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Abstract

We study a novel fuzzy clustering method to improve the segmentation performance on the target 

texture image by leveraging the knowledge from a prior texture image. Two knowledge transfer 

mechanisms, i.e. knowledge-leveraged prototype transfer (KL-PT) and knowledge-leveraged 
prototype matching (KL-PM) are first introduced as the bases. Applying them, the knowledge-
leveraged transfer fuzzy C-means (KL-TFCM) method and its three-stage-interlinked framework, 

including knowledge extraction, knowledge matching, and knowledge utilization, are developed. 

There are two specific versions: KL-TFCM-c and KL-TFCM-f, i.e. the so-called crisp and flexible 

forms, which use the strategies of maximum matching degree and weighted sum, respectively. The 

significance of our work is fourfold: 1) Owing to the adjustability of referable degree between the 

source and target domains, KL-PT is capable of appropriately learning the insightful knowledge, 

i.e. the cluster prototypes, from the source domain; 2) KL-PM is able to self-adaptively determine 

the reasonable pairwise relationships of cluster prototypes between the source and target domains, 

even if the numbers of clusters differ in the two domains; 3) The joint action of KL-PM and KL-

PT can effectively resolve the data inconsistency and heterogeneity between the source and target 

domains, e.g. the data distribution diversity and cluster number difference. Thus, using the three-

stage-based knowledge transfer, the beneficial knowledge from the source domain can be 

extensively, self-adaptively leveraged in the target domain. As evidence of this, both KL-TFCM-c 

and KL-TFCM-f surpass many existing clustering methods in texture image segmentation; and 4) 

In the case of different cluster numbers between the source and target domains, KL-TFCM-f 

proves higher clustering effectiveness and segmentation performance than does KL-TFCM-c.
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1. Introduction

The effectiveness of clustering methods is often largely influenced by noise existing in target 

data sets. Usually, the greater the noise amplitude, the more negative the impact is. However, 

noise is nearly unavoidable and particularly impacts image segmentation [1–5], which 

motivates our research. Specifically, we address the issue that the segmentation performance 

of classic fuzzy C-means (FCM) [6–8], one of the most popular clustering approaches, is 

highly degraded by noise. While there have been numerous attempts to address this 

challenge, such as Ref. [1,2,9–15], most have not transcended the scope of traditional 

learning modalities and cannot achieve the required performance. In contrast, transfer 

learning [16,17], a state-of-the-art machine learning technique which will be introduced in 

the next section, has triggered an increasing amount of research interest owing to its 

distinctive advantages [18–42]. In brief, transfer learning helps one algorithm to improve the 

processing efficacy in the target domain, e.g. the image to be segmented, through the use of 

information in the source domain, e.g. another referenced image [16,22].

We pursue transfer learning as a means to improve the segmentation performance of FCM 

on target texture images in this manuscript. Specifically, the knowledge-leveraged prototype 
transfer (KL-PT) mechanism is introduced in response to the questions “What in the source 

domain can be enlisted as the knowledge?” and “How is such knowledge properly learned in 

the target domain?”. Further, to the challenge of performing knowledge transfer when the 

numbers of clusters in the source and target domains are inconsistent, the knowledge-
leveraged prototype matching (KL-PM) mechanism is presented based on FCM. After that, 

via these two mechanisms, and with a three-stage-interlinked framework, i.e. knowledge 

extraction, knowledge matching, and knowledge utilization, the knowledge-leveraged 
transfer fuzzy C-means (KL-TFCM) approach is developed for the purpose of target texture 

image segmentation. In addition, by means of the strategies of maximum matching degree 

and weighted sum, KL-TFCM is differentiated into two specific versions: KL-TFCM-c and 

KL-TFCM-f, i.e. the crisp and flexible forms of the KL-TFCM, respectively. In summary, 

the contributions of our effort s are as follows:

1. KL-PT is devoted to leveraging the insightful knowledge, i.e., the cluster 

prototypes, of the source domain to guide the fuzzy clustering in the target 

domain, with the desirable adjustability of the referable degree between the 

source and target domains.

2. KL-PM strives to self-adaptively determine the pairwise relationships with 

regard to the cluster prototypes between the source and target domains, 

particularly when the numbers of clusters in the two domains are inconsistent.

3. By organically incorporating the strength of FCM, KL-PM, and KL-PT, and 

using the delicate three-stage-interlinked frame-work of knowledge transfer, we 

develop two versions of KL-TFCM methods, i.e., KL-TFCM-c and KL-TFCM-f, 

for the effective segmentation on target texture images. Both of them strive to 

properly leverage knowledge across domains, even though there is a certain 

extent of data inconsistency/heterogeneity between the source and target 

domains, e.g. the data distribution diversity and cluster number difference.
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4. Benefiting from the more flexible strategy to generate cluster representatives 

from the source domain, compared with KL-TFCM-c, KL-TFCM-f exhibits 

better noise-tolerance as well as clustering effectiveness, particularly when the 

numbers of clusters differ in the source and target domains; this facilitates its 

generally preferable segmentation performance on target texture images.

Moreover, for knowledge-leveraged transfer clustering, our proposed KL-PT and KL-PM 

mechanisms are also suitable for other classic fuzzy clustering models, e.g., maximum 

entropy clustering (MEC) [43,44], fuzzy clustering by quadratic regularization (FC-QR) 

[43,45], and possibilistic C-means (PCM) [43,46] ; this additionally highlights our efforts in 

this manuscript.

The reminder in this manuscript is organized as follows. Section II reviews the theories and 

methods related to our research. Section III introduces, step-by-step, the knowledge transfer 

mechanisms regarding KL-PT and KL-PM, the KL-TFCM framework, and the two specific 

algorithms—KL-TFCM-c and KL-TFCM-f. Section IV evaluates the performance of KL-

TFCM in texture image segmentation. Section V concludes and indicates areas of future 

work.

2. Related work

First, to facilitate understanding, common notations used throughout this paper are listed in 

Table 1.

2.1. Classic FCM

FCM attempts to group a set of given data instances, X = {x1,...xN} ∈ RN×D, into C disjoint 

clusters by means of the membership matrix U = [μij]C×N and the cluster prototypes V = [v1, 

···, vC]T. For this purpose, FCM adopts the following objective function:

min JFCM(U, V) = ∑
i = 1

C
∑
j = 1

N
μi j

m x j − vi
2

s.t. μi j ∈ [0, 1] and ∑
i = 1

C
μi j = 1, j ∈ [1, N]

(1)

where m > 1 is the fuzzifier, i.e. the weighting exponent that controls the fuzziness of 

partitions.

Via the Lagrange optimization, it is easy to derive the following updating rules for the 

cluster prototype vi and membership degree μij:
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vi =
∑
j = 1

N
μi j

mx j

∑
j = 1

N
μi j

m
(2)

μi j = 1

∑
k = 1

C x j − vi
2

x j − vk
2

1
m − 1

(3)

Via the iterative procedure, the final fuzzy membership matrix U is attained, and then the 

cluster that each data instance should belong to can be determined in terms of the maximum 

probability principle.

As mentioned in Introduction, one disadvantage of FCM is its sensitivity to noise existing in 

target data sets which often incurs its inefficiency in target image segmentation.

2.2. Transfer learning based clustering and related methods

A. Transfer learning—Transfer learning [16–42] has recently become one of the hot 

topics in pattern recognition. Transfer learning focuses on improving the learning 

performance of intelligent algorithms on the target data set, i.e. the target domain, by 

referring to some beneficial information from the related data set, i.e. the source domain. 

Transfer learning is suitable for the situation where the target data are insufficient or 

distorted by noise or outliers, whereas some beneficial information from relevant data sets is 

available. Although the most common form of transfer learning entails only one source 

domain and one target domain, the number of source domains can be selected as needed.

The referable information between the source and target domains generally exhibits two 

types—raw data and knowledge. Due to the correlation between domains, some data in the 

source domain are certainly available supplements for those in the target domain. This is 

termed instance-transfer [16,33,34] in transfer learning. However, because of the difference 

of data distributions across domains, not all raw data in the source domain are beneficial to 

the target domain. To avoid the negative transfer [16,17,35], i.e. the phenomenon that source 

domain data or tasks contribute to the reduced performance of learning in the target domain, 

extracting knowledge instead of raw data from the source domain is a safe choose. In 

transfer learning, knowledge is referred to as a category of advanced information from the 

source domain, such as feature representations [16,17,25,36,37], parameters [16,21,39], and 

relationships [16,38], which is usually obtained from certain specific perspectives and via 

some reliable theories and precise procedures. Compared with raw data, knowledge is 

usually regarded as being more insightful as well as possessing stronger anti-noise 

capability. In some cases where the original data in the source domain are not accessible, for 
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instance, because of privacy protection, it could be the only feasible pathway for transfer 

learning to extract knowledge rather than raw data from the source domain.

In general, there have been three categories of transfer learning [16,17] so far, i.e. inductive 

transfer learning, transductive transfer learning, and unsupervised transfer learning. In 

inductive transfer learning, it is required to induce an objective predictive model based on 

the labeled data in the target domain and with the assistance of the data or knowledge from 

the source domain. Many transfer classification [17,18,21,39] and regression [26–28] 

methods belong to this category. Conversely, in transductive transfer learning, there is no 

labeled data in the target domain while lots of labeled data in the source domain are usually 

available. Some approaches of domain-adaptation-based transfer classification [40–42] are 

the representatives of this category. As for unsupervised transfer learning, such as the 

research of transfer clustering [31,32] and transfer dimensionality reduction [29,30], it is 

label-independent in both of the source and target domains. So far, existing work on 

unsupervised transfer learning is comparatively little, and this encourages our research in 

this manuscript. One can refer to [16,17] for the more complete surveys on transfer learning.

B. Transfer clustering—As is mentioned above, clustering specializes in grouping a set 

of data instances so that objects in the same group (namely, a cluster) are more similar to 

each other than to those in other groups (clusters). The practical effectiveness of clustering 

methods depends strongly on the data quantity and quality in the target data set. 

Conventional clustering techniques can achieve desirable clustering performance only in 

relatively ideal situations in which data are relatively sufficient and have little distortion by 

noise or outliers. Such conditions, however, are difficult to achieve in practice. Transfer 

learning based clustering has emerged as an approach to address this challenge [31,32,47].

We use a simple example having only one source domain along with the target domain, as 

shown in Fig. 1, to explain how clustering is associated with transfer learning. As is evident 

in Fig. 1 (b), noise interference causes the examples in the target data set (X2) to be mixed 

together so that the three potential clusters, indicated by red, green, and black, are difficult to 

distinguish using conventional clustering methods. Suppose that another comparatively low-

noise data set (X1) is now available, as shown in Fig. 1 (a), in which the data essence can be 

relatively easily captured by usual clustering approaches. Regardless of the apparent 

distinction of cluster numbers in X1 and X2, there are intrinsic connections between these 

two data sets, e.g., the three potentially embedded clusters in X2 also exist in X1, although 

their individual data distributions are visually different, possibly due to noise. In such case, 

transfer learning is an appropriate strategy conducive to improving the clustering 

performance on X2 by taking X2 and X1 as the target and source domains, respectively. If 

any fuzzy clustering method, e.g., FCM, is performed on X1, the cluster prototypes 

(centroids) can be attained, as marked with small, blue stars in Fig. 1 (a). These achieved 

cluster prototypes in X1 are reasonably regarded as a type of knowledge for guiding and 

improving the clustering accuracy on X2. This is exactly the central idea of our knowledge-

leveraged transfer clustering in this literature.

To date there have been few studies that connect transfer learning and clustering. The two 

well-known ones are the self-taught clustering (STC) [31] and transfer spectral clustering 
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(TSC) [32]. STC was a collaborative learning-based transfer clustering approach, which 

simultaneously clustered the target and auxiliary data with allowing the feature 

representation from the auxiliary data to influence the target data via the common features. 

Benefiting from the new data representation, STC worked well on the target data. As for 

TSC, it assumes that the embedded information regarding features could connect different 

clustering tasks of different data sets and hence mutually improve the clustering 

performance of both sets. As such, both the data manifold information of clustering tasks 

and the feature manifold information shared between related clustering tasks were involved 

in TSC. In addition, the collaborative clustering strategy was also recruited in TSC for 

controlling the knowledge transfer among tasks. Nevertheless, it should particularly be 

pointed out that, although STC and TSC have proved their respective advantages, both are 

restricted in the condition that the cluster numbers in the source and target domains are the 

same. That is, neither of them can be used for such transfer scenario wherein the number of 

clusters in one domain is different from that in the other. In addition, we have recently been 

attempting to establish the bridge between transfer learning and partition-based clustering 

[1,2,10]. For example, we introduced the concept of cluster prototype-based knowledge 

transfer [47] for many sof-tpartition clustering models, such as FCM, soft subspace 

clustering [10,48], and maximum entropy clustering [43,44]. Our research in this manuscript 

also belongs to this category.

C. Methods associated with transfer clustering—Despite the fact that transfer 

clustering only emerged in recent years, it is not isolated from other mainstream techniques 

in pattern recognition, such as multi-task clustering [49,50], co-clustering (collaborative 

clustering) [13,51,52], semi-supervised clustering [53,54,55], and supervised clustering 

[56,57,58].

Multi-task clustering concurrently performs clustering tasks with interactions among these 

tasks so that all of them achieve better performance versus clustering separately. For 

example, the learning shared subspace for multitask clustering (LSSMTC) [49] focused on 

learning a subspace shared by all the tasks, through which the knowledge of the tasks can be 

transferred to each other. Moreover, as the derivative of LSSMTC, the multi-task clustering 
via domain adaptation (MTC-DM) [50] was proposed in order to address the issue of 

distribution differences among tasks according to the frontier research in domain adaptation. 

As revealed in [16,17], transfer learning is actually one of the extensions of multi-task 

learning. The most noticeable difference between transfer clustering and multi-task 

clustering lies in that the former merely cares about the task occurred in the target domain 

whereas conventional multi-task clustering utilizes the data in all tasks directly. Thus, when 

multi-task clustering is used, a high noise level in one data set can cause negative 

consequences among tasks.

Co-clustering performs clustering on the data instances and attributes simultaneously on the 

target data set. Therefore, it is also capable of being regarded as a special type of multi-task 

clustering, in the sense of two collaborative clustering tasks from the perspectives of 

examples and features separately. In this aspect, considerable work has also been conducted. 

For instance, the dual-regularized co-clustering (DRCC) [51] was developed via semi-

nonnegative matrix tri-factorization as well as manifold information. That is, by constructing 

Qian et al. Page 6

Knowl Based Syst. Author manuscript; available in PMC 2018 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



two graphs on the data points and features respectively, the co-clustering was formulated as 

semi-nonnegative matrix tri-factorization with two graph regularization terms, requiring that 

the cluster labels of data points are smooth to the data manifold, whereas those of features 

are smooth to the feature manifold. In addition, by treating the contingency table as an 

empirical joint probability distribution between two discrete random variables which take 

values over the rows and columns, the information-theoretic co-clustering (ITCC) [52] was 

put forward with maximizing mutual information between the clustered random variables 

subject to the constraints on the cluster numbers of row and column. As revealed in both 

STC [31] and TSC [32], co-clustering is sometimes involved in transfer clustering when 

feature-based knowledge is shared between the auxiliary and target data.

Semi-supervised clustering and supervised clustering are the other two categories of 

clustering techniques associated with transfer clustering. Both attempt to improve the 

clustering performance on target data sets via the assist of given prior information. This is 

consistent with the intention of transfer clustering. We briefly review them as follows.

Semi-supervised clustering aims to enhance the clustering performance using some side 

information, i.e. must-link and/or cannot-link constraints, on the target data set. The existing 

research on semi-supervised clustering can be subdivided into two major groups, i.e. 

similarity-based methods and search-based methods. The similarity-based method creates a 

modified distance function that incorporates the knowledge with respect to the given side 

information and use a conventional clustering model to cluster the data. For example, the K-

means clustering in conjunction with one modified distance function was used to compute 

clusters in [54], and one shortest path algorithm [55] was developed by modifying the 

Euclidian distance function based on the prior knowledge of pairwise constraints. 

Conversely, the search-based method modifies the clustering algorithm itself but does not 

change the distance function. For instance, the constrained K-means clustering (CKM) [53] 

was developed by profitably manipulating the search procedure of classic K-means so as to 

make use of the pairwise must-link and cannot-link constraints.

Supervised clustering is to automatically adapt a clustering algorithm that learns a 

parameterized similarity measure with the aid of a training set consisting of numerous 

labeled examples. Differing from semi-supervised clustering, the learned parameterized 

similarity measure in supervised clustering is usually used to cluster future data sets rather 

than the current one for training. For instance, the support vector machine-based supervised 
clustering approaches [56,57] were studied by learning the item or item-pair based similarity 

measure to optimize the performance of correlation clustering on a variety of performance 

measures. In addition, a supervised fuzzy C-means clustering method (SFCM) [58] was 

presented by defining a multivariate Gaussian-based distance measure of which the 

parameters needs to be trained using the given labeled examples.

However, it should be pointed out that the applicable data scenes of semi-supervised 

clustering, supervised clustering, and transfer clustering are markedly different, regardless of 

the fact that the prior information, in the form of either raw data or advanced knowledge, is 

involved in all of them. Specifically, semi-supervised clustering usually serves only one data 

set. It gets some beneficial supervision information from one data set and eventually boosts 
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clustering on the same data set. In supervised clustering, a training set is given in which all 

examples are labeled. One parameterized distance measure, which aims to group future data 

sets, is then learned via these training data. Here the training set and future data sets are from 

the same domain in supervised clustering. As for transfer clustering, as already disclosed, 

the prior information is obtained from the source domain/domains but is used in the target 

domain, and there usually exist different degrees of data inconsistency between the source 

and target domains. Therefore, both semi-supervised clustering and supervised clustering 

can be regarded as the special cases of transfer learning in which the target and auxiliary 

data possess the same distribution.

3. Knowledge-leveraged transfer fuzzy C-Means (KL-TFCM) for texture 

image segmentation

Now coming back to the intent of this paper, we focus on exploring the promising fuzzy 

clustering schema for target texture image segmentation, based on transfer learning. Two 

points need to be clarified before introducing our work. First, only one source domain is 

considered throughout our current research. The multiple-source-domain-oriented model 

will be continued in the future. Second, we always suppose that the data in the source 

domain are relatively pure and sufficient so that we can achieve desirable, insightful 

knowledge to assist the clustering in the target domain.

Let us begin with one realistic scenario, as shown in Fig. 2, so as to intuitively illustrate how 

transfer clustering occurs in the texture image segmentation. Fig. 2 (c) is the target image to 

be segmented. It is distinctly intractable to deal with such image as it has been rather 

polluted by noise, and conventional clustering methods usually cannot gain insights into the 

essence, i.e. Fig. 2 (b). In such case, transfer learning can be adopted to obtain valuable 

information from another correlative texture image, i.e. Fig. 2 (a), in order to assist the 

eventual clustering on Fig. 2 (c). In the context of transfer learning, Fig. 2 (c) is the target 

domain and Fig. 2 (a) is the only source domain. What could be regarded as beneficial 

information (i.e. referable knowledge) across two domains are the intrinsic characteristics of 

common textures between Fig. 2 (a) and (b), similarly between Fig. 2 (a) and (c). Certainly, 

due to the noise distortion in Fig. 2 (c), the texture characteristics between Fig. 2 (a) and (c) 

are not distinctly consistent even if they are essentially the same textures, which actually 

depend on the referable degree between these two images (domains). Moreover, we also face 

two other challenges:

1. What can be recruited for effectively embodying the intrinsic texture 

characteristics in the referenced source image, so as to attain the desirable, 

valuable knowledge for transfer clustering on the target texture image?

2. How can one self-adaptively learn knowledge from the source domain, in answer 

to the probable data inconsistency (data heterogeneity) between the source and 

target domains, e.g., the data distribution diversity as well as the cluster number 

difference between Fig. 2 (a) and (c)?

For addressing the above issues, we detail our countermeasures as follows.
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3.1. Self-adaptive, knowledge-leveraged transfer mechanisms across domains

As we know well, the resultant cluster centroids, V = [v1, ···, vC]T, are also referred to as the 

cluster prototypes in fuzzy clustering, e.g. FCM, which means that each of them is able to 

represent the objects in its matching cluster [43]. Based on this, suppose under the condition 

that the texture features in the source texture image can be effectively captured and be 

subsequently used to constitute the target data set, then the centroids (prototypes), denoted 

as VS = [v1,S, ···, vCS,S]T, of all embedded clusters can conveniently be obtained using a 

certain conventional fuzzy clustering method. As disclosed in [47], the achieved VS = [v1,S, 

···, vCS,S]T can be regarded as the knowledge that is capable of depicting the substance of all 

textures in the source image. With these cluster centroids acting as the knowledge, we can 

benefit from two features: (1) A cluster centroid is also referred to as a cluster prototype in 

fuzzy clustering, which suffices to indicate its nice representability to one cluster, and also to 

all the affiliated objects in one cluster; (2) A cluster centroid is synthetically generated via 

reliable theories as well as rigorous procedures, which facilitates its robustness when facing 

nosy situations.

For the challenge of potential data heterogeneity between the source and target domains, as 

already mentioned, a mechanism with capability of flexibly controlling the referable degree 

between these two domains should be feasible to address. To this end, we present the 

following knowledge-leveraged prototype transfer (KL-PT) formulation.

A. The KL-PT mechanism—Let us first cope with a relatively simple scenario, i.e. the 

cluster numbers in the source and target domains are the same, denoted as C. Suppose VS = 

[v1,S, ···, vC,S]T and VT = [v1,T, ···, vC,T]T signify the cluster prototypes in the source and 

target domains, respectively. Then the formula of the knowledge-leveraged prototype 
transfer (KL-PT) mechanism can be expressed as

min ΛKL−PT(VS, VT) = λ ∑
j = 1

C
v j, T − v j, S

2 (4)

where λ ≥ 0 is the regularization coefficient.

Eq. (4) measures the total gap between the estimated cluster prototypes in the target domain 

and the referenced ones in the source domain. In the sense of texture image segmentation, 

here VT refers to the texture prototypes in the target image that need to be estimated by our 

own method, whereas VS signifies the texture prototypes in the source image that are given 

for reference. The parameter λ controls the overall, referable degree between VT in the 

target domain to VS in the source domain. The larger the value of λ, the greater the overall 

referable degree between VT and VS is, and the smaller the expected total difference 

between VT and VS is.

B. The knowledge-leveraged prototype matching (KL-PM) mechanism—KL-PT 

in the form of Eq. (4) assumes that the cluster numbers in the source and target domains are 

equal, which sometimes restricts its practicability. For example, the potential texture 
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numbers in Fig. 2 (a) and (c) are different: the former is 7 and the latter is 5. Key to this 

situation is to appropriately differentiate the importance of each cluster prototype in the 

source domain so as to correctly utilize them as the knowledge for transfer clustering in the 

target domain. To this end, adapting from [47], we introduce another transfer clustering 

mechanism termed knowledge-leveraged prototype mat ching (KL-PM), which can be 

formulated as

min JKL−PM(UT, PT&S, VT) = ∑
i = 1

NT
∑
j = 1

CT
μi j, T

m1 xi, T − v j, T
2 + β ∑

j = 1

CT
∑

k = 1

CS
p jk

m2 v j, T − vk, S
2

s.t. μi j ∈ [0, 1], ∑
j = 1

CT
μi j = 1, p jk ∈ [0, 1],

∑
k = 1

CS
p jk = 1, 1 ≤ i ≤ NT, 1 ≤ j ≤ CT, 1 ≤ k

≤ CS

(5)

in which the notations of xi,T (i = 1,..., NT) ∈ XT, UT, PT&S, VT, and VS are the same as 

those listed in Table 1. NT denotes the data size in the target domain; CS and CT signify the 

cluster numbers in the source and target domains separately; m1 > 1 and m2 > 1 are two 

fuzzifiers controlling the model fuzziness; and β > 0 is the regularization parameter.

Eq. (5) includes two terms. The first, originating from classical FCM, aims to divide the data 

in the target domain into CT groups with overall minimum intra-cluster deviation as well as 

maximum inter-cluster separation. The second attempts to determine the appropriate values 

of pjk, 1 ≤ j ≤ CT, 1 ≤ k ≤ CS, i.e. the matching degrees of cluster prototypes between the 

target and source domains.

By the Lagrange optimization, the updating equations of vj,T, μij,T, and pjk in Eq. (5) can 

easily be derived as

v j, T =
∑
i = 1

NT
μi j, T

m1 xi, T + β ∑
k = 1

CS
p jk

m2vk, S

∑
i = 1

NT
μi j, T

m1 + β ∑
k = 1

CS
p jk

m2

(6)
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μi j, T = 1

∑
l = 1

CT xi, T − v j, T
2

xi, T − vl, T
2

1
m1 − 1

(7)

p jk = 1

∑
l = 1

CS ‖v j, T − vk, S‖2

‖vi, T − vl, S‖2

1
m2 − 1

(8)

After the iterative procedure, two desired outcomes regarding the target domain are 

obtained. One is the current estimate of cluster centroids, VT = [v1,T,..., vCT,T]T in the target 

domain. As they still need to be refined in our method, we call them the raw cluster 

prototypes of the target domain and designate them as VT
r = [v1, T

r , ⋯, vCT, T
r ]T. The other 

outcome is the eventual matching degrees PT&S = [pjk]CT×CS. Via these matching values, the 

appropriate pairwise relationships regarding the cluster prototypes in the source and target 

domains are achieved. Large values of pjk indicate that the jth cluster prototype in the target 

domain strongly matches the kth one in the source domain.

Next, we continue discussing how to extract knowledge from the source domain, based on 

the matching degrees, PT&S, so as to implement knowledge transfer in the case of 

inconsistent cluster numbers between the source and target domains. Given our assumption 

that the data in the source domain are sufficient, which implies that the number of embedded 

clusters in the source domain are more than or at least equal to that in the target domain, two 

ways are available here, and we call them the so-called crisp and flexible forms, respectively. 

In either case, the CT cluster representatives, denoted as ṼS = [ṽ1,S, ···, ṽCT,S]T, are achieved 

in the source domain, and regarded as the final knowledge for transfer learning in the target 

domain.

a. The crisp form

In this case, for each v j, T
r ∈ VT

r ( j = 1, …CT), i.e. each of the raw cluster 

prototypes in the target domain, we directly designate the cluster prototype in the 

source domain that owns the maximum matching degree to v j, T
r  as ṽj,S ∈ ṼS. 

Namely,

v∼ j, S = vk′, S, k′ = arg max
k

p jk ∈ PT&S ∣ k ∈ [1, CS] , j ∈ [1, CT], v∼ j, S

∈ V∼S, vk′, S ∈ VS .

(9)
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b. The flexible form

Here all of the ṽj,S ∈ ṼS, j ∈ [1, CT], are synthetically generated by means of the 

weighted sums:

v∼ j, S = ∑k = 1
CS p jkvk, S , j ∈ [1, CT], v∼ j, S ∈ V∼S, vk, S ∈ VS.. (10)

That is, for each v j, T
r ∈ VT

r ( j = 1, …, CT) in the target domain, in terms of VS = 

[v1,S, ···, vCS,S]T as well as the matching degrees, pjk(k = 1,..., Cs), we synthesize 

a virtual product as the referable object in the source domain, via the strategy of 

the weighted sum.

So far, even if there is data inconsistency between the source and target domains, via the 

strategies of extracting the cluster representatives from the source domain as well as 

controlling the referable degree between these two domains, transfer clustering is now 

available for target texture image segmentation. Accordingly, the KL-PT mechanism in the 

form of Eq. (4) can be rewritten as

min JKL−PT(V∼S, VT) = λ ∑
j = 1

CT
v j, T − v∼ j, S

2 . (11)

That is, in the case of different cluster numbers between the source target domains, KL-PT 

substitutes the CT cluster representatives, ṼS = [ ṽ1,S, · · · , ṽCT,S]T, for the original cluster 

prototypes, VS = [ v1,S, · · · , vCS,S]T, for the knowledge transfer across domains.

3.2. The proposed KL-TFCM

A. The complete framework of KL-TFCM—Now, by means of the two knowledge 

transfer mechanisms—KL-PM in the form of Eq. (5) and KL-PT in the form of Eq. (11), and 

based on FCM, we can propose our novel clustering model, referred to as knowledge-
leveraged transfer fuzzy C-means (KL-TFCM), for texture image segmentation. The 

eventual formulation of KL-TFCM is:
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min JKL−TFCM(UT, VT) = ∑
i = 1

NT
∑
j = 1

CT
μi j, T

m xi, T − v j, T
2 + λ ∑

j = 1

CT
v j, T − v∼ j, S

2

s.t. i ∈ [1, NT], j ∈ [1, CT], μi j ∈ [0, 1], ∑
j = 1

CT
μi j = 1

Case − c: v∼ j, S = vk′, S, k′ = arg max
k

p jk ∈ PT&S ∣ k ∈ [1, CS]

Case − f: v∼ j, S = ∑k = 1
CS p jkvk, S

(12)

where, xi,T (i = 1, …, NT) ∈ XT, ṽj,S ∈ ṼS, vk,S ∈ VS, pjk ∈ PT&S, UT, and VT are the same 

as those listed in Table 1, and CS, CT, NT, and λ are the same as those in Eq. (4) or (5).

Eq. (12) is also composed of two terms. The first term aims at partitioning the target data 

into CT groups with optimal intercluster purity, while the second is devoted to suitably and 

flexibly exploiting the final knowledge, ṼS = [ ṽ1,S, · · · , ṽCT,S]T, from the source domain. 

The parameter λ ≥ 0 determines the referable degree across the two domains. Greater values 

of λ indicate that the target domain should learn much from the source domain, i.e. VT 

should be much closer to ṼS; conversely, smaller values of λ mean that the overall similarity 

between VT and ṼS is not strongly enforced.

Once again, via the Lagrange optimization, the updating equations regarding cluster 

prototype vj,T and membership μij,T in Eq. (12) are also deduced:

v j, T =
∑
i = 1

NT
μi j, T

m xi, T + λv∼ j, S

∑
i = 1

NT
μi j, T

m + λ

(13)

μi j, T = 1

∑
l = 1

CT ‖xi, T − v j, T‖2

‖xi, T − vl, T‖2

1
m − 1

. (14)

It should be noted that KL-TFCM is proposed based on KL-PM and KL-PL and that KL-PM 

is always performed before KL-TFCM in the same target domain. Therefore, as mentioned 

in Section 3.1-B, the raw cluster prototypes, VT
r = [v1, T

r , ⋯, vCT, T
r ]T, achieved by KL-PM in 

Qian et al. Page 13

Knowl Based Syst. Author manuscript; available in PMC 2018 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the target domain can be further refined in our subsequent procedure. For this purpose, we 

initialize VT = VT
r  at the beginning of the iterative optimization with respect to Eqs. (13) and 

(14).

Last but not least, to facilitate understanding, it is worth summarizing the complete 

framework of KL-TFCM developed for target texture image segmentation. As illustrated in 

Fig. 3, this complete framework involves three stages: knowledge extraction, knowledge 

matching, and knowledge utilization.

1. Stage I: Knowledge extraction

In this stage, the texture features in the reference texture image are first extracted 

in order to compose the source domain data set XS. Then, via classic FCM, the 

prototypes (centroids), VS = [v1,S, · · · , vCS,S]T, of all embedded clusters (i.e. all 

contained textures) are obtained as the knowledge for reference in the target 

domain.

2. Stage II: Knowledge matching

The texture features of the target texture image are used to compose the target 

domain data set XT. By KL-PM in the form of Eq. (5), the currently estimated, 

raw cluster prototypes, VT
r = [v1, T

r , ⋯, vCT, T
r ]T, in the target domain as well as the 

final matching degrees, PT&S, between the source and target domains are 

obtained. Subsequently, in terms of PT&S, and via the crisp or flexible form, the 

CT cluster representatives, ṼS = [ ṽ1,S, · · · , ṽCT,S]T, in the source domain can be 

attained. After that, the rewritten KL-PT knowledge transfer mechanism in the 

form of Eq. (11) becomes feasible.

3. Stage III: Knowledge utilization

Based on the joint action of KL-PM and KL-PT in the form of Eq. (11), KL-

TFCM is now available for target texture image segmentation, no matter whether 

there is the difference of cluster numbers between the source and target domains 

or not. In KL-TFCM, the cluster representatives, ṼS = [ ṽ1,S, · · · , ṽCT,S]T, from 

the source domain are regarded as the final knowledge for transfer clustering in 

the target domain. Initializing VT = VT
r  and using Eqs. (14) and (13) alternately, 

the eventual partitions on XT, i.e. the segmentation result of the target texture 

image, can be determined.

B. Detailed core algorithms

In light of the two ways for generating the cluster representatives, ṼS = [ ṽ1,S, · · · , ṽCT,S]T, 

from the source domain, i.e. using the crisp or flexible form, we categorize KL-TFCM into 

two specific versions—KL-TFCM-c and KL-TFCM-f, corresponding to Eqs. (9) and (10), 

respectively. The detailed procedure is listed as follows
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Algorithms

Knowledge-leveraged transfer fuzzy C-means clustering (KL-TFCM)-c/-f

Inputs: The target domain data set XT constituted by extracting texture features from the target texture image; the 
source domain data set XS composed of texture features from the referenced texture image; the cluster 
numbers CT and CS in the target and source domains, respectively; the convergence threshold ε; the 
fuzzifiers m, m1, m2 and parameters λ, β in Eq. (1), (5), or (12); and the maximum number of iterations 
max_iter

Outputs: The eventual partitions on XT, i.e. the segmentation result of target texture image

Stage I: Knowledge extraction

Step I-1:
Set the iteration index t = 1, initialize the fuzzy memberships μi j

(t) in Eq. (1) and compute the cluster 

prototypes vi
(t), i = 1, …, CS, using Eq. (2) in the source domain XS;

Step I-2:
Compute the fuzzy memberships μi j

(t + 1), i = 1, …, CS, j = 1, … NS, using Eq. (3);

Step I-3:
Compute the cluster prototypes vi

(t + 1), i = 1, …, CS, using Eq. (2);

Step I-4:
If ∣ JFCM

(t + 1) − JFCM
(t) ∣ < ε or t > max_iter, go to Step I-5; otherwise, set t = t + 1 and go to Step I-2;

Step I-5;

Step I-5: Set the cluster prototypes VS = V(t + 1) = [v1
(t + 1), …, vCS

(t + 1)]T in the source domain XS.

Stage II: Knowledge matching

Step II-1:
Set the iteration index t = 1, initialize the fuzzy memberships μi j, T

(t)  and the matching degrees p jk
(t) in Eq. 

(5), and compute the cluster prototypes v j, T
(t) , j = 1, …, CT, using Eq. (6) in the target domain XT;

Step II-2:
Compute the fuzzy memberships μi j, T

(t + 1), i = 1, …, NT, j = 1, …, CT, using Eq. (7);

Step II-3:
Compute the matching degrees p jk

(t + 1), j = 1, …, CT, k = 1, …, CS, using Eq. (8);

Step II-4:
Compute the cluster prototypes v j, T

(t + 1), j = 1, …, CT, using Eq. (6);

Step II-5:
If ∣ JKL−PM

(t + 1) − JKL−PM
(t) ∣ < ε or t > max_iter, go to Step II-6; otherwise, set t = t + 1 and go to Step 

II-2;

Step II-6:

Set the raw cluster prototypes VT
r = VT

(t + 1) = [v1, T
(t + 1), …, vCT, T

(t + 1)]T and the final matching degrees 

PT&S = [p jk
(t + 1)]

CT × CS
;

Step II-5: Generate the CT cluster representatives, ṼS = [ ṽ1,S, · · · , ṽCT,S]T, of the source domain as the final 
knowledge for the target domain, according to: Case-c: the crisp form, i.e. Eq. (9); Case-f: the flexible 
form, i.e. Eq. (10).

Stage III: Knowledge utilization
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Step III-1:

Set the iteration index t = 1, initialize the cluster prototypes VT
(t) = VT

r = [v1, T
r , ⋯, vCT, T

r ]T in Eq. 

(12), and compute the fuzzy memberships μi j, T
(t)  using (14) in the target domain XT;

Step III-2:
Compute the cluster prototypes v j, T

(t + 1), j = 1, …, CT, using (13);

Step III-3:
Compute the fuzzy memberships μi j, T

(t + 1), i = 1, …, NT, j = 1, …, CT, using (14);

Step III-4:
If ∣ JKL−TFCM

(t + 1) − JKL−TFCM
(t) ∣ < ε or t > max_iter, go to Step III-5; otherwise, t = t + 1 and go to 

Step III-2;

Step III-5:
The final memberships matrix UT in the target domain is achieved, i.e. 

UT = UT
(t + 1) = [μi j, T

(t + 1)]
CT × NT

;

Step III-6: Determine the eventual partitions on the target texture image according to the eventual memberships UT.

Let us analyse the computational cost of KL-TFCM in stages. The time complexity of the 

first stage is O (ma x_tria · max_iter · (NS · CS + CS)), the second stage is O (ma x_tria · 

max_iter · (NT · CT + CT + CS · CT)), and the final stage is O (ma x_tria · max_iter · (NT · 

CT + CT)), in which, max_tria and max_iter are, respectively, the maximal numbers of trials 

and iterations; NS and NT are separately the data sizes in the source and target domains; and 

CS and CT signify the cluster numbers of the source and target domains, respectively.

4. Experimental studies

4.1. Setup

In this section, we focus on evaluating the real-world segmentation performance of texture 

images of our research. In addition to KL-TFCM-c and KL-TFCM-f, eight other correlative 

algorithms are enlisted for performance comparison, including classic FCM, STC [31], TSC 

[32], LSSMTC [49], CombKM [49], DRCC [51], CKM [53], and SFCM [58]. All of these 

competitive algorithms have been briefly introduced in Section II, except for CombKM. As 

described in [49], CombKM refers to the K-means performed on the combined data set 

constituted by merging the data of all tasks together. These algorithms are good 

representatives of the state-of-the-art approaches associated with our research. Among these, 

FCM, SFCM, KL-TFCM-c, and KL-TFCM-f belong to fuzzy clustering; KL-TFCM-c, KL-

TFCM-f, STC, and TSC belong to transfer clustering; Both STC and TSC also belong to co-

clustering; LSSMTC and CombKM belong to multi-task clustering; and DRCC, CKM, and 

SFCM are, respectively, the member of co-clustering, semi-supervised clustering, and 

supervised clustering.

For measuring the clustering effectiveness of these involved approaches, two well-accepted 

validity metrics, i.e. NMI (Normalized Mutual Information) [48] and RI (Rand Index) [48], 

are employed. Both NMI and RI take values within the interval [0,1]. The greater the value 

of NMI or RI, the better performance the corresponding algorithm indicates. Their 

definitions are briefly reviewed as follows.
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NMI =
∑
i = 1

C
∑
j = 1

C
Ni, j log N · Ni, j/Ni · N j

∑
i = 1

C
Ni log Ni/N · ∑

j = 1

C
N j log N j/N

(15)

where Ni,j is the number of agreements between cluster i and class j, Ni is the number of 

data points in cluster i, Nj is the number of data points in class j, and N signifies the data 

capacity of the whole dataset.

RI =
f 00 + f 11

N(N − 1)/2 (16)

where f00 denotes the number of any two sample points belonging to two different clusters, 

f11 denotes the number of any two sample points belonging to the same cluster, and N is the 

number of all the sample points.

The grid search strategy [48] was enlisted for partial parameter settings during our 

experiments. The values or trial ranges of core parameters involved in the recruited 

algorithms are listed in Tables 2 and 3. The experimental results of matching approaches are 

reported in terms of the means and standard deviations of NMI and RI after twenty times of 

random initialization based running on the target data sets.

All of our experiments were implemented via MATLAB 2010b on a PC with Intel i5-3317 U 

1.70 GHz CPU and 16GB RAM.

4.2. Texture image segmentation

A. Constitution of the transfer Scenarios of Texture Image Segmentation—For 

constituting the experimental texture images, the well-known Brodatz texture [59] repository 

was enlisted in our research. Specifically, thirteen basic textures: D3, D6, D21, D31, D33, 

D41, D45, D49, D53, D56, D93, D96, and D101, in this repository were used to synthesize 

the texture images acting as the source or target domains for transfer clustering in our 

experiments.

It should be noted that, for achieving the balance of good readability and appropriate paper 

length, we show our experimental studies in two parts: the major contents are shown in 

Section IV and the others are given in the Appendix as supplementary material.

To perform our experiments, we have first generated two data scenarios suitable for transfer 

clustering, as illustrated in Figs. 4 and A1, respectively. Specifically, for transfer learning, 

TI_S 1, Fig. 4 (a), was enlisted as the only source domain and TI_T 1_1 to TI_T 1_8, Fig. 4 

(b)–(i), as the target domains respectively. All these synthetic texture images were rescaled 

to 100 × 100 resolution, and to some of them the Gaussian noise with different standard 
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deviations was added in order to simulate multiple noisy data situations. In our experiments, 

TI-T 1_1 to TI-T 1_8 (i.e. Fig. 4 (b)–(i)) belong to two types of target domains. That is, each 

of TI-T 1_1 to TI-T 1_4 owns the same texture number as that in TI-S 1 (i.e. 7 clusters), but 

has an inconsistent data distribution, whereas the numbers of clusters in TI-T 1_5 to TI-T 
1_8 are 3, 4, 5, and 6, respectively, which are all different from that in TI-S 1. In addition, 

the noise amplitudes in these target domain images are also different. For example, the 

standard deviations of Gaussian noise in TI-T 1_1, TI-T 1_4, and TI-T 1_5 to TI-T 1_8 are 

0.1, while in TI-T 1_2 and TI-T 1_3 are 0.2 and 0, respectively. Please refer to Fig. 4 for the 

details regarding the texture arrangement, cluster number, and noise level in each target 

texture image. The situations are similar in Fig. A1 in which TI_T 2_1, TI_T 2_2, and TI_S 
2 all have 7 clusters, whereas TI_T 2_3 to TI_T 2_6 have from 3 to 6 clusters. These two 

transfer scenarios enable us to extensively investigate the performance of all employed 

algorithms in the realistic applications of target texture image segmentation.

The Gabor filter [60] was used to extract intrinsic texture features of all texture images in 

terms of the filtering bank with 6 orientations (at every 30°) and 5 frequencies (starting from 

0.46). As such, the data sets corresponding to all texture images were produced, with the 

data dimensionality and data size being 30 and 10,000, respectively. Note that for the 

purpose of good readability, we use consistent nomenclature designating these data sets as 

the names of their associated texture images.

B. Comparisons of segmentation results—The ideal segmentation results regarding 

all target texture images are first illustrated in Figs. 5 and A2, respectively, where the small 

squares with the same colors in each subfigure signify the same textures which should be 

grouped into the same clusters.

In contrast, the actual segmentation results as well as the scores of NMI and RI achieved by 

the ten competitors are shown in Figs. 6, 7, A3, and A4 and Tables 4 and A1. Based on these 

outcomes, we make the following observations.

1. Transfer clustering using the same number of clusters but with inconsistent data 

distributions in the source and target domains:

i. Due to the existing noise interference, classic FCM did not obtain 

acceptable clustering effectiveness and segmentation results on any 

noisy images, e.g., TI_T 1_1, TI_T 1_2, TI_T 1_4, TI_T 2_1, and TI_T 
2_2. Conversely, benefiting from the reference information across the 

source and target domains, all of the transfer clustering algorithms, i.e. 

STC, TSC, KL-TFCM-c, and KL-TFCM-f, obtain relatively good 

performance on TI_T 1_1 to TI_T 1_4 and TI_T 2_1 to TI_T 2_2, 

compared with the other non-transfer-clustering algorithms. This 

demonstrates the merit of transfer clustering in the practice of target 

texture image segmentation.

ii. As far as the transfer clustering approaches are concerned, the 

clustering effectiveness as well as the segmentation performance of 

both KL-TFCM-c and KL-TFCM-f on real-world data are better than 
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those of STC and TSC in all of the noisy data conditions, except on 

TI_T 1_3 (i.e. Fig. 4 (d)) where the data are never distorted by noise. 

KL-TFCM-c and KL-TFCM-f rank Nos. 2 and 3, respectively, and are 

only a little worse than STC. This distinctly reflects the superiority 

regarding our KL-PM and KL-PT based three stages of knowledge 

transfer, i.e. knowledge extraction, knowledge matching, and 

knowledge utilization. As such, regardless of the data distribution 

diversities in the source and target images, the knowledge from the 

source domain, i.e. the texture characteristics in TI_S 1 and TI_S 2 can 

be extensively, appropriately referenced by KL-TFCM-c/-f on the target 

domain images. This is consequently conducive for them to having 

insights into the ground truth of texture characteristics in these target 

images, even if these images were distorted by noise. That is, with the 

self-adaptive knowledge reference from the source domain, both KL-

TFCM-c and KL-TFCM-f demonstrate excellent anti-noise properties.

iii. Comparing KL-TFCM-c/-f with the multi-task and co-clustering 

algorithms: CombKM, LSSMTC, and DRCC, our KL-TFCM-c/-f 

algorithms are also superior on all target images due to their different 

mechanisms. More specifically, because of the existing noise 

interference as well as the potential data distribution diversities between 

the target and source domains, the raw data in the source domain could 

not directly provide valuable information to the target domain data. As 

evidence of this, CombKM and LSSMTC, two multi-task clustering 

methods directly utilizing the raw data in the source domain, were 

prone to encountering unexpectedly negative interactions between tasks 

instead of both gaining performance improvements. DRCC, one of pure 

co-clustering approaches, was devoted to constructing the manifold 

structures on both data instances and features, and then to 

simultaneously smoothing these two types of manifolds. However, 

DRCC generally did not achieve relatively satisfactory clustering and 

segmentation performance throughout all experiments, probably due to 

its sensitivity to our adopted strategy with respect to texture feature 

extraction. On the contrary, with the cluster prototypes rather than the 

raw data in the source domain acting as the reference in the target 

domain, both KL-TFCM-c and KL-TFCM-f exhibit more robust 

clustering effectiveness than do the other methods. This demonstrates 

the significance of our own work.

iv. CKM was enlisted as the representative of semi-supervised clustering in 

our experiments, and SFCM of supervised clustering. To perform 

CKM, we randomly selected 100 labeled examples from the source 

domain and converted them into the pairwise constraints as the 

supervision. As for SFCM, all examples along with their labels in the 

source domain were used to train the parameterized distance measure 

for fuzzy clustering, and then we used this distance measure with the 
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learned parameters to group the data in the target domain. However, as 

could be predicted, neither CKM nor SFCM worked well when facing 

such two domains having distinctly different data distributions. Due to 

the data inconsistency between the source and target domains, in CKM, 

many of the 100 selected examples from the source domain equaled 

essentially to outliers to the data in the target domain, which decreased 

the performance of CKM instead of facilitating clustering. In SFCM, 

likewise, because of the data inconsistency across two domains, the 

learned distance measure in the source domain became inapplicable in 

the target domains. This incurred the overall inefficiency of SFCM in 

nearly all of the transfer data scenes.

2. Transfer clustering when source and target domains have different numbers of 

clusters:

i. TI_T 1_5 to TI_T 1_8 (Fig. 4 (f)–(i)) and TI_T 2_3 to TI_T 2_6 (Fig. 

A1 (d)–(g)) were used to further verify the effectiveness and reliability 

of our approach for handling another type of data heterogeneity existing 

in transfer learning: differences in the numbers of clusters and in the 

data distributions between the source and target domains. In such cases, 

LSSMTC, CDRCC, SFCM, STC, and TSC, cannot be applied, as they 

strictly require the cluster number consistency between the source and 

target domains. In contrast, our proposed KL-TFCM-c and KL-TFCM-f 

approaches are applicable for such situations and, compared with 

classic FCM, CombKM, and CKM, both of them achieved quite 

considerable performance improvements. This indicates, again, that the 

proposed, three-stage-interlinked knowledge transfer framework in our 

research is effective at coping with the data inconsistency between the 

source and target domains, and accordingly facilitating the clustering of 

both KL-TFCM-c and KL-TFCM-f on target texture images.

ii. When KL-TFCM-c and KL-TFCM-f are compared only with each 

other, their performance differences are evident which, how46 ever, is 

not notable in the cases of the first type of transfer clustering. 

Specifically, KL-TFCM-f generally features better clustering 

performance versus KL-TFCM-c on all of TI_T 1_5 to TI_T 1_8 and 

TI_T 2_3 to TI_T 2_6. This implies that, for generating the cluster 

representatives, ṼS = [ ṽ1,S, · · · , ṽCT,S]T, of the source domain in our 

work, the strategy of weighted sum, i.e. the so-called flexible form (see 

Eq. (10)), appears more efficient than the maximum matching strategy, 

namely, the crisp form (see Eq. (9)), when the numbers of clusters in 

the source and target domains are different.

All of these experimental results indicate that, our proposed, three-stage-based transfer 

clustering algorithms—KL-TFCM-c and KL-TFCM-f, generally feature better clustering 

and segmentation performance than many existing, popular clustering methods in both two 

types of texture image segmentation, i.e. one possesses the same cluster number but different 
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data distributions in the source and target domains, while the other has inconsistent cluster 

numbers between the two domains. In addition, KL-TFCM-f appears more effective and 

reliable than KL-TFCM-c in the latter case.

5. Conclusions

Motivated by target texture image segmentation, we propose the three-stage-based transfer 

clustering framework as well as the two corresponding algorithms designated as KL-TFCMc 

and KL-TFCM-f. Two embedded, dedicated knowledge transfer mechanisms—KL-PT and 

KL-PM are simultaneously designed. KL-PT provides the way to flexibly learn the valuable 

knowledge even in the presence of noise in the source domain. KL-PM is devoted to mining 

the appropriate pairwise relationships of clustering prototypes between the source and target 

domains even if their numbers of clusters are different. Benefiting from the joint action of 

KL-PT and KL-PM, and via the three-stage-interlinked knowledge transfer, both KL-TFCM-

c and KL-TFCM-f generally feature preferable clustering effectiveness and segmentation 

performance on almost all of the involved target texture images. As far as our KL-TFCM-c 

and KL-TFCM-f are concerned, due to the more flexible, efficient mechanism for generating 

the cluster representatives from the source domain, the latter performs better than the former 

in the case of different cluster numbers between the source and target domains.

In the future, two aspects of work are worth continuing. One is the more practical 

mechanism regarding parameter settings. The grid search strategy is now used in our work to 

determine the optimal values of parameters via two well-established validity indices: NMI 

and RI. Both of them are label-dependent [61]. From the viewpoint of practicability, a novel 

validity index independent of any label information will be perused in our future research. 

The other is the multiple source domains based knowledge transfer mechanism for fuzzy 

clustering which, in our opinion, is a very promising prospect.
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Fig. A1. 
Artificial scenario 2 for transfer clustering. (a) TI_S2: the image acting as the source 

domain; (b)–(c) TI_T2_1 to TI_T2_2: the target domain images owning the same cluster 

number as that in TI_S2, but different distributions; (d)–(g) TI_T2_3 to TI_T2_6: the target 

domain images whose cluster numbers are different from that of TI_S2.

Fig. A2. 
Illustrations of ideal segmentation of employed texture images. (a) for TI_T2_1 and 

TI_T2_2; (b) for TI_T2_3; (c) for TI_T2_4; (d) for TI_T2_5; (e) for TI_T2_6.
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Fig. A3. 
Segmentation results of ten clustering approaches on target texture images TI_T2_1 to 

TI_T2_2.
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Fig. A4. 
Segmentation results of five clustering approaches on target texture images TI_T2_3 to 

TI_T2_6.
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Fig. 1. 
Outline of knowledge-leveraged transfer clustering.
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Fig. 2. 
Illustration of transfer clustering occurred in texture image segmentation.
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Fig. 3. 
Complete framework of KL-TFCM for texture image segmentation.

Qian et al. Page 31

Knowl Based Syst. Author manuscript; available in PMC 2018 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Artificial scenario 1 for transfer clustering. (a) TI_S 1: the image acting as the source 

domain; (b)–(e) TI_T 1_1 to TI_T 1_4: the target domain images owning the same cluster 

number as that in TI_S 1, but different data distributions; (f)–(i) TI_T 1_5 to TI_T 1_8: the 

target domain images whose cluster numbers are different from that of TI_S 1.
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Fig. 5. 
Illustrations of ideal segmentation of employed texture images. (a) for TI_T 1_1 and TI_T 
1_2; (b) for TI_T 1_3 and TI_T 1_4; (c) for TI_T 1_5; (d) for TI_T 1_6; (e) for TI_T 1_7; 

(f) for TI_T 1_8.
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Fig. 6. 
Segmentation results of ten clustering approaches on target texture images TI_T 1_1 to TI_T 
1_4.
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Fig. 7. 
Segmentation results of five clustering approaches on target texture images TI_T 1_5 to 

TI_T 1_8.

Qian et al. Page 35

Knowl Based Syst. Author manuscript; available in PMC 2018 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Qian et al. Page 36

Table 1

Common notations used throughout this manuscript.

Symbol Use Meaning

X = {x1,...xN} ∈ RN×D Eq. (1) The target data set with N data instances and D dimensions

XT = {x1,T,...xNT,T} ∈ RNT × D Eqs. (5) and (12) The data set in the target domain with NT data instances and D dimensions

U = [μij]C×N Eq. (1) The C × N membership matrix with μij indicating the membership degree of xj(j = 1,..., 
N) belonging to cluster i(i = 1,…, C)

UT = [μij,T]CT×NT Eqs. (5) and (12) The generated CT ×NT membership matrix in the target domain with μij,T indicating the 
membership degree of xj(j = 1,..., NT) belonging to cluster i (i = 1,…, CT)

PT&S = [pjk]CT×CS Eq. (5) The matching degree matrix with pjk indicating the matching degree of the jth estimated 
cluster prototype in the target domain to the kth cluster prototype in the source domain; 
CT and CS denote the cluster numbers in the target and source domains respectively

V = [v1,···,vC]T Eq. (1) The cluster prototype matrix with vi = [vi1, ···, viD]T (i = 1,..., C) signifying the ith cluster 
prototype (centroid)

VT = [v1,T, ···, vCT,T]T Eqs. (4),(5),(11), 
and (12)

The cluster prototype matrix in the target domain with vj,T = [vj1,T, ···, vjD,T]T (j = 1,..., 
CT) signifying the jth cluster prototype (centroid)

VT
r = [v1, T

r , ⋯, vCT, T
r ]T

Generated in the 
knowledge 
matching stage, 
and used in the 
knowledge 
utilization stage

The raw cluster prototypes in the target domain estimated by KL-PM with 

V j, T
r = [v j1, T

r , ⋯, v jD, T
r ]T ( j = 1, …, CT) signifying the jth raw cluster prototype 

(centroid)

VS = [v1,S, ···, vCS,S]T Eqs. (4),(5), and 
(11)

The cluster prototype matrix in the source domain with vk,S = [vk1,S, ···, vkD,S]T (k = 1,..., 
CS) signifying the kth cluster prototype (centroid)

ṼS = [ṽ1,S, ···, ṽCT,S]T Eqs. (9)–(12); 
Generated in the 
knowledge 
matching stage, 
and used in the 
knowledge 
utilization stage

The employed cluster representatives from the source domain for the eventual knowledge 
utilization in the target domain with ṽ j,S = [ṽj1,S, ···, ṽjD,S]T (j = 1,..., CT) denoting the jth 
cluster representative in the source domain
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Table 2

Parameter settings in transfer clustering algorithms.

Settings Transfer clustering algorithms

KL-TFCM-c/-f TSC STC

Core parameters
The fuzzifers m, m1, m2 = min (N, D − 1)

min (N, D − 1) − 2 , where N and D are the data 

size and data dimension in the target dataset, respectively; Parameters β4 ∈ 
{0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000} and λ* ∈ {0, 0.005,0.1,0.5,0.7, 1, 1.5, 
5, 10, 50, 100}; ṽj,S ∈ ṼS, j ∈ [1, CT], Case-c: Eq. (9) and Case-f: Eq. (10)

Parameters K = 27, 
λ = 3, and step = 1.

Trade-off 
parameter λ = 1

For the details regarding parameters in 
TSC and STC, please refer to [31,32].

Note:

* denotes that the optimal settings need to be eventually determined by the grid search.
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