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                                                                     a b s t r a c t 

Fuzzy clustering problem is usually posed as an optimization problem. However, the existing research

has shown that clustering technique that optimizes a single cluster validity index may not provide satis- 

factory results on different kinds of data sets. This paper proposes a multiobjective clustering framework

for fuzzy clustering, in which a tissue-like membrane system with a special cell structure is designed to

integrate a non-dominated sorting technique and a modified differential evolution mechanism. Based on

the multiobjective clustering framework, a fuzzy clustering approach is realized to optimize three clus- 

ter validity indices that can capture different characteristics. The proposed approach is evaluated on six

artificial and ten real-life data sets and is compared with several multiobjective and singleobjective tech- 

niques. The comparison results demonstrate the effectiveness and advantage of the proposed approach

on clustering the data sets with different characteristics.
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1. Introduction

Clustering as a class of machine learning techniques has been
widely used in many fields, such as pattern recognition, image 

pro- cessing, data mining and bioinformatics [1,2].  Clustering is 

the task of finding natural partitioning within a data set such tha

patterns within the same cluster are more similar than those 

within differ- ent clusters. Fuzzy c-means (FCM) [3] and k-means 

[4] are two of the most popular clustering algorithms, in which 

data clustering is regarded as an optimization problem and total 

cluster variance J m 

is used as the objective function to be 

optimized. However, the two classical algorithms have a notable 

shortcoming: they easily fall into local minima and may not 

converge to the global minima [5].  To overcome this 

shortcoming, some global optimization tech- niques have been 

introduced to deal with data clustering problems in the past years

for example, simulated annealing (SA)-based [6], differential 

evolution (DE)-based [7–9],  black hole-based [10],  par- ticle 

swarm optimization (PSO)-based [11–13],  artificial bee colony 

(ABC)-based [14],  genetic algorithms (GA)-based [15–17] and ant 

colony optimization (ACO)-based clustering algorithms [18] as 

well as a gravitational clustering algorithm [19].  In these 
clustering al- gorithms, a variety of cluster validity indices have 

been used to 
M  

d  

w  
valuate the goodness of partitioning obtained by them, such as

ym-index [20] , I -index [21] and XB-index [22] . The existing works

ave indicated that these cluster validity indices have different

haracteristics, for example, XB-index is very suitable for process-

ng the hyperspherical shaped clusters [8,9] , while Sym-index that

s more useful to detect symmetrical sharped clusters [23] . 

Most optimization-based clustering algorithms are single-

bjective because only a single validity measure is optimized. Note

hat a single validity measure can only reflect some intrinsic par-

itioning properties, for example, the compactness of clusters, the

patial separation between the clusters and the cluster’s symme-

ry. Therefore, some clustering algorithms that use J m 

as the ob-

ective function are only able to find compact hyperspherical and

onvex clusters like k-means. If clusters with different geometric

hapes are present in the same data set, the clustering algorithms

hat use a single cluster validity index will fail to deal with the

ata set. Therefore, it is required to simultaneously optimize sev-

ral cluster validity indices that can capture different data char-

cteristics. Based on this consideration, data clustering should be

iewed as a multiobjective optimization problem. Several works

n multiobjective clustering have been published recently. Handl

nd Knowles [24] proposed a multiobjective clustering technique,

OCK , which can recognize the appropriate partitioning from the

ata sets that contain either hyperspherical shaped clusters or

ell-separated clusters. But, it fails to detect overlapping clusters
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hat have different shapes rather than hyperspheres. Another dis-

dvantage of MOCK lies in its encoding, which can cause that the

ength of each chromosome will increase largely with the increase

n the number of points. Faceli et al. [25] presented a cluster-

ng algorithm that combined cluster ensemble and multi-objective

lustering techniques. Saha and Bandyopadhyay [26] presented a

ultiobjective clustering technique, called VAMOSA , where center-

ased encoding was used. Two cluster validity indices were opti-

ized simultaneously: an Euclidean distance-based XB-index, and

nother point symmetry distance-based Sym-index. Experimental

esults indicated that VAMOSA can evolve the appropriate partition-

ng from data sets having clusters of any shape, size or convex-

ty. The multiobjective clustering technique proposed in Saha and

andyopadhyay [27] , GenClustMOO , used a simulated annealing-

ased multiobjective clustering technique as the underlying opti-

ization strategy. In Saha et al. [28] , a multiobjective modified

ifferential evolution-based fuzzy clustering, MOmoDEFC , has been

ddressed, in which both XB-index and FCM measure ( J m 

) were

sed as two objective functions. Simulation results showed that

OmoDEFC can optimize both the compactness and separation of

lusters simultaneously. However, it may not be perfect to process

he data set having cluster symmetry. 

Membrane computing, initiated by P ̌aun [29] , is a class of dis-

ributed parallel computing models, known as membrane systems

r P systems. The novel computing models were inspired from the

tructure and functioning of living cells as well as the cooperation

f cells in tissues, organs and populations of cells [30–37] . In re-

ent years, the inherent advantages and characteristics that mem-

rane systems possess have attracted much attention on applica-

ions of membrane computing [38–43] , for example, membrane al-

orithms for solving optimization problems. The research results

n a variety of optimization problems have exhibited the poten-

iality of membrane computing models in the following three as-

ects: better convergence, stronger robustness and better balance

etween exploration and exploitation [44–49] . 

Based on the above consideration, the main motivation of this

ork is using membrane systems to develop a multiobjective opti-

ization framework for fuzzy clustering problems. The role of the

issue-like membrane system stays in three aspects: (i) integrat-

ng differential evolution mechanism, (ii) realizing non-dominated

orting strategy, and (iii) realizing the coevolution between the ob-

ects in different cells. According to the multiobjective framework,

hree cluster validity indices, J m 

, XB-index and Sym-index, are se-

ected as objective functions, and a novel multiobjective fuzzy

lustering approach is proposed in this paper, called MOFC-TMS .

n Peng et al. [50] , an evolution-communication membrane system

as been used to propose a fuzzy cluster approach, called Fuzzy-

C . However, Fuzzy-MC is single-objective because only XB-index

s considered as objective function to be optimized. In contrast

o Fuzzy-MC, MOFC-TMS has two differences: (i) membrane sys-

ems are considered to solve multiobjective fuzzy clustering prob-

ems; (ii) a tissue-like membrane system with a special membrane

tructure is considered and a modification of differential evolution

echanism is designed according to the special structure. In ad-

ition, a single-objective approach that uses the special membrane

tructure and the modified differential evolution mechanism is im-

lemented in simulation, which has better clustering performance

ver Fuzzy-MC . To the best of our knowledge, this is the first at-

empt to use a membrane computing model to solve multiobjective

uzzy clustering problems. 

The rest of this paper is arranged as follows. Section 2 intro-

uces multiobjective fuzzy clustering problems. Section 3 briefly

eviews the definition and inherent mechanism of tissue-like

embrane systems. In Section 4 , a multiobjective clustering frame-

ork for fuzzy clustering is described in detail. In Section 5 , ex-
erimental results carried out on some benchmark data sets are

resented. Finally, conclusions are drawn in Section 6 . 

. Problem statement

Data clustering in a d -dimensional Euclidean space is a pro-

ess, which partitions n data points into several groups according

o some similarity. Suppose that X = { X 1 , X 2 , . . . , X n } is a data set

onsisting of n unlabeled data points, where X i = (x i 1 , x i 2 , . . . , x id ) ,

 = 1 , 2 , . . . , n . A fuzzy clustering approach tries to find a fuzzy par-

itioning, { C 1 , C 2 , . . . , C K } , such that the similarity of the data points

n the same cluster is maximum and data points from different

lusters differ as much as possible. Note that for a fuzzy parti-

ioning, a data point can belong to all classes with a certain fuzzy

embership degree for each class. Therefore, an appropriate parti-

ioning matrix, U = [ u i j ] K×n , needs to be evolved, where u ij ∈ [0, 1]

enotes the membership grade of the j th element to the i th cluster.

he fuzzy partitioning should maintain the following properties: 

 

 

 

 

 

 

 

 

0 < 

n ∑ 

j=1

u i j < n for i = 1 , 2 , . . . , K 

K ∑ 

i =1

u i j = 1 for j = 1 , 2 , . . . , n 

K ∑ 

i =1

n ∑ 

j=1

u i j = n 

(1) 

In the existing optimization-based clustering algorithms, fuzzy

lustering problem is regarded as an optimization problem, how-

ver, most of them are single-objective because only a single clus-

er valid index is optimized. Note that a cluster valid index focuses

ainly on some intrinsic partitioning property. However, a data set

ay have different geometric shapes, for example, the compact-

ess of clusters, the spatial separation between the clusters and

he cluster’s symmetry. So, a single cluster valid index can fail to

eal with data sets that have different geometric shapes. There-

ore, fuzzy clustering problem should be posed as a multiobjective

ptimization problem, in which more objective functions (cluster

alid indices) are optimized simultaneously. There are three cluster

alid indices used widely in single-objective clustering algorithms:

 m 

, XB-index and Sym-index. The existing results have shown that

he three indices can capture different data characteristics: (i) J m 

an detect hyperspherical shaped clusters; (ii) XB-index can well

etect compact and hyperspherical shaped clusters and empha-

ize the separation between two nearest clusters; (iii) Sym-index

s more effective to detect symmetrical sharped clusters from the

ata set. 

Since the three cluster valid indices can better capture the in-

rinsic characteristics of samples, they will be used as the objec-

ive functions to be optimized simultaneously in this work. Thus,

uzzy clustering problem can be formally defined as a multiobjec-

ive minimization problem 

 

 

 

 

 

 

 

 

 

min 

(z 1 , ... ,z K )
[ f 1 , f 2 , f 3 ] 

f 1 (z 1 , . . . , z K ) = J m 

(z 1 , . . . , z K ) 
f 2 (z 1 , . . . , z K ) = X B (z 1 , . . . , z K ) 
f 3 (z 1 , . . . , z K ) = 1 /Sym (z 1 , . . . , z K ) 

(2) 

here z 1 , . . . , z K are K parameters to be optimized, which denote K

luster centers of a partitioning. 

In FCM, J m 

is defined as follows 

 m 

(Z) = 

K ∑ 

i =1

n ∑ 

j=1

u 

2 
i, j d 

2 (x j , z i ) (3)
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Fig. 1. The designed tissue-like membrane system and communication channels of

objects between cells, where circles, squares and the rounded rectangle denote evo- 

lution cells, local memory cells and global memory cell, respectively.
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where Z = (z 1 , . . . , z K ) , d ( x j , z i ) is the distance between x j and z i ,

and u i, j is computed by 

u i, j = 

(
1 

d(x j , x i ) 

)/ ( K ∑
i =1

1 

d(x j , x i ) 

)

Generally, a lower value of J m 

implies a better clustering solution. 

XB-index is defined as a function of the ratio of the total varia-

tion σ to the minimum separation sep of the clusters [22] , 

X B (Z) = 

σ (Z; X )

n · sep(Z) 
= 

K ∑ 

i =1

n ∑ 

j=1

u 

2 
i, j 

d 2 ( x j , z i ) 

n · min 

i � = j
|| z i − z j || 2 (4)

where || ·|| is the Euclidean norm. Note that when the partitioning

is compact and good, σ should be low while sep should be high,

thereby yielding lower values of the XB index. 

Sym-index is a point symmetry distance-based cluster valid in-

dex [20,23] . It is defined as follows: 

Sym (Z) = ( 
1 

K 

× 1 

E K 
× D K ) (5)

where K is the number of clusters, and 

E K = 

K ∑ 

i =1

E i = 

K ∑ 

i =1

n ∑ 

j=1

u i, j d ps (x j , z i ) 

D K = max K i, j=1 || z i − z j ||
where d ps ( x j , z i ) is the point symmetry distance between x j and

z i . Here, the first knear nearest neighbors of x ∗
j 
= 2 × z i − x j will

be searched among only those points which are in cluster i , i.e.,

the knear nearest neighbors of x ∗
j 
, the reflected point of x j with

respect to z i , and x j should belong to the i th cluster. Note that for

clusters which have good symmetrical structure, E K value is low.

D K measures the maximum separation between a pair of clusters,

which is bounded by the maximum separation between a pair of

points in the data set. Therefore, Sym needs to be maximized for

optimal clustering. 

3. Tissue-like membrane systems

In this section we briefly review the definition and inherent

mechanism of tissue-like membrane systems. A more detailed de-

scription of tissue-like membrane systems can be found in [32,51] .

A tissue-like membrane system (of degree q > 0) with sym-

port/antiport rules is formally defined as a tuple 

� = (O, w 1 , . . . , w q , R 1 , . . . , R q , R 

′ , i 0 )

where 

1) O is a finite alphabet, whose symbols are called objects;

2) w 1 , . . . , w q are initial multisets of objects;

3) R i are finite sets of evolution rules in cell i , 1 ≤ i ≤ q ;

4) R′ is a finite set of communication rules of the form ( i, u / v, j ), i

� = j , i, j = 0 , 1 , 2 , . . . , q, u, v ∈ O 

∗;

5) i 0 ∈ { 0 , 1 , 2 , . . . , q } indicates the output region of the system.

The tissue-like membrane system consists of q cells, and each

cell is surrounded by a cell membrane. The outer region of the q

cells is called the environment. Usually, each cell contains one or

more objects. w 1 , w 2 , . . . , w q denote the multisets of objects of the

q cells, respectively. It is assumed here that in the environment any

object is available. 

There are two types of rules: evolution rules and communica-

tion rules. Each cell usually contains one or more evolution rules,

while communication rules are built between two different cells
r between a cell and the environment. An evolution rule is of the

orm u → v , application of which means that multiset of objects u

s evolved to multiset of objects v . Communication rule of the form

 i, u / v, j ) is called as an antiport rule, and application of such rule

eans that multiset of objects u in cell i and multiset of objects v

n cell j are interchanged. Note that if either i = 0 or j = 0 then the

wo multisets of objects are interchanged between a cell and the

nvironment. If one of u or v is the empty multiset λ, the com-

unication rule is called as a symport rule, for example, ( i, u / λ,

 ), which means that multiset of objects u will be communicated

rom cell i to cell j . By these communication rules, the tissue-like

embrane system can be described as a virtual graph where the

 cells denote the nodes and the edges indicate if it is possible for

airs of cells to communicate directly. 

As usual in membrane computing, the q cells as comput-

ng units work in parallel (a universal clock is considered here).

he tissue-like membrane system starts with initial multisets

 1 , w 2 , . . . , w q . And then, in each step, something happens: the ob-

ects in cells are evolved and some of them are communicated. The

rocess is repeated until the halting condition is satisfied. When it

alts, the system produces a final result in the output region. 

. Multiobjective clustering framework for fuzzy clustering

The main purpose of this work is to develop a multiobjective

lustering framework for fuzzy clustering problem by using mem-

rane systems. To solve fuzzy clustering problem (2) , a clustering

lgorithm based on the multiobjective clustering framework will

e realized, called MOFC-TMS , in which J m 

, XB-index and Sym-

ndex are optimized simultaneously. Note that the presented mul-

iobjective framework is flexible since it can also be used to opti-

ize the combination of other cluster validity indices. 

We design a tissue-like membrane system with a special mem-

rane structure, shown in Fig. 1 . The membrane system has ( 2 q +
 ) cells, and they are classified as two categories according to

he different roles: evolution cells and memory cells. The cells

abeled by 1 , 2 , . . . , q are evolution cells. The role of evolution

ells is to evolve the objects in the system. The cells labeled by

 + 1 , q + 2 , . . . , 2 q, 2 q + 1 are memory cells. The memory cells can

e further divided as two types: the q cells labeled by q + 1 , q +
 , . . . , 2 q, called local memory cells, and the cell labeled by 2 q + 1 ,

alled the global memory cell. Each evolution cell corresponds to a

ocal memory cell. The memory cells are designed to store Pareto

on-dominant objects of the corresponding evolution cells, while

he global memory cell is used to store non-dominant objects of

ll evolution cells. Note that the concept of non-dominance is pro-

ided below. 



Fig. 2. The representation of objects in cells.
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.1. Objects 

To solve a fuzzy clustering problem, the tissue-like membrane

ystem is considered to optimize a set of cluster centers for the

iven data set. Therefore, each object in the system should be

esigned to express a feasible solution (a set of cluster centers).

uppose that X = { X 1 , X 2 , . . . , X n } ⊆ R n ×d is a data set to be clus-

ered, that will be divided into K clusters, C 1 , C 2 , . . . , C K . Denote

y { z 1 , z 2 , . . . , z K } a set of cluster centers of the K clusters, where

 i = (z i 1 , z i 2 , . . . , z id ) ∈ R d , i = 1 , 2 , . . . , K. Fig. 2 shows a correspon-

ence relationship between a solution (or a set of cluster centers)

f the clustering problem and an object in the cells. Thus, each ob-

ect in the cells is considered as a ( K × d )-dimensional vector to

enote a set of cluster centers: 

 = (z 11 , z 12 , . . . , z 1 d , . . . , z i 1 , z i 2 , . . . , z id , . . . , z K1 , z K2 , . . . , z Kd ) 

here (z i 1 , . . . , z id ) corresponds to i th cluster center z i , i =
 , 2 , . . . , K. Suppose that evolution cells have the same number of

bjects, denoted by m . Furthermore, the global memory cell is as-

igned as the output region of the system. When the system halts,

ts objects are considered as the outputs of the entire system. 

To deal with the multi-objective clustering problem, the con-

ept of non-dominance is introduced into the tissue-like mem-

rane system. The non-dominance of objects are defined as fol-

ows: an object O 1 is said to dominate another object O 2 if both

onditions specified below are satisfied: 

(i) Object O 1 is no worse than object O 2 in all objectives.

ii) Object O 1 is strictly better than object O 2 in at least one objec-

tive. 

If either of the above conditions is violated, object O 1 does not

ominate object O 2 . 

.2. Initialization 

Initially, the tissue-like membrane system generates m initial

bjects for each evolution cell. When an initial object is generated,

 × d random real numbers are produced to form the object with

he following constraints: 

 1 ≤ z i 1 ≤ B 1 , . . . , A j ≤ z i j ≤ B j , . . . , A d ≤ z id ≤ B d 

here A j and B j are lower and upper bounds for the j th component

f data points to be clustered, 1 ≤ j ≤ d . 

Once each evolution cell completes the initialization, all its ob-

ects are calculated to fill the corresponding local memory cell ac-

ording to the non-dominated sorting strategy described below.

fter all evolution cells are initialized, the non-dominated sorting

trategy is used again to fill the global memory cell. 

.3. Communication mechanism 

As usual, the tissue-like membrane system uses communication

ules to exchange the objects between two different cells (evolu-

ion cells, local memory cells and global memory cell). There are

wo types of communication rules: 
(i) Antiport rules: (i, O 1 O 2 . . . Os  /

O 
 

′ 
1 
O 

′ 
2 
. . . O 

′ 
s , q + i ) , i = 1 , 2 , . . . , q . 

The rule establishes a bidirectional communication channel be-

tween an evolution cell and the corresponding local memory

cell. 

ii) Symport rules: (i, O 1 O 2 . . . O s /λ, j) , j = 2 q + 1 for i = q + 1 , q +
2 , . . . , 2 q or i = 2 q + 1 for j = 1 , 2 , . . . , q .

This type rule establishes a unidirectional communication chan-

nel between an evolution cell and the global memory cell or

between a local memory cell and the global memory cell.

.4. Evolution mechanism 

During computation, the objects in the system are evolved

y evolution rules in the q evolution cells. In this work, muta-

ion and crossover operations of differential evolution (DE) algo-

ithms [52] are introduced as evolution rules of objects. In order

o increase the ability to exploit, a modified mutation operation

s developed according to the special structure of the tissue-like

embrane system, which can be viewed as a variant of the rule

DE/current-to-best/1” in the DE [53,54] . Moreover, it can also en-

ance the cooperation between the objects in different cells. The

odified mutation operation can be described as follows: 

 

j 
i 

= O 

j 
i 
+ F · (O 

j 

lbest 
− O j 

i 
) + F · (O 

j 

gbest 
− O j 

i
) + F · (O 

j 
r 1

− O 

j 
r 2 
) (6)

here j = 1 , 2 , . . . , Kd; O i = (O 

1 
i 
, . . . , O 

Kd 
i 

) is an original object in

volution cell i , and Y i = (Y 1 
i 

, . . . , Y Kd 
i 

) is the created donor ob-

ect; O r 1 = (O 

1 
r 1 

, . . . , O 

Kd 
r 1 

) and O r 2 = (O 

1 
r 2 

, . . . , O 

Kd 
r 2 

) are two objects

hosen randomly from evolution cell i ; O lbest = (O 

1 
lbest

, . . . , O 

Kd 
lbest 

)

s a best object randomly selected from first level front of non-

ominant objects that are communicated from the corresponding

ocal memory cell, and O gbest = (O 

1 
gbest

, . . . , O 

Kd 
gbest 

) is a best object

andomly selected from first level front of non-dominant objects

hat are communicated from global memory cell; F is a scaling fac-

or and is given by F = 0 . 5 × (1 + rand (0 , 1)) . 

After the mutation operation, crossover operation is applied to

ach pair of current object and the corresponding mutant object to

enerate a trial object Z i = (Z 1 
i 
, . . . , Z Kd 

i 
) . The crossover operation is

efined as follows: 

 

j 
i 

= 

{
Y j 

i 
, if rand i ≤ C r or j = rand j 

O 

j 
i 
, otherwise 

(7) 

here j = 1 , 2 , . . . , Kd; the crossover rate C r is a user-specified con-

tant within the range [0, 1], which controls the fraction of pa-

ameter values copied from the mutant object; rand j is a randomly

hosen integer in the range [1, Kd ], which ensures that Z i gets at

east one component from Y i . 

.5. Update of local memory cells 

Local memory cells are designed to store non-dominant objects

f the corresponding evolution cells. During evolution, m original

bjects in each evolution cell, O 1 , O 2 , . . . , O m 

, generate m trial ob-

ects, Z 1 , Z 2 , . . . , Z m 

. Thus, each evolution cell can have 2 m objects

fter the objects are evolved. Then, m objects of them are selected

rom the evolution cell according to the non-dominated sorting

trategy given below and are communicated into the correspond-

ng local memory cell to update the existing non-dominated ob-

ects, whereas the remaining objects of them will be discarded.

he non-dominated sorting strategy used here is originated from

he known NSGA-II algorithm [55] : 

i) Non-dominated sorting. Every object is assigned a rank level

according to the non-dominated concept, 1 is the best, 2 is the

second, and so on. The objects with the same level belong to

the same Pareto front, named F , F , . . . . 
1 2 
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(a) Artificial data sets:

(1) Sym_3_2:  This data set contains 600 data points distributed 
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ii) Communication and truncation. Objects in F 1 are first commu-

nicated into the corresponding local memory cell, objects in F 2
are then communicated, and so on. Suppose objects in F l are

last communicated. To accurately choose m objects, the crowd-

ing distance [55] is employed to sort the objects in F l and the

best objects selected from them are communicated into the cor-

responding local memory cell.

4.6. Update of global memory cell 

In the tissue-like membrane system, the global memory cell is

considered to store non-dominant objects of the entire system. Af-

ter all local memory cells have been updated, all objects in them

will be chosen to update the global memory cell according to the

non-dominated sorting strategy described above in next computing

step. Note that the delay of a computing step exists between the

objects in the global memory cell and the objects in local mem-

ory cells: non-dominant objects stored in the global memory cell

are in fact global non-dominant objects in the previous computing

step. The mutation rules described above indicate that a randomly

selected best object in the first level front, which is communicated

from the global memory cell, will participate the evolution of ob-

jects in the evolution cells. This consideration can bring the follow-

ing benefits: improving the diversity of objects in the system and

avoiding premature convergence. 

4.7. Halting and output 

The evolution-communication and update processes described

above are repeated constantly until a prescribed maximum num-

ber of computation steps (or number of iterations), t max , is reached.

Thus, the tissue-like membrane system halts. When the system

halts, all or a part of non-dominant objects on the final Pareto opti-

mal front in the global memory cell are regarded as final solutions

of the tissue-like membrane system. 

Each of the final solutions provides a way of clustering the

given data set, however, sometimes the user may want to obtain

a single solution. In this work, a semi-supervised approach is used

to select a single solution from the final non-dominant solutions,

which is similar to the method used in [26] . The class level of 10%

of a data set is assumed to be the known test patterns, and the re-

maining 90% of the data set is used to execute the proposed MOFC-

MS , and then a single solution is chosen according to Minkowski

score . 

Let T be the “true”solution and S be the solution that we wish

to measure. Denote by n 11 the number of pairs of elements that are

in the same cluster in both T and S . Denote by n 01 the number of

pairs that are in the same cluster only in S , and by n 10 the number

of pairs that are in the same cluster only in T. Minkowski score is

then defined as 

MS(T , S) = 

√ 

n 01 + n 10 

n 11 + n 10 

(8)

Usually, the optimum score is 0, with lower scores being better.

Therefore, the solution with the minimum Minkowski score value

calculated over the test set is selected as the best solution. 

5. Experimental results and comparison study

In order to check the effectiveness of MOFC-TMS , the experi-

ments on six artificial and ten real-life data sets have been con-

ducted to compare the MOFC-TMS with three multi-objective clus-

tering approaches, its single-objective versions and other single-

objective clustering approaches. The data sets with different char-

acteristics of shape, size, compactness and symmetry are described

as follows. 
on three clusters, shown in Fig. 3 (a).

(2) Ring_3_2:  This data set is a combination of ringshaped

spherically compact and linear clusters, shown in Fig. 3 (b).

(3) Sph_5_2:  This data set consists of 250 two dimensional

data points distributed over 5 spherically shaped clusters.

The clusters present in this data set are highly overlapping,

each consisting of 50 data points. This data set is shown in

Fig. 3 (c). 

(4) Sph_9_2 : This data set consists of 900 data points in the

two-dimensional space distributed over 9 clusters. Each

cluster contains 100 data points and the clusters are highly

overlapping to each other. This data set is shown in Fig. 3 (d).

(5) Sizes_5 : This data set consists of 10 0 0 data points dis-

tributed over 4 squares, shown in Fig. 3 (e).

(6) Square4 : This data set consists of 10 0 0 data points dis-

tributed over 4 squared clusters, shown in Fig. 3 (e).

These data sets contain symmetrical shaped clusters (e.g.

Sym_3_2 and Ring_3_2 : ring-shaped clusters and ellipsoidal),

hyperspherical shaped clusters and highly overlapping clusters

(e.g., Sph_5_2 and Sph_9_2 ), or well-separated clusters of differ-

ent shapes and sizes (e.g., Sizes_5 and Square4 ). 

b) Real-life data sets: ten real-life data sets are retrieved from the

database of University of California Irvine (UCI) [56] for machine

learning; these data sets are often used to test the performance

of all kinds of algorithms.

(1) Iris : This data set consists of 150 points distributed over

three clusters, namely, Setosa, Versicolor and Virginica. The

data set is in four-dimensional space (sepal length, sepal

width, petal length and petal width). Two classes (Versi-

color and Virginica) have a large amount of overlap, while

the class Setosa is linearly separable from the other two.

(2) Cancer : The Wisconsin Breast Cancer data set consists of 683

sample points and each pattern has nine features. There are

two categories in the data: malignant and benign. The two

classes are known to be linearly separable.

(3) Newthyroid : The original database from where it has

been collected is titled as thyroid gland data (“normal”,

“hypo”and “hyper” functioning). There are three categories

in the data: euthyroidism, hypothyroidism and hyperthy-

roidism. There are a total of 215 instances and the number

of attributes is five.

(4) Wine : This data set has 178 points along with 13 features re-

sulting from a chemical analysis of wines grown in the same

region in Italy but derived from three different cultivars. It

is divided into three clusters.

(5) LiverDisorder : The Liver Disorder data set consists of 345 in-

stances having 6 features each. The data set has two cate-

gories.

(6) LungCancer : This data set consists of 32 instances having 56

features each. The data set describes 3 types of pathological

lung cancers.

(7) Glass : This data set has 214 points having 9 features (id

number, Refractive index, Sodium, Magnesium, Aluminum,

Silicon, Potassium, Calcium, Barium and Iron). There are 6

categories present in this data set.

(8) Yeast : The Yeast data set consists of 1484 instances having 8

features each. The data set has ten categories.

(9) Diabetes : This data set has 768 points having 8 features.

There are 2 categories present in this data set.

(10) CMC : This data set consists of 1473 sample points and each

pattern has nine features. There are three categories in the

data set.



(a) (b) (c)

(d) (e) (f)

Fig. 3. Artificial data sets: (a) Sym_3_2, (b) Ring_3_2, (c) Sph_5_2, (d) Sph_9_2, (e) Sizes_5, and (f) Square4.
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n the experiments, MOFC-TMS was implemented based on the fol-

owing parameters: q = 5, m = 20, t max = 100, C r = 0.8. In this section,

OFC-TMS is firstly compared with three multi-objective cluster-

ng approaches, and then is compared with several single-objective

lustering approaches, including its single-objective versions. To

valuate the performance of these clustering algorithms quanti-

atively, two validation measures, Minkowski score and F-measure ,

ere computed in experiments. Let m ij be the number of points

hich belong to both cluster i and cluster j, m i the total number

f points in cluster i . The F-measure of cluster i with respect to

lass j is defined by 

 (i, j) = 

(2 × precision (i, j) × recal l (i, j))

( precision ( i, j) + recal l (i, j)) 
(9) 

here precision (i, j) = p i j = m i j /m i expresses the precision of clus-

er i with respect to class j , and recal l (i, j) = m i j /m j denotes the

ecall of cluster i with respect to class j . Thus, the overall F-measure

f the whole partitioning is calculated by 

 = 

∑ 

j 

m j 

m 

max 
i

F (i, j) (10)

or F-measure , the optimum score is 1, with higher scores being

etter. 

.1. Comparison with multi-objective clustering approaches 

Three multi-objective clustering approaches were chosen to

ompare with MOFC-TMS , including VAMOSA [26] , GenClustMOO

27] and MOmoDEFC [28] . The three multi-objective clustering ap-

roaches have been realized in experiments based on the param-

ters used in literature. These parameters are provided as fol-

ows. For GenClustMOO , CL = 100 , HL = 50 , iter = 50 , T max = 100 ,

 min = 0 . 0 0 0 01 and α = 0 . 9 . Parameters of MOmoDEFC are given by

opulation size = 50 , the number of iterations = 100 , α = 0 . 8 and

 = 1 / (1 + exp (−(1 / generation ))) . For VAMOSA , T max = 100 , T min =
 . 0 0 0 01 , α = 0 . 8 , HL = 100 and SL = 200 .

Table 1 reports the comparison results of four multi-objective

lustering approaches on six artificial and ten real-life data sets in

erms of Minkowski score and F-measure . The comparison results

re the average values and standard deviations of these algorithms
ver 30 runs. The performance comparison of these multi-objective

lustering approaches is provided as follows. 

1) MOFC-TMS vs. GenClustMOO .

For Sym_3_2 and Ring_3_2 that contain symmetrical shaped

clusters, MOFC-TMS and GenClustMOO have similar performance.

For three highly overlapping data sets, Sph_5_2, Sph_9_2 and

Iris, MOFC-TMS obviously outperforms GenClustMOO . However,

GenClustMOO is slightly better than MOFC-TMS on Sizes_5,

Square4, Cancer, Wine and Glass . For Newthyroid, LiverDisorder

and LungCancer, MOFC-TMS is slightly better than GenClustMOO .

For Yeast and Diabetes, MOFC-TMS is obviously better than Gen-

ClustMOO , while for CMC they have similar performance.

2) MOFC-TMS vs. MOmoDEFC .

For Sym_3_2 and Ring_3_2, MOFC-TMS and MOmoDEFC have

similar performance. Moreover, the performance of MOFC-TMS

is better than that of MOmoDEFC on other data sets.

3) MOFC-TMS vs. VAMOSA .

For all of thirteen data sets, the performance of MOFC-TMS is

obviously superior to that of VAMOSA .

.2. Comparison with single-objective clustering approaches 

In the experiments, MOFC-TMS was compared with two single-

bjective clustering approaches ( DE -based and PSO -based cluster-

ng approaches) and FCM . The parameters of DE are: population

ize = 50 , the number of iterations = 100 , α = 0 . 8 and F = 1 / (1 +
xp (−(1 / generation ))) . For PSO , its parameters are chosen as fol-

ows: population size = 50 , the number of iterations = 100 , c 1 =
 2 = c 3 = 0 , w max = 0 . 9 and w min = 0 . 2 . 

Three single-objective versions of MOFC-TMS have been imple-

ented in the experiments, which correspond to optimizing one

f J m 

, XB and Sym respectively, denoted by TMS(J m 

), TMS(XB) and

MS(Sym) . These single-objective versions are similar to Fuzzy-

C [50] , but they use the same tissue-like membrane system

ith a special structure and differential evolution mechanism as

OFC-TMS . In some senses, these single-objective versions can be

iewed as an improvement of Fuzzy-MC . In the realization, TMS(J m 

),

MS(XB) and TMS(Sym) used the same parameters with MOFC-TMS .



Table 1

Comparison results of the proposed clustering approach with three multi-objective clustering approaches in terms of Minkowski score and F-measure.

Data sets MOFC-TMS GenClustMOO MOmoDEFC VAMOSA

MS FM MS FM MS FM MS FM

Sym_3_2 0.193 ± 0.011 0.958 ± 0.009 0.208 ± 0.025 0.963 ± 0.023 0.215 ± 0.029 0.942 ± 0.027 0.268 ± 0.027 0.884 ± 0.035 

Ring_3_2 0.093 ± 0.012 0.952 ± 0.013 0.098 ± 0.019 0.959 ± 0.021 0.104 ± 0.028 0.946 ± 0.023 0.256 ± 0.036 0.879 ± 0.037 

Sph_5_2 0.056 ± 0.012 0.961 ± 0.011 0.228 ± 0.024 0.943 ± 0.025 0.098 ± 0.033 0.954 ± 0.021 0.215 ± 0.032 0.783 ± 0.033 

Sph_9_2 0.284 ± 0.013 0.752 ± 0.012 0.491 ± 0.023 0.673 ± 0.019 0.352 ± 0.032 0.705 ± 0.022 0.638 ± 0.038 0.558 ± 0.032 

Sizes_5 0.176 ± 0.008 0.959 ± 0.014 0.174 ± 0.021 0.961 ± 0.029 0.237 ± 0.031 0.932 ± 0.024 0.187 ± 0.031 0.942 ± 0.029 

Square4 0.251 ± 0.011 0.914 ± 0.012 0.249 ± 0.021 0.916 ± 0.022 0.279 ± 0.032 0.873 ± 0.023 0.541 ± 0.036 0.795 ± 0.034 

Iris 0.219 ± 0.009 0.836 ± 0.013 0.362 ± 0.025 0.823 ± 0.028 0.268 ± 0.035 0.812 ± 0.021 0.815 ± 0.033 0.682 ± 0.032 

Cancer 0.085 ± 0.013 0.970 ± 0.014 0.087 ± 0.022 0.969 ± 0.013 0.095 ± 0.029 0.938 ± 0.023 0.352 ± 0.035 0.816 ± 0.035 

Newthyroid 0.278 ± 0.011 0.852 ± 0.012 0.283 ± 0.023 0.849 ± 0.025 0.294 ± 0.028 0.836 ± 0.022 0.594 ± 0.032 0.781 ± 0.033 

Wine 0.345 ± 0.013 0.696 ± 0.013 0.343 ± 0.022 0.698 ± 0.029 0.351 ± 0.035 0.684 ± 0.025 0.981 ± 0.043 0.516 ± 0.032 

LiverDisorder 0.342 ± 0.011 0.681 ± 0.013 0.348 ± 0.023 0.675 ± 0.025 0.352 ± 0.034 0.662 ± 0.021 0.986 ± 0.039 0.463 ± 0.034 

LungCancer 0.326 ± 0.010 0.819 ± 0.012 0.332 ± 0.022 0.815 ± 0.028 0.339 ± 0.031 0.809 ± 0.022 0.862 ± 0.037 0.692 ± 0.033 

Glass 0.260 ± 0.012 0.501 ± 0.013 0.258 ± 0.021 0.503 ± 0.029 0.281 ± 0.031 0.468 ± 0.023 0.561 ± 0.033 0.415 ± 0.032 

Yeast 0.361 ± 0.013 0.585 ± 0.011 0.368 ± 0.022 0.582 ± 0.027 0.372 ± 0.033 0.536 ± 0.022 0.594 ± 0.035 0.451 ± 0.031 

Diabetes 0.285 ± 0.012 0.712 ± 0.013 0.291 ± 0.021 0.703 ± 0.024 0.315 ± 0.032 0.684 ± 0.023 0.436 ± 0.032 0.322 ± 0.032 

CMC 0.425 ± 0.012 0.653 ± 0.014 0.421 ± 0.023 0.647 ± 0.028 0.438 ± 0.033 0.632 ± 0.021 0.514 ± 0.035 0.593 ± 0.032 

Table 2

Comparison results of the proposed clustering approach with three single-objective clustering approaches and FCM in terms of Minkowski score and F- 

measure

Data sets Indices MOFC-TMS TMS(J m ) TMS(XB) TMS(Sym) DE PSO FCM

Sym_3_2 MS 0.193 ± 0.011 0.231 ± 0.022 0.264 ± 0.023 0.259 ± 0.019 0.325 ± 0.022 0.342 ± 0.032 0.485 ± 0.043 

FM 0.958 ± 0.009 0.936 ± 0.018 0.946 ± 0.019 0.932 ± 0.022 0.914 ± 0.023 0.865 ± 0.022 0.732 ± 0.032 

Ring_3_2 MS 0.093 ± 0.012 0.225 ± 0.023 0.237 ± 0.022 0.254 ± 0.023 0.328 ± 0.021 0.364 ± 0.033 0.406 ± 0.042 

FM 0.952 ± 0.013 0.917 ± 0.020 0.932 ± 0.021 0.905 ± 0.018 0.847 ± 0.022 0.829 ± 0.024 0.789 ± 0.033 

Sph_5_2 MS 0.056 ± 0.012 0.149 ± 0.019 0.182 ± 0.023 0.165 ± 0.021 0.285 ± 0.023 0.313 ± 0.031 0.458 ± 0.041 

FS 0.961 ± 0.011 0.913 ± 0.021 0.938 ± 0.020 0.926 ± 0.023 0.813 ± 0.019 0.795 ± 0.023 0.669 ± 0.031 

Sph_9_2 MS 0.284 ± 0.013 0.341 ± 0.023 0.338 ± 0.024 0.319 ± 0.022 0.415 ± 0.022 0.452 ± 0.032 0.531 ± 0.042 

FM 0.752 ± 0.012 0.735 ± 0.022 0.738 ± 0.022 0.719 ± 0.019 0.645 ± 0.020 0.612 ± 0.022 0.503 ± 0.032 

Sizes_5 MS 0.176 ± 0.008 0.284 ± 0.021 0.261 ± 0.021 0.235 ± 0.021 0.324 ± 0.023 0.351 ± 0.033 0.483 ± 0.041 

FM 0.959 ± 0.014 0.879 ± 0.020 0.884 ± 0.023 0.912 ± 0.020 0.856 ± 0.021 0.837 ± 0.024 0.792 ± 0.031 

Square4 MS 0.251 ± 0.011 0.346 ± 0.019 0.338 ± 0.022 0.299 ± 0.023 0.382 ± 0.022 0.439 ± 0.032 0.528 ± 0.042 

FM 0.914 ± 0.012 0.829 ± 0.021 0.836 ± 0.022 0.854 ± 0.021 0.738 ± 0.022 0.704 ± 0.021 0.635 ± 0.032 

Iris MS 0.219 ± 0.009 0.356 ± 0.020 0.325 ± 0.021 0.371 ± 0.022 0.427 ± 0.021 0.468 ± 0.031 0.536 ± 0.039 

FM 0.836 ± 0.013 0.803 ± 0.022 0.814 ± 0.018 0.795 ± 0.022 0.774 ± 0.021 0.758 ± 0.023 0.715 ± 0.033 

Cancer MS 0.085 ± 0.013 0.127 ± 0.022 0.154 ± 0.022 0.216 ± 0.023 0.259 ± 0.022 0.281 ± 0.031 0.385 ± 0.043 

FM 0.970 ± 0.014 0.905 ± 0.023 0.921 ± 0.023 0.894 ± 0.023 0.856 ± 0.023 0.829 ± 0.022 0.738 ± 0.034 

Newthyroid MS 0.278 ± 0.011 0.356 ± 0.021 0.331 ± 0.022 0.368 ± 0.022 0.427 ± 0.023 0.445 ± 0.032 0.538 ± 0.042 

FM 0.852 ± 0.012 0.833 ± 0.018 0.831 ± 0.021 0.816 ± 0.019 0.758 ± 0.021 0.734 ± 0.023 0.661 ± 0.032 

Wine MS 0.345 ± 0.013 0.439 ± 0.023 0.412 ± 0.025 0.428 ± 0.024 0.573 ± 0.021 0.607 ± 0.034 0.751 ± 0.045 

FM 0.696 ± 0.013 0.618 ± 0.023 0.637 ± 0.023 0.609 ± 0.023 0.654 ± 0.022 0.517 ± 0.021 0.445 ± 0.033 

LiverDisorder MS 0.342 ± 0.011 0.435 ± 0.022 0.417 ± 0.021 0.426 ± 0.021 0.535 ± 0.023 0.572 ± 0.033 0.638 ± 0.041 

FM 0.681 ± 0.013 0.634 ± 0.019 0.649 ± 0.020 0.625 ± 0.020 0.612 ± 0.019 0.598 ± 0.023 0.563 ± 0.032 

LungCancer MS 0.326 ± 0.010 0.428 ± 0.021 0.451 ± 0.023 0.436 ± 0.023 0.485 ± 0.021 0.513 ± 0.032 0.589 ± 0.042 

FM 0.819 ± 0.012 0.762 ± 0.022 0.784 ± 0.022 0.772 ± 0.021 0.663 ± 0.020 0.635 ± 0.021 0.584 ± 0.031 

Glass MS 0.260 ± 0.012 0.369 ± 0.023 0.347 ± 0.024 0.347 ± 0.022 0.482 ± 0.023 0.513 ± 0.033 0.614 ± 0.043 

FM 0.501 ± 0.013 0.482 ± 0.024 0.486 ± 0.023 0.479 ± 0.023 0.463 ± 0.022 0.448 ± 0.024 0.415 ± 0.033 

Yeast MS 0.361 ± 0.013 0.368 ± 0.022 0.357 ± 0.024 0.365 ± 0.022 0.371 ± 0.021 0.415 ± 0.023 0.492 ± 0.032 

FM 0.585 ± 0.011 0.581 ± 0.023 0.578 ± 0.022 0.583 ± 0.021 0.562 ± 0.023 0.481 ± 0.025 0.435 ± 0.035 

Diabetes MS 0.285 ± 0.012 0.289 ± 0.021 0.282 ± 0.022 0.285 ± 0.023 0.292 ± 0.024 0.313 ± 0.021 0.386 ± 0.033 

FM 0.792 ± 0.013 0.791 ± 0.022 0.795 ± 0.021 0.789 ± 0.024 0.765 ± 0.022 0.723 ± 0.031 0.691 ± 0.041 

CMC MS 0.425 ± 0.012 0.471 ± 0.023 0.459 ± 0.022 0.448 ± 0.0243 0.483 ± 0.022 0.536 ± 0.033 0.581 ± 0.042 

FM 0.653 ± 0.014 0.632 ± 0.025 0.647 ± 0.023 0.641 ± 0.023 0.629 ± 0.024 0.591 ± 0.032 0.563 ± 0.043 

 

 

 

 

 

(

 

 

 

 

 

 

 

 

 

 

 

(

Table 2 reports the comparison results of MOFC-TMS with TMS,

DE, PSO and FCM on six artificial and ten real-life data sets in terms

of Minkowski score and F-measure . The presented results are the

average values and standard deviations of the approaches over 30

runs. The comparison of MOFC-TMS with TMS, DE, PSO and FCM is

analyzed as follows. 

1) MOFC-TMS vs. TMS .

For Sym_3_2 and Ring_3_2, MOFC-TMS are superior to TMS(J m 

),

TMS(XB) and TMS(Sym) in terms of both MS and FM indices, and

TMS(XB) and TMS(Sym) are better than TMS(J m 

) . The compari-

son results illustrate that MOFC-TMS can well deal with the data

sets with symmetrical shaped clusters. For three highly overlap-

ping data sets, Sph_5_2, Sph_9_2 and Iris, MOFC-TMS obviously
outperforms TMS(J m 

), TMS(XB) and TMS(Sym) . Therefore, MOFC-

TMS can achieve a satisfactory clustering performance on highly

overlapping data sets. For Sizes_5 and Square4 , results of MOFC-

TMS are better than that of TMS(J m 

), TMS(XB) and TMS(Sym) ,

which illustrate that MOFC-TMS has a good performance to clus-

ter the data sets with well-separated clusters. However, for

Yeast and Diabetes, TMS(XB) is slightly better than MOFC-TMS .

Furthermore, the comparison results on other data sets clearly

show that MOFC-TMS can also achieve a good partitioning in

comparison to TMS(J m 

), TMS(XB) and TMS(Sym) . 

2) MOFC-TMS vs. DE, PSO and FCM .

Looking at the results of MS index, it can be clearly seen that

for each data set, MOFC-TMS has the lowest mean value, second

is DE , third is PSO , and the largest is FCM . Moreover, MOFC-TMS



Table 3

The p-values produced by Wilcoxon’s rank sum test comparing with other approaches in terms of Minkowski score.

Data sets MOFC-TMS vs.

GenClustMOO MOmoDEFC VAMOSA DE PSO FCM TMS(J m ) TMS(XB) TMS(Sym)

Sym_3_2 0.0419 ( + ) 0.0338 ( + ) 0.0189 ( + ) 6.52e −3 ( + ) 5.23e −3 ( + ) 1.04e −4 ( + ) 0.0342 ( + ) 0.0346 ( + ) 0.0345 ( + ) 

Ring_3_2 0.0449 ( + ) 0.0439 ( + ) 4.23e −3 ( + ) 7.61e −4 ( + ) 2.56e −4 ( + ) 1.02e −4 ( + ) 0.0441 ( + ) 0.0443 ( + ) 0.04 4 4 ( + ) 

Sph_5_2 2.86e −3 ( + ) 0.0347 ( + ) 6.84e −3 ( + ) 6.13e −4 ( + ) 4.95e −4 ( + ) 1.51e −5 ( + ) 0.0362 ( + ) 0.0371 ( + ) 0.0365 ( + ) 

Sph_9_2 1.03e −3 ( + ) 0.0142 ( + ) 6.61e −5 ( + ) 7.19e −3 ( + ) 3.53e −3 ( + ) 5.46e −4 ( + ) 0.0141 ( + ) 0.0142 ( + ) 0.0135 ( + ) 

Sizes_5 0.0519 ( −) 0.0228 ( + ) 0.0407 ( + ) 7.62e −3 ( + ) 2.02e −3 ( + ) 8.27e −5 ( + ) 0.0245 ( + ) 0.0242 ( + ) 0.0228 ( + ) 

Square4 0.0522 ( −) 0.0419 ( + ) 1.07e −4 ( + ) 9.04e −3 ( + ) 4.72e −3 ( + ) 2.64e −4 ( + ) 0.0432 ( + ) 0.0431 ( + ) 0.0420 ( + ) 

Iris 4.92e −3 ( + ) 0.0309 ( + ) 1.32e −7 ( + ) 8.98e −4 ( + ) 4.74e −4 ( + ) 4.82e −5 ( + ) 0.0341 ( + ) 0.0327 ( + ) 0.0331 ( + ) 

Cancer 0.0468 ( + ) 0.0412 ( + ) 3.25e −4 ( + ) 3.75e −3 ( + ) 1.19e −3 ( + ) 3.26e −4 ( + ) 0.0431 ( + ) 0.0437 ( + ) 0.0441 ( + ) 

Newthyroid 0.0453 ( + ) 0.0463 ( + ) 7.98e −5 ( + ) 6.14e −3 ( + ) 3.35e −3 ( + ) 4.51e −5 ( + ) 0.0476 ( + ) 0.0471 ( + ) 0.0477 ( + ) 

Wine 0.0524 ( −) 0.0452 ( + ) 1.13e −7 ( + ) 6.81e −4 ( + ) 3.41e −4 ( + ) 8.22e −5 ( + ) 0.0465 ( + ) 0.0458 ( + ) 0.0463 ( + ) 

LiverDisorder 0.0462 ( + ) 0.0375 ( + ) 1.06e −7 ( + ) 1.03e −3 ( + ) 6.49e −4 ( + ) 5.45e −4 ( + ) 0.0419 ( + ) 0.0408 ( + ) 0.0414 ( + ) 

LungCancer 0.0428 ( + ) 0.0399 ( + ) 6.29e −7 ( + ) 5.96e −3 ( + ) 1.05e −3 ( + ) 2.63e −4 ( + ) 0.0423 ( + ) 0.0431 ( + ) 0.0428 ( + ) 

Glass 0.0521 ( −) 0.0296 ( + ) 1.39e −4 ( + ) 7.38e −4 ( + ) 4.05e −4 ( + ) 4.29e −5 ( + ) 0.0385 ( + ) 0.0369 ( + ) 0.0423 ( + ) 

Yeast 0.0439 ( + ) 0.0382 ( + ) 4.82e −7 ( + ) 3.56e −3 ( + ) 4.15e −4 ( + ) 3.29e −4 ( + ) 0.0410 ( + ) 0.0508 ( −) 0.0452 ( + ) 

Diabetes 0.0415 ( + ) 0.0275 ( + ) 2.98e −7 ( + ) 4.26e −3 ( + ) 4.56e −4 ( + ) 2.18e −4 ( + ) 0.0491 ( + ) 0.0501 ( −) 0.0493 ( + ) 

CMC 0.0534 ( −) 0.0448 ( + ) 1.26e −6 ( + ) 7.29e −4 ( + ) 3.82e −4 ( + ) 5.72e −5 ( + ) 0.0458 ( + ) 0.0455 ( + ) 0.0452 ( + ) 

Table 4

The p-values produced by Wilcoxon’s rank sum test comparing with other approaches in terms of F-measure.

Data sets MOFC-TMS vs.

GenClustMOO MOmoDEFC VAMOSA DE PSO FCM TMS(J m ) TMS(XB) TMS(Sym)

Sym_3_2 0.0416 ( + ) 3.22e −3 ( + ) 2.51e −3 ( + ) 0.0318 ( + ) 0.0108 ( + ) 7.95e −4 ( + ) 3.21e −3 ( + ) 3.27e −3 ( + ) 3.19e −3 ( + ) 

Ring_3_2 0.0394 ( + ) 4.41e −3 ( + ) 1.92e −3 ( + ) 8.94e −3 ( + ) 8.16e −3 ( + ) 2.83e −3 ( + ) 4.27e −3 ( + ) 4.38e −3 ( + ) 4.23e −3 ( + ) 

Sph_5_2 0.0328 ( + ) 4.06e −3 ( + ) 2.19e −3 ( + ) 4.69e −3 ( + ) 5.37e −3 ( + ) 3.72e −5 ( + ) 3.94e −3 ( + ) 4.01e −3 ( + ) 3.98e −3 ( + ) 

Sph_9_2 0.0194 ( + ) 2.35e −3 ( + ) 8.78e −4 ( + ) 8.82e −3 ( + ) 6.24e −3 ( + ) 4.86e −4 ( + ) 3.31e −3 ( + ) 3.39e −3 ( + ) 2.85e −3 ( + ) 

Sizes_5 0.0518 ( −) 3.81e −3 ( + ) 3.95e −3 ( + ) 0.0138 ( + ) 7.52e −3 ( + ) 3.97e −3 ( + ) 3.61e −3 ( + ) 3.65e −3 ( + ) 3.76e −3 ( + ) 

Square4 0.0523 ( −) 3.17e −3 ( + ) 7.64e −3 ( + ) 3.95e −3 ( + ) 1.12e −3 ( + ) 2.93e −4 ( + ) 3.04e −3 ( + ) 3.07e −3 ( + ) 3.12e −3 ( + ) 

Iris 0.0357 ( + ) 2.92e −3 ( + ) 3.72e −3 ( + ) 0.0319 ( + ) 0.0193 ( + ) 8.45e −3 ( + ) 2.89e −3 ( + ) 2.93e −3 ( + ) 2.87e −3 ( + ) 

Cancer 0.0451 ( + ) 3.94e −3 ( + ) 2.96e −3 ( + ) 0.0154 ( + ) 8.62e −3 ( + ) 9.87e −4 ( + ) 3.83e −3 ( + ) 3.85e −3 ( + ) 3.81e −3 ( + ) 

Newthyroid 0.0418 ( + ) 4.16e −3 ( + ) 2.38e −3 ( + ) 9.68e −3 ( + ) 0.0417 ( + ) 1.12e −3 ( + ) 4.13e −3 ( + ) 4.11e −3 ( + ) 4.06e −3 ( + ) 

Wine 0.0523 ( −) 3.71e −3 ( + ) 2.15e −3 ( + ) 0.0394 ( + ) 5.76e −3 ( + ) 4.57e −4 ( + ) 3.65e −3 ( + ) 3.68e −3 ( + ) 3.63e −3 ( + ) 

LiverDisorder 0.0382 ( + ) 3.18e −3 ( + ) 4.81e −4 ( + ) 0.0284 ( + ) 0.0118 ( + ) 8.86e −3 ( + ) 3.12e −3 ( + ) 3.14e −3 ( + ) 3.11e −3 ( + ) 

LungCancer 0.0483 ( + ) 4.65e −3 ( + ) 8.53e −3 ( + ) 4.86e −3 ( + ) 3.27e −3 ( + ) 6.94e −4 ( + ) 4.55e −3 ( + ) 4.61e −3 ( + ) 4.59e −3 ( + ) 

Glass 0.0519 ( −) 3.41e −3 ( + ) 1.72e −3 ( + ) 0.0294 ( + ) 0.0315 ( + ) 0.0281 ( + ) 3.54e −3 ( + ) 3.55e −3 ( + ) 3.52e −3 ( + ) 

Yeast 0.0392 ( + ) 4.27e −3 ( + ) 5.38e −4 ( + ) 3.95e −3 ( + ) 2.83e −3 ( + ) 7.43e −4 ( + ) 4.39e −3 ( + ) 4.35e −3 ( + ) 4.31e −3 ( + ) 

Diabetes 0.0428 ( + ) 4.19e −3 ( + ) 3.85e −4 ( + ) 2.87e −3 ( + ) 2.36e −3 ( + ) 4.91e −4 ( + ) 0.492 ( + ) 0.502 ( −) 0.489 ( + ) 

CMC 0.0473 ( + ) 4.38e −3 ( + ) 2.76e −3 ( + ) 0.0379 ( + ) 0.0235 ( + ) 3.59e −3 ( + ) 4.39e −3 ( + ) 4.45e −3 ( + ) 4.42e −3 ( + ) 
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obtains the highest mean value of FM on each data set, whereas

FCM is the lowest in the four approaches. These comparison re-

sults show that MOFC-TMS has a good clustering performance

over DE, PSO and FCM . 

.3. Stability comparison 

Table 1 provides standard deviations of the proposed and com-

ared multi-objective clustering approaches over 30 runs in terms

f MS and FM , respectively. For all of data sets, standard deviations

f MOFC-TMS are lower than those of GenClustMOO, MOmoDEFC

nd VAMOSA . It can be also seen that for Sizes_5, Square4, Cancer,

ine and Glass , standard deviations of MOFC-TMS are still lower

han those of GenClustMOO although average values of GenClust-

OO is slightly better than those of MOFC-TMS . Table 2 compares

tandard deviations of MOFC-TMS with several single-objective

lustering approaches. In contrast to these single-objective clus-

ering approaches, MOFC-TMS has the smallest standard devia-

ion on each data set. The comparison results demonstrate that

OFC-TMS outperforms the compared multi-objective and single-

bjective clustering approaches in terms of stability. 

.4. Statistical significance test 

The Wilcoxon’s rank sum test, a nonparametric statistical sig-

ificance test for independent samples, has been conducted at the

% significance level in the experiments. We created seven groups
or each data set, which correspond to the ten approaches ( MOFC-

MS, GenClustMOO, MOmoDEFC, VAMOSA, DE, PSO, FCM ), TMS(J m 

),

MS(XB) and TMS(Sym) , respectively. Each group consists of MS and

M values produced by 30 consecutive runs of the corresponding

pproaches on these data sets, respectively. The mean values of

S and FM for the seven groups are provided in Tables 1 and 2 ,

espectively. The shown results indicate that most of mean val-

es of MOFC-TMS are better than those of the other approaches.

o prove the goodness is statistically significant, a statistical signif-

cance test has been completed on the six artificial data sets and

en real-life data sets. Tables 3 and 4 provide the p-values of two

roups (one group corresponding to MOFC-TMS and another group

orresponding to some other approach) in terms of MS and FM , re-

pectively. Note that the symbols “+” and “-” represent significant

ifference and no significant difference, respectively. It is evident

rom Tables 3 and 4 that most of p-values are less than 0.05 (5%

ignificance level) except the five cases of MOFC-TMS vs. GenClust-

OO on Sizes_5, Square4, Wine, Glass and CMC and the two cases

f MOFC-TMS vs. TMS(XB) on Yeast and Diabetes . This is a strong

vidence against the null hypothesis, establishing significant supe-

iority of the proposed MOFC-TMS . 

. Conclusions

This paper discussed the use of tissue-like membrane systems

o develop a multiobjective clustering framework for fuzzy cluster-

ng problem. A tissue-like membrane system with a special mem-

rane structure has been designed to integrate the differential
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evolution mechanism and the non-dominated sorting technique.

By optimizing three widely used cluster validity indices simulta-

neously, the multiobjective clustering framework realized a novel

fuzzy clustering approach. The proposed approach has been evalu-

ated on six artificial and ten real-life data sets, and has been com-

pared with three recently developed multiobjective clustering ap-

proaches and three single-objective clustering approaches as well

as FCM. Comparison results clearly exhibit the advantage of the

proposed multiobjective clustering approach on solving fuzzy clus-

tering problem. 

In recent years, several works have proved that evolutionary

and other types of optimization techniques can be used to find the

number of clusters automatically for fuzzy partitions [24,25,57] .

The proposed multiobjective clustering framework cannot deal

with this situation because it uses a tissue-like membrane sys-

tem with a fixed membrane structure. However, some membrane

systems with dynamic membrane structure seem to be suitable to

deal with this situation, for example, membrane systems with cell

division. So, another further work is using membrane systems with

dynamic membrane structures to optimize several objective func-

tions and at the same time find the optimal number of clusters. 
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