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Abstract

Preserving privacy and utility during data publishing and data mining is essential for individuals, 

data providers and researchers. However, studies in this area typically assume that one individual 

has only one record in a dataset, which is unrealistic in many applications. Having multiple 

records for an individual leads to new privacy leakages. We call such a dataset a 1:M dataset. In 

this paper, we propose a novel privacy model called (k, l)-diversity that addresses disclosure risks 

in 1:M data publishing. Based on this model, we develop an efficient algorithm named 1:M-

Generalization to preserve privacy and data utility, and compare it with alternative approaches. 

Extensive experiments on real-world data show that our approach outperforms the state-of-the-art 

technique, in terms of data utility and computational cost.

Keywords

Data anonymization; Data privacy; k-anonymity; l-diversity; 1:M microdata

1. Introduction

More and more organizations begin to publish microdata for research and analytics 

purposes. For example, a hospital may release patients’ medical records so that researchers 

can study the characteristics of various diseases. The published microdata contains 

potentially identifiable sensitive information of individuals, which may lead to privacy 

disclosure. It is well-known that removing the personal identities from microdata is 

insufficient due to the possibility of linking attacks. An adversary can link some attributes, 

called quasi-identifier (QID), with external datasets to re-identify individuals. According to a 

study [1], approximately 87% of the population in the United States can be uniquely 

identified based on three QID attributes: gender, date of birth, and five-digit zip code. To 

preserve privacy during data publishing, a number of privacy models and algorithms have 

been proposed [2–4]. Organizations can anonymize their datasets with these algorithms to 

satisfy certain privacy models to protect individual privacy. For example, they can apply a k-

anonymity based algorithm on micro-data to achieve k-anonymity such that each record will 

be indistinguishable from at least k − 1 other records on QID attributes. So, the adversary 

cannot re-identify any individual in the dataset with probability higher than 1/k.
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1.1. Motivation and challenges

Almost all previous works assume that one person has only one record in a dataset (called 

1:1 dataset), making some data analysis tasks (e.g., health complication analysis, market 

basket analysis, etc.) not applicable. We call a microdata set that allows multiple records for 

the same person a 1:M dataset. In real-world database systems, 1:M dataset is more general 

than 1:1 dataset. For example, in social networking websites (e.g., Facebook, Twitter), a user 

may post multiple statuses or messages using the same account. A customer may have 

multiple purchase transactions in a supermarket, which can be identified by the credit card 

or membership card used. These scenarios have been largely overlooked by the previous 

works, limiting the applicability of the anonymity models and algorithms.

Consider a 1:M scenario, shown in Table 1(a), where a hospital wants to release patients’ 

records for complication analysis. A patient may have multiple diagnosis records in the same 

dataset. If we apply k-anonymity to this dataset, we will get a sanitized dataset shown in 

Table 1(b), where the QID values are generalized based on generalization hierarchies shown 

later in Fig. 1. Note that a system generated personal identifier (PID) is kept to preserve the 

ownership of each record in order to perform the complication analysis. This k-anonymity 

dataset has two kinds of privacy leakage, as stated in Problems 1 and 2 below.

Problem 1 (Privacy model failure)—Directly applying existing 1:1 privacy models to 

1:M datasets may cause privacy disclosure problems due to multiple occurrences of an 

individual in the dataset.

State-of-the-art privacy models are generally established on datasets with one record for 

each individual. Privacy models built on this kind of datasets no longer hold on 1:M datasets. 

In Table 1(b), the QIDs of Bob, David, Daisy and Alice are not well protected even though 

the dataset satisfies 2-anonymity requirement. For example, if an adversary knows Bob’s 

QID values, i.e., < 18, M, 12000 >, he can directly get Bob’s disease information, i.e., a1, a2 

and b2. Because only the first two records in Table 1(b) have such QID values, and both of 

them belongs to PID 1. So the adversary can determine that Bob must be PID 1 with 100% 

confidence. Worse yet, as all records of the same individual usually share the same QID 

values, the adversaries can infer more information using this knowledge. In our running 

example, PID 2 (David) and PID 1 (Bob) are assigned to group 2 in Table 1(b). An 

adversary may observe that PID1’s QID values are generalized in group 2, while remaining 

unchanged in group 1. So he could infer PID2’s QID values using PID1’s QID information: 

PID 2 must be male and no older than 15 years old1, living in a place with zip code from 

10,001 to 15,000. PID1′s QID information becomes background knowledge for attacking 

individuals in his group. We call this inconsistency attack, which is caused by inconsistent 

generalization on the same QID values. Clearly, even if the data publisher applies l-diversity 

to this microdata, the privacy leakage caused by inconsistency attack still exists.

1Based on Table 1(b) and Fig. 1, PID2’s age must be 15 years old or younger.

Gong et al. Page 2

Knowl Based Syst. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Problem 2 (SA fingerprint identification)—In a 1:M dataset, different sensitive 

attribute (SA) values of the same individual form a feature, which can uniquely identify 

individuals.

Multiple SA values of the same individual may form a fingerprint called SA fingerprint. 
Similar to unique set in set-valued data publishing [5], these fingerprints can be used to re-

identify individuals. In Table 1(b), all patients’ SA fingerprints are unique, making them 

vulnerable to adversaries. For example, if an adversary knows that Bob went to this hospital 

for treatment of a1 and b2, he can infer that tuples 1–3 belong to Bob with 100% confidence, 

and discover that Bob also has disease a2. Herein a unique subset of SA fingerprint, i.e., < 

a1, b2 >, is enough to re-identify an individual. Different from linking attack on QID, the 

length of each SA fingerprint can be different, leading to a much higher entropy than QID. 

So, the more information the adversary gets about SA, the more likely he can identify the 

victims.

These two problems make 1:M data publishing much more complex than 1:1 data 

publishing. To achieve privacy, 1:M data anonymization needs more effort s and often causes 

more information loss for QID and SA attributes. Recent works [6,7] on 1:M problem, either 

causes privacy leakage [8] or leads to unacceptable information distortion [7]. It is necessary 

to develop an approach to address the privacy problem in the 1:M setting.

1.2. Contributions

The main contributions of this work are as follows:

1. We propose a new privacy model named (k, l)-diversity for the 1:M data 

publishing and provide analytical results for the proposed model. By enforcing k-

anonymity on SA fingerprint and l-diversity on each equivalence class, (k, l)-
diversity can protect QID and SA information during 1:M data publishing.

2. We propose an approach called 1:M-generalization based on existing algorithms. 

The proposed 1:M-generalization algorithm can efficiently compute anonymized 

1:M dataset which satisfies (k, l)-diversity requirement with low information 

loss.

3. We evaluate our approach by conducting experiments on two real-world 1:M 

datasets, and compare our approach with existing state-of-art technique.

The rest of the paper is organized as follows. Section 2 reviews the related works. Section 3 

formalizes the underlying concepts, analyzes 1:M problem, and introduces the proposed (k, 

l)-diversity models. Section 4 presents a new anonymization algorithm to achieve (k, l)-
diversity. Section 5 describes our experiments that demonstrate the effectiveness of our 

algorithms. Section 6 concludes the paper with directions for future work.

2. Related work

Since the introduction of k-anonymity in [1,9,10], many privacy models [11,12] and 

anonymization algorithms [9,13] have been proposed to avoid privacy leakage during data 

publishing. Sweeney [1] first pointed out that removing identifying attributes (e.g., name and 
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email address) may not be sufficient to preserve privacy, as the QID attributes (e.g., zip code, 

gender and date of birth) may potentially identify the record owners. The author proposed k-

anonymity to ensure that each record is indistinguishable with other k − 1 records on QIDs. 

Machanavajjhala et al. [12] observed a drawback of k-anonymity that k-anonymized dataset 

is vulnerable to homogeneity attack and background knowledge attack. They proposed l-
diversity model with SA diversity constraint to enhance privacy protection. Li et al. [11] 

discovered skewness attack and similarity attack on l-diversity, and further proposed t -
closeness model with distribution constraint to preserve privacy. However, t -closeness 

cannot sufficiently protect the privacy of infrequent values, which are more vulnerable to 

privacy exposure. So Cao et al. [14] proposed β-likeness with strong constraint on relative 

confidence gain to achieve anonymity.

The goal of anonymization is to find a transformation that satisfies privacy model with 

minimal information loss. Since achieving this goal is NP-hard [15,16], all existing 

approaches achieve near-optimal anonymity with approximation algorithms. LeFevre et al. 

[17] employed the Apriori-like dynamic programming approach based on full-domain 

generalization. To reduce the information loss caused by global recoding, LeFevre et al. [18] 

developed a top-down greedy approximation multidimensional k-anonymization algorithm 

called Mondrian, based on local recoding. Xu et al. [19] proposed two clustering-based 

algorithms, which outperformed Mondrian on information loss. Ghinita et al. [20] mapped 

multi-dimensional anonymization problem to one-dimensional problem, and proposed two 

efficient algorithms named Hilb and iDist to solve the problem. Ni et al. [21] proposed a 

clustering-oriented method to keep nearest neighborhood structures of data points during 

anonymization. Guo et al. [22] developed a clustering-based anonymization approach to 

preserve the characteristics of data streams. Aggarwal et al. [23] found that when microdata 

contains a large number of attributes, any generalization necessarily losses considerable 

information in the microdata due to the curse of dimensionality. To overcome this draw-

back, Xiao et al. [24] proposed a method called Anatomy, which anonymizes microdata by 

breaking the correlation between QID and SA attributes. But Anatomy releases precise QID 

values, making it vulnerable to presence attacks. So Tao et al. [25] proposed AN-GEL to 

achieve better privacy and marginal publication. Recently, Wong et al. [26] found that k-

anonymity can be achieved by non-homogeneous generalization, and proposed a technique 

named ring generalization to achieve higher utility while providing the same privacy 

guarantee. Xue et al. [27] adapted ring generalization for anonymizing sparse high-

dimensional data, they proposed a nonreciprocal recoding anonymization scheme for such 

data. Doka et al. [28] formulated the optimal-utility k-anonymization problem as a network 

flow problem, and proposed freeform generalization for better utility.

All works discussed so far focus on anonymizing relational datasets. Recent studies have 

shown that anonymizing transactional set-valued data is quite different, due to the high 

dimensionality. Xu et al. [8] proposed item suppression based approach for publishing 

sensitive transaction data with high utility. Different from Xu et al., Terrovitis et al. [5] 

assumes that each item can be used in re-identification attacks, they proposed km -

anonymous for transaction data publishing when adversary’s background knowledge is 

limited to no more than m values. They developed Apriori-based anonymization algorithms 

[5] to achieve km -anonymous. He et al. [29] found that Apriori-based anonymization may 
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cause huge information loss. They proposed a local recoding algorithm named Partition 

under k-anonymity to preserve more data utility. Terrovitis et al. [30] proposed two local 

recoding algorithms based on Apriori-based anonymization, which outperform Partition on 

information loss.

All works above assume that one individual has exactly one record in a dataset. Only very 

few works [6,7] on data privacy consider 1:M datasets. Tao et al. [6] observed that existing 

models no longer hold when an individual has multiple records in the dataset. They 

proposed new privacy models based on k-anonymity and l-diversity, and developed new 

algorithms based on these models. But their approach does not address the problem caused 

by SA fingerprint, so an adversary who has SA information can re-identify individuals from 

their datasets. Poulis et al. [7] divided attributes into relational and transaction attributes and 

formulated the 1:M problem as a multi-objective optimization problem. They proposed (k, 
km)-anonymous with two constraints, i.e., k-anonymity and km -anonymous, on each EC. 

Then they showed that under their privacy model, minimizing information loss on either part 

would increase the information loss on the other. For instance, minimizing information loss 

on relational part will distort more information on transaction part. So they developed two 

algorithms to handle the tradeoff between the two aspects. However, their threat model is 

somewhat unrealistic. They assumed that the adversary knew both QID and SA information. 

If this is true, it is not clear why the adversary would still have the interest to launch an 

attack. On the other hand, such an assumption requires an extremely conservative privacy 

model, leading to extensive information loss. To reduce information loss, the privacy model 

we propose assumes that the adversary may have either QID or SA information of the target, 

but not both.

3. Problem setting and privacy model

Following the definitions in the literature, we classify attributes into four categories.

• Personal identifier (PID): A system generated attribute that uniquely identify an 

individual in microdata. In a 1:M dataset, a PID is necessary to identify the 

ownership of different tuples.

• Quasi-identifier (QID): Attributes that, in combination, can be linked with 

external information to re-identify individuals in microdata (e.g., age, gender and 

zip code).

• Sensitive attributes (SA): Attributes that are confidential for an individual (e.g., 

disease, income). In a 1:M dataset, an individual may have multiple SA values.

• Other attributes: Attributes that do not fall into the previous three categories. 

These attributes are considered non-sensitive, and can be published directly.

Without loss of generality, we assume that different records of an individual have the same 

QID values. This assumption is reasonable because QIDs are typically demographic or 

geographic attributes, which remain unchanged at least for a certain period2. To simplify 

2We surveyed existing online 1:M datasets, and found that QID values are relatively stable. Most changes on QID values are caused 
by mistake, e.g., changes on birthday and blood type.
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discussion, we consider 1:M dataset with only one sensitive attribute, such that all sensitive 

values of an individual form a SA fingerprint, written as < sa1, sa2, … >. In Table 1(a), all 

records of the same individual share the same QID values. So we can transform Tables 1(a) 

to 2(a), by merging the QID values of the same individual without losing any information. In 

this transformed dataset, a patient has only one record in the dataset, which consists of 

his/her QID values and SA fingerprint (also called RT-dataset in [7]). It satisfies the 

assumptions of 1:1 dataset, so existing privacy models and algorithms can be applied to it. 

This transformation also ensures that no inconsistency will occur after generalization, 

making inconsistency attack unavailable. As a result, aforementioned Problem 1 is no longer 

an issue with this transformation.

Let T be the original dataset, T′ be the transformed dataset, and T* be the anonymized 

dataset. Let n be the number of individuals in T. Note that the number of records in T′ is 

also equal to n, but we will still call T′ a 1:M dataset because of its context. Let d be the 

number of QID attributes. Since there is only one sensitive attribute, the attributes in T can 

be written as {A1, A2, …, Ad+1}, where {A1, A2, …, Ad} are QID attributes and Ad+1 is the 

sensitive attribute. Let t be a record in T, ti be the ith record, t[j] be the jth attribute value of 

t.

To address privacy breach on QID and SA fingerprint, we introduce two kinds of grouping 

methodologies:

Definition 1 (Equivalence Class (EC) [18])

For a 1:M dataset T′, an equivalence class consists of all records with the same values on all 

the QID attributes in T′.

Definition 2 (Sensitive Attribute Fingerprint Bucket (SAFB))

For a 1:M dataset T′, a sensitive attribute fingerprint bucket consists of all records with the 

same SA fingerprint in T′.

Both EC and SAFB are non-overlapping divisions on T′, where ∪ ECi = T′, ∪ SAFBj = T′. 

For each ∀i ≠ j, we have ECi ∩ ECj = ∅, SAFBi ∩ SAFBj = ∅. Note that EC is divided 

based on QID values, while SAFB is divided based on SA fingerprints. Records in EC are 

indistinguishable on QID, and records in SAFB are indistinguish-able on SA fingerprint. 

The adversary cannot re-identify individuals based on QID values if all the EC groups are 

sufficiently large. This is the basic idea of k-anonymity [1]. To deal with SA fingerprint 

identifications, we extend the notion of k-anonymity for SAFB.

Definition 3 ((k-anonymity for SA fingerprint))

A 1:M dataset T′ is k-anonymity, if and only if every SAFB in T′ has at least k records.

The k-anonymity defined above ensures that each record in T′ is identical to at least k − 1 

other records on SA fingerprint, such that the adversary cannot re-identify individuals with 

SA fingerprints or their fragments. The Partition algorithm in [29] is designed for this 

privacy model, and can anonymize SA fingerprint (set-valued data) with high efficiency. 

However, ECs in T′ are not well protected, and they are vulnerable to linking attack, 
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homogeneity attack and background knowledge attack [12]. To guard against these attacks, 

we extend the l-diversity principle [12] to require that each EC contains at least l ‘well-

represented’ SA fingerprints. Intuitively, l-diversity ensures privacy by increasing the 

‘diversity’ in each EC, so that the adversary cannot reveal an individual’s SA values without 

l − 1 pieces of background knowledge. The l-diversity regarding SA fingerprints is defined 

below.

Definition 4 ((l-diversity for 1:M dataset))

A 1:M dataset T′ satisfies l-diversity, if and only if any EC in T′ contains at least l ‘well-

represented SA’ fingerprints.

According to [12,20,24], ‘well-represented’ has many interpretations, leading to different 

kinds of l-diversity, e.g, (c, l)-diversity and entropy l-diversity. In this paper, we adopt the l-
diversity formulation from [20,24], i.e., the probability of associating a record in EC with 

any SA fingerprint is at most 1/l. Note that the above definition of l-diversity is in terms of 

SA fingerprints, not of SA values. We should point out that having l ‘well-represented’ SA 

values does not ensure the ‘diversity’ on SA fingerprints. Suppose, for instance, all records 

in an EC have the same SA fingerprint, that contains l ‘well-represented SA values. Then, 

these records satisfy the traditional l-diversity for 1:1 dataset but do not satisfy our l-
diversity requirement for 1:M dataset. If an adversary has the knowledge about the SA 

fingerprint of the target, the SA values of all individuals will be exposed. By applying l-
diversity for 1:M dataset, we can ensure that such adversaries cannot determine any victim’s 

SA values using SA fingerprints with a probability higher than 1/l. However, l-diversity for 

1:M dataset cannot prevent SA fingerprint identification as stated in Problem 2. If an 

adversary has a fragment of Bob’s SA fingerprint, e.g., < a1, b2 >, which is unique in T′, he 

can re-identify Bob and expose Bob’s whole SA fingerprint.

To protect against privacy leakage in 1:M data publishing, we propose a new privacy model 

called (k, l)-diversity. The (k, l)-diversity can provide protection for both QID and SA 

fingerprint, reducing the risks of linking attack and attribute disclosure. The (k, l)-diversity 

model consists of two constraints: (1) k-anonymity constraint on SAFB to prevent re-

identification caused by SA fingerprint (Problem 2). (2) l-diversity constraint on EC, which 

restricts the size of both QID attributes and SA fingerprint.

Definition 5 (((k, l)-diversity))

A 1:M dataset T′ satisfies (k, l)-diversity, if and only if:

1. For any SAFB ∈ T′, there are at least k different individuals, and

2. For any EC ∈ T′, there are at least l ‘well-represented’ SA fingerprints.

Intuitively, constraint 1 is k-anonymity on SA fingerprints, which ensures that any SA 

fingerprint is associated with at least k individuals. Meanwhile, constraint 2 simultaneously 

ensures diversity on SA fingerprints and anonymity on QID values. To satisfy (k, l)-
diversity, T′ should satisfy constraints 1 and 2 at the same time. Unfortunately, satisfying 

both constraints with minimum information loss is NP-hard. Because each constraint is a 
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special case of the whole problem and both special cases are NP-hard. In Section 4, we 

propose a heuristic algorithm, which can achieve (k, l)-diversity with high efficiency.

Lemma 1

If a 1:M dataset T′ satisfies (k, l)-diversity, then T′ satisfies k-anonymity for SA 
fingerprints.

Proof—Let s be an arbitrary SAFB in T′. There must be at least k individuals in s. Since 

each individual has either 0 or 1 record in T′, there must be at least k records in s. According 

to the definition of SAFB, these records are indistinguishable on SA fingerprint. So s 
satisfies the definition of k-anonymity.

Lemma 2

If a 1:M dataset T′ satisfies (k, l)-diversity, then T′ satisfies l-diversity for 1:M dataset.

Proof—Let ec be an arbitrary EC in T′. There must be at least l ‘well-represented’ SA 

fingerprints in ec. So ec satisfies the definition of l-diversity for 1:M dataset.

Theorem 1

If a 1:M dataset T′ satisfies (k, l)-diversity, the adversary cannot re-identify any individual 
using SA or QID values with a probability higher than max{1/l, 1/k}.

Proof—Lemma 1 ensures that the probability of re-identifying SA fingerprint is at most 

1/k. Lemma 2 ensures that the adversary cannot re-identify any individual with probability 

larger than 1/l from QID values. So the probability that the adversary can re-identify any 

individual with SA or QID values from T′ is max{1/l, 1/k}.

Table 2 (b) is a (2, 3)-diversity dataset for Table 1(a), obtained by using the 1:M-

Generalization algorithm. That is, each SAFB has at least 2 records and each EC contains at 

least 3 ‘well-represented’ SA fingerprints. So an adversary with QID or SA values cannot re-

identify any individual in Table 2(b). For example, suppose an adversary knows some of the 

Bob’s disease information, i.e., a1 and b2. Given Table 2(b), he will get two candidates, 

record 1 and 5, whose anonymized disease value < A, b2 > covers < a1, b2 >. Another 

adversary, who has Bob’s QID values, will get three candidates, i.e., record 1, 2 and 3. 

Without additional information, none of these adversaries can re-identify Bob with 

probability higher than max(1/2, 1/3) = 1 / 2. Moreover, since each EC in Table 2(b) 

contains at least three ‘well-represented’ SA fingerprints, the adversary cannot reduce the 

scope of candidates using homogeneity attack or background knowledge attack.

Another advantage of (k, l)-diversity is that l and k can be chosen separately. Data publisher 

can choose these two parameters according to the characteristics of dataset and privacy 

requirements. Note that k-anonymity may reduce the diversity of SA fingerprint, which may 

increase the difficulty of achieving l-diversity. So a higher l is not recommended when k is 

very large.
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At present, anonymization is usually realized by generalization. By generalizing original 

specific values to more general values, records in an EC are indistinguishable from each 

other with regard to QID values. So the adversary cannot re-identify victims from well 

generalized microdata with high confidence. Generalization hierarchies are needed to 

conduct a generalization. Examples of generalization hierarchies are shown in Fig. 1.

In 1:M data publishing, two kinds of generalization mechanisms can be utilized: relational 

generalization [9] and transaction (or set-valued data) generalization [29]. These two kinds 

of generalization are quite different in nature [5]. In relational generalization, different 

relational values are generalized by their lowest common ancestor on a relational 

generalization hierarchy, as shown in Fig. 2(a). In Table 1(b), Bob’s age value 18 and 

David’s age value 14 are generalized to interval [11, 20], which covers both Bob and 

David’s age. So the adversary cannot identify David’s record even if he knew David is 14 

years old. On the other hand, each generalization of different transaction sets is based on 

lowest common cut on a transaction generalization hierarchy, as shown in Fig. 2(b). This 

common cut will cover all values in the transaction sets. For example, we can generalize < 

a1, a2, b2 > and < a2, b2 > to < A, b2 >. In this case, < A, b2 > covers all values involved in 

this generalization, i.e., A covers a1 and a2, and b2 covers b2. In this paper, we will try to 

incorporate two generalization mechanisms into one algorithm to achieve privacy protection.

4. Anonymization algorithm

Existing anonymization algorithms are largely partition methodologies on microdata. 

Typically, a data partition is performed only once based on either QID or SA attributes. 

However, the one-time partition may be insufficient for 1:M dataset, because both SA and 

QID parts may leak privacy information. Therefore, we perform data partition twice in our 

proposed algorithm. However, directly applying different algorithms on EC and SAFB will 

not achieve anonymity on both SA and QID attributes, because the realization on one 

algorithm may affect the other. Specially, we find that different anonymization orders lead to 

different results. If we perform SA anonymization after QID generalization, the later 

operation may violate l-diversity requirement. In contrast, if we perform SA anonymization 

before QID generalization, the diversity will be preserved. Therefore, we perform SA 

anonymization first, followed by QID generalization. Algorithm 1 provides an outline of 

1:M-Generalization procedure. We use the Partition [29] for SA anonymization and the 

Mondrian [18] for QID generalization. Both algorithms are designed in a top-down manner, 

and can be implemented straightforwardly. They can be replaced by more powerful 

algorithms, e.g., TopDown [19], Hilb and iDist [20], with limited modification. The main 

phases of 1:M-generalization are as follows:

Algorithm 1

1:M-generalization.

Input: T, k and l

Output: T*

1:M-Generalization (T)
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// step 1

T′ ← Transform T into 1:1 dataset ;

// step 2

IT ← Partition(T′, k) ;

// step 3

T* ← Mondrian(IT, l) ;

return T* ;

Step 1: Transformation. We first transform 1:M microdata to 1:1 microdata. This 

transformation is essential for handling the privacy disclosure in Problem 1. After this 

transformation, we can use existing algorithms and models for 1:1 datasets to solve the 

remaining problems.

Step 2: SA fingerprint anonymization. As show in Section 3, transaction (SA fingerprint) 

generalization is somewhat different from relational (QID) anonymization. First, the set-

valued data is usually high-dimensional. Second, only one generalization hierarchy is 

involved during anonymization. To anonymize SA fingerprint, we apply a local recoding, 

top-down anonymization algorithm called Partition [29]. To our knowledge, Partition is 

perhaps the fastest algorithm for set-valued data publishing. It can anonymize set-valued 

dataset with high efficiency, while minimizing set-valued information loss. Algorithm 2 

shows the pseudocode for Partition. After some modification, Partition can efficiently group 

records in k-sized groups based on the SA fingerprints similarity. Then, we anonymize 

records in each group using transaction generalization. After generalization, each group 

becomes a SAFB, where each record is indistinguishable from at least k − 1 records on SA 

fingerprint, satisfying constraint 1 of (k, l)-diversity.

Algorithm 2

Partition for SA fingerprint.

Partition(partition, k)

if partition cannot be split then

Add partition to global return @@list ;

else

// pick a node with max information gain

splitNode ← pick_node(partition);

// distribute records to subPartitions

subPartitions ← distribute_data(partition, splitNode);

// handle subPartitions with less than k records

balance_partitions(subPartitions) ;

for subPartition in subPartitions do

Partition(subPartition, k) ;
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Step 3: QID anonymization and SA diversity. After Step 2, both Problem 1 and Problem 2 

have been addressed. But the dataset may still be subject to homogeneity attack and 

background knowledge attack, caused by lack of diversity in EC. In this step, we anonymize 

QID to satisfy constrains 2 of (k, l)-diversity by applying the Mondrian algorithm on IT. 

Mondrian is a widely used algorithm in relational data anonymization. It can anonymize 

QID effectively in a top-down manner. Algorithm 3 shows the pseudocode for Mondrian. 

Note that in our Mondrian implementation we check allowable split on SA fingerprints 

rather than on SA values, such that all subPartitions in our algorithms satisfy l-diversity on 

1:M during anonymization. So after Step 3, each EC contains at least l ‘well-represented’ 

SA fingerprints, making homogeneity attack and background knowledge attack ineffective.

Let n be the number of individuals in T and c(1 ≤ c < <n) be the average number of 

occurrences for each individual. So cn is the total number of records in T. Note that if c = 1, 

then T is a 1:1 dataset. During transformation, we need to traverse all tuples in T, so the time 

complexity of Step 1 is O(cn). In Step 2, each iteration of the Partition is at least a recursive 

binary partition on existing partitioned data, and the size of the root is n. In worst case, the 

partition depth is n/k, where each iteration produce two groups with (n − k) and k records in 

O(n − ck) running time. So the worst-case running time of Step 2 is O(n2/k). In balanced 

scenario, the partition depth is nearly logn, where each iteration is an even binary split on 

current partition. In this case, the running time of Step 2 is O(nlogn). Step 3 is much faster. 

According to [18], the time complexity of Step 3 is O(nlogn). So the expected running time 

of 1:M-generalization is O(nlogn) or O(n2/k) in the worst case. Later in Section 5, we can 

see that the actual performance of 1:M-generalization is nearly linear on real-world datasets.

Algorithm 3

Mondrian for 1:M data.

Mondrian(partition, l)

if partition cannot be split then

Add partition to global return list ;

else

/* choose the attribute with the widest (normalized) range 
of values

*/

dim ← Choose_Attribute(partition) ;

if dim is numeric then

threshold ← Choose_Threshold(partition, dim);

lhs ← {t ∈ partition: t[dim] ≤ threshold} ;

rhs ← {t ∈ partition: t [dim] > threshold} ;

subPartition ← {lhs} ∪ {rhs} ;

else

splitNode ← split(partition, dim);

subPartitions ← distribute_data(partition,
splitNode);

for subPartition in subPartitions do
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Mondrian(subPartition, l) ;

Lemma 3

After Step 2, the intermediate table IT satisfies constraint 1 of (k, l)-diversity.

Proof—According to [29], the Partition algorithm in Step 2 will generate an intermediate 

table IT, in which each partition (SAFB) contains at least k different individuals, satisfying 

constraint 1 of (k, l)-diversity.

Lemma 4

After Step 3, the table T* satisfies constraint 2 of (k, l)-diversity.

Proof—As mentioned earlier, our Mondrian implementation ensures that all subPartitions 

satisfy l-diversity for 1:M dataset during anonymization. So after Step 3, each EC contains at 

least l ‘well-represented’ SA fingerprints, satisfying constraint 2 of (k, l)-diversity.

Theorem 2

Microdata anonymized by 1:M-generalization satisfies (k, l)-diversity.

Proof—As we have proven in Lemmas 3 and 4, T* satisfies constraint 1 and 2 of (k, l)-
diversity after Step 2 and 3. Meanwhile, the two algorithms will not affect each. So 

microdata anonymized by 1:M-generalization satisfies (k, l)-diversity.

In Fig. 3, we show how the illustrative example in Table 1(a) is anonymized using the 

proposed 1:M-Generalization. The original dataset T is first transformed to T′, which 

satisfies 1:1 requirement. Then in step 2, T′ is transformed to IT by the Partition algorithm, 

using SA fingerprint generalization. According to Lemma 3, IT satisfies k-anonymity for SA 

fingerprint, but does not satisfies (k, l)-diversity. For example, when an adversary knows 

Bob’s SA fingerprint or its fragment, he cannot re-identify Bob from IT with a probability 

higher than 1/k. But if an adversary knows Bob’s QID values, i.e., < 18, M, 12,000 >, he can 

re-identify Bob with 100% confidence. That is, the Partition algorithm alone cannot ensure 

privacy during 1:M data publishing. So in the final step, IT is further generalized to T* by 

the Mondrian algorithm, as shown in Fig. 3(d) (same as Table 2(b)). Following the result of 

Lemma 4, T* satisfies (k, l)-diversity. That is, any individual in T* cannot be uniquely re-

identified using SA or QID values.

5. Experiments and analysis

In this section, we evaluate our approach in terms of data utility and computational 

efficiency. Specifically, we measure anonymized data quality and execution time to compare 

1:M-generalization with RMR (RMERGER) from [7]. According to Section 2, RMR is an 

alternative approach anonymize data in 1:M settings, although it is originally developed for 

(k, km)-anonymous. Both of the algorithms are implemented in Python3.
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We used two real-world datasets, called the INFORMS4 and Youtube5 datasets, for the 

experiments. Both datasets have been used in related works [7,31]. The entire Youtube 

dataset is too large for RMR, so we chose a subset of Youtube that contains 85,607 records 

with 117,752 videos. We configured both datasets in the same way as in [7]. During pre-

processing, we removed the duplicate SA values and records with missing values. The 

characteristics of the datasets are shown in Table 3. We choose k = 10, and l = 5 as the 

default parameters, and set δ = 0.65 and m = 2 for RMR.

One of the challenges for experimental evaluation is to create generalization hierarchies for 

the dataset, especially for the SA attribute, i.e., diagnosis codes and related_videos. We 

followed the idea from [29] and constructed an evenly distributed generalization hierarchy. 

We built income and disease hierarchies with node fan-out f = 5, where the node fan-out 

indicates how many items are generalized from one level to its parent level in the hierarchy 

tree. All experiments were run on a HP ProLiant DL580 G5 with 16 GB memory running 

Linux (Ubuntu Core 13.04).

5.1. Information loss and data utility

To measure the information loss caused by anonymization, we used NCP (Normalized 

Certainty Penalty) [19]. Specifically, we used two kinds of NCP to measure information loss 

on QID and SA.

Let ν be a value of attribute A in table T. The basic NCP is defined as

(1)

where |ν| is the number of leaf nodes covered by ν corresponding to generalization 

hierarchies and |A| is the total number of leaf nodes in attribute A. The value range of NCP 

is from 0 to 1. The value 0 means no distortion, whereas 1 means the values is generalized to 

the root of generalization hierarchy. Considering record 1 in Table 2(b), for example, when 

b2 is generalized to B, the information loss is NCP(B) = 2/6 = 1/3. Similarly, when age value 

18 is generalized to [16,20]6, the information loss is NCP ([16, 20]) = 5/100 = 5%.

To measure information loss in QID values, let t be a record in T, where ti denote the ith 

records in T. Let t[1], t[2], …, t[d] be the QID values of t. QID–NCP is defined as

(2)

3Source code of 1:M_Generalization and RMR
4https://sites.google.com/site/informsdataminingcontest
5http://netsg.cs.sfu.ca/youtubedata/
6We assume age range is [1,100], and zip code range is [10001,30000].
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(3)

where n is the number of records in T. So the QID–NCP of Table 2(b) is (3 * (10/100 

+ 5000/30000) + 3 * (10/100 + 5000/30000))/6 = 26.67%.

Different from QID–NCP, information loss in SA values is specified in terms of the SA 

fingerprint in t, denoted as t[d + 1]. Let p be a SA value in t[d + 1]. SA–NCP is defined as

(4)

where C(t[d + 1]) is the number of distinct SA values in SA fingerprint. So the SA-NCP of 

Table 2(b) is (2/6 + 2/6 + 2/6 + 2/6 + 2/6 + 2/6)/10 = 20%.

We compute QID–NCP and SA–NCP with varying parameters, and present the results in 

Figs. 4, 5 and 6. Note that in all test cases, QID-NCP of RMR is almost 65%. This is 

because we set δ = 0.65. RMR sacrifices QID-NCP to achieve better SA–NCP. By setting δ, 

RMR will merge clusters until the QID–NCP is larger than δ. We set δ = 0.65, because only 

in this value SA–NCP of RMR is comparable to 1:M-generalization. Otherwise, the RMR’s 

SA–NCP will be much higher.

As shown in Fig. 4, 1:M-generalization preserves more utility than RMR on both QID and 

SA, when l = 5 and l = 10. We can observe the sharp increase of information loss from k = 

10 to k = 100 for RMR. That is because RMR enforces both privacy models on EC, which 

greatly reduces the utility of each EC. So when k increases, RMR need to distort more 

information on QID and SA to achieve anonymity. Specially, when QID–NCP of each 

cluster increases, less group merging will be performed, which further causes SA–NCP to 

increase. So SA–NCP of RMR increases quickly when k increases. Conversely, 1:M-

generalization enforces k-anonymity on the whole table, and enforces l-diversity on each 

EC, which greatly increases the data utility. Note that both QID–NCP and SA–NCP of 1:M-

generalization are sensitive to k. As k increases, both QID–NCP and SA–NCP of 1:M-

generalization increase gradually. To explain this, recall that SA values are anonymized by 

the Partition algorithm, which is sensitive to k. When k increases, Partition needs to distort 

more information to achieve k-anonymity on SA fingerprint, which increases SA-NCP. For 

the Mondrian algorithm, a larger k implies fewer SAFBs after Step 2, which reduces the 

diversity on SA fingerprint, making it harder to achieve l-diversity. It is clear from Fig. 4 that 

RMR will distort more information on QID when k increases. In Fig. 4(a) and (c), we can 

observe that a larger l will increase the QID–NCP of 1:M-generalization. This is because a 

larger l requires a larger size for each EC, which increases information loss. The SA–NCP 

values do not depend on l because Partition is unrelated to l and Mondrian does not change 

SA values. So, the results of 1M:-generalization for l = 5 and l = 10 are the same in Fig. 4(b) 

and (d).
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Note that RMR does not contain parameter l. So in Fig. 5, the curve of RMR is stable. We 

can see that 1:M-generalization preserve more utility than RMR on INFORMS and Youtube 

datasets, even when k = 50. Different from k, only QID–NCP is sensitive to l. Because 

Partition is unrelated to l, and Mondrian does not change SA fingerprint values during 

anonymization, the SA–NCP result does not change while varying l. On the other hand, QID 

values with Mondrian are directly relevant to l. A larger l requires a larger size for each EC, 

which implies a higher level of generalization for QID values. So QID–NCP increases when 

l grows. Note that QID–NCP of 1:M-generalization may be higher than RMR, if l is much 

larger than k (e.g., l ≥ 15, k = 10). But in that case, the privacy guarantee of 1:M-

generalization is much higher than RMR, because l-diversity requirement provides better 

protection than k-anonymity requirement, when l is larger than k. Meanwhile, both QID–

NCP and SA–NCP of 1:M-generalization will increase slightly when k increases.

To evaluate if data utility is sensitive to the size of datasets (n), we generated a series of 

subsets of the data by randomly sampling 5K, 10K, …, ALL records from the full dataset. 

For each size, we generated 10 sample sets using different random number seeds. We then 

ran both algorithms with default parameters. The final result is the average of the results 

from the 10 sample sets. As shown in Fig. 6, 1:M-generalization outperforms RMR on all 

datasets, especially on QID–NCP. Note that the SA–NCP of RMR reduces quickly when the 

size of a dataset increases. This is because a larger dataset makes RMR easier to satisfy (k, 
km)-anonymous, which reduces both QID-NCP and SA–NCP. Specially, a small QID–NCP 

on clusters allows more group merging, which further reduces SA–NCP. On the other hand, 

both QID–NCP and SA–NCP of 1:M-generalization is reduced gradually when the size of 

dataset grows. As both Partition and Mondrian is sensitive to dataset size, a larger dataset 

makes SAFBs and ECs easier to reach k-anonymity for SA fingerprint and l-diversity for 

1:M dataset, resulting in smaller information loss.

5.2. Efficiency

We evaluate the efficiency by the total execution time of 1:M-generalization (excluding the 

pre-processing). Specifically, we ran both algorithms with varying datasets, k and l. The 

results are shown in Fig. 7. It is clear that 1:M-generalization is more efficient than RMR. 

The average execution time of 1:M-generalization is less than 30 s, while RMR is up to 1 h. 

As shown in Fig. 7(a) and (d), the total execution time of 1:M-generalization reduce slightly 

when k grows. This is because a larger k implies fewer splits during Partition, which reduces 

the running time of step 2. On the other hand, running time does not appear to change much 

with parameter l, as shown in Fig. 7(b) and (e). A possible explanation is that a larger l 
reduces the split level of Mondrian, but also increases the running time of checking if EC 

satisfies l-diversity. The most apparent change on running time is observed when varying the 

size of dataset, as shown in Fig. 7(c) and (f). The running time grows about linearly with 

increased volumes of data, which is expected because the average running time of the 1:M-

generalization is O(nlogn).
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6. Conclusion and further study

This paper presents a study on privacy preserving data publishing for 1:M microdata. We 

propose a new privacy model named (k, l)-diversity to address this problem. Based on this 

model, we develop an algorithm called 1:M-generalization for anonymization, and compare 

it with alternative approaches. Extensive experiments with real-world datasets show that our 

approach outperforms the state-of-the-art both in terms of execution time and information 

loss.

This work also initiates several directions for future work. Recall that we have focused on 

the case where there is a single sensitive attribute. Extending our work to multiple sensitive 

attributes is a challenging topic. Furthermore, in this paper, we have considered only 1:M 

microdata that all records of the same individual share the same QID values. In practice, 

QID values of some records may be changed, forming a strong QID fingerprint, e.g., < 18, 

M, < single, married >, 21, 000 >, which needs to be carefully anonymized. Extending our 

work to such a scenario is an exciting topic.
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Fig. 1. 
Generalization hierarchies.
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Fig. 2. 
Relational generalization vs. transaction generalization.
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Fig. 3. 
Anonymization 1:M dataset using 1:M-generalization.
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Fig. 4. 
Information loss when varying k.
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Fig. 5. 
Information loss when varying l.
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Fig. 6. 
Information loss when varying n.
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Fig. 7. 
Execution time.
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Table 3

Description of the datasets.

Dataset n QID SA SA Domain

INFORMS 58,568 Month of birth Diagnosis codes 632

Year of birth

Race

Years of education

Income

Youtube 85,607 Age related_videos 117,752

Category

Length

Rate

Ratings

Comments
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