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Abstract: In recent years, a variety of feature selection algorithms based on subspace learning have 

been proposed. However, such methods typically do not exploit information about the underlying 

geometry of the data. To overcome this shortcoming, we propose a novel algorithm called subspace 

learning-based graph regularized feature selection (SGFS). SGFS builds on the feature selection 

framework of subspace learning, but extends it by incorporating the idea of graph regularization, in 

which a feature map is constructed on the feature space in order to preserve geometric structure 

information on the feature manifold. Additionally, the L2,1-norm is used to constrain the feature 

selection matrix to ensure the sparsity of the feature array and avoid trivial solutions. The resulting 

method can provide more accurate discrimination information for feature selection. We evaluate 

SGFS by comparing it against five other state-of-the-art algorithms from the literature, on twelve 

publicly available benchmark data sets. Empirical results suggest that SGFS is more effective than 

the other five feature selection algorithms. 

Key words: Graph regularized; subspace learning; feature manifold; sparse constraint; feature 

selection 

1. Introduction 

The increasingly rapid growth of information technology has seen a corresponding growth in the 

number of dimensions of gathered data. In many high dimensional data sets, only a small subset of 

the available features are useful, with most features being redundant, and some features even 

corresponding to information-less noise [1], [2], [3], [4], [5]. To facilitate the subsequent processing, 

it is often necessary to reduce the dimension of such high dimensional data. Processing of high 

dimensional data has become a challenge for researchers in many different fields [6], [7], [8], 

including data mining, machine learning, pattern recognition and others. Dimensionality reduction 
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methods can broadly be categorized into methods for feature selection and feature extraction [9], 

[10], [11], [12], [13]. Feature selection methods select representative features from the original set of 

features based on a variety of evaluation methods. In contrast, feature extraction methods map high 

dimensional data into a low dimensional space through a transformation matrix. Feature selection 

methods select a subset of the original “raw” featuire data, and so retain the physical or real-world 

meaning of the original data. This means that the performance of the resulting classifiers can often be 

readily explained in terms of intuitively meaningful trends in the underlying data. In contrast, it may  

be difficult to explain the behaviour of feature extraction methods in terms of the relationship 

between the new feature and the sample class [1]. In this paper, we propose a new feature selection 

algorithm. 

Feature selection methods can broadly be divided into: supervised [2], [14], semi supervised [15], 

unsupervised [16], [17], [18]. In supervised feature selection problems, the data discrimination 

information and also the correlation between features and the class of each data sample is available 

during training. However, in order to obtain large amounts of such class information, need for 

training such methods, a large amount of human resources are typically required, e.g. for hand 

annotation of data [18]. Semi-supervised feature selection requires only a smaller portion of the 

training data to be annotated with class label information to improve the accuracy of feature selection 

[15]. Unsupervised feature selection, without any class label information, only relies on the inherent 

information of the input data to determine the importance of features [16]. In many practical 

applications, the true class label information is unknown, which makes unsupervised feature 

selection methods more widely applicable to real problems, but also engenders greater challenges for 

researchers. According to various possible search strategies, unsupervised feature selection can be 

divided into filter, wrapper and embedded [19], [20], [21], [22], [23], [24], [25], [26] methods. 

In recent years, powerful new algorithms have been proposed which exploit the advantages of 

matrix decomposition techniques. Well known examples of such methods include nonnegative 

matrix factorization (NMF) [27], [28], principal component analysis (PCA) [29], [30] and singular 

value decomposition (SVD) [30], [31]. However, all of these are examples of feature extraction 

methods. A samller body of literature has explored how the idea of matrix decomposition can also be 

applied to feature selection. Wang et al. [32] proposed subspace learning for unsupervised feature 
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selection via matrix factorization (MFFS). In [33], Wang et al. proposed unsupervised feature 

selection via maximum projection and minimum redundancy (MPMR). These two algorithms find a 

suitable feature subspace through matrix decomposition, and the feature subspace is then used to 

represent the original feature space. By exploiting the advantages of the matrix factorization 

technique, MFFS and MPMR can both achieve good performance. However, MFFS and MPMR 

ignore the underlying geometry information of the data itself. In contrast, this paper shows how such 

geometry information can be used to further improve the quality of feature selection. 

A variety of literature has shown that the distributions of high dimensional data are often sparse. 

Such data contain a lot of local information, which is important for mining the internal structure of 

such data and improving the performance of nonlinear learning [34], [35]. Some manifold learning 

algorithms have been proposed to discover the underlying manifold structure of data, such as 

Locality Preserving Projection [36], local linear embedding (LLE) [37] and Laplacian Eigenmap [38]. 

By analyzing the manifold structure of the data set, we can use the underlying geometric information 

to improve the learning efficiency of the algorithm. 

Spectral graph theory [39], [40] can be used to characterize the underlying manifold structure of 

the data. The spectral clustering method [39] exploits spectral graph theory to obtain good clustering 

performance. Based on nonnegative matrix factorization (NMF) [28], Cai et al. [41] proposed graph 

regularized nonnegative matrix factorization (GNMF), which uses the geometry information of the 

data itself to greatly improve performance. Compared with concept factorization (CF) [42], locally 

consistent concept factorization (LCCF) [43] shows better performance, because it is able to exploit 

the local structure of data. In recent years, new work [44], [45], [46] has shown that the manifold 

information of the data is not only distributed in the data space, but also in the feature space. In [44], 

Shang et al. proposed a graph dual regularization non-negative matrix factorization for co-clustering 

algorithm (DNMF). Ye et al. [46] proposed dual-graph regularized concept factorization clustering 

(GCF). 

Some classification algorithms also use the spectral graph theory. Belkin et al. [47] proposed 

manifold regularization, a geometric framework for learning from labeled and unlabeled examples, 

which uses graph theory to exploit the manifold structure of the data. Experimental results show that 

this method can use unlabeled data effectively. Based on standard SVM, Chova et al. proposed 
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semi-supervised image classification with Laplacian support vector machines (LapSVM) [48], which 

uses the geometry information of both labeled and unlabeled samples by using the graph Laplacian. 

Some experimental evidence suggests that LapSVM can outperform conventional SVM. In [49], 

Yang et al. proposed the Laplacian twin parametric-margin support vector machine for 

semi-supervised classification (LTPMSVM), which overcomes the shortcomings of conventional 

methods which are unable to effectively handle unlabeled data. LTPMSVM uses the geometric 

information of the unlabeled data to construct a better classifier, and experimental results have 

confirmed the strong performance of LTPMSVM. 

Some feature selection algorithms which use local structure information have previously been 

proposed. Laplacian score (LapScor) [21], spectral feature selection (SPEC) [18], minimum 

redundancy spectral feature selection (MRSF) [50], unsupervised feature selection for multicluster 

data (MCFS) [51] are four well known algorithms. Extensions of MRSF and MCFS include 

clustering-guided sparse structural learning for unsupervised feature selection (CGSSL) [52] and 

joint embedding learning and sparse regression (JELSR) [53]. 

In this paper, we propose a new method called subspace learning-based graph regularized feature 

selection (SGFS). SGFS is based on the framework of subspace learning feature selection, which 

exploits the advantages of matrix factorization techniques. On this basis, we introduce the concept of 

graph regularization and preserve the local structure information of the feature space of the data. The 

local structure information of the feature space directly guides the learning of the coefficient matrix 

in the error reconstruction term, and indirectly guides the learning of the feature selection matrix. 

Additionally, we propose the use of the L2,1-norm to constrain the feature selection matrix, which 

guarantees its sparsity, so as to provide more accurate discrimination information for feature 

selection. We use an alternating iterative optimization mechanism to optimize the objective function 

and adjust the parameters to minimize the reconstruction error. Finally, we obtain the feature 

selection matrix. Through this matrix, we can calculate the scores of all the features, and select the 

most representative features. 

The main contributions of this paper are as follows: 

1. By using graph theory, the geometric structure information of the feature manifold is preserved. 

Through the guidance of geometry information, the learning of the feature selection matrix and 
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coefficient matrix are more rapid and accurate. 

2. By introducing L2,1-norm to constrain the feature selection term, the sparsity of the feature 

selection matrix is guaranteed, enabling more accurate discrimination information for feature 

evaluation. 

The structure of this paper is organized as follows. In Section 2, we introduce the framework, the 

iterative update rules and convergence proof of SGFS. In Section 3, we present the experimental 

results of comparing the performance of SGFS against five other state-of-the-art algorithms on 

twelve public benchmark data sets. Section 4 provides concluding remarks. 

2. Subspace Learning-based Graph regularized Feature Selection 

In this section, we present details of the SGFS method, which breaks down into three main parts: 

sparse subspace learning, local structure preserving and feature evaluation. 

2.1 Related notations 

First of all, we introduce some related notations. Denote nd

n

 ],...,,[
21

xxxX  as the 

unlabeled sample data set. Where n and d respectively represent the number and dimension of the 

samples. We use l to indicate the number of selected features, l≤d. 

Given an arbitrary matrix f e
A , its Lr,s is defined as: 

.))A(( /1
/

1 1,

s
rs

e

i

f

j

r

ijsr   
A                         (1) 

According to the definition, when r=s=2, it indicates Frobenius-norm or L2-norm. In contrast, 

when r=2, s=1, it represents sparse constraint L2,1-norm. We denote L2-norm and L2,1-norm 

respectively as 
2

2
  and 

1,2
  in the following. 

2.2 Sparse subspace learning 

2.2.1 Distance between subspaces 

According to [32], we first define the distance between subspaces. Given a vector group X in an 

m-dimensional real number space. We define }|{)(
X

aXaX  Tspan  as the spanning subspace 

of X, which is the set of all combinations of elements of X. Where, X  is the basis of X. Given two 
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vector groups X1 and X2 in an m-dimensional real number space, the directional distance between 

span (X1) and span (X2) can be defined as: 

.min))(,())(),((
2

221221
12

1

HXXXxXX
XX

HXx








 spandspanspand           (2) 

where, 
dlH  is the coefficient matrix, which is used to calculate the directional distance 

between span (X1) and span (X2). 

2.2.2 Sparse subspace learning 

The main purpose of subspace learning is to find a suitable feature subspace for representing the 

original feature space, referred to as the process of feature selection [32]. Denote 
ndX , 

nl

I

X . Where XI is the subspace of X. According to the definition of equation (2), the problem of 

subspace learning or feature selection can be considered as solving the following problems: 

...

))(),((minarg

lIts

spanspand
T

I

T

I





XX
                        (3) 

where, I is the index set of selected features, I  represents the number of elements in set I. To 

minimize the distance of the two spaces, a suitable feature subset is obtained. 

According to equation (2), formula (3) can be rewritten as: 

...

minarg
2

2

lIts

T

I

T

I



 HXX
                             (4) 

where, 
dlH  is the coefficient matrix, which is used for data reconstruction. By means of the 

coefficient matrix H, a new element of data can be approximately reconstructed as a linear 

combination of the features of the feature subset. The feature subset and the coefficient matrix can be 

obtained simultaneously by minimizing the reconstruction error. According to the idea of matrix 

factorization [32], equation (4) can be rewritten as: 

.,0,..

minarg
2

2,

l

T

TT

ts IWWHW

WHXX
HW




                         (5) 

where, 
ldW  is the feature selection matrix, and 

ll

l

I  is an identity matrix. Each row or 

column of W contains no more than one non-zero element. It is therefore an indication of the feature 
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selection, i.e. XI
T
=X

T
W. The definition of W is as follows: 






.otherwise,0

,isofelementththe,1
,

iIj
W

ji
                    (6) 

In the objective function, the non-negative constraint and the orthogonal constraint make W more 

close to the matrix containing 0-1 elements in the learning process. However, in the actual learning 

process, this process is difficult. Therefore we introduce the sparse constraint to increase the sparsity 

of matrix W. 

We use L2,1-norm to constrain W. It can ensure the sparsity of W and help avoid trivial solutions, 

which makes the feature selection more discriminative. Thus, the objective function (5) can be 

rewritten as: 

.,0,..

minarg
12

2

2,

l

T

TT

ts IWWHW

WWHXX
HW




，


                       (7) 

where 



d

i
i

1
212

wW
，

, wi is the i-th row of the matrix W, β is balance parameter. 

2.3 Local structure preserving 

Some studies [44], [45], [46] show that the feature manifold contains underlying geometric 

structure information, which is very useful for improving the performance of the algorithm. We use 

spectral theory [46], [44] to preserve the local structure information on the feature manifold, which 

can improve the efficiency and accuracy of feature selection. 

According to the method of constructing graphs in [44], we construct the nearest neighbor graph 

in feature space. We use a row vector fi to represent the i-th feature of the sample matrix, so that the 

sample matrix X can be rewritten as nd

d

 ];...;;[
21

fffX . We construct a k-nearest 

neighborhood graph G=(V,E), where V represents a set of feature points {f1, f2,..., fd}. E represents 

the weights of the edges between the vertices. It represents the similarity between the two features: 

the higher the weight, the more similar the features. In this paper, we adopt the Gaussian function as 

the weight measurement, and its definition is as follows: 
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.
or

if),/exp(

otherwise,0

][

2
2

2

















 ij

jiji

ij

N

N

ff

ffff

S



                       (8) 

where, i, j=1,2,...,d, N(fi) represents the k-nearest neighbor set of feature fi, [S]ij represents the 

similarity between fi and fj. σ is the Gaussian scale parameter. L is the graph Laplacian matrix of the 

feature space, L=D-S, D is a diagonal matrix, and  j ijii
][SD . 

Denote dl

d

 ],...,,[
21

hhhH  as the coefficient matrix, the objection of local structure 

preserving is as follows: 

).(][
2

1
minarg

2

21 1

T

ij

d

i

d

j
ji

Tr HLHShh
H


 

                   (9) 

If fi and fj are very similar, hi and hj are also very close to each other. Therefore, we combine 

equations (7) and (9), and obtain a new objective function as follows: 

.0,0..

2
)(minarg

2

21,2

2

2,





HW

IWWWWHXXHLH

ts

Tr
l

TTTT

WH




        (10) 

where, α, β, λ are balance parameters, α, β, λ≥0. 

2.4 Feature evaluation 

By optimizing the objective function of SGFS, we can obtain a feature selection matrix W. Where 

W=[w1;w2;...;wd], Using 
2i

w  to calculate the value of each row of matrix W, these values represent 

the importance of the corresponding features. The higher the value, the more important the feature. 

We arrange all the evaluation values of features in descending order, obtaining an index I. 

According to the index I, we select the first l features to represent the original data set, generating a 

new data matrix 
nl

new

X . In this way, the feature selection process is completed. 

2.5 Connection with MFFS 

By observing the objective function (10), we can see that when α=1, β=0, and removing the local 

structure preserving regularization term, SGFS degenerates into MFFS. MFFS is mainly used to 

solve the following problem: 
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.0,0..

2
minarg

2

2

2

2,





HW

IWWWHXX

ts

l

TTT

WH



                  (11) 

2.6 Update rules for SGFS 

We use an alternating iterative method [44] to optimize the objective function (10). We first 

introduce two Lagrange multipliers ψij and ϕij to constraints Wij≥0 and Hij≥0 respectively. Therefore, 

formula (10) can be rewritten as Lagrange's function: 

).()(
2

)(),L(

2

2

1,2

2

2

TT

l

T

TTT

TrTr

Tr

HWIWW

WWHXXHLHHW










             (12) 

First, we need to define a diagonal matrix
ddU . The i-th diagonal element of U is defined as 

follows: 

.
2

1

2i

ii
w

U                                  (13) 

On this basis, we introduce a small enough constant ɛ to avoid overflow, and get the following 

formula: 

.
),max(2

1

2


i

ii
w

U                                (14) 

Due to the definition of U, we rewrite 
1,2

W  as Tr(W
T
UW), so formula (12) can be rewritten as: 

).()()))(((
2

)()))((()(),L(

TTT

l

T

l

T

TTTTTTT

TrTrTr

TrTrTr

HWIWWIWW

UWWWHXXWHXXHLHHW










     (15) 

Next, we fix H and U, and update W. By taking the partial derivative of formula (15) with respect 

to W, we arrive at: 

.222)(2
L

 



WWWWUWHXXWHHXX

W

TTTTT       (16) 

Using the KKT conditions [42] ψijWij=0, we get: 

.0])([ 
ijij

TTTTT
WWWWWUWHXXWHHXX           (17) 

Hence, we get the iterative update rule for W as follows: 
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ij

TTT

ij

TT

ijij
WWWUWWHHXX

WHXX
WW








                (18) 

Finally, we fix W and U, and update H. By taking the partial derivatives of formula (15) with 

respect to H, we arrive at: 

.)(2)(2
L

 



SDHXXWWHXXW

H

TTTT              (19) 

Using the KKT conditions ϕijHij=0, we get: 

.0)]()([ 
ijij

TTTT
HSDHXXWWHXXW              (20) 

We get the iterative update rule for H as follows: 

.
][

][

ij

TT

ij

TT

ijij
HDWHXXW

HSXXW
HH









                    (21) 

Table 1 shows the procedure of SGFS. 

Table 1 The procedure of SGFS 

Input: Data matrix ndX ; neighborhood size k; balance parameter α, β, λ; Gaussian scale parameter σ; 

maximum number of iterations NIter; number of selected features l. 

Output: Index of selected features I; new data matrix nl

new

X . 

1. Construct the k-nearest neighborhood graph G=(V, E) in feature space. 

2. Compute the similarity matrix S, graph Laplacian matrix L. 

3. Initialize W, H, U. 

4. Update W, H, U according to the iterative update rules (14), (18) and (21), until the number of iterations 

is equal to NIter. 

5. Compute the evaluation values for all the features according to 
2i

w , select the features corresponding 

to the largest l values and get a new data matrix nl

new

X . 

2.7 Convergence analysis 

Next, we analyze the convergence of SGFS. Based on the proof method in [54][32], we give the 

proof of the monotone property of formula (10) under the update rules (18) and (21). 

First, we prove that formula (10) is nonincreasing under the update rule (21). 

Definition 1. From Lee and Seung [54], if there is a function G(k, k'), which makes F(k) satisfy 

the following conditions: 

)(),(,)(),( kFkkGkFkkG                          (22) 
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then F(k) is monotonically decreasing under the following updating formula: 

),(minarg )()1( t

h

t kkGk                            (23) 

Here G(k, k') is an auxiliary function for F(k). 

Proof. ).(),(),()( )()()()()1()1( tttttt kFkkGkkGkF    

We only retain the items with H from the formula (10) and obtain the following function: 

).2()()( XWHXXWWHHXHLHH TTTTTTT TrTrF              (24) 

Through taking the first-order and second-order partial derivatives of F(H) with respect to H, we 

arrive at: 

ij

TTTT

ij

ij

F
F ]2)(2[ HLXXWWHXXW

H













                 (25) 

jjii

TT

ij
F ][2][2 LWXXW                           (26) 

Lemma 1. From Lee and Seung [54], the auxiliary function of Fij is given as follows: 

2)(

)(

)()()()(
)(

][
))(()(),(

t

ijijt

ij

ij

TT

t

ijij

t

ijij

t

ijij

t

ijij
FFG HH

H

HDWHXXW
HHHHHH 





   (27) 

Given the Taylor expansion of Fij(Hij): 

  2)()()()(
)(][][))(()()(

t

ijijjjii

TTt

ijij

t

ijij

t

ijijijij
FFF HHLWXXWHHHHH       (28) 

According to formula (27), we know that G(Hij, Hij
(t)
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. Thus, inequality (29) holds, i.e. 

G(Hij, Hij
(t)

)≥Fij(Hij) holds, G(Hij, Hij)=Fij(Hij) also holds. 

Proof. The variable H satisfies the updating formula (23) that makes the Fij monotonically 

decreasing. 

By substituting G(Hij, Hij
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We can see that the above formula is the update rule (21). Therefore Fij is non-increasing under the 

update rule (21). 

The proof of the monotone property of formula (10) under the update rule (18) is similar to the 

above proof, and we can prove that Fij is non-increasing under the update rule (18). Therefore, we 

conclude that formula (10) is also non-increasing under the update rules (18) and (21). 

3. Experiments 

In this section, we present the results and analysis of empirical experiments. We apply the 

proposed algorithm, and five comparison algorithms, to twelve public benchmark data sets, and the 

experimental results are analyzed. We use a clustering algorithm to cluster the feature selection 

results, and the clustering results are used as criteria for evaluating the performance of the feature 

selection algorithms. In this paper, we use k-means [55] as the clustering algorithm. In addition, we 

also analyze the parameter sensitivity of SGFS. 

3.1 Data sets 

In this experiment, we used twelve datasets, including digital image
1
, text image

1
, face image

1
 and 

biological data
1
 [32], [56]. The detailed information of the datasets is shown in table 2. 

Table 2 The information of twelve datasets 

Data set Size Dim Classes Type 

Usps 9298 256 10 Digital image 

Lung_dis 73 325 7 Biological 

Isolet 1560 617 26 Letter image 

Umist 575 644 20 Face image 

COIL20 1440 1024 20 Digital image 

AR10P 130 2400 10 Face image 

Lung 203 3312 5 Biological 

Yale64 165 4096 15 Face image 

Orl64 400 4096 40 Face image 

TOX_171 171 5748 4 Biological 

Orlraws 100 10304 10 Face image 

AT&T 400 10304 40 Face image 

                                                             
1
 http://featureselection.asu.edu/datasets.php 
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3.2 Comparison algorithms 

To verify the effectiveness of SGFS, we compare its performance against five feature selection 

algorithms, as follows: 

1. Baseline: all the features of the data set are selected. 

2. LapScor: Laplacian Score [21] is a classic unsupervised feature selection algorithm, it is 

characterized by being simple and fast, but it lacks an effective learning mechanism. 

3. MCFS: unsupervised feature selection for multicluster data [51] uses a spectral embedding 

learning and sparse regression feature selection framework. It uses a two step strategy, and mainly 

solves the following problems: 

.minarg

)(minarg

1

2

2
PSXP

SLS

P

ISS





T

TTr
m

T

                          (30) 

4. UDFS: unsupervised discriminant feature selection algorithm [57] uses the discriminant 

information and feature correlation, which aims to find the most discriminative features. Its objective 

function is as follows: 

.)(minarg
1,2

PPXLXP
IPP




TTTr
m

T
                       (31) 

5. MFFS: subspace learning for unsupervised feature selection via matrix factorization [32] uses a 

matrix decomposition technique to obtain a feature selection matrix. According to this matrix, a 

representative feature subspace can be found in the original feature space. 

3.3 Evaluation metrics 

By evaluating the clustering results of different feature selection algorithms, their performance can 

be compared. In this paper, we use Clustering Accuracy (ACC) [46][58][59] and Normalized Mutual 

Information (NMI) [46][60] to evaluate the clustering results. The higher the values of ACC and 

NMI, the better the performance of the algorithm. 

NMI is defined as: 

)H()H(

),I(
),NMI(

TR

TR
TR                            (32) 

where R and T are two arbitrary variables, and I(R,T) is the mutual information between R and T. 
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H(R) and H(T) are the information entropies of R and T respectively. When NMI is used to evaluate 

the clustering results, R and T represent the clustering label and the ground truth label respectively. 

ACC is defined as: 





n

i

ii ba
n 1

))map(,(
1

ACC                          (33) 

where n represents the total number of samples, ai and bi are the clustering label and the ground truth 

label for the sample xi respectively. δ(x, y)=1, if x=y; δ(x, y)=1, otherwise. map(·) is an optimal 

mapping function which uses Hungarian [61] to match the clustering label and the ground truth label. 

3.4 Experimental results and analysis 

3.4.1 Experimental setting 

Before the experiment, we set up the parameters of the algorithm. For all datasets, the number of 

selected features l are tuned from {20, 30, 40, 50, 60, 70, 80, 90, 100}. For LapScor, MCFS, UDFS 

and SGFS, the nearest neighborhood parameter k is set to 5, the Gaussian scale parameter σ is set to 

10. For MCFS, UDFS, MFFS and SGFS, we set the maximum number of iterations to 30. For SGFS, 

the balance parameter α and β are searched in the range of {10
-7

, 10
-6

, ..., 10
+7

}, the range of 

parameter λ is set to {10
-6

, 10
-5

, 10
-3

, 10
-2

, 10
+4

, 10
+7

, 10
+8

}. On each dataset, the selection of 

parameters is relatively stable. By adjusting the balance parameters α, β, λ, we obtain the maximum 

value of ACC and NMI. We independently run 20 times, and take the average of these results as the 

final result. In the experiment, we used a computer with 4G memory and 2.3GHz frequency, and 

used Matlab as a simulation software. 

3.4.2 Convergence test 

First, we verify the convergence of the objective function of SGFS. We let SGFS iterate 30 times 

on twelve datasets, and recorded the value of the objective function after each iteration. The results 

are shown in Fig. 1. 
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(a) AR10P                    (b) Isolet                     (c) Usps 

 

(d) Yale64                    (e) Orl64                     (f) Orlraws 

 

(g) AT&T                    (h) COIL20                     (i) TOX_171 

 

(j) Lung                    (k) Umist                     (l) Lung_dis 

Fig. 1. Convergence of the objective function on twelve data sets. 

In Fig. 1, the horizontal and vertical axes represent the number of iterations and the value of the 

objective function respectively. We can see that the value of the objective function decreases with 

increasing number of iterations. This is consistent with our previous proof of convergence. Also note 

that the value of the objective function tends to become stable within 20 iterations on most of the 
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datasets, which suggests that the objective function rapidly converges to a stable value. 

In order to prove that the proposed algorithm is faster and more accurate than MFFS in the 

learning of the feature selection matrix and coefficient matrix, we analyze the number of iterations 

and the time required for the convergence of each objective function. Considering that the time spent 

in each iteration of SGFS and MFFS is almost the same, we only analyze the number of iterations 

required to achieve convergence of the objective function. For MFFS and SGFS, we set the 

maximum number of iterations to 30, the number of selected features l is fixed to 20, the range of 

parameter λ is set to {10
-6

, 10
-5

, 10
-3

, 10
-2

, 10
+3

, 10
+4

, 10
+5

, 10
+6

, 10
+7

, 10
+8

}. For SGFS, the balance 

parameters α and β are searched in the range of {10
-7

, 10
-6

, ..., 10
+7

}. The comparison results are 

given in Table 3. 

Table 3 The number of iterations required for the convergence of the objective function 

Dataset AR10P Isolet Usps Yale64 Orl64 Orlraws 

MFFS 25 25 24 28 25 29 

SGFS 16 19 20 14 17 15 

Dataset AT&T COIL20 TOX_171 Umist Lung Lung_dis 

MFFS 27 27 22 24 25 23 

SGFS 25 19 20 17 20 20 

From Table 3, we can see that, for the objective function to converge, SGFS always requires 

significantly less iterations than MFFS. This suggests that SGFS can learn appropriate feature 

selection and coefficient matrices more quickly. 

3.4.3 AT&T face dataset example 

We randomly selected two different samples from the AT&T face dataset as the experimental 

samples, and apply the proposed algorithm to these two samples. In this experiment, the two samples 

were selected from the third class and the sixth class, they all contain 10304 features. The number of 

selected features l are tuned from {1280, 2560, 3840, 5120, 6400, 7680, 8960, 10240}. With the 

increase in the number of selected features, the extracted face information is also increased. We use 

white to represent the feature which is not selected, and the selected feature retains its original gray. 

The experimental results are shown in Fig. 2. 
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Fig. 2. Results of two AT&T samples under different number of selected features. 

From Fig. 2, we can see how SGFS selects different numbers of features from the two samples. 

From left to right, as the number of selected features gradually increases, the reconstructed image 

becomes increasingly clear. We can see that a convincing outline of the human face can be seen by 

selecting only a very small number of features. The reason is that the most representative face 

features are preferentially selected, such as the eyes, nose, mouth and chin. This preferential 

selection of the most salient features illustrates the strong performance of the proposed algorithm for 

the task of feature selection. 

3.4.4 Experimental results and analysis 

In Table 4 and Table 5, we show the ACC and NMI values of the six algorithms on all data sets. In 

these results, the best ACC and NMI values are marked in bold black, and the second best ACC and 

NMI values are marked in underlined. 

Table 4 Clustering accuracy of six algorithms on twelve datasets (ACC±STD%) 

Dataset Baseline LapScor UDFS MCFS MFFS SGFS 

AR10P 25.12±4.47 32.42±4.00 33.38±2.96 26.31±2.45 38.31±3.40 45.38±2.34 

Isolet 61.73±2.77 53.17±3.11 39.66±0.94 56.11±2.70 58.68±4.60 66.20±2.67 

Usps 66.26±1.93 59.79±1.62 53.30±1.91 65.06±4.75 65.25±3.30 68.97±0.17 

Yale64 48.15±4.10 45.09±4.15 38.18±2.59 44.70±3.01 50.52±3.87 51.70±2.56 

Orl64 53.14±3.33 42.04±1.84 47.71±2.38 50.59±2.96 38.36±1.85 53.95±3.08 

Orlraws 73.65±7.06 64.45±5.97 64.45±5.97 75.15±3.95 72.80±8.46 81.40±5.15 

AT&T 60.96±3.30 47.31±1.83 54.46±2.05 55.88±1.86 53.46±2.73 59.65±2.89 

COIL20 65.75±4.16 60.94±2.17 63.38±3.04 62.96±2.82 62.00±2.40 65.61±2.67 

TOX_171 43.13±2.35 41.84±1.98 41.35±0.57 40.18±4.35 38.45±1.31 44.82±1.36 

Umist 42.97±2.21 42.09±1.94 44.83±1.52 47.24±2.25 44.07±2.38 52.36±2.61 

Lung 70.10±8.22 66.67±2.12 55.44±4.75 71.75±2.04 62.82±4.74 84.70±0.87 

Lung_dis 73.63±5.26 62.81±5.59 70.07±5.83 74.25±4.84 74.52±4.86 81.03±4.34 
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Table 5 Normalized Mutual Information of six algorithms on twelve datasets (NMI±STD%) 

Dataset Baseline LapScor UDFS MCFS MFFS SGFS 

AR10P 21.42±5.62 32.81±2.42 32.00±3.22 22.95±2.93 39.63±2.89 47.98±2.60 

Isolet 76.06±1.26 68.40±1.34 52.90±0.79 69.92±0.96 72.42±2.12 76.78±0.98 

Usps 61.13±0.86 56.53±0.70 48.01±1.28 58.89±2.03 60.02±1.72 62.23±0.14 

Yale64 54.79±3.39 51.46±2.58 44.95±1.79 50.11±2.23 56.17±4.77 55.20±1.88 

Orl64 73.56±1.50 63.71±0.96 68.68±1.64 70.94±1.58 61.55±1.03 73.41±0.97 

Orlraws 79.87±5.31 72.64±3.80 72.64±3.80 82.52±3.07 81.44±6.57 83.54±3.56 

AT&T 79.96±1.37 71.04±0.93 73.90±1.32 74.52±1.02 73.73±1.21 76.83±1.27 

COIL20 76.69±1.99 69.94±2.05 72.43±1.31 73.94±1.44 71.93±2.19 74.76±1.49 

TOX_171 14.55±2.64 11.03±1.14 10.12±2.03 10.20±1.98 11.31±0.13 12.45±191 

Umist 64.83±2.04 62.33±1.91 58.31±1.47 67.06±1.38 62.59±1.87 68.91±1.40 

Lung 54.47±2.84 47.17±1.94 38.01±1.87 52.52±0.63 44.53±1.14 58.23±1.01 

Lung_dis 69.27±4.21 59.76±3.77 65.02±4.12 70.30±3.72 65.88±3.77 72.96±3.64 

From Table 4 and Table 5, we can see that most of the results of SGFS on 12 datasets are better 

than the results of five comparison algorithms. In addition, the results of SGFS are even better than 

the results of Baseline on some datasets. Fig. 3 shows the clustering accuracy of SGFS and five 

comparison algorithms on twelve datasets with different number of selected features. The horizontal 

axis represents the number of selected features l, the vertical axis represents clustering accuracy 

(ACC) and standard deviation (STD). 

 

(a) AR10P                    (b) Isolet                       (c) Usps 

 
(d) Yale64                    (e) Orl64                      (f) Orlraws 
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(g) AT&T                    (h) COIL20                     (i) TOX_171 

 

(j) Lung                      (k) Umist                     (l) Lung_dis 

Fig. 3. Clustering accuracy of six algorithms on twelve datasets with different number of selected features. 

From Fig. 3, we can see that the ACC of SGFS are higher than that of four comparison algorithms 

on all datasets, and in some cases even higher than the results of Baseline. It is worth mentioning that 

the results of SGFS are better than all the comparison algorithms on the AR10P dataset, which 

suggests that SGFS improves the clustering accuracy. 

 

(a) AR10P                    (b) Isolet                       (c) Usps 

 

(d) Yale64                    (e) Orl64                      (f) Orlraws 
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(g) AT&T                    (h) COIL20                     (i) TOX_171 

 

(j) Lung                      (k) Umist                     (l) Lung_dis 

Fig. 4. Normalized Mutual Information of six algorithms on twelve datasets with different number of selected 

features. 

Fig.4 shows the normalized mutual information of SGFS and five comparison algorithms on 

twelve datasets with different numbers of selected features. The horizontal coordinate also represents 

the number of selected features l, while the vertical coordinate represents normalized mutual 

information (NMI) and standard deviation (STD). We also can see that the NMI of SGFS are higher 

than that of four comparison algorithms on all datasets. On datasets Isolet, Usps, Yale64, Orl64 and 

Lung, only SGFS has results better than Baseline. It also shows that SGFS is more effective than the 

comparison algorithms. 

3.4.5 Robustness test of algorithms 

In order to verify the robustness of the proposed algorithm against noise, we artificially corrupted 

six datasets by adding Gaussian noise of various different magnitudes. In this experiment, we set the 

variance of the added Gaussian noise to 10, 20, 30. In Table 6 and Table 7, we show the ACC and 

NMI values of MFFS and SGFS on six test datasets. 
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Table 6 Clustering accuracy of SGFS and MFFS on six datasets with different variance of the Gaussian noise 

(ACC±STD%) 

Variance 10 20 30 

Dataset MFFS SGFS MFFS SGFS MFFS SGFS 

AR10P 35.38±2.79 45.62±4.07 35.04±2.82 43.35±3.39 35.46±3.61 41.04±3.08 

Orl64 36.47±1.31 52.14±2.96 36.01±1.32 52.41±2.72 36.43±2.04 53.12±1.80 

AT&T 53.81±2.48 58.80±2.81 53.31±1.77 57.98±2.26 53.04±2.46 58.27±2.72 

TOX_171 34.50±0.01 42.98±1.55 34.50±0.01 43.04±1.51 34.50±0.01 43.01±1.52 

Umist 42.62±2.72 48.49±2.41 42.59±2.20 47.99±3.05 41.62±2.13 46.15±2.97 

Lung_dis 69.59±7.16 77.19±3.78 68.08±6.92 76.51±6.79 68.22±6.87 76.16±6.61 

Table 7 Normalized Mutual Information of SGFS and MFFS on six datasets with different variance of the Gaussian 

noise (NMI±STD%) 

Variance 10 20 30 

Dataset MFFS SGFS MFFS SGFS MFFS SGFS 

AR10P 37.75±2.97 46.75±4.18 37.07±2.94 43.83±3.65 37.73±3.36 43.51±3.82 

Orl64 59.56±1.31 72.35±1.40 59.01±1.11 71.68±1.50 59.11±1.22 72.25±0.75 

AT&T 72.48±1.48 76.16±1.26 72.08±1.19 75.60±1.39 71.95±1.29 75.79±1.58 

TOX_171 7.96±0.01 10.83±1.68 7.96±0.01 10.84±1.67 7.96±0.01 10.84±1.67 

Umist 62.31±1.69 67.55±1.65 62.11±1.18 66.46±1.71 61.11±1.67 64.88±1.34 

Lung_dis 63.59±5.56 70.22±3.38 62.38±4.46 71.32±4.05 62.16±4.64 69.89±5.18 

From Table 6 and Table 7, we can see that the performance of the proposed algorithm is affected 

very little by the added Gaussian noise. This suggests that the proposed algorithm is highly robust to 

noise. Furthermore, on each test data set, the results of SGFS are significantly better than those of 

MFFS. 

3.4.6 Parameter sensitivity analysis 

The parameters of SGFS mainly include: the neighborhood parameter k, the Gaussian scale 

parameter σ, and the balance parameters α, β, λ. In this paper, we only discuss the sensitivity of 

parameters α and β, since the other parameters are relatively stable. We explore the parameters α and 

β in the range of {10
-3

, 10
-2

, 10
-1

, 1, 10
+1

, 10
+2

, 10
+3

}, and record the clustering accuracy (ACC) and 

normalized mutual information (NMI) under different parameter combinations. We draw the results 

into 3-D diagrams, as shown in Fig. 5 and Fig 6. 
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(a) AR10P                    (b) Isolet                       (c) Usps 

 

(d) Yale64                    (e) Orl64                      (f) Orlraws 

 

(g) AT&T                   (h) COIL20                     (i) TOX_171 

 

(j) Lung                      (k) Umist                     (l) Lung_dis 

Fig. 5. Clustering accuracy of SGFS on twelve datasets under different parameter combinations. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

(a) AR10P                    (b) Isolet                       (c) Usps 

 

(d) Yale64                    (e) Orl64                      (f) Orlraws 

 

(g) AT&T                   (h) COIL20                     (i) TOX_171 

 

(j) Lung                      (k) Umist                     (l) Lung_dis 

Fig. 6. Normalized Mutual Information of SGFS on twelve datasets under different parameter combinations. 

From Fig.5 and Fig.6, we can see that the parameters α and β on most datasets are relatively stable, 

especially on datasets Yale64, AT&T and Umist. This suggests that the proposed algorithm is not 

sensitive to the values of parameters α and β.  
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To further analyze the parameter sensitivity of the proposed algorithm, we compare the clustering 

results of SGFS under the default parameters and the best parameters. We set the default parameters 

α and β to a fixed value of 0.1. The best parameters are searched in the range of α and β. The 

comparison results are given in Fig. 7. 

 
(a) ACC                               (b) ACC 

 
(c) NMI                               (d) NMI 

Fig. 7. Clustering results under the default parameters and the best parameters (default α=0.1, β=0.1). 

Fig. 7 shows that the clustering results on all datasets under the default parameters and the best 

parameters lead to only small differences in performance. On datasets AR10P and Orl64, the 

performance that results from default parameters and the best parameters is the same. These results 

suggest that overall performance is not strongly dependent on the choice of parameter values. Good 

performance can be achieved with arbitrary parameter values.  

4. Conclusions 

In this paper, we have proposed a novel algorithm, called subspace learning-based graph 

regularized feature selection (SGFS). The proposed algorithm is based on the framework of subspace 
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learning feature selection via matrix factorization (MFFS). We have extended this approach, by first 

introducing an L2,1-norm sparse constraint, which ensures the sparsity of the feature selection matrix 

W and increases the discriminating ability of the selected features. Furthermore, we have shown how 

the idea of graph regularization can be incorporated into feature selection, to preserve the local 

structure information of the feature space. This structure is then used to guide the learning of the 

coefficient matrix H and the feature selection matrix W. We have presented a variety of experimental 

results, which suggest that SGFS outperforms several well known comparison algorithms from the 

literature. 

A deficiency of the proposed algorithm is that the alternative iterative optimization method can 

sometimes be prone to converging on local optima. In future work, we hope to incorporate a 

mechanism for optimizing W and H simultaneously to obtain the globally optimal solution. We also 

intend to apply the idea of dual-graph regularization to the feature selection framework, and use the 

geometric structure information of the data space and the feature space simultaneously. 
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