal of the
American Statistical Association 81 (396), 945–960.

[101] Houghton, R. J., Baber, C., Stanton, N. A., Jenkins, D. P., Revell, K.,
2015. Combining network analysis with cognitive work analysis: in-
sights into social organisational and cooperation analysis. Ergonomics,
1–16.

[102] Huang, I. B., Keisler, J., Linkov, I., 2011. Multi-criteria decision analysis
in environmental sciences: Ten years of applications and trends. Science
of The Total Environment 409 (19), 3578 – 3594.

[103] Ishibuchi, H., Nojima, Y., May 2005. Comparison between fuzzy and
interval partitions in evolutionary multiobjective design of rule-based
classification systems. In: Fuzzy Systems, 2005. FUZZ ’05. The 14th
IEEE International Conference on. pp. 430–435.

[104] Jagannathan, V., Elmaghraby, A. S., 1985. Medkat: multiple expert
delphi-based knowledge acquisition tool. In: Proceedings of the ACM
NE Regional Conference. pp. 103–110.

[105] Jagielska, I., Matthews, C., Whitfort, T., 1999. An investigation into
the application of neural networks, fuzzy logic, genetic algorithms, and
rough sets to automated knowledge acquisition for classification prob-
lems. Neurocomputing 24 (1-3), 37 – 54.

[106] Jain, A. K., Murty, M. N., Flynn, P. J., Sep. 1999. Data clustering: A
review. ACM Comput. Surv. 31 (3), 264–323.

[107] Jansson, A., Erlandsson, M., Axelsson, A., 2015. Collegial verbalisation
¢ the value of an independent observer: an ecological approach. Theo-
retical Issues in Ergonomics Science accepted - in press, 1–21.

[108] Jonassen, D. H., Beissner, K., Yacci, M., 2013. Structural knowledge:
Techniques for representing, conveying, and acquiring structural knowl-
edge. Routledge.

[109] Jun, S.-k., Narayanan, M. S., Agarwal, P., Eddib, A., Singhal, P.,
Garimella, S., Krovi, V., June 2012. Robotic minimally invasive surgi-
cal skill assessment based on automated video-analysis motion studies.
In: Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE
RAS EMBS International Conference on. pp. 25–31.

[110] Kadhim, M., Alam, M., Kaur, H., 2014. A multi-intelligent agent for
knowledge discovery in database (miakdd): Cooperative approach with
domain expert for rules extraction. In: Huang, D.-S., Jo, K.-H., Wang,
L. (Eds.), Intelligent Computing Methodologies. Vol. 8589 of Lecture
Notes in Computer Science. Springer International Publishing, pp. 602–
614.

[111] Kahn, G., Nowlan, S., McDermott, J., 1985. More: an intelligent knowl-
edge acquisition tool. In: Proceedings of the Ninth International Confer-
ence on Artificial Intelligence. Los Angelos, California, pp. 581–584.

[112] Kantardzic, M., 2011. Data mining: concepts, models, methods, and
algorithms, 2nd Edition. John Wiley & Sons, NJ.

[113] Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu,
A., Jul 2002. An efficient k-means clustering algorithm: analysis and im-
plementation. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 24 (7), 881–892.

[114] Keeney, R. L., 2013. Foundations for group decision analysis. Decision
Analysis 10 (2), 103–120.

[115] Kieras, D. E., 1988. Handbook of human-computer Interaction. Amster-
dam: Elsevier, Ch. Towards a practical GOMS model methodology for
user interface design.

[116] Kim, I. S., 2001. Human reliability analysis in the man-machine inter-
face design review. Annals of Nuclear Energy 28 (11), 1069 – 1081.

[117] Kim, K., McKay, R. B., Moon, B.-R., 2010. Multiobjective evolutionary
algorithms for dynamic social network clustering. In: Proceedings of
the 12th Annual Conference on Genetic and Evolutionary Computation.
GECCO ’10. ACM, New York, NY, USA, pp. 1179–1186.

[118] Klein, G., 2000. Using cognitive task analysis to build a cognitive model.
Proceedings of the Human Factors and Ergonomics Society Annual
Meeting 44 (6), 596–599.

[119] Klein, G., Militello, L. G., 1998. Cognitive task analysis. In: Workshop
of human factors and ergonomics society 42nd Annual Meeting. Vol. 12.
Chicago, Illinois.

[120] Klein, G. A., Calderwood, R., MacGregor, D., May 1989. Critical de-
cision method for eliciting knowledge. Systems, Man and Cybernetics,
IEEE Transactions on 19 (3), 462–472.

[121] Kober, J., Peters, J., 2012. Reinforcement learning in robotics: A sur-
vey. In: Wiering, M., van Otterlo, M. (Eds.), Reinforcement Learning.
Vol. 12 of Adaptation, Learning, and Optimization. Springer Berlin Hei-
delberg, pp. 579–610.

[122] Kuehne, G., 2013. ı̈ don’t know what’s right anymore:̈ Engaging dis-
tressed interviewees using graphic-elicitation. Forum: Qualitative Social
Research 14 (3).

[123] Kuo, R., Liao, J., Tu, C., 2005. Integration of {ART2} neural network and
genetic k-means algorithm for analyzing web browsing paths in elec-
tronic commerce. Decision Support Systems 40 (2), 355 – 374.

[124] Kurgan, L. A., Musilek, P., 2006. A survey of knowledge discovery
and data mining process models. The Knowledge Engineering Review
21 (01), 1–24.

[125] Kushniruk, A. W., Monkman, H., Tuden, D., Bellwood, P., Borycki,
E. M., 2015. Integrating heuristic evaluation with cognitive walk-
through: development of a hybrid usability inspection method. Studies
in health technology and informatics 208, 221–225.

[126] Laird, J. E., 2012. The soar cognitive architecture. AISB Quarterly 134,
1–4.

[127] Lau, R. Y., Li, Y., Song, D., Kwok, R. C. W., 2008. Knowledge discov-
ery for adaptive negotiation agents in e-marketplaces. Decision Support
Systems 45 (2), 310 – 323, i.T. and Value Creation.

[128] Lee, D., Seo, H., Jung, M. W., 2012. Neural basis of reinforcement learn-
ing and decision making. Annual review of neuroscience 35, 287–308.

[129] Lemke, J., 2012. Analyzing Verbal Data: Principles, Methods, and
Problems. Vol. 24 of Springer International Handbooks of Education.
Springer Netherlands, book section 94, pp. 1471–1484.

[130] Leu, G., Curtis, N. J., Abbass, H. A., 2014. Society of mind cognitive
agent architecture applied to drivers adapting in a traffic context. Adap-
tive Behavior 22 (2), 123–145.

[131] Leu, G., Tang, J., Abbass, H., 2014. On the role of working memory in
trading-off skills and situation awareness in sudoku. In: Loo, C., Yap,
K., Wong, K., Beng Jin, A., Huang, K. (Eds.), Neural Information Pro-
cessing. Vol. 8836 of Lecture Notes in Computer Science. Springer In-
ternational Publishing, pp. 571–578.

[132] Li, A. C., Kannry, J. L., Kushniruk, A., Chrimes, D., McGinn, T. G.,
Edonyabo, D., Mann, D. M., 2012. Integrating usability testing and
think-aloud protocol analysis with near-live clinical simulations in eval-
uating clinical decision support. International Journal of Medical Infor-
matics 81 (11), 761 – 772.

[133] Linster, M., 1993. Explicit and operational models as a basis for second
generation knowledge acquisition tools. In: David, J.-M., Krivine, J.-
P., Simmons, R. (Eds.), Second Generation Expert Systems. Springer
Berlin Heidelberg, pp. 465–494.

[134] Liu, Y., Feyen, R., Tsimhoni, O., Mar. 2006. Queueing network-model
human processor (qn-mhp): A computational architecture for multitask
performance in human-machine systems. ACM Trans. Comput.-Hum.

23



Interact. 13 (1), 37–70.
[135] Lotem, A., Halpern, J. Y., 2012. Coevolution of learning and data-

acquisition mechanisms: a model for cognitive evolution. Philosophi-
cal Transactions of the Royal Society of London B: Biological Sciences
367 (1603), 2686–2694.

[136] Mahatody, T., Sagar, M., Kolski, C., 2010. State of the art on the cogni-
tive walkthrough method, its variants and evolutions. International Jour-
nal of Human-Computer Interaction 2 (8), 741–785.

[137] Marcus, S., McDermott, J., 1989. Salt: A knowledge acquisition lan-
guage for propose-and-revise systems. Artificial Intelligence 39 (1), 1 –
37.

[138] Marsland, S., 2014. Machine learning: an algorithmic perspective, 2nd
Edition. Macine Learning & Pattern Recognition. CRC press, FL.

[139] McCloskey, B. P., Geiwitz, J., Kornell, J., 1991. Empirical comparisons
of knowledge acquisition techniques. Proceedings of the Human Factors
and Ergonomics Society Annual Meeting 35 (5), 268–272.

[140] McNelis, A., Ironside, P., Zvonar, S., Ebright, P., 2014. Advancing the
science of research in nursing education: Contributions of the critical
decision method. J Nurs Educ 53 (2), 61–64.

[141] Meyer, M. A., Sep 1992. How to apply the anthropological technique
of participant observation to knowledge acquisition for expert systems.
Systems, Man and Cybernetics, IEEE Transactions on 22 (5), 983–991.

[142] Militello, L. G., Hoffman, R. R., 2008. The forgotten history of cogni-
tive task analysis. Proceedings of the Human Factors and Ergonomics
Society Annual Meeting 52 (4), 383–387.

[143] Militello, L. G., Hutton, R. J. B., 1998. Applied cognitive task analysis
(acta): a practitioner’s toolkit for understanding cognitive task demands.
Ergonomics 41 (11), 1618–1641.

[144] Mohri, M., Rostamizadeh, A., Talwalkar, A., 2012. Foundations of ma-
chine learning. MIT press.

[145] Moradi, M., Aghaie, A., Hosseini, M., 2013. Knowledge-collector
agents: Applying intelligent agents in marketing decisions with knowl-
edge management approach. Knowledge-Based Systems 52 (0), 181 –
193.

[146] Mukhopadhyay, A., Maulik, U., 2011. A multiobjective approach to
{MR} brain image segmentation. Applied Soft Computing 11 (1), 872
– 880.

[147] Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C., Feb
2014. Survey of multiobjective evolutionary algorithms for data mining:
Part ii. Evolutionary Computation, IEEE Transactions on 18 (1), 20–35.

[148] Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello Coello, C.,
Feb 2014. A survey of multiobjective evolutionary algorithms for data
mining: Part i. Evolutionary Computation, IEEE Transactions on 18 (1),
4–19.

[149] Naweed, A., 2014. Investigations into the skills of modern and tradi-
tional train driving. Applied Ergonomics 45 (3), 462 – 470.

[150] Neale, I. M., 6 1988. First generation expert systems: a review of knowl-
edge acquisition methodologies. The Knowledge Engineering Review 3,
105–145.

[151] Neapolitan, R. E., 2012. Probabilistic Reasoning In Expert Systems:
Theory and Algorithms. CreateSpace Independent Publishing Platform,
USA.

[152] Ngai, E. W. T., Xiu, L., Chau, D. C. K., 2009. Application of data mining
techniques in customer relationship management: A literature review
and classification. Expert Systems with Applications 36 (2, Part 2), 2592
– 2602.

[153] Nguyen, H., Luu, T.-D., Poch, O., Thompson, J. D., 2013. Knowl-
edge discovery in variant databases using inductive logic programming.
Bioinformatics and Biology Insights 7, 119–131.

[154] Notermans, C., Kommers, H., 2013. Researching religion: the icono-
graphic elicitation method. Qualitative Research 13 (5), 608–625.

[155] Okoli, J. O., Weller, G., Watt, J., Wong, B. L. W., 2013. Decision making
strategies used by experts and the potential for training intuitive skills: a
preliminary study. In: Chaudet, H., Pellegrin, L., Bonnardel, N. (Eds.),
The 11th International Conference on Naturalistic Decision Making -
NDM 2013. Arpege Science Publishing.

[156] Olson, J. R., Biolsi, K. J., 1991. Study of Expertise: Prospects and Lim-
its. Cambridge University Press, Ch. Techniques for representing knowl-
edge structures, pp. 240–285.

[157] Orasanu, J., 2001. Decision making (naturalistic), psychology of. In:
Baltes, N. J. S. B. (Ed.), International Encyclopedia of the Social &

Behavioral Sciences. Pergamon, Oxford, pp. 3300 – 3304.
[158] Orru, G., Pettersson-Yeo, W., Marquand, A. F., Sartori, G., Mechelli, A.,

2012. Using support vector machine to identify imaging biomarkers of
neurological and psychiatric disease: A critical review. Neuroscience &
Biobehavioral Reviews 36 (4), 1140 – 1152.

[159] Overbey, L. A., McKoy, G., Gordon, J., McKitrick, S., May 2010. Au-
tomated sensing and social network analysis in virtual worlds. In: Intel-
ligence and Security Informatics (ISI), 2010 IEEE International Confer-
ence on. pp. 179–184.

[160] Park, K., Park, S., 2012. Development of professional engineers’ authen-
tic contexts in blended learning environments. British Journal of Educa-
tional Technology 43 (1), E14–E18.

[161] Pauley, K., Flin, R., Azuara-Blanco, A., 2013. Intra-operative decision
making by ophthalmic surgeons. British Journal of Ophthalmology.

[162] Pauley, K., Flin, R., Yule, S., Youngson, G., 2011. Surgeons’ intraoper-
ative decision making and risk management. The American Journal of
Surgery 202 (4), 375 – 381.

[163] Payne, S. J., Green, T., 1989. The structure of command languages:
an experiment on task-action grammar. International Journal of Man-
Machine Studies 30 (2), 213 – 234.

[164] Perry, G. T., Krippendorff, K., 2013. On the reliability of identifying
design moves in protocol analysis. Design Studies 34 (5), 612 – 635.

[165] Petraki, E., Abbass, H., Dec 2014. On trust and influence: A computa-
tional red teaming game theoretic perspective. In: Computational Intel-
ligence for Security and Defense Applications (CISDA), 2014 Seventh
IEEE Symposium on. pp. 1–7.

[166] Petrovic, O., Brand, A., 2009. Serious games on the move. Springer.
[167] Pidgeon, N., Turner, B. A., Blockley, D., 1991. The use of grounded the-

ory for conceptual analysis in knowledge elicitation. International Jour-
nal of Man-Machine Studies 35, 151–173.

[168] Plant, K. L., Stanton, N. A., 2013. What is on your mind? using the
perceptual cycle model and critical decision method to understand the
decision-making process in the cockpit. Ergonomics 56 (8), 1232–1250,
pMID: 23800131.

[169] Plant, K. L., Stanton, N. A., 2014. The process of processing: exploring
the validity of neisser’s perceptual cycle model with accounts from crit-
ical decision-making in the cockpit. Ergonomics 0 (accepted-in press),
1–15.

[170] Powell, M. B., Guadagno, B., Benson, M., 2015. Improving child inves-
tigative interviewer performance through computer-based learning ac-
tivities. Policing and Society accepted - in press (0), 1–10.

[171] Pu, P., Faltings, B., Chen, L., Zhang, J., Viappiani, P., 2011. Usability
Guidelines for Product Recommenders Based on Example Critiquing
Research. Springer US, book section 16, pp. 511–545.

[172] Pugh, C., DaRosa, D., Santacaterina, S., Clark, R., 2011. Faculty eval-
uation of simulation-based modules for assessment of intraoperative de-
cision making. Surgery 149 (4), 534 – 542.

[173] Ragsdell, G., Probets, S., Ahmed, G., Murray, I., 2014. Knowledge au-
dit: Findings from the energy sector. Knowledge and Process Manage-
ment 21 (4), 270–279.

[174] Rahman, A., Shukor, N., Nov 2011. Knowledge audit process - tales of
two organizations. In: Research and Innovation in Information Systems
(ICRIIS), 2011 International Conference on. pp. 1–5.

[175] Ralha, C. G., Silva, C. V. S., 2012. A multi-agent data mining system for
cartel detection in brazilian government procurement. Expert Systems
with Applications 39 (14), 11642 – 11656.

[176] Rebentrost, P., Mohseni, M., Lloyd, S., Sep 2014. Quantum support vec-
tor machine for big data classification. Phys. Rev. Lett. 113, 130503.

[177] Reed, C., Rowe, G., 2004. Araucaria: software for argument analysis,
diagramming and representation. International Journal on Artificial In-
telligence Tools 13 (04), 961–979.

[178] Reisner, P., March 1981. Formal grammar and human factors design of
an interactive graphics system. Software Engineering, IEEE Transac-
tions on SE-7 (2), 229–240.

[179] Richard, V. M., Lahman, M. K. E., 2015. Photo-elicitation: reflexivity
on method, analysis, and graphic portraits. International Journal of Re-
search & Method in Education 38 (1), 3–22.

[180] Rokach, L., 2007. Data mining with decision trees: theory and applica-
tions. Machine Perception and Artificial Intelligence. World scientific.

[181] Roth, E. M., 2008. Uncovering the requirements of cognitive work. Hu-
man Factors: The Journal of the Human Factors and Ergonomics Society

24



50 (3), 475–480.
[182] Roth, E. M., O’Hara, J., Bisantz, A., Endsley, M. R., Hoffman, R., Klein,

G., Militello, L., Pfautz, J. D., 2014. Discussion panel: How to recognize
a “good” cognitive task analysis? Proceedings of the Human Factors and
Ergonomics Society Annual Meeting 58 (1), 320–324.

[183] Roth, E. M., Woods, D. D., Pople, H. E., 1992. Cognitive simulation as
a tool for cognitive task analysis. Ergonomics 35 (10), 1163–1198.

[184] Rugg, G., Corbridge, C., Major, N., Burton, A., Shadbolt, N., 1992. A
comparison of sorting techniques in knowledge acquisition. Knowledge
Acquisition 4 (3), 279–291.

[185] Rybakov, V., 2009. Logic of knowledge and discovery via interacting
agents - decision algorithm for true and satisfiable statements. Informa-
tion Sciences 179 (11), 1608 – 1614, including Special Issue on Chance
Discovery Discovery of Significant Events for Decision.

[186] Ryder, J. M., Redding, R. E., 1993. Integrating cognitive task analy-
sis into instructional systems development. Educational Technology Re-
search and Development 41 (2), 75–96.

[187] Ryder, J. M., Zachary, W. W., 1991. Experimental validation of the at-
tention switching component of the cognet framework. Proceedings of
the Human Factors and Ergonomics Society Annual Meeting 35 (2), 72–
76.

[188] Salmon, K., Pipe, M.-E., Malloy, A., Mackay, K., 2012. Do non-verbal
aids increase the effectiveness of ¢best practice¢¢ verbal interview tech-
niques? an experimental study. Applied Cognitive Psychology 26 (3),
370–380.

[189] Salvucci, D. D., 2013. Integration and reuse in cognitive skill acquisi-
tion. Cognitive Science 37 (5), 829–860.

[190] Schraagen, J. M., Chipman, S. F., Shalin, V. L., 2000. Cognitive task
analysis. Mahwah, NJ: Lawrence Erlbaum Associates.

[191] Schraagen, J. M., Ormerod, T., Militello, L., Lipshitz, R., 2008. Natu-
ralistic decision making and macrocognition. Ashgate Publishing, Ltd.,
Aldershot, UK.

[192] Schroeder, L. F., Bazzan, A. L. C., 2002. A multi-agent system to facil-
itate knowledge discovery: an application to bioinformatics. In: Work-
shop on Bioinformatics and Multi-Agent Systems. pp. 44–50.

[193] Seager, W., Ruskov, M., Sasse, M. A., Oliveira, M., 2011. Eliciting and
modelling expertise for serious games in project management. Entertain-
ment Computing 2 (2), 75 – 80.

[194] Secretan, J., Georgiopoulos, M., Koufakou, A., Cardona, K., 2010.
Aphid: An architecture for private, high-performance integrated data
mining. Future Generation Computer Systems 26 (7), 891 – 904.

[195] Sharples, M., Jeffery, N., Du Boulay, J. B. H., Teather, D., Teather, B.,
Du Boulay, G. H., 2002. Socio-cognitive engineering: a methodology
for the design of human-centred technology. European Journal of Oper-
ational Research 136 (2), 310–323.

[196] Sowa, J. F., 2014. Conceptual analysis as a basis for knowledge acquisi-
tion. In: Hoffman, R. R. (Ed.), The Psychology of Expertise. Psychology
Press New York, pp. 80–96.

[197] Stanton, N. A., M., S. P., Walker, G. H., Rafferty, L. A., Baber, C.,
Jenkins, D. P., 2013. Human factors methods: a practical guide for engi-
neering and design, 2nd Edition. Ashgate Publishing, Ltd.

[198] Steidtmann, D., Manber, R., Blasey, C., Markowitz, J. C., Klein, D. N.,
Rothbaum, B. O., Thase, M. E., Kocsis, J. H., Arnow, B. A., 2013. De-
tecting critical decision points in psychotherapy and psychotherapy +

medication for chronic depression. Journal of Consulting and Clinical
Psychology 81 (5), 783–792.

[199] Sun, R., 2006. The CLARION cognitive architecture: Extending cog-
nitive modeling to social simulation. Cambridge University Press, New
York.

[200] Taylor, F. W., 1967. The principles of scientific management. Norton,
New York.

[201] Tofel-Grehl, C., Feldon, D. F., 2013. Cognitive task analysis-based train-
ing: A meta-analysis of studies. Journal of Cognitive Engineering and
Decision Making 7 (3), 293–304.

[202] Varga-Atkins, T., O’Brien, M., 2009. From drawings to diagrams: main-
taining researcher control during graphic elicitation in qualitative inter-
views. International Journal of Research & Method in Education 32 (1),
53–67.

[203] Vatolkin, I., 2015. Exploration of two-objective scenarios on supervised
evolutionary feature selection: A survey and a case study (application
to music categorisation). In: Gaspar-Cunha, A., Henggeler Antunes, C.,

Coello, C. C. (Eds.), Evolutionary Multi-Criterion Optimization. Vol.
9019 of Lecture Notes in Computer Science. Springer International Pub-
lishing, pp. 529–543.

[204] Wang, S. L., Shafi, K., Lokan, C., Abbass, H. A., 2013. An agent-based
model to simulate and analyse behaviour under noisy and deceptive in-
formation. Adaptive Behavior 21 (2), 96–117.

[205] Wannheden, C., Westling, K., Savage, C., Sandahl, C., Ellenius, J., 2013.
Hiv and tuberculosis coinfection: a qualitative study of treatment chal-
lenges faced by care providers. The International Journal of Tuberculosis
and Lung Disease 17 (8), 1029–1035.

[206] Ward, P., Suss, J., Eccles, D., Williams, A., Harris, K., 2011. Skill-based
differences in option generation in a complex task: a verbal protocol
analysis. Cognitive Processing 12 (3), 289–300.

[207] Wei, J., Salvendy, G., 2004. The cognitive task analysis methods for
job and task design: review and reappraisal. Behaviour & Information
Technology 23 (4), 273–299.

[208] Woodward, B., 1990. Knowledge acquisition at the front end: defining
the domain. Knowledge Acquisition 2 (1), 73 – 94.

[209] Yagahara, A., Tsuji, S., Fukuda, A., Yokooka, Y., Nishimoto, N.,
Kurowarabi, K., Ogasawara, K., 2013. Constructing mammography ex-
amination process ontology using affinity diagram and hierarchical task
analysis. Studies in health technology and informatics 192, 1059.

[210] Yates, K., 2007. Towards a taxonomy of cognitive task analysis moeth-
ods: a search for cognition and task analysis interactions. Thesis.

[211] Yates, K. A., Feldon, D. F., 2011. Advancing the practice of cognitive
task analysis: a call for taxonomic research. Theoretical Issues in Er-
gonomics Science 12 (6), 472–495.

[212] Yee, N., Bailenson, J. N., 2008. A method for longitudinal behavioral
data collection in second life. Presence: Teleoperators and Virtual Envi-
ronments 17 (6), 594–596.

[213] Yoo, K.-H., Gretzel, U., Zanker, M., 2013. Implications for Recom-
mender System Design. SpringerBriefs in Electrical and Computer En-
gineering. Springer New York, book section 7, pp. 37–44.

[214] Yusoff, N. M., Salim, S. S., 2012. Investigating cognitive task difficulties
and expert skills in e-learning storyboards using a cognitive task analysis
technique. Computers & Education 58 (1), 652 – 665.

[215] Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., Zhang, Q.,
2011. Multiobjective evolutionary algorithms: A survey of the state of
the art. Swarm and Evolutionary Computation 1 (1), 32 – 49.

[216] Zhou, D., Rao, W., Lv, F., Dec 2010. A multi-agent distributed data min-
ing model based on algorithm analysis and task prediction. In: 2nd Inter-
national Conference on Information Engineering and Computer Science.
pp. 1–4.

25


	1 Introduction
	2 A historical view
	3 Agent-enabled KA exercises: core process and roadmap
	4 Brief review of the existing KA classifications
	5 The human agents
	5.1 Informal methods - observations and interviews
	5.2 Process tracing techniques
	5.3 Conceptual Techniques
	5.4 Summary of human agents

	6 The human-inspired agents
	6.1 Automation of human agent methods
	6.2 The formal methods in the mechanism-based KA classification
	6.3 Summary of human-inspired agents

	7 The machine agents
	7.1 Agent-enabling technologies
	7.1.1 Statistical analysis
	7.1.2 Machine learning technologies
	7.1.3 Evolutionary Computation technologies

	7.2 The mining machine agents
	7.2.1 Interaction-based agents
	7.2.2 Integration-based agents

	7.3 Summary of machine agents

	8 Discussion
	8.1 The proposed perspective on KA
	8.2 Future potential perspectives on KA

	9 Conclusions

