
An efficient approximation to the K-means clustering
for Massive Data

Marco Capóa, Aritz Péreza, Jose A. Lozanoa,b

aBasque Center for Applied Mathematics (BCAM)
48009 Bilbao, Spain

bIntelligent Systems Group
Department of Computer Science and Artificial Intelligence

University of the Basque Country UPV/EHU
20018 Donostia-San Sebastián, Spain

Abstract

Due to the progressive growth of the amount of data available in a wide vari-
ety of scientific fields, it has become more difficult to manipulate and analyze
such information. In spite of its dependency on the initial settings and the
large number of distance computations that it can require to converge, the
K-means algorithm remains as one of the most popular clustering methods
for massive datasets. In this work, we propose an efficient approximation to
the K-means problem intended for massive data. Our approach recursively
partitions the entire dataset into a small number of subsets, each of which is
characterized by its representative (center of mass) and weight (cardinality),
afterwards a weighted version of the K-means algorithm is applied over such
local representation, which can drastically reduce the number of distances
computed. In addition to some theoretical properties, experimental results
indicate that our method outperforms well-known approaches, such as the
K-means++ and the minibatch K-means, in terms of the relation between
number of distance computations and the quality of the approximation.

Keywords: K-means, clustering, K-means++, minibatch K-means

Email addresses: mcapo@bcamath.org (Marco Capó), aperez@bcamath.org (Aritz
Pérez), ja.lozano@ehu.eus (Jose A. Lozano)

Preprint submitted to KNOSYS June 13, 2016

1. Introduction

The exponential increase of the data volumes that scientists, from differ-
ent backgrounds, face on a daily basis implies the development of simple yet
scalable tools that eases the analysis and characterization of such informa-
tion [14]. One of the most relevant analysis is data clustering. This process
consists of grouping a given dataset into a predetermined amount of disjoint
sets, called clusters. This is done in such a way that intra-cluster similarity
is high and the inter-cluster similarity is low. Furthermore, clustering is a
basic task of many areas, such as artificial intelligence, machine learning and
pattern recognition [16, 18].

Even when there exists a wide variety of clustering methods, the K-
means algorithm remains as one of the most popular [19]. In fact, it has
been identified as one of the top 10 algorithms in data mining [31].

1.1. K-means
Given a set of n data points (instances) D = {x1, . . . ,xn} in Rd and

an integer K, the K-means problem is to determine a set of K centroids
C = {c1, . . . , cK} in Rd so as to minimize the following error function:

E(C) =
∑
x∈D

min
k=1,...,K

‖x− ck‖2 (1)

This is a combinatorial optimization problem since it is equivalent to
finding the partition of the n instances in K groups whose associated set
of centers of mass minimizes Eq.1. In this case, the number of possible
partitions is a Stirling number of the second kind [23].

Since finding the globally optimal partition is known to be NP-hard,
even for instances in the plane [1], and exhaustive search methods are not
useful in practice, iterative refinement based algorithms are commonly used
to approximate the solution of theK-means and similar problems [22, 24, 26].
These algorithms iteratively relocate the data points between clusters until a
locally optimal partition is attained. Among these methods the most popular
is the K-means algorithm [19, 24]

The K-means algorithm has two stages: Initialization, in which we
set the starting set of centroids and, an iterative stage, called Lloyd’s al-
gorithm [24]. Lloyd’s algorithm consists of two steps: A first step in which
each instance is assigned to its closest centroid (assignment step), then the

2

set of centroids is updated (update step). Finally, a stopping criterion is
verified. The most common criterion implies the computation of the error
function (Eq.1): if the error does not decrease significantly, with respect to
the previous iteration, the algorithm stops. The time required for the assign-
ment step is O(nKd), while the update step of the set of centroids requires
O(nd) computations and the stopping criterion based on the computation of
the error function has a O(nd) time complexity. Hence, the assignment step
is the most computationally intensive due to the distance computations. For
this reason, the main objective of our proposal consists of defining a variant
of the K-means algorithm that controls the trade-off between the number of
distances computed and the quality of the obtained solution.

Conveniently, every step of the K-means algorithm can be easily par-
allelized [32], which is a major key to meet the scalability of the problem
[31].

1.1.1. K-means Initialization
It is widely reported in the literature that the performance of the Lloyd’s

algorithm highly depends upon the initialization stage [27]: One might need
several re-initializations before achieving a solution of acceptable quality.
This is especially adverse when dealing with massive data applications since
the number of distance computations is proportional to the number of in-
stances, n. In addition, a poor initialization could lead to an exponential
running time in the worst case scenario [30]. All these features are major
downsides and show the importance of defining an appropriate initialization
strategy.

There exist several approaches to initialize the K-means algorithm. One
of the earliest, and most popular initialization strategies, was proposed by
Forgy in 1965 [13]. It consists of defining the initial centroids set as K
randomly selected instances from the dataset. The intuition behind this
approach is that, by choosing the prototypes randomly, we are more likely to
choose a point near an optimal cluster center, since such points tend to be
where the highest density points are located [28]. The main disadvantage of
this approach is that there is no guarantee that two, or more, of the selected
seeds will not be near the center of the same cluster [28].

Moreover, there also exist well known initialization procedures that are
based on simple probabilistic seeding techniques. In particular, the K-
means++ method, proposed by Arthur and Vassilvitskii in [3], consists of
randomly selecting only the first centroid from the dataset. Each subsequent

3

initial centroid is chosen with a probability proportional to the distance with
respect to the previously selected set of centroids. The key idea of this clus-
ter initialization technique is to preserve the diversity of seeds while being
robust to outliers. The K-means++ algorithm leads to an O(logK) approx-
imation of the optimal error after the initialization [3]. The drawback of this
approach refers to its sequential nature, which hinders its parallelization, as
well as to the fact that it requires K scans of the entire dataset, therefore it
has a complexity of O(nKd).

1.2. An alternative to Lloyd’s algorithm
Apart from Lloyd’s algorithm there exist several low computational cost

alternatives that, by using statistical techniques, attempt to approximate a
suboptimal solution to the K-means problem without processing the infor-
mation of every instance in the dataset [7, 9, 29]. Among these algorithms
we have the minibatch K-means proposed by Sculley in [29]. This algorithm
seeks to reduce the computational cost by not using all the dataset at each
iteration but small random batches of examples of a fixed size until con-
vergence. This strategy reduces the number of distance computations per
iteration at the cost of lower cluster quality. Empirical results, in a range of
large web based applications, corroborate that a substantial saving of com-
putational time can be obtained at the expense of some loss of cluster quality
[29].

1.3. Contribution
In this work, we propose an approximation algorithm for the K-means

problem based on a recursive data partitioning process that reduces the num-
ber of distance calculations and data scans, while generating competitive
approximations. The algorithm considers a sequence of partitions of the
dataset, in such a way that the partition at iteration i is thinner than the
partition at iteration i − 1. At each step, the mass center of each subset
of the partition (set of representatives) is calculated and a weighted Lloyd’s
algorithm is applied using the current set of representatives as the dataset.
Among other benefits, this approach reduces the number of distance compu-
tations over the whole dataset, which is the most computationally demanding
stage of the K-means algorithm.

The rest of this article is organized as follows: In Section 2, we describe
the idea behind our algorithm and introduce notation that we use, in Section
3, to state some theoretical guarantees of our approach. The proofs of such

4

statements can be found in Appendix A. In Section 4, we present a set of
experiments in which we analyze the effect of different factors, such as the
size of the dataset and the dimension of the instances over the performance of
our algorithm. Additionally we compare these results with the ones obtained
by theK-means++ and the minibatchK-means methods. Finally, in Section
5, we define the next steps and possible improvements to our current work.

2. Recursive partition based K-means

We propose a novel, iterative approximation strategy for the K-means
problem that is based on a sequence of recursive partitions of the dataset,
being each partition thinner than the previous one. We call this approach
recursive partition based K-means (RPKM). The idea behind the al-
gorithm is to approximate theK-means problem for the full dataset by recur-
sively applying a weighted version of the K-means algorithm over a growing,
yet small, number of subsets of the dataset.

In the first step of the RPKM, the dataset is partitioned into a number
of subsets each of which is characterized by a representative (center of mass)
and its corresponding weight (cardinality). Finally, a weighted version of
Lloyd’s algorithm (see Section 2.2 for further details) is applied over the set
of representatives. From one iteration to the next, a more refined partition
is constructed and the process is repeated using the optimal set of centroids
obtained at the previous iteration as initialization. This iterative procedure
is repeated until a certain stopping criterion is met.

In the next section, we describe in detail the recursive partition process
and characterize some of its properties. The notation introduced in this
section will be used later for a formal description of the RPKM algorithm.

2.1. Recursive Partitions
As previously mentioned, the recursive partition process is the first stage

of the RPKM algorithm. This step consists of generating a thinner partition
than the previous one at each iteration.

From now on we will use the following definition of partition of a dataset.

Definition 1 (Partition of a dataset D). P = {S1, . . . , St} is a partition of

the dataset D if
t⋃

i=1

Si = D and if the subsets of P are (pairwise) disjoint

and nonempty. Moreover, given a subset S ∈ P, we define its weight as its

cardinality, |S|, and its representative as its center of mass, S =

∑
x∈S

x

|S| .

5

The partition of the dataset allows us to describe it with a reduced num-
ber of representatives, which ultimately implies the reduction of the number
of distance computations with respect to the Lloyd’s algorithm for the full
dataset. In the RPKM algorithm, we will use the set of representatives and
weights, rather than the partition itself.

Definition 2 (Partition thinner than P). Given two partitions of the dataset
D, P and P ′, we say that P ′ is a partition thinner than P (P � P ′) if, for
all S ∈ P, S =

⋃
R∈P ′ [S]

R, where P ′ [S] = {R ∈ P ′ : R ⊆ S}.

In other words, P ′ is a partition thinner than P if every subset of P can
be written as the union of subsets of P ′ .

The partition process generates a sequence of thinner partitions
P1, . . . ,Pm, such that Pi−1 � Pi for all i ∈ {2, . . . ,m}. Evidently, the
number of representatives tends to increase as we generate a thinner parti-
tion. In the extreme case Pm = {{x} : x ∈ D}, however, in practice, in
order to reduce the computational complexity of the RPKM, we control the
number of representatives so that |Pm| � n.

Note that the weight and the representative of S ∈ Pi can be easily com-

puted from Pi+1[S] as follows: |S| =
∑

R∈Pi+1[S]

|R|, S =

∑
R∈Pi+1[S]

|R|·R

|S| . As we

noted before, we are interested in the computation of the set of representa-
tives and weights, thus, we will use Pm to generate the set of representatives
and weights of the entire sequence of thinner partitions backward, from Pm−1
to P1. Hence, the construction of Pi has a O(|Pi+1|d) time cost for i < m.
Moreover, if the assignment criterion of each instance of D into its corre-
sponding subset in Pm is of order O(d), as it is in the case of the grid based
RPKM (see Section 2.4), then the construction of Pm is O(nd) and, therefore,
the cost of the entire partition process is O(d(n+

∑m
i=2 |Pi|)).

2.2. Weighted K-means problem
In this section, we introduce a generalization of the K-means problem

defined over a set of weighted points, e.g. the set of representatives and
their respective weights associated to a partition. As a first step, we define
a clustering for a partition.

Definition 3 (Clustering for a partition P). We say that a partition of the
dataset D, G, is a clustering of the dataset for a partition P, when |G| = K
and G � P.

6

In other words, a cluster for a partition is a set of K subsets of points of
D, such that all the points of any S ∈ P are assigned to the same cluster.

We call G = {G1, .., GK} a clustering induced by a set of centroids
C = {c1, ..., ck}, when Gk =

⋃
S∈Mk

S for k = 1, ..., K, where Mk = {S ∈

P : k = argmin
j=1,...,K

‖S − cj‖2}. In other words, a clustering induced by a set

of centroids is a partition of the dataset in which all the data points that
have the same closest centroid from C are grouped in the same cluster. We
denote that the clustering G is induced by a set of centroid C by G ← C.
Similarly, we call C = {c1, ..., ck} a centroids set induced by a clustering
G = {G1, ..., GK}, when ci = Gi for i = 1, ..., K. In other words, the set of
centroids induced by a clustering G is the set of centers of mass associated
to each cluster in G. We denote that the set of centroids C is induced by a
clustering G by C ← G.

Given a partition of the dataset D, P , the weighted K-means problem
seeks to determine a set of k centroids C = {c1, . . . , cK} in Rd, so as to
minimize the centroid error associated to a partition P , which is defined
as follows:

EP(C) =
∑
S∈P

|S| min
k=1,...,K

‖S − ck‖2

=
K∑
k=1

∑
S∈P:S⊆Gk

|S| · ||S − ck||2 (2)

where the clustering G is induced by the set of centroids C. This error
measures the weighted error between the representative of each subset with

7

respect to its closest centroid.
Algorithm 1: Weighted Lloyd (WL)
Input: Set of representatives {S}S∈P and weights {|S|}S∈P , for

the partition P . Number of clusters K and initial set of
centroids C0.

Output: Set of centroids Cr and corresponding clustering pattern Gr.
Step 0 (Initial Assignment):

G0 ←− C0; r = 0.
while not StoppingCriterion do

r = r + 1.
Step 1 (Update Step): Clustering error

Cr ←− Gr−1 EP(Gr−1) (Eq. 4)
Step 2 (Assignment Step): Centroid error

Gr ←− Cr EP(Cr) (Eq. 2)
end
Return Cr and Gr.
In order to approximate the solution of the weighted K-means problem,

we use a generalization of Lloyd’s algorithm called the weighted Lloyd’s
algorithm (WL, see Algorithm 1). In the assignment stage of WL (Step 0
and Step 2), the clustering Gr is induced by the set of centroids Cr. Further-
more, in the update step (Step 1), the set of centroids Cr is induced by the
clustering Gr−1. Similarly to Lloyd’s algorithm, an execution of WL with l
iterations produces a sequence of sets of centroids and clusterings that can
be represented as follows:

C0 → G0 → C1 → G1 → ...→ Cl−1 → Gl−1 → Cl → Gl

where C0 is the set of centroids used for initialization and Cl is the returned
set of centroids.

The assignment step requires O(|P|kd) computations, since we just need
to compute the distance between the set of centroids and the set of represen-
tatives, while for the update step of the set of centroids and the computation
of its error (centroid error) O(|P|d) computations are needed. Remember
that the most common stopping criterion of the K-means algorithm consists
of verifying that the difference of the set of centroids error, in two consecutive
iterations, is smaller than a certain threshold. Moreover, observe that the set
of weights is only used when updating the set of centroids. Since the number
of representatives usually satisfies |P| � n, when dealing with massive data

8

problems, we can have a relevant reduction in the complexity with respect
to the K-means algorithm for the full dataset.

2.3. RPKM Algorithm
In this section, we formally present the RPKM algorithm. This algorithm

mainly consists of constructing a sequence of thinner partitions P1, . . . ,Pm

and then applying WL over the set of representatives of each partition in
the sequence. From one iteration to the next, the preceding found solution
is used as initialization. As we will show later, this initialization assignment
allows us to reduce the maximum number of WL iterations at every RPKM
run. The pseudo-code of the RPKM algorithm can be seen in Algorithm 1.

Algorithm 2: RPKM Algorithm
Input: Dataset D, number of clusters K, maximum number of

iterations m.
Output: Set of centroids approximation Ci.
Step 1 Compute the set of weights and representatives of the

sequence of thinner partitions, P1, . . . ,Pm, backwards.
Set i = 1.

while not Stopping Criterion do
Step 2 Update the centroid’s set approximation, Ci = {cij}Kj=1:

Ci= WL({S}S∈Pi
, {|S|}S∈Pi

, K, Ci−1)
i = i+ 1

end
Return Ci

In the first step of the RPKM algorithm, we obtain backwards (see Sec-
tion 2.1) the set of representatives and weights associated to the sequence of
thinner partitions P1, . . . ,Pm. Observe that we are assuming, without loss
of generality, that |P1| > K. In Step 2, we update the centroids approxima-
tion by applying WL using the representatives and weights set determined
at the previous step, we take as initialization the approximation for the pre-
vious iteration, Ci−1. In the first RPKM iteration, we set Ci−1 as K random
representatives of {S}S∈Pi

(Forgy’s type initialization). The algorithm iter-
ates until i = m or until a stopping criterion is met. We recommend the
computation of a centroid’s set displacement measure as stopping criterion:
δ(Ci−1, Ci) = max

j=1,...,K
‖cij − ci−1j ‖2. If this value is smaller than a certain

9

threshold, the algorithm stops, since the approximation did not improve sig-
nificantly after the last RPKM iteration.

In relation to the complexity of Algorithm 2, we know, from Section
2.1, that Step 1 has an O(d(n +

∑m
i=2 |Pi|)) time cost. Moreover, at the

i-th RPKM iteration, the time required for WL (Step 2) is O(|Pi|Kd). Fi-
nally, the recommended stopping criterion just performs O(Kd) computa-
tions. Hence, the overall complexity of the RPKM algorithm, in the worst
case, is O(max{d(n+

∑m
i=2 |Pi|), |Pm|Kd}).

2.4. RPKM implementation based on grid partitions
Later on, we will verify that the theoretical advantages of the RPKM

algorithm hold independently of the geometry that we use to generate the
partition. Nonetheless, one way to guarantee the generation of a sequence
of thinner partitions of the dataset consists of partitioning the space in a
recursive manner. To do so, one possibility is to use a generalization of the
quadtrees for higher dimensions [11]. The quadtree data structure has been
used in several areas such as dimension reduction problems, spatial indexing,
storing sparse data, computer graphics: computational fluid dynamics, etc
[10].

The d-dimensional generalization of a quadtree is a tree data structure
that generates partitions of the space into d-dimensional hypercubes and,
subsequently, of the dataset in subsets in the following way: each internal
node of the tree is exactly divided in 2d children, i.e., each subset of the
i-th partition is divided into, at most, 2d sets of the (i+ 1)-th partition (see
Fig.1). This property allows us to generate, in a simple manner, a sequence
of thinner partitions at each iteration satisfying |Pi| ≤ min{n, 2id}.

In the following example, we consider a set of 10000 points generated from
a mixture of three 2D Gaussians. We compute, as a reference, the solution
for K = 3 using the K-means++ method. After ten runs, we obtained, on
average, an error of 11393.45 with a standard deviation of 4.69. The number
of distance computations was, on average, 642000. In Fig.1, we show the
evolution of the RPKM algorithm, for m = 6, the red circles represent the
initial set of centroids, the yellow diamonds the final set of centroids and the
blue points the set of representatives for each iteration.

10

−5 0 5

−5

0

5

i=1

−5 0 5

−5

0

5

i=2

−5 0 5

−5

0

5

i=3

−5 0 5

−5

0

5

i=4

−5 0 5

−5

0

5

i=5

−5 0 5

−5

0

5

i=6

Figure 1: Best clustering obtained at each RPKM iteration

i Dis Com |Pi| E(Ci)
1 24 4 14050.06
2 114 15 14024.38
3 1545 53 12350.41

i Dis Com |Pi| E(Ci)
4 5697 173 11424.24
5 10449 528 11408.40
6 26781 1361 11389.54

Table 1: RPKM iteration results

From Table 1, we can observe that, even at the fourth grid based RPKM
iteration, which in this case implies 173 representatives (1.73% of the dataset),
we have a fairly good approximation of the average best solution found by the
K-means++ algorithm for the entire 10000 points. On average, the RPKM
algorithm computed 0.887% and 4.17% of the total number of distance com-
putations of the K-means++ algorithm, at the fourth and final iteration
respectively.

As we consider higher iterations of the RPKM, the associated cost func-
tion converges to the best solution obtained by the the K-means++. The
intuition behind this method is to transform a random initial set of centroids
into a competitive approximation by using small groups of representatives,
instead of the entire dataset. Next, we consider higher values of i to refine
such an approximation.

11

3. Theoretical analysis of the RPKM algorithm

In this section, we perform a theoretical analysis of RPKM. In Section 3.1,
we analyze the evolution of the clustering error at different steps of RPKM.
Then, in Section 3.2, we investigate the repetitions of the clusterings obtained
during the execution of RPKM and we bound the maximum number of WL
iterations for different steps of RPKM.

Before starting with the theoretical results, we summarize an execution of
RPKM withm steps given in terms of sequences of centroids and clusterings:

P1 : C1
0 → G10 → C1

1 → G11 → ...→ G1l1−1 → C1
l1
→ G1l1

P2 : C2
0 → G20 → C2

1 → G21 → ...→ G2l2−1 → C2
l2
→ G2l2

...

Pi : Ci
0 → Gi0 → Ci

1 → Gi1 → ...→ Gili−1 → Ci
li
→ Gili

...

Pm : Cm
0 → Gm0 → Cm

1 → Gm1 → ...→ Gmlm−1 → Cm
lm → G

m
lm (3)

where li corresponds to the number of iterations of WL at step i of RPKM,
the set of centroids Ci

r+1 is induced by the clustering Gir, and Gir is induced by
Ci

r for r = 1, ..., li− 1 and i = 1, ..,m. Each line corresponds to an execution
of WL for a given partition Pi for i = 1, ...,m. It should be noted that, in
step i of RPKM, the set of centroids Ci

0 corresponds to the set of centroids
obtained at the end of its previous step, that is Ci

0 = Ci−1
li−1 for i = 1, ...,m.

However, the clustering induced by Ci
0 = Ci−1

li−1 for partition Pi does not have
to correspond to the clustering induced for the previous partition Pi−1. This
fact is one of the main difficulties in guaranteeing a monotone decrement of
the error function (see Eq.1) during an execution of RPKM.

In order to analyze the behavior of RPKM, we define the clustering
error associated to a partition P as follows:

EP(G) =
K∑
k=1

∑
S∈P:S⊆Gk

|S| · ||S − ck||2 (4)

where the set of centroids C is induced by the clustering G. This function
measures the weighted error between each representative of a partition P and
the center of mass of its corresponding cluster. Note that the only difference
between the centroid error and clustering error is that, the centroid error
is given in terms of a set of centroids and its induced clustering, while the

12

clustering error is given by a clustering and its induced set of centroids. The
importance of the clustering error is that it represents an intermediate value
between the centroid errors obtained at two consecutive iterations of the
algorithm, that is

EPi
(Ci

r) ≥ EPi
(Gir) ≥ EPi

(Ci
r+1) (5)

for r = 0, ..., li−1 (see Eq.3). In the following subsections we will analyze the
relation between the centroid error for different partitions of the data based
on the inequality provided in Eq.5.

3.1. Evolution of the centroids error
In this section we analyze the evolution of the centroid error for RPKM.

The obtained results will be the basis for bounding the number of iterations
of WL at each step of the RPKM. The next result will be used in order to
analyze the relation between the clustering error given two partitions of the
dataset (one thinner than the other).

Lemma 1. Given a set of points D in Rd and a partition of it, P. Then the
function f(c) = |D| · ‖D − c‖2 −

∑
R∈P |R| · ‖R− c‖2 is constant.

This result implies that the difference of the set of representatives with
respect to a centroid, for two partitions of the dataset (one thinner than
the other), is constant. The fact that such a difference is constant allows us
to state, in the following lemma, the invariance of the clustering error for
two different partitions of the dataset. Observe that Lemma 1 allows us to
change the clustering, for both partitions, without changing the difference of
the error associated to them.

Lemma 2. [Invariance of the clustering error difference] Let P and P ′ be two
partitions of the dataset D, with P � P ′, and let G and G ′ be two clusterings
of P. Then, the difference between both clustering errors is constant with
respect to the partitions P and P ′:

EP(G)− EP(G
′
) = EP ′ (G)− EP ′ (G

′
)

In other words, the difference between two clustering errors is independent
of the partition. For example, in Fig.2, clustering G restricts the subsets with
center of mass to the left (right) of the middle point of the bounding box to
belong to the same cluster. The pink diamonds represent the centers of mass

13

of each group of G, evidently such centers of mass are invariant with respect
to the partition that we use to represent G. Furthermore, Lemma 2 states
that the difference of the clustering error difference between the upper figures
is equivalent to the difference of the error associated to the lower figures in
Fig.2.

−5 0 5

−5

0

5

Partition P . Cluster G

−5 0 5

−5

0

5

Partition P . Cluster G
′

−5 0 5

−5

0

5

Partition P
′

. Cluster G

−5 0 5

−5

0

5

Partition P
′

. Cluster G
′

Figure 2: Illustration of Lemma 2, for two clusterings G and G′
defined on a partition P

In general, we can not guarantee a monotone descent of the error func-
tion given in Eq.1, which corresponds to the centroid error for the thinnest
partition, i.e., D = {{x} : x ∈ D}. However, in the next result, under
mild conditions related to the difference of the centroid error, we prove a
monotone descent of the clustering error for two partitions, one thinner than
the other. In consequence, if the conditions stated for the difference of the
clustering error hold for all the steps of RPKM, a monotone descent of the
error function in Eq.1 is guaranteed.

Corollary 1. [Condition for a monotone descent of the centroid error] Let
Ci and Ci−1 represent the set of centroids obtained at the i-th and (i− 1)-th
RPKM step, respectively. Then E(Ci) ≤ E(Ci−1), if and only if E(Gi−1li−1−1)−
E(Ci−1) ≤ ξi + (E(Gili−1)− E(Ci)), where ξi = EPi

(Gi−1li−1−1)− EPi
(Gili−1)

That is, if after the assignment step for both sets of centroids, Ci and
Ci−1, with respect to the full dataset, the condition in Theorem 1 is satisfied
at every RPKM iteration, then we can guarantee the monotone descent of

14

the error over the entire dataset. In particular, if there are no reassignments
for any of the two cases, with respect to their associated cluster membership,
we can guarantee the monotone descent of the overall error. Clearly, as the
difference of the local error of the initial and final cluster at the i-th RPKM
step is larger, then it is more likely to satisfy such a condition.

Even when the monotone descent over the entire dataset of the RPKM
approximation, at every step, is not proved in general, we will see in the
experiments summarized in Section 4 that, for real and artificial datasets,
this property has been observed.

3.2. Bounding the iterations of the weighted Lloyd’s algorithm
In this section, using the properties of the clustering error (Lemma 2),

we can analyze the construction of the set of clusterings at different RPKM
steps, for example we can verify the implications of repeating a clustering
from a previous RPKM step.

In Lemma 3, we state that the unique clustering that can be repeated
in a step of RPKM, is the previous clustering of the sequence of clusterings
generated by the RPKM. If the repeated clustering is obtained at the first
iteration of WL, then the previous clustering corresponds to the one obtained
at the last iteration of WL (at the previous step of RPKM). On the other
hand, if the repeated clustering is not obtained at the first iteration of WL,
then the previous clustering corresponds to the one obtained at the previous
iteration of WL (in the same RPKM step).

Lemma 3. At the i-th step of the RPKM, if Gir = Gjs , with j < i, for some
r ∈ {1, . . . , li−1} and s ∈ {1, . . . , lj−1}, then lj+1 = . . . = li = 1. Moreover,
in that case, s = lj − 1.

In the following theorem, we use Lemma 3 to bound the number of WL
iterations at each RPKM step. Lemma 3 indicates that the only cluster
that can be repeated, from a previous RPKM step, is the last one generated
by the corresponding WL execution. Therefore, we can eliminate, from the
total number of possible clusterings, the ones that were generated at previous
RPKM iterations (except the last one). In particular, if we have more than
one Lloyd iteration at a certain RPKM step, then we automatically discard
every single cluster that was generated at a previous RPKM step.

15

Theorem 1. [Upper bound to the number of local WL iterations] An upper
bound to the number of Lloyd iterations at the i-th RPKM step is given by

li ≤
{|Pi|

K

}
−

i−1∑
j=1

(lj − 1), where
{|Pi|

K

}
is a Stirling number of the second kind.

Following the same reasoning as in Theorem 1, observe that, if, at the
(i− 1)-th RPKM step, WL converges to the associated global optima, then
li ≤

{|Pi|
K

}
−
{|Pi−1|

K

}
+ 1. Moreover, observe that all the clusters with an

error greater than EPi
(Gi−1li−1−1) will not be generated in the current or at

any further RPKM iteration, however the amount of clusterings satisfying
this condition can not be counted at the moment, one hypothesis is that the
number of such clusterings is of order O(

{|Pi|
K

}
).

For this reason, selecting the local initialization of WL in this manner
may help reducing the number of Lloyd’s iterations, while discarding, at
each step, all the generated clusters (except one) and probably others of
similar form. Not only that, but the discarding of such clusters occurs while
analyzing a small number of representatives with regard to the full dataset,
which implies, as we will see in the experimental section, a drastic reduction
in the number of distance computations.

4. Experimental section
In this section, we perform a set of experiments so as to analyze the re-

lation between the number of distance computations and the quality of the
approximation for the RPKM algorithm proposed in Section 2. In particu-
lar, the experiments focus on the implementation of RPKM based on grid
partitions proposed in Section 2.4. As the number of representatives induced
by the grid based RPKM does not scale well with respect to the dimension-
ality of the problem, we consider a reduced number of dimensions, d < 10.
In Section 5, we will elaborate on future steps to make this strategy more
scalable with respect to this factor. In addition, we analyze the effect on
the algorithm performance of varying the different parameters of the clus-
tering problem: size of the dataset, n, dimension of the instances, d, and
number of clusters, K. For the purposes of the experimental analysis, we
compare the performance of the grid based RPKM algorithm against the K-
means++ 1 (KM++) and the minibatch K-means (MB) on artificial
and real datasets.

1Lloyd’s algorithm initialized via K-means++ [3].

16

The grid based RPKM was implemented in Python, while we used the
KM++ and MB implementations that are available in the open source ma-
chine learning library scikit-learn of Python. As stopping criterion for the
RPKM, we just set a maximum number of iterations, m, since we want
to analyze the behavior of the error function, at each step, as the number
of representatives approaches the number of instances. For the analyzed
datasets, we observe that, with m ≤ 6, this occurs. Evidently, as we increase
the dimension, this property will be seen inmediately, since the number of
representatives increases exponentially with respect to this parameter.

In this section, we refer to the result obtained after the m-th step of the
grid based RPKM by RPKM m, and to the solution obtained using MB
with a batch size b ∈ {100, 500, 1000} by MB b. In equivalent experimenta-
tions similar batch sizes were used [29].

4.1. Artificial datasets results
The artificial datasets are generated as a d-dimensional mixture of K

Gaussians. In particular, we setK ∈ {3, 9}, d ∈ {2, 4, 8} and n ∈ {1000, 10000,
100000, 1000000}. For each setting, we generate 50 replicates of the dataset.
Additionally, we consider a component overlapping lower than 5%.

4.1.1. Distance computations
In this section, we compare the behavior of RPKM, KM++ and MB

in terms of the computed distances. As we commented in Section 1.1 and
Section 2.2, the most time consuming phase of the Lloyd’s algorithm, and its
weighted version, refers to the computation of distances. Especially at the
initial steps, RPKM considers a number of representatives which is a small
fraction of the size of the dataset. Thus, we would expect a greater reduction
in the number of distance computations, with respect to the other methods,
as we consider larger datasets.

In Fig.3, we present the relation between the number of distance compu-
tations and the dataset size for the different settings.

17

K: 3 K: 9

1e+03

1e+05

1e+07

1e+03

1e+05

1e+07

1e+03

1e+05

1e+07

d
:

2

d
:

4

d
:

8

1
e
+
0
2

1
e
+
0
3

1
e
+
0
4

1
e
+
0
5

1
e
+
0
6

1
e
+
0
2

1
e
+
0
3

1
e
+
0
4

1
e
+
0
5

1
e
+
0
6

n

n
u
m
.

d
i
s
t
.

KM++ MB 100 MB 500 MB 1000 RPKM 1

RPKM 2 RPKM 3 RPKM 4 RPKM 5 RPKM 6

Figure 3: This figure shows the number of distance computations with respect to the size
of the dataset (n), for different numbers of dimensions (d) and numbers of clusters (K)

At first glance, we observe that RPKM, in general, executes a much
smaller number of distance computations than both KM++ and MB. Such
a relation seems to change for the latter steps of RPKM when we consider
larger dimensions. However, in that case,KM++ still requires a similar order
of computations in comparison to the latter steps of the RPKM. Analogously,
MB, for the different batches, is not able to match the number of distance
computations of RPKM at its first steps, for any of the analyzed settings.
In addition, we observe that, for some RPKM steps, the number of distance
computations does not increase as we consider a higher number of instances,
as happens with the other algorithms.

In particular, we notice that the number of distance computations, at the
first steps of the RPKM, i.e., RPKM 1 and RPKM 2, does not necessarily
increase with respect to the dataset size. This is plausible since, in this
case, the number of representatives is of the same order, independent of the
number of instances (see Fig.4). Evidently, as we consider thinner partitions

18

(m ≥ 3), the number of representatives will increase and so will the number
of distance computations.

K: 3 K: 9

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

d:
 2

d:
 4

d:
 8

1 2 3 4 5 6 1 2 3 4 5 6

m

|P
|/
n

n 100 1000 10000 100000 1000000

Figure 4: This figure shows the ratio between the size of the partition Pm and the size of
the data set n, for m = 1, ..., 6. The size of the partition Pm corresponds to the number
of representatives used by RPKM at its m-th step.

Since, at the earlier stages of the RPKM, the number of representatives
does not necessarily increase with respect to the dataset size, then the ratio
between the number of distance computations of RPKM and KM++ (or
MB) decreases with respect to the size of the dataset. In particular, for the
larger number of instances, the number of distances computed by RPKM
with respect to KM++ is 3 orders of magnitude lower for K = 3 and d = 8
and 6 orders of magnitude lower for K = 3 and d = 2. In comparison with
MB, the number of distances computed by RPKM is 2 orders of magnitude
lower for K = 3 and d = 8 and 5 orders of magnitude lower for K = 3 and
d = 2. As we can see, the dimensionality of the problem, d, has a great
impact on the number of distances computed by RPKM as m increases. The
reason is that the number of representatives used by RPKM can increase
exponentially with respect to both m and d. In addition, we can see that
the number of distance computations, for all the algorithms, as expected,
increases linearly with the number of clusters K.

19

4.1.2. Quality of the approximation
In the previous section, we observed that RPKM entails a drastic re-

duction in the amount of distance computations with respect to the other
approaches (especially when we consider large dataset sizes). However, in this
section, we would like to analyze the quality of the approximations obtained
by means of RPKM.

In Fig.5, we show the evolution of the standarized error (std.error) for
the full dataset for the set of centroids obtained at the end of the m-th
step of the RPKM. The std.error is defined as ρ(m) = E∗m−Em

E∗m
, where Em is

the error for RPKM at the m-th step, and E∗m is the error obtained by K-
means algorithm over the full dataset D, taking as initialization the centroids
obtained by RPKM at them-th step. Observe that ρ(m) ≤ 0 and it measures
the percentage of error with respect to the K-means over the entire dataset.

K: 3 K: 9

−0.4

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

−0.20

−0.15

−0.10

−0.05

0.00

−0.09

−0.06

−0.03

0.00

d:
 2

d:
 4

d:
 6

d:
 8

1 2 3 4 5 6 1 2 3 4 5 6

m

st
d.
er
ro
r

n 100 1000 10000 100000 1000000

Figure 5: Quality of the approximation (std.error) with respect to the RPKM step

In most of the cases, we observe a monotone descent of the centroid er-
ror with respect to the full dataset until convergence to the error associated
to a solution of the K-means algorithm. This is remarkable since the ap-
proximation is constructed over a reduced number of representatives with
respect to the total number of instances (see Fig.4). In particular, at the
third RPKM step, the error with respect to the K-means solution is under

20

10%. Evidently, as we increase the dimension, this percentage decreases until
it achieves an error percentage smaller than 10% and 5% for the first and
second RPKM step, respectively. Moreover, for d = 2 andK = 9, we observe
no result for RPKM 1, this is due to the fact that, in this case, the number
of representatives is smaller than the number of clusters, i.e., |P1| < K.

4.1.3. Relation distance computations - quality of the approximation
In this section, we fuse the results obtained at the previous sections and

analyze, for the different algorithms, the trade-off between the number of
distances computed and the quality of the obtained solutions.

In Fig.6, we show the relation between the number of distance computa-
tions and the error of the obtained solutions for RPKM, KM++ and MB.

d: 2 d: 4 d: 8

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

n
:

1
0
0

n
:

1
0
0
0

n
:

1
0
0
0
0

n
:

1
0
0
0
0
0

n
:

1
0
0
0
0
0
0

1
e
+
0
3

1
e
+
0
5

1
e
+
0
7

1
e
+
0
3

1
e
+
0
5

1
e
+
0
7

1
e
+
0
3

1
e
+
0
5

1
e
+
0
7

num. dist.

e
r
r
o
r

KM++ MB 100 MB 500 MB 1000 RPKM 1

RPKM 2 RPKM 3 RPKM 4 RPKM 5 RPKM 6

Figure 6: Quality of the approximation vs number of distance computations

Besides the dimensionality of the problem, as we increase the number
of instances, the cloud of points associated to KM++ and MB separates

21

from the ones associated to the RPKM. This means that, as we increase
the number of instances, KM++ and MB require a much larger number
of distance computations in order to achieve a solution of similar quality to
those obtained by the RPKM. In the best case scenario (n = 1000000, d = 2),
RPKM reduces, at least, 6 and 4 orders of magnitude with respect to the
K-means++ and the minibatch K-means. Evidently, for larger dimensions,
the clouds associated to the RPKM, for the latter stages, can overlap those
of KM++ and MB. In this case, even for the largest number of instances, we
did not need to execute all the RPKM steps: at the fifth RPKM step, we
have already generated, approximately, as many representatives as instances.

In particular, consider the extreme cases: d = 2, n = 1000000 (case
1) and d = 8, n = 100 (case 2). In the first case, after the third RPKM
step the standard error is already under 5% and, after fourth step, the error
is practically null. Such approximations are obtained after computing under
10−3% (10−2%) and slightly over 10−3% (10−2%) of the distances calculated
by KM++ (MB) for RPKM 3 and RPKM 4, respectively.

In the second case, already after the first RPKM step, the standard error
is under 8% and, after the second step, the error is fairly close to zero. Such
approximations are obtained after computing under 10−1% (1%)and under
1% (10%) of the distances calculated by KM++ (MB) for RPKM 1 and
RPKM 2, respectively.

In the case of lower dimensions and greater number of instances, we re-
quire more RPKM steps to achieve an approximation with a similar standard
error with respect to the case with greater dimensions and lower number of
instances. As previously mentioned, this is due to the exponential growth of
the number of representatives with respect to the dimension of the problem.
Moreover, in the second case, we have a lower number of instances, hence,
we need fewer RPKM steps in order to generate as many representatives as
instances (in this example, this occurs for m = 3). However, having a lower
proportion of representatives with respect to the number of instances also
implies a greater reduction in the number of distance computations with re-
spect to the full dataset for the first case, while obtaining a similar standard
error in comparison to the second case.

4.2. Real datasets
In addition to the previous experimentation, we evaluate the performance

of the grid based RPKM algorithm, KM++ and MB on a real-world dataset:
the gas sensor array under dynamic gas mixtures dataset, which contains the

22

acquired time series from 16 chemical sensors exposed to gas mixtures at
varying concentration levels [12]. The dataset consists of 4178504 instances
and 19 attributes and is available in the UC-Irvine Machine Learning Repos-
itory. The same experiment was performed over different datasets from the
UC-Irvine Machine Learning Repository, achieving similar conclusions. For
the sake of brevity, the corresponding graphics are not included in this work.

Using this real-world dataset, we generate different subsamplings that
we use to analyze the features of the algorithms. In particular, we take
d ∈ {2, 4, 8} random attributes and n ∈ {4000, 12000, 40000, 120000, 400000,
1200000, 4000000} random instances. The number of clusters is K ∈ {3, 9}.
For each setting, we generate 10 replicates of the dataset.

4.2.1. Distance computations
For the real dataset experimentation, we perform the same analysis as

that carried out for the artificial datasets case.
In Fig.7, as in Fig.3, we present the relation between the number of

distance computations and the dataset size, this time for the real dataset. In
general, we observe a similar behavior with respect to the artificial datasets
case: RPKM reduces, in many orders of magnitude, the number of distance
computations with respect to KM++ and MB. However, in this case, even
at the last step of RPKM, the number of distances does not always increase
with respect to the number of instances.

In particular, as can be verified in Fig.8, the number of representatives
does not necessarily increase as we consider higher dataset sizes. This is due
to the fact that the data points, in this case, are grouped into more condensed
clouds than in the case of the artificial Gaussian dataset case. Hence, it is
plausible to observe that the number of distance computations, even at the
latter stages of the RPKM, does not necessarily increase with respect to the
dataset size. Furthermore, for low dimensions, this fact implies that, even at
the last RPKM step, we have a lower number of distance computations than
any version of MB and KM++.

23

K: 3 K: 9

1e+03

1e+06

1e+09

1e+03

1e+06

1e+09

1e+03

1e+06

1e+09

d
:

2

d
:

4

d
:

8

1
e
+
0
4

1
e
+
0
5

1
e
+
0
6

1
e
+
0
4

1
e
+
0
5

1
e
+
0
6

n

n
u
m
.

d
i
s
t
.

KM++ MB 100 MB 500 MB 1000 RPKM 1

RPKM 2 RPKM 3 RPKM 4 RPKM 5 RPKM 6

Figure 7: Number of distance computations with respect to dataset size, n

In more detail, we notice that for the largest number of instances, the last
step of the RPKM executes less than 1% and 0.1% of the distances computed
by MB and KM++, respectively. For the largest dimension considered (d =
8), the latter steps RPKM execute a similar order of distance computations
with respect to MB. However, intermediate RPKM steps (RPKM 3) still
computes less than 1% and 0.1% of the distances computed with respect to
MB and KM++. It is important to remember that the number of distance
computations for KM++ and MB is independent of the dimensionality of
the problem, which is not usually true for the RPKM algorithm.

24

K: 3 K: 9

0.00

0.05

0.10

0.15

0.0

0.2

0.4

0.6

0.00

0.25

0.50

0.75

d:
 2

d:
 4

d:
 8

1 2 3 4 5 6 1 2 3 4 5 6

m

|P
|/
n

n 4000 12000 40000 120000 400000 1200000 4000000

Figure 8: Percentage of subsets with respect to RPKM step

For the analyzed dataset, we observe that the number of representatives
does not grow as rapidly as in the artificial sets case. In particular, for the
lowest dimension, the number of representatives barely achieves 20% of the
dataset size at the last grid based RPKM step. As we increase the dimen-
sionality, and therefore generate more representatives, this number grows to
over 75% for the shortest dataset size case.

4.2.2. Quality of the approximation
In Fig.9, we observe the evolution of the standarized error, for the full

dataset, with respect to the set of centroids obtained at the m-th step of
the RPKM. As commented in the artificial datasets case, in most of the
cases, there is a monotone descent of the centroid error with respect to the
full dataset until convergence to the error associated to a solution of the K-
means algorithm over the full dataset. Commonly, at the third RPKM step,
the such standarized error is under 10%. This is remarkable since, as can be
seen in Fig.7, the number of distances computed by RPKM 3, compared to

25

MB and KM++, is under 10−3 % and 10−4 %, respectively.

K: 3 K: 9

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

d
:

2

d
:

4

d
:

8

1 2 3 4 5 6 1 2 3 4 5 6

m

s
t
d
.
e
r
r
o
r

n 4000 12000 40000 120000 400000 1200000 4000000

Figure 9: Quality of the approximation with respect to RPKM step

As we increase the dimension the standarized error, in most of the cases,
is under 10%, even for RPKM 2 on the largest dataset size case.

4.2.3. Relation distance computations - quality of the approximation
In order to have a better understanding of the relation distance com-

putations against overall error, we consider Fig.10. As we observed in the
artificial dataset case, when we increase the number of instances, the cloud
of points associated to KM++ and MB separates from the ones associated
to the RPKM. As we increase the number of instances, KM++ and MB
require a much larger number of distance computations in order to achieve a
solution of similar quality than those obtained by the RPKM. For the lowest
dimensional case, even for an intermediate RPKM step, it reduces over 4
orders (d = 2, n = 4000000) and 5 orders of magnitude (d = 2, n = 4000000)
with respect to MB and KM++, respectively. Evidently, as we increase the
dimensionality of the problem and, therefore, generate a larger amount of
representatives and compute more distances, we still observe a reduction of

26

4 and 5 orders of magnitude, but for the first RPKM step. In addition, we
can see that the minibatch k-means with the smallest batch, MB 100, has, in
some cases, a similar amount of distance computations with respect to the
second step of RPKM.

Such a reduction in the number of distance computations is achieved
while still obtaining competitive approximations. For instance, even in the
case of greater dimension and lower number of instances (d = 8, n = 4000),
after the second RPKM step the standard error is already under 5% and,
after the third step, the error is practically null. These approximations are
obtained after computing under 7 · 10−4% (2 · 10−3%)and 10−3% (5 · 10−3%
) of the distances calculated by KM++ (MB), for RPKM 3 and RPKM 4,
respectively.

d: 2 d: 4 d: 8

1e+03

1e+05

1e+03

1e+05

1e+03

1e+05

1e+03

1e+05

1e+03

1e+05

1e+03

1e+05

1e+03

1e+05

n
:

4
0
0
0

n
:

1
2
0
0
0

n
:

4
0
0
0
0

n
:

1
2
0
0
0
0

n
:

4
0
0
0
0
0

n
:

1
2
0
0
0
0
0

n
:

4
0
0
0
0
0
0

1
e
+
0
3

1
e
+
0
6

1
e
+
0
9

1
e
+
0
3

1
e
+
0
6

1
e
+
0
9

1
e
+
0
3

1
e
+
0
6

1
e
+
0
9

num. dist.

e
r
r
o
r

KM++ MB 100 MB 500 MB 1000 RPKM 1

RPKM 2 RPKM 3 RPKM 4 RPKM 5 RPKM 6

Figure 10: Quality of the approximation vs number of distance computations

27

In general, we observe that the grid based RPKM algorithm is able to
generate competitive approximations with a significant reduction in the num-
ber of distance computations 2. As the dataset size increases, we observed
a more drastic reduction in the number of distance computations as can be
seen in Fig.6 and Fig.10. We observe the same behavior as we increase the di-
mension of the instances, however, the order of reduction with respect to MB
and KM++ decreases, as expected. This is due to the fact that the number
of RPKM representatives, in this case, grows exponentially with respect to
the dimension of the dataset.

5. Final comments and future work

In this work, we present an alternative to the K-means algorithm ap-
plicable to massive data problems called recursive partition based K-means
(RPKM). This approach recursively partitions the entire dataset into a small
number of subsets, each of which is characterized by its representative (cen-
ter of mass) and weight (cardinality), after that a weighted version of the
Lloyd’s algorithm is applied over this local representation. The objective is
to describe the full dataset by this representation, which ultimately leads to
a reduction of distance computations. Indeed, in the experimental section,
we observe that the RPKM algorithm generates competitive approximations,
even at its earlier iterations, while reducing several orders of magnitude of
distance computations.

In Section 3, we have derived some theoretical properties of the RPKM
algorithm. Among other results, we can guarantee the non repetition of the
clusterings generated at each RPKM iteration (except the last one), which
ultimately implies the reduction of the total amount of Lloyd iterations, as
well as leading, in most of the cases, to a monotone decrease of the overall
error function.

In the experimental section, the grid based RPKM was compared with
two well-known approaches: the K-means++ and minibatch K-means. In
this analysis, we observed a dramatic reduction in the number of distance
computations with respect to both of them, as well as a consistent monotone
decrease of the error function. Since the RPKM algorithm seeks to reduce

2Tables with a more detailed summary of the results, for the different datasets, can be
found at https://bitbucket.org/mcapo/rpkm/src/

28

https://bitbucket.org/mcapo/rpkm/src/

the number of representatives used per iteration, we observed a larger reduc-
tion in the number of distance computations as we enlarged the number of
instances of the dataset. Furthermore, at the earlier stages of the RPKM,
the size of the dataset did not have a relevant impact on the number of itera-
tions or distance computations for the associated weightedK-means problem.
Thus, the number of computations, especially for massive data applications,
can be greatly reduced.

On the other hand, it is important to remark that the number of sub-
partitions generated at each iteration of the grid based RPKM grows expo-
nentially with respect to the dimension, d, of the dataset. As we can see in
Fig.1, some of these subpartitions might have a small probability of chang-
ing their current cluster affiliation (with respect to the assignment given by
the previous RPKM iteration). In this sense, it might be more valuable to
partition the areas that are more likely to have subpartitions associated with
different clusters.

One possible approach consists of characterizing the subsets that lie on
a cluster boundary, i.e., subsets that are close to two or more clusters [17].
In this approach, the number of representatives does not grow exponentially
with respect to the dimension of the dataset. For this reason, as a future
step, we plan to define a low computational cost algorithm to determine
the cluster boundary at each iteration. The subsets in this area will have
a greater priority when selecting the regions that we want to partition in
the next RPKM iteration. Moreover, there exist different dimensionality
reduction strategies for the Lloyd’s algorithm that can be used to alleviate
the dependency of the grid based partition with respect to this factor, such
as random projections [6, 8] and SVD-based feature selection [5].

One last, but still important, advantage of the RPKM algorithm is the
fact that its parallelization is direct. The RPKM algorithm mainly depends
on two steps: The data partition process and the application of the weighted
version of Lloyd’s algorithm. In the first step, each point can independently
decide which subset it belongs to, hence the construction of the set of rep-
resentatives and weights can be done in a parallel manner. Analogously, for
the second phase, given a set of prototypes, each data point can separately
decide which cluster it belongs to and the update of the centroid can be sim-
ply computed by averaging the points [15, 32]. For this reason, we also plan
to implement the RPKM algorithm on a parallel framework such as Apache
Spark.

29

Acknowledgments

Marco Capó and Aritz Pérez are partially supported by the Basque Gov-
ernment, Elkartek and by the Spanish Ministry of Economy and Competi-
tiveness MINECO: BCAM Severo Ochoa excelence accreditation SVP-2014-
068574 and SEV-2013-0323. José A. Lozano is partially supported by the
Basque Government (IT609-13), Elkartek and the Spanish Ministry of Econ-
omy and Competitiveness MINECO (TIN2013-41272P).

Appendix A. RPKM properties

Lemma 1. Given a set of points D in Rd and a partition of it, P. Then the
function f(c) = |D| · ‖D − c‖2 −

∑
R∈P |R| · ‖R− c‖2 is constant.

Proof. First of all observe that |D| =
∑

R∈P |R| and D =
∑

R∈P |R|·R
|D| . Given

any pair c, c′ ∈ Rd, we have that

f(c) = |D| · ‖D − c‖2 −
∑
R∈P

|R| · ‖R− c‖2

= |D| · (‖D − c
′‖2 + 2(c

′ − c)t(D − c
′
) + ‖c′ − c‖2)

−
∑
R∈P

|R| · (‖R− c
′‖2 + 2(c

′ − c)t(R− c
′
) + ‖c′ − c‖2)

= f(c
′
) + 2|D|(c′ − c)t(D − c

′
)− 2

∑
R∈P

|R|(c′ − c)t(R− c
′
)

= f(c
′
)

Lemma 2. [Invariance of the clustering error difference] Let P and P ′ be two
partitions of the dataset D, with P � P ′, and let G and G ′ be two clusterings
of P. Then, the difference between both clustering errors is constant with
respect to the partitions P and P ′:

EP(G)− EP(G
′
) = EP ′ (G)− EP ′ (G

′
)

30

Proof. Let the index of S ∈ P on the cluster G = {Gk}Kk=1, i(S,G), be defined
as i(S,G) = {k | S ⊆ Gk}, then

EP(G)− EP ′ (G) =
∑
S∈P

|S| · ‖S −Gi(S,G)‖2 −
∑
S′∈P ′

|S ′| · ‖S ′ −Gi(S
′
,G)‖2

=
∑
S∈P

(|S| · ‖S −Gi(S,G)‖2 −
∑

R∈P ′ [S]

|R| · ‖R−Gi(R,G)‖2)

=
∑
S∈P

(|S| · ‖S −Gi(S,G)‖2 −
∑

R∈P ′ [S]

|R| · ‖R−Gi(S,G)‖2)

=
∑
S∈P

(|S| · ‖S −G′
i(S,G′)‖

2 −
∑

R∈P ′ [S]

|R| · ‖R−G′
i(S,G′)‖

2)

=
∑
S∈P

(|S| · ‖S −G′
i(S,G′)‖

2 −
∑

R∈P ′ [S]

|R| · ‖R−G′
i(R,G′)‖

2)

=
∑
S∈P

|S| · ‖S −G′
i(S,G′)‖

2 −
∑
S′∈P ′

|S ′ | · ‖S ′ −G′
i(S′ ,G′)‖

2

= EP(G
′
)− EP ′ (G

′
)

Before prooving Corollary 1 and Lemma 3, we analyze the error of a clus-
ter with respect to a weighted K-means iteration. We observe that following
inequality is satisfied at the r-th weighted Lloyd’s algorithm iteration:

EP(Cr) ≥ EP(Gr) ≥ EP(Cr+1) (A.1)

Furthermore, observe that, if EP(Cr) = EP(Gr), then, after the update
step of the weighted Lloyd’s algorithm, we obtain Cr = Cr+1 and the al-
gorithm stops at the (r + 1)-th iteration. On the other hand, if EP(Cr) >
EP(Gr) = EP(Cr+1), then, in the following weighted Lloyd’s algorithm iter-
ation, we obtain EP(Cr+1) = EP(Gr+1) = EP(Cr+2) and Cr+1 = Cr+2, hence
the algorithm stops, at most, at the (r + 2)-th iteration.

Hence, we have the following chain of inequalities for any weighted Lloyd’s
algorithm run

31

EP(C0) > EP(G0) > EP(C1) > EP(G1) > EP(C2) >

. . . > EP(Gl−2) ≥ EP(Cl−1) ≥ EP(Gl−1) ≥ EP(Cl), (A.2)

where l is the total number of weighted Lloyd iterations.

Corollary 1. [Condition for a monotone descent of the centroid error] Let
Ci and Ci−1 represent the set of centroids obtained at the i-th and (i− 1)-th
RPKM step, respectively. Then E(Ci) ≤ E(Ci−1), if and only if E(Gi−1li−1−1)−
E(Ci−1) ≤ ξi + (E(Gili−1)− E(Ci)), where ξi = EPi

(Gi−1li−1−1)− EPi
(Gili−1)

Proof. From Lemma 2 and Eq.A.2, we have the following inequalities:

EPi
(Gi−1li−1−1) ≥ EPi

(Ci−1) ≥ EPi
(Gili−1) ≥ EPi

(Ci) (A.3)

EPi
(Gi−1li−1−1)− EPi

(Gili−1) = EPj
(Gi−1li−1−1)− EPj

(Gili−1) = ξi ≥ 0 (A.4)

Eq.A.3 holds for i ∈ {1, . . . ,m} and Eq.A.4 for any j > i. From Eq.A.4,
we can see that the difference between both clusterings remain constant for
any thinner partition Pj. A consequence of this is that, if we take Pj as a
partition thin enough such that there is only one instance per subset, then
adding the difference clustering error (associated to both centroids) for the
partitions Pj and Pi, we have the following relation over the error for the
entire dataset (observe that the following relation holds in general for any
partition thinner than Pi):

E(Ci) ≤ E(Ci−1)⇐⇒ E(Gi−1li−1−1)− E(Ci−1) ≤ ξi + (E(Gili−1)− E(Ci))

Lemma 3. At the i-th step of the RPKM, if Gir = Gjs , with j < i, for some
r ∈ {1, . . . , li−1} and s ∈ {1, . . . , lj−1}, then lj+1 = . . . = li = 1. Moreover,
in that case, s = lj − 1.

Proof. Using the chain of inequalities (A.2), we observe that the following
inequalities hold at the first iteration of the RPKM:

32

EP1(C
1
0 = C0) > EP1(G10) > EP1(C

1
1) > EP1(G11) > EP1(C

1
2) >

. . . > EP1(G1a1−2) ≥ EP1(C
1
l1−1) ≥ EP1(G1l1−1) ≥ EP1(C1 = C1

l1
) (A.5)

Analogously, for the subsequent i-th iteration of the RPKM algorithm,
we obtain the following set of inequalities

EPi
(Gi−1ai−1−1) > EPi

(Ci
0 = Ci−1) > EPi

(Gi0) > EPi
(Ci

1) > EPi
(Gi1) >

EPi
(Ci

2) > . . . > EPi
(Gili−2) ≥ EPi

(Ci
li−1) ≥ EPi

(Gili−1)
≥ EPi

(Ci = Ci
li
), i ∈ {2, . . . ,m} (A.6)

First of all, observe that the error associated to all the clusters generated
at the j-th RPKM iteration keep the same ordering for the error associated
to a thinner partition Pi. In particular, we have EPi

(Gjlj−1) ≤ EPi
(Gjs) for

s < lj−1. To verify this we make use of Lemma 2, from which we know that
EPi

(Gjlj−1) − EPi
(Gjs) = EPj

(Gjlj−1) − EPj
(Gjs) ≤ 0 → EPi

(Gjlj−1) ≤ EPi
(Gjs)

for s < lj − 1. This means that, the last clustering found at the j-th RPKM
iteration also has the smallest error, with the partition Pi, with respect to
the previous clusters obtained at the j-th RPKM iteration.

From the chain of inequalities (A.5) and (A.6), we know that

EPh
(Gh−1lh−1−1) ≥ EPh

(Ghlh−1) ∀h ∈ {j + 1, . . . , i− 1}, (A.7)

where, if the equality holds, then ah = 1. From Lemma 2, (A.7) implies

EPi
(Gjlj−1) ≥ EPi

(Gj+1
lj+1−1) ≥ . . . ≥ EPi

(Gi−1li−1−1) (A.8)

In other words, the error with respect to the current partition (or any
thinner partition) of the optimal patterns obtained at each RPKM iteration
decreases monotonically.

By reductio ad absurdum, if we assume that Gir = Gjs , for some r ∈
{1, . . . , li − 1} and s ∈ {1, . . . , lj − 1} and that there exists j < h < i such
that lh > 1, then EPi

(Gjlj−1) > EPi
(Gi−1li−1−1)⇒ EPi

(Gjs) > EPi
(Gir) = EPi

(Gjs)
(⇒⇐). Therefore, from now on we assume lj+1 = . . . = li−1 = 1.

33

Analogously, if we assume that Gir = Gjs , for some r ∈ {1, . . . , li − 1}
and s ∈ {1, . . . , lj − 1} and that li > 1, then EPi

(Gjlj−1) ≥ EPi
(Gi−1li−1−1) >

EPi
(Gir) = EPi

(Gjs)⇒ EPi
(Gjs) > EPi

(Gjs) (⇒⇐).
In the case that lj+1 = . . . = li = 1, the error associated to Gir satisfies

EPi
(Gjs) ≥ EPi

(Gjlj−1) ≥ EPi
(Gi−1li−1−1) ≥ EPi

(Gir), hence the only possible
choice is s = lj.

Theorem 1. [Upper bound to the number of local WL iterations] An upper
bound to the number of Lloyd iterations at the i-th RPKM step is given by

li ≤
{|Pi|

K

}
−

i−1∑
j=1

(lj − 1), where
{|Pi|

K

}
is a Stirling number of the second kind.

Proof. Lemma 3 implies that, at each RPKM iteration, no previous clus-
tering can be repeated (except the last one from the clustering sequence).
Therefore, we can eliminate, at least, all clusters generated at the previous

RPKM iterations except the last one (
i−1∑
j=1

(lj − 1)). Moreover, the number of

different partitions for |Pi| observations into K groups is a Stirling number

of the second kind,
{|Pi|

K

}
[23], then li ≤

{|Pi|
K

}
−

i−1∑
j=1

(lj − 1).

References

[1] Aloise D., Deshpande A., Hansen P., Popat P.: NP-hardness of Euclidean
sum-of-squares clustering. Machine Learning, 75, 245− 249 (2009).

[2] Alsabti K., Ranka S., Singh V.: An Efficient K-means Clustering Algo-
rithm, In: Proc. First Workshop High Performance Data Mining (1998).

[3] Arthur D., Vassilvitskii S.: k-means++: the advantages of careful seed-
ing. In: Proceedings of the 18th annual ACM-SIAM Symp. on Disc. Alg,
pp. 1027− 1035 (2007).

[4] Bahmani B., Moseley B., Vattani A., Kumar R., Vassilvitskii S.: Scalable
K-means++. In: Proceedings of the VLDB Endowment (2012).

[5] Boutsidis C., Mahoney M.W., Drineas P.: Unsupervised feature selection
for the k-means clustering problem. In NIPS, pp. 153− 161 (2009).

34

[6] Boutsidis C., Zouzias A., Drineas P.: Random projections for k-means
clustering. In NIPS, pp. 298− 306 (2010).

[7] Bradley P.S., Fayyad U.M.: Refining Initial Points for K-Means Cluster-
ing. ICML, 98, 91− 99 (1998).

[8] Cohen M. B., Elder S., Musco C., Musco C., Persu, M.: Dimensional-
ity reduction for k-means clustering and low rank approximation. In Pro-
ceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, pp. 163− 172 (2015).

[9] Davidson I., Satyanarayana A. : Speeding up k-means clustering by boot-
strap averaging. In: IEEE data mining workshop on clustering large data
sets (2003).

[10] Gandhi V., Kang J. M., Shekhar S.: Spatial databases. Wiley Encyclo-
pedia of Computer Science and Engineering (2008).

[11] Finkel R., Bentley L.: Quad trees a data structure for retrieval on com-
posite keys. Acta informatica 4.1, 1− 9 (1974).

[12] Fonollosa J., Sheik S., Huerta R., Marco, S. : Reservoir computing
compensates slow response of chemosensor arrays exposed to fast varying
gas concentrations in continuous monitoring. Sensors and Actuators B:
Chemical, 215, 618− 629. (2015).

[13] Forgy E.: Cluster analysis of multivariate data: Efficiency vs. inter-
pretability of classifications. Biometrics, 21, 768− 769 (1965).

[14] Committee on the Analysis of Massive Data, Committee on Applied and
Theoretical Statistics, Board on Mathematical Sciences and Their Appli-
cations, Division on Engineering and Physical Sciences, National Research
Council: Frontiers in Massive Data Analysis, In:The National Academy
Press (2013). (Preprint).

[15] Dean J. and Ghemawat S.: MapReduce: Simplified data processing on
large clusters. Communications of the ACM, 51(1), 107− 113 (2008).

[16] Dubes R., Jain A.: Algorithms for Clustering Data, Prentice Hall, Inc.
(1988).

35

[17] Hung M., Wu J., Chang J. and Yang D.: An Efficient k-Means Clustering
Algorithm Using Simple Partitioning, Jour. of Info. Sci. and Eng., 21,
1157− 1177 (2005).

[18] Jain A. K., Murty M. N., Flynn P. J.: Data clustering: a review . ACM
Computing Surveys 31, 264− 323 (1999).

[19] Jain A. K.: Data clustering: 50 years beyond K-means. Pattern recog-
nition letters 31(8), 651− 666 (2010).

[20] Judd D., McKinley P. and Jain A.: Large-scale parallel data clustering,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 871−
876 (1998).

[21] Kanungo T., Mount M., Netanyahu N., Piatko C., Silverman R. and Wu
A.: An Efficient k-Means Clustering Algorithm: Analysis and Implemen-
tation, IEEE Transactions on Pattern Analysis and Machine Intelligence,
24, 881− 892 (2002).

[22] Kaufman L., Rousseeuw P.: Clustering by means of medoids. North-
Holland (1987).

[23] Karkkainen T., Ayramo S.: Introduction to partitioning-based clustering
methods with a robust example, ISBN 951392467X, ISSN 14564378 (2006).

[24] Lloyd S.P.: Least Squares Quantization in PCM, IEEE Trans. Informa-
tion Theory. 28, 129− 137 (1982).

[25] Ortega M., Rui Y., Chakrabarti K., Porkaew K., Mehrotra S., Huang
T. S.: Supporting ranked boolean similarity queries in MARS. Knowledge
and Data Engineering, IEEE Transactions on, 10(6), 905− 925 (1998).

[26] Park H.S., Chi-Hyuck J.: A simple and fast algorithm for K-medoids
clustering, Expert Systems with Applications 36(2), 3336− 3341 (2009).

[27] Peña J.M., Lozano J.A., Larrañaga P.: An empirical comparison of
four initialization methods for the k-means algorithm. Pattern Recognition
Letters, 20(10), 1027− 1040 (1999).

[28] Redmond S., Heneghan C.: A method for initialising the K-means
clustering algorithm using kd-trees, Journal Pattern Recognition Letters,
28(8), 965− 973 (2007).

36

[29] Sculley D.: Web-scale k-means clustering, In Proceedings of the 19th
international conference on World wide web, 1177− 1178 (2010).

[30] Vattani A.: K-means requires exponentially many iterations even in the
plane, Discrete Computional Geometry, 45(4), 596− 616 (2011).

[31] Wu X., Kumar V., Ross J., Ghosh J., Yang Q., Motoda H., McLachlan
J., Ng A., Liu B., Yu P., Zhou Z., Steinbach M., Hand D., Steinberg D.:
Top 10 algorithms in data mining. Knowl. Inf. Syst., 14, 1− 37 (2007).

[32] Zhao W., Ma H. and He Q.: Parallel K-Means Clustering Based on
MapReduce, Cloud Computing Lecture Notes in Computer Science, 5931,
674− 679 (2009).

37

	Introduction
	K-means
	K-means Initialization

	An alternative to Lloyd's algorithm
	Contribution

	Recursive partition based K-means
	Recursive Partitions
	Weighted K-means problem
	RPKM Algorithm
	RPKM implementation based on grid partitions

	Theoretical analysis of the RPKM algorithm
	Evolution of the centroids error
	Bounding the iterations of the weighted Lloyd's algorithm

	Experimental section
	Artificial datasets results
	Distance computations
	Quality of the approximation
	Relation distance computations - quality of the approximation

	Real datasets
	Distance computations
	Quality of the approximation
	Relation distance computations - quality of the approximation

	Final comments and future work
	RPKM properties

