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Abstract- In Dempster-Shafer evidence theory (DST) based classifier design, Dempster’s 

combination (DC) rule is commonly used as a multi-attribute classifier to combine evidence 

collected from different attributes. The main aim of this paper is to present a classification method 

using a novel combination rule i.e., the evidence reasoning (ER) rule. As an improvement of the 

DC rule, the newly proposed ER rule defines the reliability and weight of evidence. The former 

indicates the ability of attribute or its evidence to provide correct assessment for classification 

problem, and the latter reflects the relative important of evidence in comparison with other 

evidence when they need to be combined. The ER rule-based classification procedure is expatiated 

from evidence acquisition and estimation of evidence reliability and weight to combination of 

evidence. It is a purely data-driven approach without making any assumptions about the 

relationships between attributes and class memberships, and the specific statistic distributions of 

attribute data. Experiential results on five popular benchmark databases taken from University of 

California Irvine (UCI) machine learning database show high classification accuracy that is 

competitive with other classical and mainstream classifiers. 

 
Keyword- Date classification, Dempster-Shafer evidence theory (DST), Evidential reasoning (ER) 

rule, Reliability and weight of evidence, Sequential linear programming (SLP) 

 

1. Introduction 

Classification problem is one of the most important issues in data mining and 

knowledge discovery [1]. Its purpose is to fall a sample with unknown class into a 

basket with a label of specific class where an appropriate classifier should be used to 

analyze the attributes of this sample. Classification are fundamental to many 

theoretical and practical applications, including pattern recognition [2-4], fault 

diagnosis [5-7], and image processing[8-10], etc. Many well-known methods have 

been proposed to solve classification problems, including k nearest neighbors (k-NN) 

[11], support vector machine [12], naive Bayes [13], Bayes net [14], decision tree 

learner [15], random forest [16], and other latest techniques, such as gravitational 

inspired classifier [17], feature vector graph-based classifier [18], and Learning 

Automata(LA)-based classifier[19] , and so on. 

From the perspective of uncertain information processing, the imprecision or even 

incorrectness of classification results is likely to be caused by the fact that the values 

of attributes of a sample cannot categorically point to a certain class, that is to say, the 

boundaries of attributes among different classes are commonly imprecise, or even 

overlapping[20-22]. As a result, Dempster-Shafer evidence theory (DST) can provide 

an available mechanism to deal with the classification imprecision. In detail, a frame 

of discernment (FoD) needs to be firstly determined which includes all preassigned 

class memberships. The next step is to obtain a basic belief assignment (BBA), i.e., a 

belief distribution (BD) function, in which the belief degrees are used to measure the 

extents to which the attributes of a sample supports each class and the subsets of the 
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classes. Such a BBA or a BD can be also named as a piece of evidence. There are 

different ways for generating BBAs from different types of attribute information. The 

typical ways include core sample [20], neural network
 
[21], k-NN [22], expert system 

[23]
 
and so on. The final step is to use Dempster’s combination (DC) rule to fuse 

these BBAs and then make a classification decision according to the fused results. 

The aim of combination is to reduce the classification imprecision by fusing 

multi-source attribute information. 

Recently, the evidential reasoning (ER) rule has been established to advance the 

seminal Dempster-Shafer evidence theory [24-28] and the original ER algorithm 

[29-32]. Compared with the DC rule, the main advance of the ER rule is to propose a 

novel concept of weighted evidence (WE) and extend to WE with Reliability (WER) 

in order to characterize evidence in complement of BBA or BD introduced in the DST. 

As a result, the implementation of the orthogonal sum operation on WEs and WERs 

leads to the establishment of the new ER rule [33]. The most important property of the 

ER rule is that it constitutes a generic conjunctive probabilistic reasoning process, or a 

generalized Bayesian inference process which can be implemented on the power set 

of FoD. It has been proved that (1) the DC rule is a special case of the ER rule when 

each piece of evidence is fully reliable, and (2) the original ER algorithm is also a 

special case when the weights of all pieces of evidence being normalized are equal to 

their respective reliabilities [33]. The evidence reasoning procedure consists of the 

belief structure for modelling various types of uncertainty [34-35], the rule and utility 

based information transformation techniques [30], and the ER algorithm for 

information aggregation [31], etc. In the past twenty years, the ER algorithm has been 

widely applied to many system and decision analysis problems as surveyed by Xu 

[35]. Furthermore, the ER algorithm has been introduced to extend traditional If-Then 

rule based systems to belief rule based (BRB) systems [28]. The BRB methodology 

employs the informative belief structure to represent various types of information and 

knowledge with uncertainties and shows the capability of approximating any linear 

and nonlinear relationships across a wide variety of application areas. Recently, the 

BRB also have been applied for solving classification problem in [36-38]. However, a 

problem of BRB is the high multiplicative complexity on the number of referential 

values of attributes in the belief rule base [28].   

Given that the ER rule has explicitly generalised the DST and the original ER 

algorithm, it becomes perfectly logical and also extremely important to revisit and 

further extend those techniques which were previously developed from the latter two 

methods. This paper presents a novel classification method using the ER rule. In 

detail, the likelihoods of class membership for the referential values of each attribute 

can be calculated by statistical analysis on training samples with known classes, and 

then the evidence for each attribute can be acquired by the normalization of 

likelihoods; the reliability of evidence can be estimated by analyzing the classifying 

ability of each attribute; an optimization model using sequential linear programming 

(SLP) is proposed to obtain the optimal weight and referential values of each attribute; 

finally, the ER rule is used to combine the pieces of evidence provided by all 

attributes of a sample and then make a classification decision according to the fused 
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results. 

The rest of the paper is organised as follows: Section 2 briefly introduces the 

concepts and properties of the ER rule. Section 3 details the ER rule-based 

classification method. In Section 4, an experiment on the well-known Iris database 

shows the specific procedure of the proposed method, and then it is compared with 

other six classical classifiers to demonstrate its superiority by using five popular 

benchmark databases taken from University of California Irvine (UCI) machine 

learning database. Some concluding remarks are presented in Section 5. 

2. Outline of the ER rule 

In this section, the ER rule [33,39] is briefly introduced. Suppose Θ={h1,h2,…,hN} 

is a set of mutually exclusive and collectively exhaustive hypotheses. Θ is referred to 

as a frame of discernment. The power set of Θ consists of all its subsets, denoted by 

P(Θ) or 2
Θ
. A piece of evidence is profiled by a belief distribution as follows 

, ,{( , ) | , 1}j j je p p


    
                    (1) 

where (θ,pθ,j) is an element of evidence ej, representing that the evidence points to 

proposition θ with the degree of pθ,j referred to as probability or degree of belief in 

general. θ can be any subset of Θ or any element of P(Θ) except for the empty set. 

(θ,pθ,j) is referred to as a focal element of ej if pθ,j＞0. 

In the ER rule, reliability rj and weight wj of evidence ej are defined. Reliability rj 

represents the ability of the information source, where ej is generated, to provide 

correct assessment or solution for a given problem. The reliability of a piece of 

evidence is the inherent property of the evidence. The weight wj of evidence can be 

used to reflect its relative importance in comparison with other evidence and 

determined according to who uses the evidence. This means that weight wj can be 

subjective and different from reliability rj in situations where different pieces of 

evidence are generated from different sources and measured in different ways. A 

so-called weighted belief distribution with reliability can be defined as follows 

, ( ),{( , ) | ;( ( ), )}j j P jm m P m                      (2) 

where , jm  measures the degree of support for θ from ej with both the weight and 

reliability of ej taken into account, defined as follow 

, , ,

,

0

       ,  

(1 ) ( )

j rw j j

rw j j

m c m

c r P

 


   
   

 



 



                 (3) 

where , ,j j jm w p  , , =1/ (1 )rw j j jc w r   is a normalization factor, which is uniquely 

determined to satisfy , ( ), 1j P jm m 
  

 given that , 1jp


 
. Compared 

with Shafer’s discounting method, the critical difference is that in the ER rule, the 

degree of residual support (1-rj) defined as the unreliability of evidence is earmarked 

to the power set for redistribution instead of assigning it specifically to the frame of 

discernment. That is because , jp is the inner characteristics of ej, so it should be 

equally discounted by ,rw jc  as the other propositions θ. ej and mj will keep the same 

probability characteristics according to this operation. Based on the above definition, 

the degree of residual support of a piece of evidence reflects the unreliability of the 

evidence.  

If two pieces of evidences e1 and e2 are independent, the combined degree of 
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belief to which e1 and e2 jointly support proposition θ, denoted by pθ,e(2), can be 

generated by the ER fusion rule as follows 

, (2), (2)

, (2)

, (2) 2 ,1 1 ,2 ,1 ,2

0

ˆ
,

ˆ

ˆ [(1 ) (1 ) ]

ee

D eD

e B C

B C

mp

m

m r m r m m m



 




    



       







  




 



       (4) 

The recursive formulae of the ER rule to combine multiple pieces of evidence in any 

order are also given in [33], where it is proven that Dempster’s rule is a special case 

of the above ER rule when each piece of evidence ej in question is assumed to be fully 

reliable, or rj=1 for all j. 

3. The data-driven ER methodology for Data Classification  

This section aims to develop an ER-based classifier for such an N-class 

classification problem, where a sample data set including K samples can be identified 

by M attributes 
1 2{ , ,..., }Mx x xx . This sample set has to be classified in Θ={y1,y2,..., 

yn,…, yN}, yn is the n
th

 class membership. The inputs of the ER-based classifier are the 

M attributes of a sample, and the output is the estimated class membership which this 

sample belongs to. The detailed modelling and estimating procedure is described as 

follows. 

3.1 Acquiring evidence from the attribute data 

Our previous work [39] explored the relationship between Bayes’ rule in 

statistical inference and the ER rule for conjunctive combination of independent 

evidence, and found that the normalisation of likelihoods in Bayesian paradigm 

results in the equivalent evidence in the ER paradigm with the evidential meaning of 

data kept intact in the process. Here, we use the normalisation of likelihoods to 

acquire the evidence from the training sample set  

S={[x
k
,yk]| 1( ,..., ,..., )k k k k

i Mx x xx ,
k

i ix S ,ykΘ, k=1, 2,…,Ks} 

here, Ks≤K, iS  is the value domain of xi. 

Firstly, the relationship between attribute xi and class y needs to be 

approximatively transformed into the relationships between the referential values 

Ai={
i

jA |j=1,…,Ji} of xi and class y. Here, as adjustable parameters, the initial values 

of 
i

jA  can be given according to expert knowledge or random rule without any prior 

knowledge, and subsequently trained using sample data under a certain optimization 

target; secondly, for a specific value k

ix , its similarity distribution ( )k

I iS x  about the 

referential values Ai can be generated by the following information transformation 

technique [30]: 

,( ) {( , ) | 1,..., ; 1,..., }k i

I i j i j iS x A j J i M                 (5a) 
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where 

1

, , 1 , 1

1

, 1

i k

j i i k i

i j i j i j j i ji i

j j

A x
A x A

A A



 




    


              (5b) 

, ' 0 ' 1,..., , ' , 1i j ij J j j j                   (5c) 

,i j  represents the similarity degree to which k

ix  matches the referential value 
i

jA . 

Hence, a sample pair ( k

ix ,yk) in the set S can be transformed and uniquely 

represented as a similarity distribution
, , 1( , )i j i j   for the class yk. Table 1 shows the 

statistical result of casting all sample pairs in S in the form of the similarity degree. 

Here, an,j is the sum of the similarity degrees of the sample pairs whose attribute 

values, e.g. 
k

ix , match the referential value 
i

jA  and also belong to the class yn. 

,1
=

iJ

n n jj
a

  is the sum of the similarity degrees of the sample pairs that belong to 

class yn. ,1
=

N

j n jn
a

  is the sum of the similarity degrees of the sample pairs whose 

attribute values, e.g. 
k

ix , match 
i

jA . Obviously, 
1 1

iN J

n sn j j
δ η K

 
   . 

 

Table 1 The casting result of sample pairs (xi, y) on attribute xi 

yk       xi 1

iA  … 
i

jA  … 
i

i

JA  Total 

y1 1,1a  … 1, ja  … 1, iJa  1
 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

yn ,1na  … ,n ja  … , in Ja  
n

 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

yN ,1Na  … ,N ja  … , iN Ja  
N

 

Total cast 1  … j
 

… 
iJ
 

Ks
 

 

According to Table1, we can construct the likelihood (denoted as cn,j ) to which xi is 

identified as 
i

jA  given the known class yn as follows: 

,

, ( | )
n ji

n j j n

n

a
c p A y


                             (6) 

Thereupon, a piece of evidence 
i

je  with the weight 
i

jw
 
corresponding to 

i

jA  can be 

defined as shown in Table 2. 
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Table 2 The belief matrix of the input attribute xi 

xi 

yk
 1

ie  … 
i

je
 

… 
i

i

Je
 

1

iA  … 
i

jA  … 
i

i

JA  

y1 1,1

iβ  … 1,

i

jβ  … , i

i

i Jβ  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

yn ,1

i

nβ  … ,

i

n jβ  … , i

i

n Jβ  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

yN ,1

i

Nβ  … ,

i

N jβ  … , i

i

N Jβ  

In Table 2, the degree of belief ,

i

n jβ  about 
i

je  can be calculated by the normalization 

of likelihoods c1,j, c2,j,…, cN,j 

,

,

,1

n ji

n j N

k jk

c
β

c





                            (7) 

More precisely, ,

i

n jβ  is the probability that a sample is believed to belong to the class 

yn given that the input attribute xi takes the referential value
i

jA . Thus, Table 2 can be 

regarded as a belief matrix for characterizing the relationship between the attribute xi 

and the class yn . 

3.2 Evaluating the reliability of evidence 

The reliability of evidence represents the classifying ability of its corresponding 

attributes. Apparently, the more reliable the attribute xi is, the more samples can be 

classified by it individually. That is to say, there are not or few overlaps among the 

intervals of the attribute values for the different class memberships. Hence, the 

reliability of information source xi can be defined as follows 

, {1,2,.., }
max ( )

i
i

l
l l M

Q
r

Q


                            (8) 

where Qi is the number of such samples that can be directly identified as a specific 

class by the attribute xi. Equation (8) implies that if 
, {1,2,..., }

max ( )l i
l l M

Q Q


  then xi is the 

most reliable attribute (ri=1). The reliabilities of the other attributes are measured by 

comparing with the most reliable one.  

The calculation of the reliability can be demonstrated by a typical three-class 

case as shown in Fig.1. Here, the maximum and minimum values of the attribute xi for 

the classes Cs (s=1, 2, 3) need to be determined as max
s
 and min

s
 respectively by 

sample statistics, and then these boundary points divide the value domain of xi into 

three single-class intervals ([min
1
, min

2
] for C1, [max

1
, min

3
] for C2, [max

2
, max

3
] for 

C3) and two double-class overlapping intervals ([min
2
, max

1
] for C1&C2, [min

3
,max

2
] 

for C2&C3). If the number of samples in the five intervals are q1, q2, q3 and o1, o2 
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respectively, then Q=q1+q2+q3 for the attribute xi. It means that the Q samples can be 

clearly identified by xi, but O=o1+o2 samples are confused and hardly classified by xi 

only. 

min1

x

class

class 3

class 2

class 1

o1 for C1 and C2

q1 for C1

q2 for C2

o2 for C2 

and C3 q3 for C3

min2 max1 min3 max2 max3

 

Fig. 1. The distribution of samples about a typical three-class case for the attribute x 

3.3 Combination of activated evidence  

For a certain sample with M attribute values 1( ,..., ,..., )k k k k

i Mx x xx , k

ix  of kx  

will activate the adjacent two pieces of evidence 
i

je  with the weight i

jw  and 1

i

je   

with the weight 1

i

jw   
if 

k

ix  takes value in interval [ 1,i i

j jA A  ]. Thus, the piece of 

evidence ei of 
k

ix  with the belief degree pn,i can be calculated as the weighted sum of 

1,i i

j je e   

 ei={(yn,pn,i),n=1,...,N}                          (9) 

, , , , 1 , 1

i i

n i i j n j i j n jp α β α β                         (10) 

here, pn,i denotes the belief degree to which the class is believed to be yn given that 

k

ix  activates 
i

je  and 1

i

je  . Accordingly, in the same way, the weight wi of ei can be 

similarly calculated as the weighted sum of 1,i i

j jw w   

, , 1 1

i i

i i j j i j jw α w α w                              (11) 

After obtaining all M pieces of evidence e1,e2,...,eM about M attribute values by 

Equations (9) and (10), we can use the ER rule in Equation (4) to combine them with 

weights and reliabilities to yield the following fused result  
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, ( )( ) {( , ), 1,..., }k

n n e MO y p n N x                   (12) 

The initial weight 
i

jw  of 
i

je  can be set as its reliability ri, because it is believed 

that the evidence with high reliability should be of relatively high importance in 

comparison to other evidence. Of course, it needs to be trained through data-driven 

optimization method which will be discussed in the following section. According to 

the fused result O(x
k
), we can estimate that the sample x

k
 belongs to such class that 

has the maximum degree of belief.  

As a result, the initial ER rule-based classifier is constructed by the above three 

subsections. 

3.4 Training of ER-based classifier parameters using SLP 

3.4.1 Optimization model for the ER-based classifier 

So far, we have constructed the ER rule-based classifier with the initial 

parameters including the attribute referential values Ai={
i

jA |j=1,…,Ji} and the 

weights W={
i

jw |i=1,..,M; j=1,…,Ji}. However, the initial ER-based classifier may not 

accurately model the complex causal relationship between the attribute xi (i=1,..,M) 

and the actual classes due to the assumed initial values of the above parameters. 

Therefore, it is extremely important to train these parameters using sample dataset S 

so that the performance of the classifier can be improved. Here, an optimization 

model based on mean squared error (MSE) is presented as 

min ( )ξP P                           (13a) 

Here, the objective function 

1
( ) ( ( ), )

sT k k

Ek
ξ d O V


P x

 
                 (13b) 

P={
i

jA  ,
i

jw | i=1,...,M; j =2,...,Ji-1; j=1,...,Ji} stands for the parameters to be 

optimized, the remaining parameters 1

iA  and 
i

i

JA are given as
,
min ( )

xi

k

i
k k S

x


, 

,
max( )

xi

k

i
k k S

x


respectively, because they are all fixed boundary values. dE stands for the 

Euclidean distance between the fused result 1, ( ) 2, ( ) , ( )( ) ( , ,..., )k

e M e M N e MO p p px  (the 

belief vector form of Equation (12)) and the reference belief vector V
k
 with the 

categorical belief degree assigned to the class yk that x
k
 actually belongs to. For 

example, for a typical three-class case, if x
k
 actually points to y2, then the 

corresponding reference vectors is V
k
=(0,1,0). Equations (14a) and (14b) represent the 

bound constraints which the adjustable parameters need to satisfy 

0 1 , 1,..., , 1,...,i

j iw i M j J                       (14a) 

 1 1 , 2,..., 1i i i

j j j iA A A j J   
     (14b) 
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In the following section, the sequential linear programming (SLP) method will be 

introduced to solve this optimization problem. With the optimization of the 

parameters P, the belief matrix in Table 2 will also reach to optimal values. 
 

3.4.2 SLP for training parameters of the classifier 

SLP is initially known as a method of approximation programming [40]. It is 

also one of the easiest strategies for solving nonlinear optimization problems. The 

guiding principle of this strategy is to approximate a nonlinear program by a series of 

linear programs using first-order Taylor series expansions. 

The kernel of the SLP is the linear programming solver, which is easily available 

with the development of Simplex [41] and Interior-point methods [42]. The linearly 

approximated model is easily constructed since the required first-order derivatives can 

be easily obtained by using analytical methods or finite difference methods [43]. It 

avoids the complexity associated with deriving expressions for high-order derivatives. 

the advantage and disadvantage of the SLP are analyzed in detail in reference [44]. 

The main steps of the optimization process using SLP are outlined as follows: 

Step 1: Calculation of first-order gradients of optimization objective function. 

According to the optimization model of the ER classifier in Subsection 3.4.1, the 

first-order derivations of the objective function ( )ξ P  to the parameters Ai and wi 

need to be calculated respectively so that it can be linearized as follows 

0 0 0( ) ( ) ( )( )ξ ξ ξ  P P P P P                       (15) 

where P0 stands for a given initial point. Therefore, the nonlinear optimization 

problem min ( )P ξ P is converted into such a linear programming problem 

0min ( )P ξ P P . 

Step 2: Determination of move limits. 

The proper determination of move limits is critical for the successful 

implementation of the technique. The performance of SLP is very sensitive to the 

definition of proper move limits for all variables. Large move limits may cause 

inaccuracies and prevent convergence; on the other hand, small move limits may lead 

to a large number of iterations and excessive computational efforts. A variety of 

techniques have been proposed to define the move limits [45-49]. In the context of 

classification problems, a common way is adopted to determine the move limits [44]. 

Firstly, the upper bounds of adjustable parameters UB(P) can be acquired from 

Equations (14a)-(14b) as follows: 

( ) 1, 1,...,iUB w i M                            (16a) 

( ) , 1,...,
i

i i

j J iUB A A j J                        (16b) 

Then, the initial move limits are set to be 10% of the above upper bounds. 

Step 3: Acquisition of the optimal solution using linear programming. 

After the implementation of Step 1 and Step 2, the nonlinear objective function 

( )ξ P can be linearized at a given initial point P0, around the point, and a search 

space is established using the initial move limits of all variables. Therefore, linear 
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programming technology (such as Interior-point methods) can be adopted for this 

search process. If the intersection of the established search space and the linearized 

feasible space is empty, then the move limits need to be increased for expanding the 

search space. If the intersection is not empty, the optimal solution of the linearized 

programming problem will be searched. The obtained optimal solution is 

subsequently used as a new basic point to re-linearize the original nonlinear 

programming problem. The process is repeated recursively until some stopping 

criterion is satisfied. 

Step 4: Stopping criteria. 

The SLP iteration process will be stopped if a) the move limits of all variables 

have been reduced to be significantly small, or b) the values of both the variables and 

the objective function are not significantly different in two successive iterations. 

4. Experiments 

This section includes some experimental results to demonstrate the proposed 

method for pattern classification tasks. One representative example is firstly analyzed 

to show the specific implementing procedure of this classifier, followed by a 

comparison study with other well-known classifier using five popular benchmark 

databases. 

4.1 The ER-based classifier for Iris data classification 

 In this section, we conducted an experiment on the Iris dataset [50], which is a 

well-known benchmark dataset in pattern classification. The Iris data involve 

classification of three classes of the Iris flowers, namely, Iris Setosa (y1), Iris 

Versicolour (y2) and Iris Virginica (y3). Each class of Iris flowers has 50 samples with 

four attributes: sepal length (x1) in centimeter (cm), sepal width (x2) in cm, petal 

length (x3) in cm, and petal width (x4) in cm. 

 Firstly, 30 of 50 samples in each class are randomly selected to construct the 

training sample set S={[
k

ix ,yk]|
k

i ix S ,yk∈Θ, k=1, 2,…,Ks, Ks =90, i=1,...,4}, in 

which, S1=[4.3, 7.9], S2=[2, 4.4], S3=[1, 6.9], S4=[0.1, 2.5]; the remaining 60 samples 

are used to test. According to experiences, we initialize referential points A1={4, 5, 

5.5, 6.5, 7, 8} for x1, A2={2, 2.5, 3, 3.5, 4, 4.5} for x2, A3={1, 3, 4, 5, 6, 7} for x3, and 

A4={0, 0.5, 1, 1.5, 2, 2.5} for x4. For these training samples, the initial casting results 

and the belief matrixes can be acquired successively according to the information 

transformation technique and normalization of likelihoods respectively as introduced 

in Subsection 3.1. 

Secondly, the numbers of samples that can be directly identified by single 

attribute are calculated as P1=28, P2=7, P3=113, P4=112, and then the reliability 

evaluation method in Subsection 3.2 is used to calculate the reliability of the evidence 

provided by each attribute as r1=0.2478, r2=0.0619, r3=1, r4=0.9912, respectively. As 

for the weights 
i

jw  (i=1,..,4; j=1,...,Ji) of the evidence provided by xi , its initial 

values are given as 
i

jw =ri as it is believed that the evidence with high reliability 

should be of relatively high importance in comparison to other evidence before the 
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training of parameters. 

 Thirdly, for given attribute values of a sample from the training set S, its initial 

estimated class can be acquired by combining the activated evidence using the ER 

rule as described in Subsection 3.3. According to the MSE-based optimization method 

in Subsection 3.4, the optimal parameters P can be obtained by using the training 

samples. Furthermore, corresponding to these training samples, Tables 3-10 list the 

trained casting results and belief matrixes respectively for the four attributes. Table 11 

lists the trained evidence weights of the four attributes. 

Table 3 The trained casting result of the training sample pairs ( 1

kx ,yk) 

x1 

y 

1

1A
 

1

2A  
1

3A
 

1

4A  
1

5A
 

1

6A
 Total 

4 4.6401  5.6747  6.4684  7.1035  8 

1 1.4696  17.2586  11.05  0.2218  0 0 30 

2
 

0 2.1239  17.3805  9.037  1.4586  0 30 

3 0 0.821  7.7636  13.9708  5.3447  2.1  30 

Total 1.4696  20.2035  36.194  23.2295  6.8033  2.1  90 

 

Table 4 The trained casting result of the training sample pairs ( 2

kx ,yk) 

x2 

y 

2

1A
 

2

2A  
2

3A
 

2

4A  
2

5A
 

2

6A
 Total 

2 2.2992  2.8258  3.0674  3.4268  4.5 

1 0 0 1.8091  7.1467  16.0577  4.9866  30 

2
 

0.6632  6.2927  12.4621  8.8282  1.7539  0 30 

3 0 3.9635  12.9898  7.0892  5.1007  0.8569  30 

Total 0.6632  10.2561  27.261  23.064  22.9123  5.8434  90 

 

Table 5 The trained casting result of the training sample pairs ( 3

kx ,yk) 

x3 

y 

3

1A
 

3

2A  
3

3A
 

3

4A  
3

5A
 

3

6A
 Total 

1 2.6994  4.1406  5.0473  6.0123  7 

1 21.644  8.356  0 0 0 0 30 

2
 

0 3.2522  19.1192  7.574  0.0546  0 30 

3 0 0 1.5781  16.5446  10.611  1.2663  30 

Total 21.644  11.6081  20.6973  24.1186  10.6656  1.2663  90 

 

Table 6 The trained casting result of the training sample pairs ( 4

kx ,yk) 

x4 

y 

4

1A
 

4

2A  
4

3A
 

4

4A  
4

5A
 

4

6A
 Total 

0 0.3982  1.0733  1.5223  2.0049  2.5 

1 11.4421  18.0971  0.4607  0 0 0 30 

2
 

0 0.5428  13.74  14.4515  1.2657  0 30 

3 0 0 0.322  6.3992  16.7324  6.5464  30 

Total 11.4421  18.6399  14.5227  20.8507  17.9982  6.5464  90 

 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 12 / 18 

 

Table 7 The trained belief matrix of the attribute x1 

 

x1 
 

y 

1

1e
 

1

2e  
1

3e
 

1

4e  
1

5e
 

1

6e
 

1

1A
 

1

2A  
1

3A
 

1

4A  
1

5A
 

1

6A
 

4 4.6401  5.6747  6.4684  7.1035  8 

1 1 0.8542  0.3053  0.0095  0 0 

2
 

0 0.1051  0.4802  0.389  0.2144  0 

3 0 0.0406  0.2145  0.6014  0.7856  1 

Table 8 The trained belief matrix of the attribute x2 

 

x2 
 

y 

2

1e
 

2

2e  
2

3e
 

2

4e  
2

5e
 

2

6e
 

2

1A
 

2

2A  
2

3A
 

2

4A  
2

5A
 

2

6A
 

2 2.2992  2.8258  3.0674  3.4268  4.5 

1 0 0 0.0664  0.3099  0.7008  0.8534  

2
 

1 0.6136  0.4571  0.3828  0.0765  0 

3 0 0.3864  0.4765  0.3074  0.2226  0.1466  

Table 9 The trained belief matrix of the attribute x3 

 

x3 
 

y 

3

1e
 

3

2e  
3

3e
 

3

4e  
3

5e
 

3

6e
 

3

1A
 

3

2A  
3

3A
 

3

4A  
3

5A
 

3

6A
 

1 2.6994  4.1406  5.0473  6.0123  7 

1 1 0.7198  0 0 0 0 

2
 

0 0.2802  0.9238  0.3140  0.0051  0 

3 0 0 0.0762  0.686  0.9949  1 

Table 10 The trained belief matrix of the attribute x4 

 

x4 
 

y 

4

1e
 

4

2e  
4

3e
 

4

4e  
4

5e
 

4

6e
 

4

1A
 

4

2A  
4

3A
 

4

4A  
4

5A
 

4

6A
 

0 0.3982  1.0733  1.5223  2.0049  2.5 

1 1 0.9709  0.0317  0 0 0 

2
 

0 0.0291  0.9461  0.6931  0.0703  0 

3 0 0 0.0222  0.3069  0.9297  1 

Table 11 The trained evidence weights i

jw  of the attribute xi 

x1 

1

1w
 

1

2w  
1

3w
 

1

4w  
1

5w
 

1

6w
 

0.2473 0.2473 0.1983 0.1983 0.1983 0.1983 

x2 

2

1w
 

2

2w  
2

3w
 

2

4w  
2

5w
 

2

6w
 

0.0124 0.0124 0.0124 0.0614 0.0614 0.0124 

x3 

3

1w
 

3

2w  
3

3w
 

3

4w  
3

5w
 

3

6w
 

0.9995 1 0.9505 0.9505 0.9995 0.9995 

x4 

4

1w
 

4

2w  
4

3w
 

4

4w  
4

5w
 

4

6w
 

1 1 0.9417 0.9417 0.9907 0.9907 

 

As a result, for a sample in the testing set, its class label can be estimated by the 
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trained ER-based classifier. For example, for a sample [x1=6.5, x2=2.8,x3=4.6, x4=1.5, 

y2] in the testing set, its attribute value x1 activates 
1

4e  and 
1

5e  with the similarity 

degrees 1,4α =0.9502, 1,5α =0.0498 respectively; x2 activates
2

2e  and 
2

3e  with the 

similarity degrees 2,2α =0.049, 2,3α =0.951 respectively; x3 activates 
3

3e  and 
3

4e  

with the similarity degrees 3,3α =0.4933, 3,4α =0.5067 respectively; and x4 

activates
4

3e  and 
4

4e  with the similarity degrees 4,3α =0.0497, 4,4α =0.9503 

respectively. Using Equations (10)-(11), we have e1={(y1,0.009), (y2,0.3803), 

(y3,0.6106)}, e2={(y1,0.0631), (y2,0.4648), (y3,0.4721)},e3={(y1,0), (y2,0.6148), 

(y3,0.3852)}, e4={(y1,0.0016), (y2,0.7057), (y3,0.2928)}, w1=0.1983, w2=0.0124, 

w3=0.9505, w4=0.9417, and then by using ER rule, the combined result can be 

obtained as ( )kO x ={(y1, 0), (y2,0.7817), (y3, 0.2183)}, where y2 has the maximum 

degree of belief. So we predict this testing sample belongs to Iris Versicolour, which 

coincides with its actual class. Table 12 shows the confusion matrix of the testing 

samples given by the trained ER-based classifier. 

 

Table 12 The confusion matrix of the testing samples given by the ER-based classifier 

 
Predicted class 

Total 
y1 y2 y3 

A
ctu

al 

class 
 

y1 20 0 0 20 

y2 0 19 1 20 

y3 0 0 20 20 

 

In order to get more reliable result to reflect the performance of the ER-based 

classifier, we repeat the above experiment 100 times, and then calculate the following 

three performance values: the average classification accuracy (ACA) of the initial 

ER-based classifier for the training set is 96.11%, the ACA of the trained ER-based 

(T-ER) classifier for the training set is 96.89%, and the ACA of the T-ER classifier for 

the testing set is 96.33%. 

4.2 Comparisons with the existing classifiers on five datasets 

To further verify the validity of the proposed ER-based classifier, the five 

well-known classifiers are compared with it, which include naive Bayes [13], Bayes 

net [14], decision tree learner (REP Tree) [15], random forest [16], one nearest 

neighbor (1-NN) [51]. The recent DC rule-based classifier (DC-core sample) [52] is 

also compared.  

Besides the Iris dataset, the other four datasets from the UC Irvine Machine 

Learning Repository [53],as shown in Table 13, are also used for the comparison 

study. The Heart dataset (Statlog collection) is concerned with predicting the presence 

or absence of heart disease, which is based on some general information about a 

patient and some test results. The Wine dataset is the result of chemical analysis of 

three types of wines grown in the same region in Italy but derived from three different 

cultivars. The Haberman dataset (Haberman’s Survival Dataset) contains cases from a 

study that was conducted between 1958 and 1970 at the University of Chicago’s 

Billings Hospital on the survival of patients who had undergone surgery for breast 
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cancer. The Iris data set, as mentioned above, is perhaps the best known database in 

pattern recognition literature. The Seeds dataset comprises the measurements of seven 

geometric parameters of kernels belonging to three different varieties of wheat. Table 

13 shows the general information about these datasets. 

    Similarly, in the above datasets, 60% of the sample data are randomly selected 

from each class dataset to build the training dataset, while the remaining is served as 

test data. Table 14 presents the ACA indices of the T-ER classifier together with the 

others for the six datasets. It can be seen that there is no universal and perfect 

classifier for all datasets, but as a whole, the ACA of the T-ER classifier is a bit higher 

than the others. 

Table 13 General information about the five datasets 

Dataset Sample Class Attribute 

Heart 270 3 13 

Wine 178 3 13 

Haberman 306 2 3 

Iris 150 3 4 

Seed 210 3 7 

 

Table 14 The ACAs of the different classifiers 

 
Naive 

Bayes 

Bayes  

net 
REP Tree 

Random 

forest 
1-NN 

DC-Core 

samples 
T-ER 

Heart 0.8056 0.7593 0.7778 0.8056 0.7500 0.7778 0.8420 

Wine 0.9718 0.9859 0.8592 0.9718 0.9437 0.9069 0.9783 

Haberman 0.7623 0.7787 0.7377 0.6639 0.6537 0.8000 0.7424 

Iris 0.9333 0.9167 0.9167 0.9333 0.9000 0.9667 0.9633 

Seeds 0.8810 0.9048 0.8810 0.8926 0.8690 0.9048 0.8956 

Average 0.8708 0.8691 0.8345 0.8543 0.8233 0.8712 0.8843 

 

5. Conclusion 

In this paper, an ER rule-based classifier is proposed to solve the classification 

problem. An initial ER rule-based classifier is firstly constructed by acquiring 

evidence and evaluating the reliability of evidence from the training data, and then the 

SLP technique is used as the optimization algorithm to update the parameters of the 

classifier. The advantages of the proposed method are summarized as follows. 

1) It completely depends on the available data or is purely data-driven. In particular, 

the generation process of evidence based on sample casting and normalization of 

likelihoods can transfer the information in data into the corresponding evidence 

without any information loss or distortion. 

2) The reliability of evidence can objectively reflect the identification ability of 

attribute and its evidence. On the other hand, when combination is done, the 

weight of evidence embodies its relative importance compared with other 

evidence. Obviously, these two factors are very essential and vital for multi-source 

information fusion. 

The experimental results based on five datasets validate the efficiency of the 

proposed ER rule-based classifier, and confirm that this method can be easily used in 

many practical applications. 
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