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Abstract  Attribute weight assignment plays an important role in multiple attribute decision 

analysis (MADA). When the performances of alternatives on each attribute are expressed by 

distributions instead of single values, how to use the differences in the performances to obtain 

attribute weights is an interesting but difficult issue. To address this issue, in this paper, we 

propose a method for obtaining attribute weights from discriminating power in belief 

distributions. With the consideration of the differences among the utilities of all assessment 

grades used to profile belief distributions, the dissimilarity based discriminating power, the 

standard deviation based discriminating power, and the Gini’s mean difference based 

discriminating power of the performances of all alternatives on each attribute are constructed 

to determine three sets of respective weights of attributes. They are convexly combined using 

three coefficients to generate integrated weights of attributes. To relieve the burden on a 

decision maker to provide precise values for the three coefficients, they are allowed to change 

between 0 and 1, as long as their sum is equal to 1. Under such constraints on the three 

coefficients, an optimization model is constructed to determine the minimum and maximum 

expected utilities of each alternative. From the expected utilities, all alternatives are then 

compared using Hurwicz rule with the provided optimism degree interval to generate 

solutions to MADA problems. The transitivity of the comparison outcomes among three 

alternatives under a given optimism degree interval is theoretically analyzed to guarantee the 

rationality of the outcomes. A focal form selection problem is investigated to demonstrate the 

applicability and validity of the proposed method. 

Keywords  Multiple attribute decision analysis; Attribute weights; Transitivity; Belief 

distributions; Analytical algorithm 
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1. Introduction 

In existing studies, many different methods have been developed for multiple attribute 

decision analysis (MADA). Representative methods include multiple attribute utility function 

(MAUF) methods (Balla et al. 2014; Keeney and Raiffa 1993; Butler et al. 1997; Butler et al. 

2001; Wakker et al. 2004), multiple attribute value function methods (Belton and Stewart 

2002; Chin et al. 2015; Fischer 1995; Fu and Xu 2016; Fu et al. 2016; Kadziński et al. 2014; 

Keeney 2002; Lan et al. 2015; Zhang et al. 2017), outranking methods such as PROMETHEE 

methods (Chen 2014a; Miłosz and Krzysztof 2016) and ELECTRE methods (Chen 2014b; 

Corrente et al. 2016), and distance based methods such as the extensions of TOPSIS method 

(Baykasoğlu and Gölcük 2015; Wang et al. 2016) and VIKOR method (Qin et al. 2015; 

Madjid et al. 2016). One similarity among those different methods is that attribute weights are 

taken into account although the meanings of the weights may be different. Different sets of 

attribute weights may generate different solutions to a decision problem no matter whichever 

method is applied. For this reason, determining attribute weights is a common step in MADA 

methods. 

To focus on how to determine attribute weights in MADA, different types of methods have 

been proposed in the literature. Some methods provide support for a decision marker to assign 

weights to attributes subjectively, which are called subjective methods. Representative 

methods include direct rating method (Bottomley and Doyle 2001; Roberts and Goodwin 

2002), Delphi method (Hwang and Yoon 1981), eigenvector method (Saaty 1977; Takeda et al. 

1987), point allocation method (Doyle et al. 1997; Roberts and Goodwin 2002), linear 

programming model (Horowitz and Zappe 1995), and goal programming model (Shirland et 

al. 2003). 

Many other methods use the information in a decision matrix to determine attribute weights 

instead of requiring a decision maker to provide them, which are called objective methods. By 

following the idea that the amount of information or discriminating power contained in 

performances of alternatives on an attribute can reflect the weight of the attribute, many 

objective methods have been designed. Representative methods include standard deviation 

method (Deng et al. 2000), correlation coefficient and standard deviation integrated method 

(Wang and Luo 2010), criteria importance through intercriteria correlation method 

(Diakoulaki et al. 1995), entropy method (Chen and Li 2010, 2011; Deng et al. 2000; He et al. 

2016), deviation maximization method (Şahin and Liu 2016; Wang 1998), and multiple 

objective programming model (Choo and Wedley 1985). In addition, there is another idea to 

derive the weight of each attribute by using the contribution of performances of alternatives 

on an attribute to some special quality of the solutions to the MADA problem, such as high 
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solution reliability (Fu and Xu 2016). 

In some papers, subjective and objective methods are combined to generate attribute 

weights when a decision maker wishes to provide partial requirements for attribute weight 

assignment. This type of methods is referred to as integrated methods. In the integrated 

methods, the requirements for attribute weights are generally considered as constraints to be 

incorporated into objective methods (Fan et al. 2002; Ma et al. 1999; Wang and Parkan 2006; 

Chin et al. 2015; Fu and Wang 2015; Fu and Xu 2016; Pei 2013; Rao et al. 2011). 

In a decision situation, a decision maker may prefer to use subjective methods to carry out 

attribute weight assignment when the decision maker can have his or her opinions about the 

weights. However, it is also known that different subjective methods may lead to different 

attribute weights, even if a decision maker has some opinions about the weights (Barron and 

Barrett 1996; Deng et al. 2000; Diakoulaki et al. 1995). Objective methods are useful when 

subjective preferences of the decision maker are fully or partially unavailable. 

When single values are used to characterize the performances of alternatives on an attribute 

in MADA, it is easy to use objective methods to obtain attribute weights. On the condition 

that the performances of alternatives are expressed by belief distributions (see Section 2), 

however, the amount of discriminating power contained in the performances is difficult to 

measure. As such, it is challenging to use objective weight elicitation methods based on the 

discriminating power in this situation. 

There are also two more issues related to the use of objective weight elicitation methods 

when the performances of alternatives are represented by belief distributions. One is the 

uncertainty in the weights and the second the uncertainty in the ranking of the alternatives due 

to the uncertainty (or unknowns) in the performances represented by belief distributions or 

performance distributions for short. The uncertainty in belief distributions (see Section 2) 

leads to the uncertainty in the calculated discriminating power and hence the attribute weights 

calculated using the discriminating power. The uncertainty in weights in turn leads to the 

second issue, the uncertain comparison outcomes and final ranking of alternatives. 

For alternatives with uncertainty in their performances but their best and worst 

performance scores being known or obtainable, Hurwicz rule can be applied to rank them 

(Corrente et al. 2017; Jiang et al. 2015; Kleine 1999). To avoid the problem of comparison 

cycle and thus guarantee the validity of the comparison outcomes and ranking among 

alternatives, the transitivity of the ranking among alternatives (Yang et al. 2016) needs to be 

analyzed for the various values of optimism degree in Hurwicz rule. Or else, when alternative 

1 is superior to alternative 2 and alternative 2 to alternative 3 judged by following Hurwicz 

principle with a specific value of optimism degree, it cannot be guaranteed that alternative 1 
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is certainly superior to alternative 3 under the same conditions. If such comparison cycle 

occurs, decisions made based on the comparison outcomes will be questionable (Yang et al. 

2016). 

In this paper, we propose a method for obtaining attribute weights from the discriminating 

power contained in performances of alternatives profiled by belief distributions. In the 

method, three ways are developed to measure the discriminating power contained in the 

performances of all alternatives on an attribute. The first way is to construct a dissimilarity 

measure between two belief distributions, the second way to calculate the standard deviation 

of belief degrees on each grade in belief distributions, and the third way to calculate the Gini’s 

mean difference (Kotz and Johnson 1982) of belief degrees on each grade in belief 

distributions. Correspondingly, three types of discriminating power on each attribute are 

obtained, which are the dissimilarity, the standard deviation, and the Gini’s mean difference 

based discriminating power. Utilities of grades (see Section 2) are taken into account in the 

calculation of the three types of discriminating power to reflect the difference among grades. 

From the three types of discriminating power on each attribute, three sets of attribute weights 

are generated respectively. Then a set of integrated weights is obtained by linearly combining 

the three sets of weights using three non-negative coefficients, whose sum is equal to 1. 

Suppose that the three coefficients of the three sets of attribute weights are variables. An 

optimization model is constructed based on the integrated weights of attributes to determine 

the minimum and maximum expected utilities of each alternative. Given the expected utility 

interval for each alternative, Hurwicz rule is applied to compare and rank alternatives and the 

preference relation between any two alternatives is theoretically analyzed and established for 

the whole value range of the optimism degree in Hurwicz rule which is from 0 to 1. If the 

optimism degree is given as an interval instead of a single value, how to compare and rank 

alternatives based on the established preference relation is also given and the transitivity of 

such comparison outcomes is theoretically analyzed. 

The rest of this paper is organized as follows. Section 2 presents the modeling of MADA 

problems by using belief distributions. Section 3 introduces the proposed method of obtaining 

attribute weights. In Section 4, a focal firm selection problem is investigated to demonstrate 

the applicability and validity of the proposed method. The paper is concluded in Section 5. 

2. Modeling of MADA problems using belief distributions 

Suppose that a MADA problem has M alternatives denoted by al (l = 1,…,M) and L 

attributes denoted by ei (i = 1, …, L). Relative weights of the L attributes are denoted by w = 

(w1, w2, …, wL) such that 0 ≤ wi ≤ 1 and 
1

1L
ii

w= =∑ . 

Suppose that Ω = {H1, H2, …, HN} denotes a set of grades and the utilities of the grades 
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u(Hn) (n = 1, …, N) satisfy the constraint 0 = u(H1) < u(H2) < … < u(HN) = 1 to reflect the 

difference among grades. The M alternatives are assessed at the L attributes by using Hn (n = 

1,…,N). Let βn,i(al) denote the belief degree assigned to grade Hn when alternative al is 

assessed on attribute ei. Then the assessment can be profiled by a belief distribution B(ei(al)) = 

{( Hn, βn,i(al)), n = 1, …, N; (Ω, βΩ,i(al))}, where βn,i(al) ≥ 0, ,1
( )N

n i ln
aβ=∑  ≤ 1, and βΩ,i(al) = 1 

- ,1
( )N

n i ln
aβ=∑  represents the degree of global ignorance (Xu 2012; Yang and Xu 2013; Fu 

and Wang 2015). If βΩ,i(al) = 0, the assessment is complete; otherwise, it is incomplete. When 

the belief distribution of each alternative on each attribute is given, a belief decision matrix 

SL×M is formed. Note that because the degree of global ignorance could be assigned to any 

grades, its impact needs to be analyzed in MADA. 

To generate a solution, the individual assessments B(ei(al)) (i = 1, …, L) weighted by their 

respective weights are combined to generate the overall assessment B(y(al)) = {(Hn, βn(al)), n 

= 1, …, N; (Ω, βΩ(al))}, where βΩ(al) represents the degree of aggregated global ignorance. 

Based on the overall assessment, the utilities of grades u(Hn) (n = 1, …, N) are used to 

produce the minimum and maximum expected utilities of alternative al, i.e., u-(al) = 

2
( ) ( )N

n l nn
a u Hβ= ⋅∑ +(β1(al)+βΩ(al))·u(H1) and u+(al) = 1

1
( ) ( )N

n l nn
a u Hβ−

= ⋅∑ +(βN(al)+ 

βΩ(al))·u(HN) with 0 ≤ u-(al) ≤ u+(al) ≤ 1. The expected utilities are then used to compare 

alternatives with the help of a decision rule consistent with the preferences of the decision 

maker, such as Hurwicz rule. 

What presented above is also called the evidential reasoning (ER) approach, which is a type 

of MAUF method (Wang et al. 2006b; Yang 2001; Yang et al. 2006; Fu et al. 2015). 

3. Proposed method 

In MADA, attribute weights play an important role in characterizing how the performance 

of an alternative on an attribute affects the overall performance in comparison with other 

attributes. On the assumption that there is flexibility in attribute weight assignment, we 

propose a method to determine attribute weights for finding solutions to MADA problems 

which are modeled by using belief distributions. The process of how to determine attribute 

weights and the process of how to find solutions based on the attribute weights with the help 

of Hurwicz rule are given in details in this section. 

3.1. Determination of attribute weights 

In the proposed method, the amount of information or discriminating power contained in 

the performances of alternatives on each attribute is adopted to determine attribute weights. 

As shown in Section 2, the assessment of an alternative’s performance is profiled by a 

belief distribution rather than a precise number. Without loss of generality, we assume that the 
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grades Hn (n = 1, …, N) used to profile such an assessment satisfy the constraint 0 = u(H1) < 

u(H2) < … < u(HN) = 1, which means that they are arranged in order of preferences from 

worst to best. In this situation, the dissimilarity measure between two assessments developed 

by Fu et al. (2015) can be used to measure the discriminating power contained in 

performances of alternatives on an attribute. 

Definition 1. Suppose that the distributed dissimilarity between two assessments B(ei(al)) and 

B(ei(am)) represented by GD(ei(alm)) is defined as 

GD(ei(alm)) = ( 1, ( )i lmaβ , …, , ( )n i lmaβ , …, , ( )N i lmaβ ) =  

(|β1,i(al)-β1,i(am)|, …, |βn,i(al)-βn,i(am)|, …, |βN,i(al)-βN,i(am)|).                       (1) 

Then, a dissimilarity measure between the two assessments is constructed using GD(ei(alm)) 

as  

D(ei(alm)) = 1
, ,1 1
( ) ( )N N

n i lm o i lmn o n
a aβ β−

= = + ⋅∑ ∑ ·(u(Ho)-u(Hn)).                       (2) 

Through using the dissimilarity measure between two assessments, the discriminating 

power on an attribute can be measured. 

Definition 2. Suppose that the dissimilarity between any two assessments B(ei(al)) and 

B(ei(am)) is measured by using Definition 1. Then, the average dissimilarity between the 

assessment B(ei(al)) and any other assessments B(ei(am)) (m ≠ l) is defined as 

( ( ))i lD e a  = 1,
( ( ))

1

M
i lmm m l

D e a

M
= ≠

−
∑

,                                           (3) 

and the discriminating power on attribute ei is further defined as 

( )iD e  = 1 ( ( ))M
i ll D e a

M
=∑ .                                                  (4) 

As the discriminating power in Eq. (4) is generated based on the dissimilarity between two 

assessments, it is called the dissimilarity based discriminating power. In addition to such 

discriminating power, there are two other ways to measure the discriminating power on 

attribute ei. In the second way, standard deviation (SD) of belief degrees of assessments on 

each grade is calculated and combined with utilities of grades to characterize the 

discriminating power on attribute ei. 

Definition 3. Given assessments B(ei(al)) (l = 1, …, M), the SD of belief degrees βn,i(al) (l = 

1, …, M) on grade Hn is defined as 

( )n iS e  = 2
, ,1

1
( ( ) )

1
M

n i l n il
a

M
β β= −

− ∑ ,                                      (5) 
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where ,n iβ  = ,1 ( )M
n i ll a

M

β=∑
 represents the mean of belief degrees βn,i(al) (l = 1, …, M) on 

grade Hn. Then, the discriminating power on attribute ei is measured using ( )n iS e  by  

( )iS e  = 1

1 1
( ) ( )N N

n i o in o n
S e S e−

= = + ⋅∑ ∑ ·(u(Ho)-u(Hn)).                             (6) 

The discriminating power on attribute ei in Eq. (6) is generated based on the SD of belief 

degrees of assessments on each grade and thus named as the SD based discriminating power. 

Its construction is inspired by the idea of the dissimilarity measure between two assessments 

in Definition 1. In addition to the above two ways, the third way to measure the 

discriminating power on attribute ei is developed based on Gini’s mean difference (GMD) 

(Kotz and Johnson 1982). The GMD of belief degrees of assessments on each grade is 

calculated and combined with utilities of grades to characterize the discriminating power on 

attribute ei. 

Definition 4. Given assessments B(ei(al)) (l = 1, …, M), the GMD of belief degrees βn,i(al) (l 

= 1, …, M) on grade Hn is defined as 

( )n iG e  = , ,1 12

1
( ) ( )M M

n i l n i ml m
a a

M M
β β= = −

− ∑ ∑ .                               (7) 

Then, the discriminating power on attribute ei is measured using ( )n iG e  by  

( )iG e  = 1

1 1
( ) ( )N N

n i o in o n
G e G e−

= = + ⋅∑ ∑ ·(u(Ho)-u(Hn)).                             (8) 

Similar to the first two ways, the discriminating power contained in attribute ei in Eq. (8) is 

called the GMD based discriminating power. 

What discussed above is on the assumption that all assessments are complete. In a general 

case, there can be some incomplete assessments on each attribute. Under the conditions, βn,i(al) 

becomes a variable denoted by *, ( )n i laβ , which is limited to [βn,i(al), βn,i(al)+βΩ,i(al)] due to 

the fact that there is no prior knowledge on how to allocate βΩ,i(al), but the constraint on 

*
, ( )n i laβ , i.e., *

,1
( ) 1N

n i ln
aβ= =∑  needs to be satisfied as *, ( )n i laβ  are probabilities by nature. 

All constraints on *
, ( )n i laβ  generate a region. Let us analyze the features of this region. 

Given δ such that 0 ≤ δ ≤ 1 and any two belief distributions {(Hn, 
1
, ( )n i laβ ), n = 1, …, N} and 

{( Hn, 
2
, ( )n i laβ ), n = 1, …, N} in the region, it can be found that βn,i(al) ≤ 

1 2
, ,( ) (1 ) ( )n i l n i la aδ β δ β⋅ + − ⋅  ≤ βn,i(al)+βΩ,i(al) and 1 2

, ,1
( ) (1 ) ( ) 1N

n i l n i ln
a aδ β δ β= ⋅ + − ⋅ =∑ . From 
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this we recognize that the constraints are convex and form a bounded closed domain. 

Meanwhile, Definitions 1-4 show that ( )iD e , ( )iS e , and ( )iG e  can be seen as continuous 

functions of M·N variables, as demonstrated below. 

Theorem 1. (Nikolsky 1977) If a function of multiple variables is formed by a finite number 

of operations, including addition (sum), subtraction (difference), multiplication (product), 

division (quotient) without a zero-valued denominator and composition on continuous 

functions of multiple variables on a bounded closed set, then it is continuous. 

Theorem 2. (Nikolsky 1977) Suppose that f is a continuous function of multiple variables on 

a bounded closed set. Then, 

(1) its minimum and maximum values on that set can be reached, and 

(2) any point between the minimum and maximum values on that set can be reached. 

When there are some incomplete assessments on each attribute, Theorems 1 and 2 indicate 

that ( )iD e , ( )iS e , and ( )iG e  become intervals denoted by [ ( )iD e− , ( )iD e+ ], [ ( )iS e− , 

( )iS e+ ], and [ ( )iG e− , ( )iG e+ ], respectively. In each of the three intervals, each point may 

be possible to occur. The following three pairs of optimization problems are constructed to 

determine the three intervals. 

MIN/MAX  ( )iD e                                                       (9) 

s.t.    βn,i(al) ≤ *
, ( )n i laβ  ≤ βn,i(al)+βΩ,i(al), n = 1, ..., N, l = 1, …, M,              (10) 

      *
,1
( ) 1N

n i ln
aβ= =∑ , l = 1, …, M.                                        (11) 

MIN/MAX  ( )iS e                                                       (12) 

s.t.    βn,i(al) ≤ *
, ( )n i laβ  ≤ βn,i(al)+βΩ,i(al), n = 1, ..., N, l = 1, …, M,              (13) 

      *
,1
( ) 1N

n i ln
aβ= =∑ , l = 1, …, M.                                        (14) 

MIN/MAX  ( )iG e                                                       (15) 

s.t.    βn,i(al) ≤ *
, ( )n i laβ  ≤ βn,i(al)+βΩ,i(al), n = 1, ..., N, l = 1, …, M,              (16) 

      *
,1
( ) 1N

n i ln
aβ= =∑ , l = 1, …, M.                                        (17) 

By following the idea that an attribute containing a larger amount of discriminating power 

should be assigned a larger weight, from [( )iD e− , ( )iD e+ ] the weight of each attribute can 

be proportionally determined by the following pair of optimization problems. 
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MIN/MAX  d
iw  = 

*

*
1

( )

( )
i

L
jj

D e

D e=∑
                                          (18) 

s.t.    ( )iD e−  ≤ * ( )iD e  ≤ ( )iD e+ , i = 1, ..., L.                              (19) 

In the pair of optimization problems, * ( )iD e  represents decision variable. Suppose that 

the minimum and maximum values of diw  are denoted by d
iw −  and d

iw + , respectively. 

They can be analytically determined with the help of the following theorem. 

Theorem 3. Suppose that [ ( )iD e− , ( )iD e+ ] (i = 1, …, L) is obtained from solving the pair of 

optimization problems in Eqs. (9)-(11) and * ( )iD e  is a variable limited to [ ( )iD e− , ( )iD e+ ]. 

Then, d
iw  = 

*

*
1

( )

( )
i

L
jj

D e

D e=∑
 is increasing with respect to * ( )iD e  and decreasing with respect 

to * ( )jD e  (j ≠ i). 

Theorem 3 is proven in Appendix. In accordance with Theorem 3, d
iw −  and d

iw +  can be 

analytically determined as follows: 

d
iw −  = 

1,

( )

( ) ( )
i

L
i jj j i

D e

D e D e

−

− +
= ≠+∑

, and                                       (20) 

d
iw +  = 

1,

( )

( ) ( )
i

L
i jj j i

D e

D e D e

+

+ −
= ≠+∑

.                                          (21) 

In a similar way, interval-valued weights of attributes [ s
iw − , s

iw + ] from [ ( )iS e− , ( )iS e+ ] and 

[ g
iw − , g

iw + ] from [ ( )iG e− , ( )iG e+ ] can be analytically determined by 

s
iw −  = 

1,

( )

( ) ( )
i

L
i jj j i

S e

S e S e

−

− +
= ≠+∑

,                                           (22) 

s
iw +  = 

1,

( )

( ) ( )
i

L
i jj j i

S e

S e S e

+

+ −
= ≠+∑

,                                           (23) 

g
iw −  = 

1,

( )

( ) ( )
i

L
i jj j i

G e

G e G e

−

− +
= ≠+∑

, and                                       (24) 

g
iw +  = 

1,

( )

( ) ( )
i

L
i jj j i

G e

G e G e

+

+ −
= ≠+∑

.                                           (25) 
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Based on [ d
iw − , d

iw + ], [ s
iw − , s

iw + ], and [ g
iw − , g

iw + ], the integrated weights of attributes are 

defined as the weighted combination of diw , s
iw , and g

iw  with three coefficients θd, θs, and 

θg, i.e., 

iw  = d s g
d i s i g iw w wθ θ θ⋅ + ⋅ + ⋅ ,                                            (26) 

where 0 ≤ θd ≤ 1, 0 ≤ θs ≤ 1, 0 ≤ θg ≤ 1, θd + θs + θg = 1, and d
iw , s

iw , and g
iw  limited to 

[ d
iw − , d

iw + ],[ s
iw − , s

iw + ], and [ g
iw − , g

iw + ], respectively, satisfy 
1

1L d
ii

w= =∑ , 
1

1L s
ii

w= =∑ , and 

1
1L g

ii
w= =∑ . The integrated weights of attributes iw  (i = 1, …, L) are then used to generate 

solutions to MADA problems. 

3.2. Generation of solution 

Individual assessments of alternatives on each attribute weighted by the integrated weights 

iw  can be combined using the ER analytical algorithm (Wang et al. 2006a) to generate the 

overall assessments of alternatives, which can be further combined with utilities of grades to 

determine the minimum and maximum expected utilities of alternatives. As mentioned in 

Section 3.1, iw  is associated three coefficients θd, θs, and θg such that 0 ≤ θd ≤ 1, 0 ≤ θs ≤ 1, 0 

≤ θg ≤ 1, and θd + θs + θg = 1, and three sets of weights diw , s
iw , and g

iw  such that 

d
iw ∈ [ d

iw − , d
iw + ], s

iw ∈ [ s
iw − , s

iw + ], g
iw ∈ [ g

iw − , g
iw + ], 

1
1L d

ii
w= =∑ , 

1
1L s

ii
w= =∑ , and 

1
1L g

ii
w= =∑ . This means that iw  is not precise. To take into account all possible iw , the 

following optimization model is constructed to determine the minimum and maximum 

expected utilities of alternative al, denoted by u-(al) and u+(al) respectively. 

MIN  u-(al) = 
2

( ) ( )N
n l nn

a u Hβ=∑ +(β1(al)+βΩ(al))u(H1)                         (27) 

s.t.    iw  = * * * * * *d s g
d i s i g iw w wθ θ θ⋅ + ⋅ + ⋅ , i = 1, ..., L,                          (28) 

      0 ≤ *
dθ  ≤ 1,                                                      (29) 

      d
iw −  ≤ *d

iw  ≤ d
iw + , i = 1, ..., L,                                     (30) 

      *
1

1L d
ii

w= =∑ ,                                                     (31) 

      0 ≤ *
sθ  ≤ 1,                                                      (32) 
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      s
iw −  ≤ *s

iw  ≤ s
iw + , i = 1, ..., L,                                      (33) 

      *
1

1L s
ii

w= =∑ ,                                                      (34) 

      0 ≤ *
gθ  ≤ 1,                                                      (35) 

      g
iw −  ≤ *g

iw  ≤ g
iw + , i = 1, ..., L,                                     (36) 

      *
1

1L g
ii

w= =∑ ,                                                     (37) 

      * * *
d s gθ θ θ+ +  = 1.                                                  (38) 

In this model, *d
iw , *s

iw , *g
iw , *

dθ , *
sθ , and *

gθ  represent decision variables. To obtain 

the values of *
dθ , *

sθ , and *
gθ  by using the optimization model relieves the burden on a 

decision maker to provide those values which are the coefficients of *d
iw , *s

iw , and *g
iw  

when generating the integrated weight of attribute ei. The overall assessment B(y(al)) is 

generated by using the ER analytical algorithm (Wang et al. 2006a) from individual 

assessments of alternative al on each attribute together with iw . Solving this optimization 

model will generate the minimum u-(al). When the objective of this optimization model is 

changed to “MAX u+(al) = 1

1
( ) ( )N

n l nn
a u Hβ−

=∑  + (βN(al)+βΩ(al))u(HN)”, the maximum u+(al) 

will be obtained. From the optimal [u-(al), u+(al)] (l = 1, ..., M), comparison between 

alternatives can be made for further analysis or the generation of solutions to the MADA 

problem with the assistance of decision rules consistent with the preferences or behaviors of 

the decision maker. 

When the optimal [u-(al), u
+(al)] is obtained, the maximax and maximin decision rules can 

be used to compare alternatives by their expected utilities. Alternatives are compared by their 

maximum expected utilities when the maximax decision rule is adopted while alternatives are 

compared by their minimum expected utilities when the maximin decision rule is adopted. 

That is, alternatives are compared in their best and worst situations when the maximax and 

maximin decision rules are applied. On the other hand, the weighted combination of the 

maximax and maximin decision rules with the optimism degree γ limited to [0,1] forms 

Hurwicz rule, which means that the two rules are special cases of Hurwicz rule and a 

compromised situation is usually considered in Hurwicz rule. To cover all possible situations, 

Hurwicz rule is adopted to make selection, in which γ·u+(al)+(1-γ)·u-(al) is used to compare 

alternatives. Given two alternatives al and am, alternative al is superior to am when u+(al) > 
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u+(am) and u-(al) > u-(am) while al is inferior to am when u+(al) < u+(am) and u-(al) < u-(am). 

The two conclusions are independent of the value of γ. In other two situations where u+(al) > 

u+(am) and u-(al) < u-(am), or u+(al) < u+(am) and u-(al) > u-(am), making a comparison between 

alternatives al and am is dependent of the value of γ, which is analyzed below. 

Theorem 4. Given the optimal [u-(al), u
+(al)] and [u-(am), u+(am)] for two alternatives al and 

am, suppose that E(al) = γ·u+(al)+(1-γ)·u-(al) and E(am) = γ·u+(am)+(1-γ)·u-(am) represent the 

expected utilities of alternatives al and am in Hurwicz rule and ∆E(alm) = E(al) - E(am) 

represents the difference between the expected utilities of al and am, then we have the 

following conclusions. 

(1) When u+(al) > u+(am) and u-(al) < u-(am), ∆E(alm) is monotonously increasing with 

respect to γ, and it is smaller than, equal to, and larger than 0 when γ is limited to [0, γ*), [γ*, 

γ*], and (γ*, 1], respectively, where  

γ
* = 

( ) ( )

( ( ) ( )) ( ( ) ( ))
m l

l l m m

u a u a

u a u a u a u a

− −

+ − + −

−
− − −

.                                   (39) 

(2) When u+(al) < u+(am) and u-(al) > u-(am), ∆E(alm) is monotonously decreasing with 

respect to γ, and it is larger than, equal to, and smaller than 0 when γ is limited to [0, γ*), [γ*, 

γ*], and (γ*, 1], respectively. 

Theorem 4 is proven in Appendix. This theorem indicates that different values of γ may 

result in different comparison outcomes between two alternatives. In general, the value range 

of the optimism degree γ, i.e., [0,1] can be simply divided into two intervals [0,0.5] and 

[0.5,1]. To compare two alternatives, a decision maker is inclined to anticipate their best 

situations when γ is limited to [0.5,1] while he or she anticipates their worst situations when γ 

is limited to [0,0.5]. Suppose that a decision maker is capable of providing either a precise γ 

or a value range of γ, i.e., [γ-, γ+]. In the two situations where u+(al) > u+(am) and u-(al) < 

u-(am), or u+(al) < u+(am) and u-(al) > u-(am), a certain comparison outcome can be obtained 

when [γ-, γ+] ⊂  [0, γ*) or [γ-, γ+] ⊂  (γ*, 1]. If γ* is in the range [γ-, γ+], then there is 

uncertainty about the outcomes of comparison between alternatives al and am. Within the 

intervals [γ-, γ*) and (γ*, γ+], the rankings between alternatives al and am are reversed in the 

above two situations. As there is no other preference information about [γ-, γ+] provided by a 

decision maker, it is assumed that the outcome of comparison between alternatives al and am 

within the interval [γ-, γ*) is preferred when γ* - γ- > γ+ - γ* while the outcome of comparison 

within the interval (γ*, γ+] is preferred when γ* - γ- < γ+ - γ*. Such comparison is formally 

defined below. 

Definition 5. Given the optimal [u-(al), u
+(al)] and [u-(am), u+(am)] for two alternatives al and 

am, suppose that γ* is calculated using Eq. (39) and [γ
-, γ+] is provided by a decision maker, 
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then we have 

al ≻  am if u+(al) > u+(am) and u-(al) > u-(am), or u+(al) > u+(am) and u-(al) = u-(am), or 

u+(al) = u+(am) and u-(al) > u-(am),                                          (40) 

al ≻  am if [γ-, γ+] ⊂  (γ*, 1] or γ* ∈ [γ-, γ+] with γ* - γ- < γ+ - γ*  

when u+(al) > u+(am) and u-(al) < u-(am),                                      (41) 

al ≻  am if [γ-, γ+] ⊂  [0, γ*) or γ* ∈ [γ-, γ+] with γ* - γ- > γ+ - γ*  

when u+(al) < u+(am) and u-(al) > u-(am), and                                  (42) 

al = am if u+(al) = u+(am) and u-(al) = u-(am), or γ* ∈ [γ-, γ+] with γ* - γ- = γ+ - γ*     (43) 

where the notation “≻ ” denotes “is superior to”. 

If any of the first three situations in Definition 5 occurs, we can know that alternative al is 

superior to am. Otherwise, a converse conclusion can be made. It should be noticed that if a 

decision maker cannot accept the comparison outcome generated in accordance with 

Definition 5, he or she can reconsider [γ-, γ+]. To facilitate the comparison among multiple 

alternatives by using their expected utilities, transitivity of the comparison outcomes among 

any three alternatives needs to be analyzed in order to avoid the problem of comparison cycle 

and guarantee the validity of the outcomes (Yang et al., 2016). That is, given [γ-, γ+], if al ≻  

am and am ≻  ak as defined in Definition 5, then there should be that al ≻  ak. 

Theorem 5. Given the optimal [u-(al), u
+(al)], [u

-(am), u+(am)], and [u-(ak), u
+(ak)] for three 

alternatives al, am, and ak, suppose that al ≻  am and am ≻  ak in accordance with Definition 

5 on the condition that [γ-, γ+] is provided, then we have al ≻  ak. 

Theorem 5 is proven in Appendix. By using Definition 5, we can construct a binary 

comparison matrix denoted by 

B = (blm)M×M,                                                           (44) 

where blm = 1 (l ≠ m) stands for al ≻  am and blm = 0 (l ≠ m) for al ≺  am (i.e., am ≻  al). In 

particular, bll is set as 0. Suppose that the superior indicator of alternative al is defined as bl = 

1

M
lmm

b=∑ , then the ranking of al is calculated as M-bl. Theorem 5 can effectively avoid the 

problem of comparison cycle to guarantee the rationality and robustness of the ranking of 

each alternative from M-bl (l = 1, …, M). When al ≻  am and am ≻  ak are judged by 

following Definition 5 given [γ-, γ+], the preference relation between alternatives al and am is 

certain to be al ≻  ak instead of ak ≻  al under the same conditions. The consistency among 

the preference relations of alternatives is guaranteed. As a result, a valid ranking order of all 

alternatives can be generated. 

3.3. Process of the proposed method 

The process of finding solutions to MADA problems by using the proposed method can be 

summarized as follows and shown in Fig. 1. 
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Fig. 1. Process of the proposed method. 

Step 1: Form a MADA problem. 

A decision maker identifies L attributes and N assessment grades, and lists M alternatives to 

form a MADA problem. 

Step 2: Prepare for the proposed method to solve the MADA problem. 

The decision maker specifies u(Hn) (n = 1, …, N) and [γ-, γ+] in Hurwicz rule. 

Step 3: Collect assessments from the decision maker. 

The decision maker evaluates each alternative on each attribute to provide individual 

assessments B(ei(al)) (i = 1, ..., L, l = 1, ..., M).  

Step 4: Determine the integrated weights of attributes. 

With the consideration of a general case where there is at least one incomplete individual 

assessment on an attribute, three pairs of optimization problems in Eqs. (9)-(11), (12)-(14), 

and (15)-(17), respectively, are solved to generate the dissimilarity based discriminating 

power interval [ ( )iD e− , ( )iD e+ ], the SD based discriminating power interval 

[ ( )iS e− , ( )iS e+ ], and the GMD based discriminating power interval [ ( )iG e− , ( )iG e+ ]. From 
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the three intervals, the dissimilarity based weight interval [ d
iw − , d

iw + ], the standard deviation 

based weight interval [ s
iw − , s

iw + ], and the GMD based weight interval [giw − , g
iw + ] are 

calculated using Eqs. (20)-(21), (22)-(23), and (24)-(25), respectively. Three sets of weights 

limited to [ d
iw − , d

iw + ], [ s
iw − , s

iw + ], and [ g
iw − , g

iw + ] are then combined by the non-negative 

coefficients θd, θs, and θg such that θd + θs + θg = 1 to generate the integrated weights of 

attributes. 

Step 5: Determine the minimum and maximum expected utilities of each alternative. 

On the condition that the three coefficients θd, θs, and θg are relaxed as variables satisfying 

0 ≤ θd ≤ 1, 0 ≤ θs ≤ 1, 0 ≤ θg ≤ 1, and θd + θs + θg = 1, the optimization model in Eqs. (27)-(38) 

is solved to generate the optimal u-(al). When the objective of this optimization model is 

changed to “MAX u+(al) = 1

1
( ) ( )N

n l nn
a u Hβ−

=∑  + (βN(al)+βΩ(al))u(HN)”, the optimal u+(al) is 

obtained. 

Step 6: Compare alternatives using Hurwicz rule. 

Alternatives al and am (m = l + 1, …, M) are compared by using Definition 5 to determine 

the upper triangle of the binary comparison matrix B as defined in Eq. (44). Then the lower 

triangle of B can be directly determined from the upper triangle in accordance with blm + bml = 

1. 

Step 7: Generate a ranking order of all alternatives. 

From the binary comparison matrix B, bl (l = 1, …, M) is calculated to determine the 

ranking of alternative al, i.e., M-bl. A ranking order of all alternatives is then generated. 

Step 8: Finish the process. 

The ranking order of all alternatives is considered as a solution to the MADM problem. 

4. Illustrative example 

In this section, a focal firm selection (FFS) problem is analyzed by the proposed method to 

demonstrate the generation of integrated weights of attributes and the process of finding 

solutions to MADA problems. The purpose is to choose the most appropriate two focal firms 

from five candidates to provide lamp accessories for an enterprise located in Tongling of 

Anhui province of China. A solution system developed in the Matlab environment is 

employed to analyze the FFS problem. 

4.1. Description of the FFS problem 

Most enterprises, especially small and medium enterprises usually supply products or 

components to downstream firms which are also called focal firms if they directly provide 

customers with final goods. In general, an enterprise may supply products or components to 
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multiple focal firms. When the requirements, such as order quantity and quality of products or 

components, of focal firms change, however, the enterprise may be incapable of meeting the 

requirements of all focal firms simultaneously due to cash flow difficulties or production 

capacity. In this situation, the enterprise faces the challenge to select one or several 

appropriate focal firms to provide products or components. 

In this paper, we investigate the selection of focal firms for an enterprise located in 

Tongling of Anhui province of China who primarily provides lamp accessories for many focal 

firms in the lighting industry. As a small and medium enterprise, its cash flow and production 

capacity are limited so that it cannot cope with the increase in order quantity and quality of 

accessories for focal firms. To achieve sustainable development in line with its cash flow and 

production capacity, the enterprise has to select appropriate focal firms to provide lamp 

accessories. To address the selection problem, the board of directors firstly identifies five 

candidates from all focal firms for which the enterprise has provided lamp accessories before. 

The five candidates include Yankon, Nvc, Opple, Topstar, and Philips. The board of directors 

wishes to select the most appropriate two focal firms from the five candidates to provide lamp 

accessories. Note that the board of directors does not want to find the best portfolio of any 

two focal firms but to find the best focal firm and the second best focal firm. The general 

manager of the enterprise acts as the decision maker to be responsible for the selection of 

appropriate focal firms with the help of five experts from the departments of sales, research 

and development, production, quality management, and finance. Eight attributes are selected 

to carry out the selection of focal firms, including profits of supply, requirements of supply, 

scale of supply, scale of focal firm, customer segments of focal firm, market share of focal 

firm, growth of focal firm, and cooperativeness of focal firm. 

Suppose that the five focal firms are represented by Fl (l = 1, …, 5), and the eight attributes 

by ei (i = 1, …, 8). The five focal firms are assessed on each attribute using the following set 

of assessment grades: Poor (P), Average (A), Good (G), VeryGood (V), and Excellent (E), i.e., 

Ω = {Hn, n = 1, …, 5} = {Poor, Average, Good, VeryGood, Excellent} = { P, A, G, V, E}. Step 

1 is completed. 

The decision maker uses a probability assignment approach (Winston 2011) to set the 

utility of each assessment grade u(Hn) (n = 1, …, 5) to be (0, 0.25, 0.5, 0.75, 1). The optimism 

degree interval [γ-, γ+] is set as [0, 0.5] because the decision maker prefers to examine the 

outcomes from comparing different focal firms in their worst scenarios to avoid potential 

risks. The decision maker is risk averse as his enterprise has limited cash flow and production 

capacity which does not allow him to take too much risk. As selecting focal firms is very 

important for the enterprise, the decision maker is not willing to give subjective judgements to 
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assign attribute weights in order to avoid personal biases of his judgments towards those focal 

firms. To objectively carry out the overall evaluation of the five focal firms, the proposed 

method is used to determine the integrated weights of attributes and generate the 

corresponding solution. Step 2 is completed. 

4.2. Generation of solution to the FFS problem 

The decision maker gives his assessments of each of the five focal firms on each of the 

eight attributes with the assistance of the five experts, as presented in Table 1. For example, 

the assessment {(G,0.2), (V,0.6), (Ω,0.2)} records that the performance of F1 on attribute e1 is 

assessed as 'Good' by one expert, as 'Very Good' by the other three experts, and as 'unclear' by 

the remaining expert. Step 3 is completed. 

Table 1 

Assessment data from the decision maker for the five focal firms. 

Attributes F1 F2 F3 F4 F5 

e1 {(G,0.2), 

(V,0.6), 

(Ω,0.2)} 

{( V,0.8), 

(Ω,0.2)} 

{( G,0.2), 

(V,0.6), 

(Ω,0.2)} 

{( V,0.8), 

(Ω,0.2)} 

{( G,0.4), 

(V,0.4), 

(Ω,0.2)} 

e2 {(A,0.2), 

(G,0.6), 

(V,0.2)} 

{( A,0.6), 

(G,0.4)} 

{( A,0.2), 

(G,0.4), 

(V,0.4)} 

{( A,0.8), 

(G,0.2)} 

{( A,0.8), 

(G,0.2)} 

e3 {(V,0.6), 

(E,0.4)} 

{( V,0.8), 

(E,0.2)} 

{( G,0.4), 

(V,0.6)} 

{( G,0.6), 

(V,0.4)} 

{( V,0.2), 

(E,0.8)} 

e4 {(V,0.6), 

(E,0.2), 

(Ω,0.2)} 

{( V,0.4), 

(E,0.4), 

(Ω,0.2)} 

{( V,0.4), 

(E,0.4), 

(Ω,0.2)} 

{( V,0.8), 

(Ω,0.2)} 

{( V,0.2), 

(E,0.6), 

(Ω,0.2)} 

e5 {(G,0.4), 

(V,0.4), 

(Ω,0.2)} 

{( V,0.6), 

(E,0.2), 

(Ω,0.2)} 

{( G,0.2), 

(V,0.6), 

(Ω,0.2)} 

{( V,0.2), 

(E,0.6), 

(Ω,0.2)} 

{( G,0.2), 

(V,0.6), 

(Ω,0.2)} 

e6 {(V,0.4), 

(E,0.2), 

(Ω,0.4)} 

{( V,0.4), 

(E,0.2), 

(Ω,0.4)} 

{( V,0.2), 

(E,0.4), 

(Ω,0.4)} 

{( G,0.2), 

(V,0.4), 

(Ω,0.4)} 

{( V,0.6), 

(Ω,0.4)} 

e7 {(V,0.6), 

(E,0.2), 

(Ω,0.2)} 

{( V,0.4), 

(E,0.4), 

(Ω,0.2)} 

{( G,0.2), 

(V,0.6), 

(Ω,0.2)} 

{( V,0.6), 

(E,0.2), 

(Ω,0.2)} 

{( G,0.2), 

(V,0.6), 

(Ω,0.2)} 

e8 {( G,0.2), 

(V,0.6), 

{( G,0.6), 

(V,0.2), 

{( A,0.4), 

(G,0.4), 

{( A,0.4), 

(G,0.4), 

{( G,0.2), 

(V,0.6), 
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By finding the solutions to three pairs of optimization problems in Eqs. (9)-(11), (12)-(14), 

and (15)-(17) with the data in Table 1, the dissimilarity based discriminating power interval , 

the SD based discriminating power interval, and the GMD based discriminating power 

interval on the eight attributes, i.e., [ ( )iD e− , ( )iD e+ ], [ ( )iS e− , ( )iS e+ ], and [ ( )iG e− , ( )iG e+ ] 

are obtained and presented in Table 2. Such intervals are then used to calculate three sets of 

weight intervals, i.e., [ d
iw − , d

iw + ], [ s
iw − , s

iw + ], and [ g
iw − , g

iw + ] in accordance with Eqs. 

(20)-(21), (22)-(23), and (24)-(25), which are presented in Table 3. Step 4 is completed. 

Table 2 

Three types of discriminating power intervals on the eight attributes. 

 

Table 3 

Three types of weight intervals of attributes in line with the corresponding discriminating 

power intervals. 

(Ω,0.2)} (Ω,0.2)} (Ω,0.2)} (Ω,0.2)} (Ω,0.2)} 

Attributes [ ( )iD e− , ( )iD e+ ] [ ( )iS e− , ( )iS e+ ] [ ( )iG e− , ( )iG e+ ] 

e1 [0.0034, 0.108] [0.0017, 0.0785] [0.0016, 0.0968] 

e2 [0.08, 0.08] [0.0473, 0.0473] [0.064, 0.064] 

e3 [0.12, 0.12] [0.0825, 0.0825] [0.1144, 0.1144] 

e4 [0.01, 0.17] [0.005, 0.1236] [0.0064, 0.1552] 

e5 [0.022, 0.2153] [0.0197, 0.1743] [0.0184, 0.198] 

e6 [0.0019, 0.2622] [0.0013, 0.3041] [0.0016, 0.2912] 

e7 [0.004, 0.1242] [0.002, 0.105] [0.0016, 0.1164] 

e8 [0.038, 0.2579] [0.0257, 0.175] [0.0324, 0.2152] 

Attributes [ d
iw − , d

iw + ] [ s
iw − , s

iw + ] [ g
iw − , g

iw + ] 

e1 [0.0028, 0.2813] [0.0016, 0.2996] [0.0014, 0.2884] 

e2 [0.0598, 0.2863] [0.0434, 0.2553] [0.0512, 0.2662] 

e3 [0.0897, 0.4295] [0.0757, 0.4455] [0.0914, 0.4758] 

e4 [0.0085, 0.3869] [0.0051, 0.4068] [0.0058, 0.3987] 

e5 [0.0192, 0.4555] [0.0211, 0.5129] [0.0172, 0.4714] 

e6 [0.0018, 0.4858] [0.0016, 0.623] [0.0017, 0.5494] 

e7 [0.0033, 0.3109] [0.002, 0.3644] [0.0014, 0.3277] 

e8 [0.034, 0.5165] [0.0274, 0.5231] [0.0303, 0.5085] 
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On the condition that the three coefficients θd, θs, and θg are relaxed as variables satisfying 

0 ≤ θd ≤ 1, 0 ≤ θs ≤ 1, 0 ≤ θg ≤ 1, and θd + θs + θg = 1, from finding the solutions to the 

optimization model in Eqs. (27)-(38) with the objectives of “MIN u-(Fl)” and “MAX u+(Fl)” 

the optimal [u-(Fl), u
+(Fl)] (l = 1, …, 5) is obtained as ([0.5362, 0.8619], [0.4635, 0.8648], 

[0.4098, 0.8946], [0.3366, 0.868], [0.455, 0.9278]). Step 5 is completed. 

To use Definition 5 to compare focal firms, the critical value of the optimism degree in 

Hurwicz rule, i.e., γ* between any two focal firms is calculated in accordance with Eq. (39), as 

presented in Table 4. Note that because u-(F3) > u-(F4) and u+(F3) > u+(F4), u
-(F3) < u-(F5) 

and u+(F3) < u+(F5), and u-(F4) < u-(F5) and u+(F4) < u+(F5), there are no critical values for 

those cases and the notation “-” is placed in the corresponding cells in the table. Then from 

Definition 5 the comparison outcomes between any two focal firms are generated and also 

presented in Table 4. Such outcomes are further used to generate the binary comparison 

matrix B, as presented in Table 5. Step 6 is completed. 

Table 4 

Critical value of the optimism degree in Hurwicz rule between any two focal firms and the 

comparison outcomes (in brackets) between the two focal firms. 

 

Table 5 

Binary comparison matrix. 

 

It is clear from the binary comparison matrix that bl (l = 1, …, 5) = (4, 2, 1, 0, 3), which 

results in the rankings of the five focal firms, i.e., (1, 3, 4, 5, 2) for F1 to F5 respectively. As a 

 F1 F2 F3 F4 F5 

F1  0.9616 (≻ ) 0.7945 (≻ ) 0.9703 (≻ ) 0.552 (≻ ) 

F2   0.6431 (≻ ) 0.9754 (≻ ) 0.1189 (≺ ) 

F3    - (≻ ) - (≺ ) 

F4     - (≺ ) 

F5      

 F1 F2 F3 F4 F5 

F1 0 1 1 1 1 

F2 0 0 1 1 0 

F3 0 0 0 1 0 

F4 0 0 0 0 0 

F5 0 1 1 1 0 
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result, a ranking order of the five focal firms is obtained as F1 ≻  F5 ≻  F2 ≻  F3 ≻  F4. It 

should be noticed that such a ranking order can be directly obtained from the comparison 

outcomes between any two focal firms in Table 4 because there are limited alternatives in the 

FFS problem. For the real problems with a large number of alternatives, the binary 

comparison matrix will be necessary for generating a ranking order. Step 7 is completed. 

The ranking order of the five focal firms indicates that Yankon (F1) and Philips (F5) should 

be selected with the preferential order of F1 ≻  F5 to provide lamp accessories. This is the 

solution to the FFS problem. Step 8 is completed. 

Next, we will find the solutions to the FFS problem on the assumption that different 

optimism degree intervals are provided to compare them with the above solution. This helps 

highlight the significant influence of optimism degree interval on solutions obtained by using 

the proposed method. 

4.3. Influence of optimism degree interval on solutions 

In the above solution process, the optimism degree interval [γ-, γ+] is set as [0, 0.5] by the 

decision maker due to the limited cash flow and production capacity of the enterprise. Assume 

that different optimism degree intervals are set, we present what will happen to the solutions 

to the FFS problem below. 

After the optimal [u-(Fl), u+(Fl)] (l = 1, …, 5) is obtained, different optimism degree 

intervals may generate different comparison outcomes between alternatives when Hurwicz 

rule is applied. To demonstrate this, without loss of generality, [γ-, γ+] is set as [0, 0.2], [0.1, 

0.3], [0.3, 0.5], [0.5, 0.7], [0.6, 0.8], [0.8, 1], and [0.5, 1], respectively. For each setting, the 

comparison outcomes between any two focal firms are recalculated using Definition 5 and 

presented in Table 6. Also, the corresponding binary comparison matrices are reobtained and 

presented in Table 7, where “(0, 0, 0, 0, 0, 0, 0)” and “(1, 1, 1, 1, 1, 1, 1)” mean that such 

comparison outcomes are independent of [γ-, γ+]. 

Table 6 

Comparison outcomes between any two focal firms with different optimism degree intervals. 

 F1 F2 F3 F4 F5 

F1  

( ≻ , ≻ , ≻ , 

≻ , ≻ , ≻ , 

≻ ) 

( ≻ , ≻ , ≻ , 

≻ , ≻ , ≺ , 

≻ ) 

( ≻ , ≻ , ≻ , 

≻ , ≻ , ≻ , 

≻ ) 

( ≻ , ≻ , ≻ , 

≺ , ≺ , ≺ , 

≺ ) 

F2   

( ≻ , ≻ , ≻ , 

≻ , ≺ , ≺ , 

≺ ) 

( ≻ , ≻ , ≻ , 

≻ , ≻ , ≻ , 

≻ ) 

( ≻ , ≺ , ≺ , 

≺ , ≺ , ≺ , 

≺ ) 

F3    ( ≻ , ≻ , ≻ , ( ≺ , ≺ , ≺ , 
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Table 7 

Binary comparison matrix with different optimism degree intervals. 

 

Tables 6 and 7 indicate that different optimism degree intervals can result in different 

comparison outcomes in most situations, such as the comparison outcomes between F1 and F3, 

F1 and F5, F2 and F3, and F2 and F5. In particular, the comparison outcomes between F1 and 

F5 and F2 and F3 have significantly changed with the increase in [γ-, γ+]. From the binary 

comparison matrices with different optimism degree intervals in Table 7, bl (l = 1, …, 5) and 

the ranking of each focal firm are obtained and presented in Table 8, where the element “4; 1” 

associated with F1 and [γ-, γ+] = [0,0.2] means that b1 = 4 and the ranking of F1 is 1. Table 8 

shows that the rankings of F1, F2, F3, and F5 have significantly changed with the increase in 

[γ-, γ+]. In particular, when [γ-, γ+] is set as [0,0.2], [0.5,0.7], [0.6,0.8], [0.8,1], and [0.5,1], the 

solutions to the FFS problem are F1 and F2 with the preferential order of F1 ≻  F2, F5 and F1 

with the preferential order of F5 ≻  F1, F5 and F1 with the preferential order of F5 ≻  F1, F5 

and F3 with the preferential order of F5 ≻  F3, and F5 and F1 with the preferential order of F5 

≻  F1, which are clearly different from the solution generated in Section 4.2. All these verify 

the great influence of [γ-, γ+] on solutions to the FFS problem. 

≻ , ≻ , ≻ , 

≻ ) 

≺ , ≺ , ≺ , 

≺ ) 

F4     

( ≺ , ≺ , ≺ , 

≺ , ≺ , ≺ , 

≺ ) 

F5      

 F1 F2 F3 F4 F5 

F1 
(0, 0, 0, 0, 0, 0, 

0) 

(1, 1, 1, 1, 1, 1, 

1) 

(1, 1, 1, 1, 1, 0, 

1) 

(1, 1, 1, 1, 1, 1, 

1) 

(1, 1, 1, 0, 0, 0, 

0) 

F2 
(0, 0, 0, 0, 0, 0, 

0) 

(0, 0, 0, 0, 0, 0, 

0) 

(1, 1, 1, 1, 0, 0, 

0) 

(1, 1, 1, 1, 1, 1, 

1) 

(1, 0, 0, 0, 0, 0, 

0) 

F3 
(0, 0, 0, 0, 0, 1, 

0) 

(0, 0, 0, 0, 1, 1, 

1) 

(0, 0, 0, 0, 0, 0, 

0) 

(1, 1, 1, 1, 1, 1, 

1) 

(0, 0, 0, 0, 0, 0, 

0) 

F4 
(0, 0, 0, 0, 0, 0, 

0) 

(0, 0, 0, 0, 0, 0, 

0) 

(0, 0, 0, 0, 0, 0, 

0) 

(0, 0, 0, 0, 0, 0, 

0) 

(0, 0, 0, 0, 0, 0, 

0) 

F5 
(0, 0, 0, 1, 1, 1, 

1) 

(0, 1, 1, 1, 1, 1, 

1) 

(1, 1, 1, 1, 1, 1, 

1) 

(1, 1, 1, 1, 1, 1, 

1) 

(0, 0, 0, 0, 0, 0, 

0) 
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Table 8 

Superior indicator and ranking of each focal firm with different optimism degree intervals. 

 

5. Conclusions 

Attribute weight assignment is an important step in MADA. When there are no subjective 

judgments available for attribute weight assignment, one way of determining the weights is to 

use the information or discriminating power contained in performances of alternatives on 

each attribute. As presented in Section 2, it is difficult to measure the discriminating power 

among the performances represented by belief distributions. The strategy of using 

discriminating power among scalars transformed from belief distributions is infeasible 

because the transformed scalars cannot reflect the diversity in performances represented by 

belief distributions over a set of grades which have different utility values. To address this 

challenge, we have defined three types of discriminating power contained in the distributed 

assessments of alternatives on different attributes, which are the dissimilarity based 

discriminating power, the SD based discriminating power, and the GMD based discriminating 

power. From the three types of discriminating power, three corresponding sets of attribute 

weights are determined and then combined using three coefficients to generate the integrated 

weighs of attributes. When there is unknown or incomplete information in the assessments, an 

optimization model is constructed based on the integrated weights to determine the minimum 

and maximum expected utilities of each alternative. The expected utilities are then used to 

compare alternatives with the help of Hurwicz rule in which the acceptable optimism degree 

interval is provided by a decision maker. In particular, the transitivity of the comparison 

outcomes among three alternatives is theoretically analyzed to avoid the problem of 

comparison cycle and guarantee the validity of the comparison outcomes. 

What we have investigated in this paper is a new attempt to explore the determination of 

attribute weights by taking into account the differences in both belief degrees in belief 

distributions over a set of grade and the utilities of the grades simultaneously. This is different 

from existing studies on how to determine attribute weights from discriminating power in 

scalar values instead of in distributions (Chin et al. 2015; Deng et al. 2000; Diakoulaki et al. 

[γ-, γ+] [0,0.2] [0.1,0.3] [0.3,0.5] [0.5,0.7] [0.6,0.8] [0.8,1] [0.5,1] 

F1 4; 1 4; 1 4; 1 3; 2 3; 2 2; 3 3; 2 

F2 3; 2 2; 3 2; 3 2; 3 1; 4 1; 4 1; 4 

F3 1; 4 1; 4 1; 4 1; 4 2; 3 3; 2 2; 3 

F4 0; 5 0; 5 0; 5 0; 5 0; 5 0; 5 0; 5 

F5 2; 3 3; 2 3; 2 4; 1 4; 1 4; 1 4; 1 
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1995; Fan et al. 2002; Fu and Wang 2015; Fu and Xu 2016; He et al. 2016; Wang and Luo 

2010; Şahin and Liu 2016).  

Acknowledgements 

This research is supported by the National Natural Science Foundation of China (Grant Nos. 

71622003, 71571060, 71690235, 71690230, 71521001, and 71201043). The second author 

acknowledges the support by the European Commission under the Grant No. 

EC-GPF-314836 and the Alliance Manchester Business School Research Support Fund. 

Appendix: Proof of Theorems 3-5 

Proof of Theorem 3 

Theorem 3. Suppose that [ ( )iD e− , ( )iD e+ ] (i = 1, …, L) is obtained from solving the pair of 

optimization problems in Eqs. (9)-(11) and * ( )iD e  is a variable limited to [ ( )iD e− , ( )iD e+ ]. 

Then, d
iw  = 

*

*
1

( )

( )
i

L
jj

D e

D e=∑
 is increasing with respect to * ( )iD e  and decreasing with respect 

to * ( )jD e  (j ≠ i). 

Proof.  To focus on the monotonicity of d
iw  with respect to * ( )iD e , the derivative of d

iw  

regarding * ( )iD e  is calculated by 

* ( )

d
i

i

w

D e

∂
∂

 = 
( )

* * *
1,

2
* *

1,

( ) ( ) ( )

( ) ( )

L
i j ij j i

L
i jj j i

D e D e D e

D e D e

= ≠

= ≠

+ −

+

∑

∑
 = 

( )
*

1,

2
* *

1,

( )

( ) ( )

L
jj j i

L
i jj j i

D e

D e D e

= ≠

= ≠+

∑

∑
. 

Because * ( )iD e  ≥ 0 and * ( )jD e  ≥ 0 (j ≠ i), which can be found from Definitions 1-2 and 

Eqs. (9)-(11), we have 
* ( )

d
i

i

w

D e

∂
∂

 ≥ 0, which verifies that the value of diw  will become larger 

with the increase in * ( )iD e . 

On the other hand, to analyze the monotonicity of d
iw  with respect to * ( )jD e  (j ≠ i), we 

calculate the derivative of d
iw  regarding * ( )jD e , which is 

* ( )

d
i

j

w

D e

∂
∂

 = 
( )

*

2
* *

1,

( )

( ) ( )

i

L
i jj j i

D e

D e D e= ≠

−

+∑
. 

This shows that 
* ( )

d
i

j

w

D e

∂
∂

 ≤ 0 because * ( )iD e  ≥ 0 and * ( )jD e  ≥ 0 (j ≠ i). As a result, we 
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can draw a conclusion that the value of d
iw  will become smaller with the increase in * ( )jD e  

(j ≠ i). 

As a whole, the conclusion in this theorem is verified.                            □ 

Proof of Theorem 4 

Theorem 4. Given the optimal [u-(al), u
+(al)] and [u-(am), u+(am)] for two alternatives al and 

am, suppose that E(al) = γ·u+(al)+(1-γ)·u-(al) and E(am) = γ·u+(am)+(1-γ)·u-(am) represent the 

expected utilities of alternatives al and am in Hurwicz rule and ∆E(alm) = E(al) - E(am) 

represents the difference between the expected utilities of al and am, then we have the 

following conclusions. 

(1) When u+(al) > u+(am) and u-(al) < u-(am), ∆E(alm) is monotonously increasing with 

respect to γ, and it is smaller than, equal to, and larger than 0 when γ is limited to [0, γ*), [γ*, 

γ
*], and (γ*, 1], respectively, where γ* = 

( ) ( )

( ( ) ( )) ( ( ) ( ))
m l

l l m m

u a u a

u a u a u a u a

− −

+ − + −

−
− − −

. 

(2) When u+(al) < u+(am) and u-(al) > u-(am), ∆E(alm) is monotonously decreasing with 

respect to γ, and it is larger than, equal to, and smaller than 0 when γ is limited to [0, γ*), [γ*, 

γ*], and (γ*, 1], respectively. 

Proof.  We consider the situation where u+(al) > u+(am) and u-(al) < u-(am) first. Under the 

given conditions, one has  

∆E(alm) = E(al) - E(am)                                                  (A.1) 

      = γ·u+(al)+(1-γ)·u-(al) - (γ·u+(am)+(1-γ)·u-(am))                        (A.2) 

      = γ·(u+(al)-u-(al)) - γ·(u+(am)-u-(am)) + (u-(al)-u-(am))                   (A.3) 

      = γ·(u+(al)-u+(am)) - γ·(u-(al)-u-(am)) + (u-(al)-u-(am)).                   (A.4) 

Then it is clear that ∆E(alm) is monotonously increasing with respect to γ. Meanwhile, it is 

easy to know that ∆E(alm) < 0 when γ = 0 and ∆E(alm) > 0 when γ = 1 because u+(al) > u+(am) 

and u-(al) < u-(am). Also, it can be obtained that ∆E(alm) = 0 when γ = γ* = 

( ) ( )

( ( ) ( )) ( ( ) ( ))
m l

l l m m

u a u a

u a u a u a u a

− −

+ − + −

−
− − −

. As a whole, ∆E(alm) is smaller than, equal to, and larger 

than 0 when γ is limited to [0, γ*), [γ*, γ*], and (γ*, 1], respectively. 

In the situation where u+(al) < u+(am) and u-(al) > u-(am), from Eqs. (A.1)-(A.4) one can 

draw a conclusion that ∆E(alm) is monotonously decreasing with respect to γ. Meanwhile, it is 

easily found that ∆E(alm) > 0 when γ = 0 and ∆E(alm) < 0 when γ = 1 because u+(al) < u+(am) 

and u-(al) > u-(am). As presented above, ∆E(alm) is equal to 0 when γ = γ* = 
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( ) ( )

( ( ) ( )) ( ( ) ( ))
m l

l l m m

u a u a

u a u a u a u a

− −

+ − + −

−
− − −

. As a whole, ∆E(alm) is larger than, equal to, and smaller 

than 0 when γ is limited to [0, γ*), [γ*, γ*], and (γ*, 1], respectively. 

From the above analyses, the conclusion in this theorem is verified.                 □ 

Proof of Theorem 5 

Theorem 5. Given the optimal [u-(al), u
+(al)], [u

-(am), u+(am)], and [u-(ak), u
+(ak)] for three 

alternatives al, am, and ak, suppose that al ≻  am and am ≻  ak in accordance with Definition 

5 on the condition that [γ-, γ+] is provided, then we have al ≻  ak. 

Proof.  When u+(al) > u+(am), u+(am) > u+(ak), u-(al) > u-(am), and u-(am) > u-(ak), the 

conclusion in this theorem is clear to hold. In the following, we discuss other situations. 

(1) u+(al) > u+(am) and u-(al) > u-(am) 

In this situation, al ≻  am always holds no matter whatever the optimism degree γ is set as. 

Under the conditions, we focus on the relationship between [u-(am), u+(am)] and [u-(ak), u
+(ak)] 

to guarantee the constraint of al ≻  ak. 

1) u+(am) > u+(ak) and u-(am) < u-(ak) 

In accordance with Definition 5, when [γ-, γ+] ⊂  ( *
mkγ , 1] with *

mkγ  = 

( ) ( )

( ( ) ( )) ( ( ) ( ))
k m

m m k k

u a u a

u a u a u a u a

− −

+ − + −

−
− − −

, we have am ≻  ak. It can be known from *
mkγ  = 

( ) ( )

( ( ) ( )) ( ( ) ( ))
k m

m m k k

u a u a

u a u a u a u a

− −

+ − + −

−
− − −

 that *
mkγ  = 

1

( ) ( )
1

( ) ( )
m k

k m

u a u a

u a u a

+ +

− −
− +
−

, which indicates that 

*
mkγ  is monotonously decreasing with respect to u+(am) and u-(am). From this fact, we know 

that *
lkγ  < *

mkγ  when u+(al) > u+(am) and u-(al) > u-(am), which results in [γ-, γ+] ⊂  ( *
lkγ , 1] 

and further al ≻  ak. 

On the other hand, when *mkγ  is limited to [γ-, γ+], *
mkγ  - γ- < γ+ - *

mkγ  is needed to 

guarantee am ≻  ak in accordance with Definition 5. From the fact that *
lkγ  < *

mkγ , as 

mentioned above, we can obtain that *
lkγ  - γ- < γ+ - *

lkγ  and thus al ≻  ak. 

2) u+(am) < u+(ak) and u-(am) > u-(ak) 
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When u+(am) < u+(ak) and u-(am) > u-(ak), from *
mkγ  = 

1

( ) ( )
1

( ) ( )
k m

m k

u a u a

u a u a

+ +

− −
− +
−

 it can be 

deduced that *
mkγ  is monotonously increasing with respect to u+(am) and u-(am), which 

results in *
lkγ  > *

mkγ  because u+(al) > u+(am) and u-(al) > u-(am). From *
lkγ  > *

mkγ  we can 

know that [γ-, γ+] ⊂  [0, *
lkγ ) or *

lkγ  ∈ [γ-, γ+] with *
lkγ  - γ- > γ+ - *

lkγ  always holds, 

which results in al ≻  ak in accordance with Definition 5. 

(2) u+(al) > u+(am) and u-(al) < u-(am) 

In this situation, al ≻  am holds when [γ-, γ+] ⊂  ( *
lmγ , 1] with *

lmγ  = 

( ) ( )

( ( ) ( )) ( ( ) ( ))
m l

l l m m

u a u a

u a u a u a u a

− −

+ − + −

−
− − −

 or *
lmγ  ∈ [γ-, γ+] with *

lmγ  - γ- < γ+ - *
lmγ  holds in 

accordance with Definition 5. Under the conditions, we focus on the following three 

relationships between [u-(am), u+(am)] and [u-(ak), u
+(ak)] to guarantee the given constraint of 

am ≻  ak. 

1) u+(am) > u+(ak) and u-(am) > u-(ak) 

Under the conditions am ≻  ak is clear to hold. As *
lmγ  = 

1

( ) ( )
1

( ) ( )
l m

m l

u a u a

u a u a

+ +

− −
− +
−

 when 

u+(al) > u+(am) and u-(al) < u-(am), it can be easily found that *lmγ  is monotonously increasing 

with respect to u+(am) and u-(am). From this we have *
lkγ  < *

lmγ  when u+(am) > u+(ak) and 

u-(am) > u-(ak), which indicates that [γ-, γ+] ⊂  ( *
lkγ , 1] or *

lkγ  ∈ [γ-, γ+] with *
lkγ  - γ- < γ+ 

- *
lkγ  holds. As u+(al) > u+(am) > u+(ak), al ≻  ak holds when u-(al) < u-(ak) in accordance 

with Definition 5. Also it is clear that al ≻  ak when u-(al) > u-(ak). 

2) u+(am) > u+(ak) and u-(am) < u-(ak) 

As presented above, under the conditions [γ
-, γ+] ⊂  ( *

mkγ , 1] or *
mkγ  ∈ [γ-, γ+] with *

mkγ  

- γ- < γ+ - *
mkγ  is needed to guarantee am ≻  ak, while [γ-, γ+] ⊂  ( *

lmγ , 1] or *
lmγ  ∈ [γ-, γ+] 

with *
lmγ  - γ- < γ+ - *

lmγ  is needed to guarantee al ≻  am.  

Assume that [γ-, γ+] ⊂  ( *
mkγ , 1] and [γ-, γ+] ⊂  ( *

lmγ , 1] first, then there are two possible 
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cases where *
lmγ  < *

mkγ  and *
lmγ  > *

mkγ . Without loss of generality, suppose that *
lmγ  < 

*
mkγ . As *

lmγ  = 
( ) ( )

( ( ) ( )) ( ( ) ( ))
m l

l l m m

u a u a

u a u a u a u a

− −

+ − + −

−
− − −

 = 
1

( ) ( )
1

( ) ( )
l m

m l

u a u a

u a u a

+ +

− −
− +
−

 and *
mkγ  = 

( ) ( )

( ( ) ( )) ( ( ) ( ))
k m

m m k k

u a u a

u a u a u a u a

− −

+ − + −

−
− − −

 = 
1

( ) ( )
1

( ) ( )
m k

k m

u a u a

u a u a

+ +

− −
− +
−

, from *
lmγ  < *

mkγ  it can be 

deduced that 
1

( ) ( )
1

( ) ( )
l m

m l

u a u a

u a u a

+ +

− −
− +
−

 < 
1

( ) ( )
1

( ) ( )
m k

k m

u a u a

u a u a

+ +

− −
− +
−

 and further  

u+(al)·u
-(ak)-u+(al)·u

-(am)-u+(am)·u-(ak) > u+(ak)·u
-(al)-u+(ak)·u

-(am)-u+(am)·u-(al).   (A.5) 

On the other hand, it can be similarly obtained that *
lkγ  = 

( ) ( )

( ( ) ( )) ( ( ) ( ))
k l

l l k k

u a u a

u a u a u a u a

− −

+ − + −

−
− − −

 = 
1

( ) ( )
1

( ) ( )
l k

k l

u a u a

u a u a

+ +

− −
− +
−

. On the assumption that *lkγ  < 

*
mkγ , i.e., 

1

( ) ( )
1

( ) ( )
l k

k l

u a u a

u a u a

+ +

− −
− +
−

 < 
1

( ) ( )
1

( ) ( )
m k

k m

u a u a

u a u a

+ +

− −
− +
−

 we have  

u+(al)·u
-(ak)-u+(al)·u

-(am)+u+(ak)·u
-(am) > u+(am)·u-(ak)-u+(am)·u-(al)+u+(ak)·u

-(al).  (A.6) 

It is easy to find that Eq. (A.5) is equivalent to Eq. (A.6), so *
lkγ  < *

mkγ  certainly holds 

when *
lmγ  < *

mkγ  is assumed, which results in [γ-, γ+] ⊂  ( *
lkγ , 1] and al ≻  ak. When we 

suppose that *
lmγ  > *

mkγ , we can similarly conclude that *lkγ  < *
lmγ  and al ≻  ak. 

Secondly, assume that [γ-, γ+] ⊂  ( *
mkγ , 1] and *

lmγ  ∈ [γ-, γ+] with *
lmγ  - γ- < γ+ - *

lmγ . 

On this assumption, it is clear that *mkγ  < *
lmγ . As analyzed above, we can know *

lkγ  < *
lmγ  

from *
mkγ  < *

lmγ . If *
lkγ  ∈ [γ-, γ+], then we clearly have *

lkγ  - γ- < γ+ - *
lkγ  and al ≻  ak. 

When *
lkγ  ∉ [γ-, γ+], we certainly have [γ-, γ+] ⊂  ( *

lkγ , 1] and al ≻  ak. 

Thirdly, on the assumption that *mkγ  ∈ [γ-, γ+] with *
mkγ  - γ- < γ+ - *

mkγ  and [γ-, γ+] ⊂  

( *
lmγ , 1], we have *

lmγ  < *
mkγ  and its equivalent *

lkγ  < *
mkγ , from which the conclusion that 
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al ≻  ak can be drawn in accordance with the above analysis. 

Fourthly, on the assumption that *mkγ  ∈ [γ-, γ+] with *
mkγ  - γ- < γ+ - *

mkγ  and *
lmγ  ∈ 

[γ-, γ+] with *
lmγ  - γ- < γ+ - *

lmγ , as *
mkγ  < *

lmγ  is equivalent to *
lkγ  < *

lmγ  and *
lmγ  < 

*
mkγ  is equivalent to *

lkγ  < *
mkγ , one of *

lkγ  ∈ [γ-, γ+] with *
lkγ  - γ- < γ+ - *

lkγ  and [γ-, γ+] 

⊂  ( *
lkγ , 1] always holds. As a result, we always have al ≻  ak. 

3) u+(am) < u+(ak) and u-(am) > u-(ak) 

Under the conditions [γ-, γ+] ⊂  [0, *
mkγ ) or *

mkγ  ∈ [γ-, γ+] with *
mkγ  - γ- > γ+ - *

mkγ  is 

needed to guarantee am ≻  ak, while [γ-, γ+] ⊂  ( *
lmγ , 1] or *

lmγ  ∈ [γ-, γ+] with *
lmγ  - γ- < 

γ+ - *
lmγ  is needed to guarantee al ≻  am. 

Firstly, assume that [γ-, γ+] ⊂  [0, *
mkγ ) and [γ-, γ+] ⊂  ( *

lmγ , 1]. On this assumption, it is 

needed that *
lmγ  < *

mkγ . With the consideration of u+(al) > u+(am), u-(al) < u-(am), u+(am) < 

u+(ak), and u-(am) > u-(ak), it can be obtained from *lmγ  < *
mkγ  that 

1

( ) ( )
1

( ) ( )
l m

m l

u a u a

u a u a

+ +

− −
− +
−

 < 

1

( ) ( )
1

( ) ( )
k m

m k

u a u a

u a u a

+ +

− −
− +
−

, which further deduces that 

u+(al)·u
-(am)-u+(al)·u

-(ak)+u+(am)·u-(ak) > u+(ak)·u
-(am)-u+(ak)·u

-(al)+u+(am)·u-(al).  (A.7) 

Meanwhile, the relationship between [u-(al), u+(al)] and [u-(ak), u+(ak)] cannot be obtained 

from u+(al) > u+(am), u-(al) < u-(am), u+(am) < u+(ak), and u-(am) > u-(ak). As such, four 

possible relationships need to be analyzed, including u+(al) > u+(ak) and u-(al) > u-(ak), u
+(al) 

< u+(ak) and u-(al) < u-(ak), u
+(al) > u+(ak) and u-(al) < u-(ak), and u+(al) < u+(ak) and u-(al) > 

u-(ak). To analyze the first two relationships, u+(ak)·u
-(ak) is added on the two sides of Eq. 

(A.7) to transform this equation into 

(u+(al)-u+(ak))·(u
-(am)-u-(ak)) > (u+(am)-u+(ak))·(u

-(al)-u-(ak)).                   (A.8) 

For u-(am)-u-(ak) > 0 and u+(am)-u+(ak) < 0 from the given conditions u+(am) < u+(ak) and 

u-(am) > u-(ak), Eq. (A.8) is true when u+(al) > u+(ak) and u-(al) > u-(ak) but false when u+(al) 

< u+(ak) and u-(al) < u-(ak). As a result, to make Eq. (A.8) hold, al ≻  ak is certainly true in 

the first relationship. The second relationship is incorrect for Eq. (A.8) and thus omitted. 
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In the third relationship of u+(al) > u+(ak) and u-(al) < u-(ak), suppose that *
lkγ  < *

lmγ , then 

we have 
1

( ) ( )
1

( ) ( )
l k

k l

u a u a

u a u a

+ +

− −
− +
−

 < 
1

( ) ( )
1

( ) ( )
l m

m l

u a u a

u a u a

+ +

− −
− +
−

 and further 

u+(al)·u
-(am)-u+(ak)·u

-(am)+u+(ak)·u
-(al) > u+(al)·u

-(ak)-u+(am)·u-(ak)+u+(am)·u-(al).  (A.9) 

As Eq. (A.7) is equivalent to Eq. (A.9), *lkγ  < *
lmγ  is equivalent to *

lmγ  < *
mkγ , which 

means that al ≻  ak. 

Finally, in the fourth relationship of u+(al) < u+(ak) and u-(al) > u-(ak), suppose that *
mkγ  < 

*
lkγ , then we have 

1

( ) ( )
1

( ) ( )
k m

m k

u a u a

u a u a

+ +

− −
− +
−

 < 
1

( ) ( )
1

( ) ( )
k l

l k

u a u a

u a u a

+ +

− −
− +
−

 and further 

u+(ak)·u
-(al)-u+(am)·u-(al)+u+(am)·u-(ak) > u+(ak)·u

-(am)-u+(al)·u
-(am)+u+(al)·u

-(ak). (A.10) 

From the equivalence between Eqs. (A.7) and (A.10), we derive the equivalence between 

*
mkγ  < *

lkγ  and *
lmγ  < *

mkγ , which results in al ≻  ak. 

When one of three conditions are satisfied, i.e., [γ
-, γ+] ⊂  [0, *

mkγ ) and *
lmγ  ∈ [γ-, γ+] 

with *
lmγ  - γ- < γ+ - *

lmγ , *
mkγ  ∈ [γ-, γ+] with *

mkγ  - γ- > γ+ - *
mkγ  and [γ-, γ+] ⊂  ( *

lmγ , 

1], and *
mkγ  ∈ [γ-, γ+] with *

mkγ  - γ- > γ+ - *
mkγ  and *

lmγ  ∈ [γ-, γ+] with *
lmγ  - γ- < γ+ - 

*
lmγ , *

lmγ  < *
mkγ  is always required, which results in al ≻  ak, as analyzed above. 

(3) u+(al) < u+(am) and u-(al) > u-(am) 

In this situation, al ≻  am holds when [γ-, γ+] ⊂  [0, *
lmγ ) or *

lmγ  ∈ [γ-, γ+] with *
lmγ  - 

γ- > γ+ - *
lmγ . Under the conditions, we focus on the following three relationships between 

[u-(am), u+(am)] and [u-(ak), u
+(ak)] to guarantee the constraint of am ≻  ak. 

1) u+(am) > u+(ak) and u-(am) > u-(ak) 

Under the conditions, am ≻  ak always holds. Because *
lmγ  = 

( ) ( )

( ( ) ( )) ( ( ) ( ))
m l

l l m m

u a u a

u a u a u a u a

− −

+ − + −

−
− − −

 = 
1

( ) ( )
1

( ) ( )
m l

l m

u a u a

u a u a

+ +

− −
− +

−

, it is easy to know that *
lmγ  is 

monotonously decreasing with respect to u+(am) and u-(am). This can deduce that *lmγ  < *
lkγ  
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and further [γ-, γ+] ⊂  [0, *
lkγ ) or *

lkγ  ∈ [γ-, γ+] with *
lkγ  - γ- > γ+ - *

lkγ . As u+(al) < 

u+(am), u-(al) > u-(am), u+(am) > u+(ak), and u-(am) > u-(ak), when u+(al) < u+(ak), al ≻  ak 

holds in accordance with Definition 5. Also al ≻  ak clearly holds when u+(al) > u+(ak). 

2) u+(am) > u+(ak) and u-(am) < u-(ak) 

Under the conditions, [γ-, γ+] ⊂  [0, *
lmγ ) or *

lmγ  ∈ [γ-, γ+] with *
lmγ  - γ- > γ+ - *

lmγ  is 

needed to guarantee al ≻  am, while [γ-, γ+] ⊂  ( *
mkγ , 1] or *

mkγ  ∈ [γ-, γ+] with *
mkγ  - γ- < 

γ
+ - *

mkγ  is needed to guarantee am ≻  ak. 

Assume that [γ-, γ+] ⊂  [0, *
lmγ ) and [γ-, γ+] ⊂  ( *

mkγ , 1] first. On this assumption, it can 

be known that *
mkγ  < *

lmγ , which deduces that 
1

( ) ( )
1

( ) ( )
m k

k m

u a u a

u a u a

+ +

− −
− +
−

 < 
1

( ) ( )
1

( ) ( )
m l

l m

u a u a

u a u a

+ +

− −
− +

−

 

and further 

u+(am)·u-(al)-u+(ak)·u
-(al)+u+(ak)·u

-(am) > u+(am)·u-(ak)-u+(al)·u
-(ak)+u+(al)·u

-(am). (A.11) 

Similar to the situation where u+(al) > u+(am), u-(al) < u-(am), u+(am) < u+(ak), and u-(am) > 

u-(ak), the relationship between [u-(al), u+(al)] and [u-(ak), u+(ak)] cannot be obtained from 

u+(al) < u+(am), u-(al) > u-(am), u+(am) > u+(ak), and u-(am) < u-(ak). As such, four possible 

relationships need to be analyzed, including u+(al) > u+(ak) and u-(al) > u-(ak), u
+(al) < u+(ak) 

and u-(al) < u-(ak), u
+(al) > u+(ak) and u-(al) < u-(ak), and u+(al) < u+(ak) and u-(al) > u-(ak). To 

analyze the first two relationships, u+(ak)·u
-(ak) is added on the two sides of Eq. (A.11) to 

transform this equation into 

(u+(am)-u+(ak))·(u-(al)-u-(ak)) > (u+(al)-u+(ak))·(u
-(am)-u-(ak)).                 (A.12) 

For u+(am)-u+(ak) > 0 and u-(am)-u-(ak) < 0 from the given conditions u+(am) > u+(ak) and 

u-(am) < u-(ak), Eq. (A.12) is true when u+(al) > u+(ak) and u-(al) > u-(ak) but false when u+(al) 

< u+(ak) and u-(al) < u-(ak). As a result, to make Eq. (A.12) hold, al ≻  ak is certainly true in 

the first relationship. The second relationship is incorrect for Eq. (A.12) and thus omitted. 

In the third relationship of u+(al) > u+(ak) and u-(al) < u-(ak), suppose that *
lkγ  < *

mkγ , 

which deduces that 
1

( ) ( )
1

( ) ( )
l k

k l

u a u a

u a u a

+ +

− −
− +
−

 < 
1

( ) ( )
1

( ) ( )
m k

k m

u a u a

u a u a

+ +

− −
− +
−

 and further 

u+(al)·u
-(ak)-u+(al)·u

-(am)+u+(ak)·u
-(am) > u+(am)·u-(ak)-u+(am)·u-(al)+u+(ak)·u

-(al). (A.13) 

The equivalence between Eqs. (A.11) and (A.13) results in the equivalence between *mkγ  < 
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*
lmγ  and *

lkγ  < *
mkγ , and thus al ≻  ak. 

Finally, in the fourth relationship of u+(al) < u+(ak) and u-(al) > u-(ak), suppose that *
lmγ  < 

*
lkγ , which deduces that 

1

( ) ( )
1

( ) ( )
m l

l m

u a u a

u a u a

+ +

− −
− +

−

 < 
1

( ) ( )
1

( ) ( )
k l

l k

u a u a

u a u a

+ +

− −
− +
−

 and further  

u+(am)·u-(al)-u+(am)·u-(ak)+u+(al)·u
-(ak) > u+(ak)·u

-(al)-u+(ak)·u
-(am)+u+(al)·u

-(am). (A.14) 

Eq. (A.14) is clearly equivalent to Eq. (A.11), which results in the equivalence between *
mkγ  

< *
lmγ  and *

lmγ  < *
lkγ , and further al ≻  ak. 

3) u+(am) < u+(ak) and u-(am) > u-(ak) 

Under the conditions, [γ-, γ+] ⊂  [0, *
lmγ ) or *

lmγ  ∈ [γ-, γ+] with *
lmγ  - γ- > γ+ - *

lmγ  is 

needed to guarantee al ≻  am, while [γ-, γ+] ⊂  [0, *
mkγ ) or *

mkγ  ∈ [γ-, γ+] with *
mkγ  - γ- > 

γ+ - *
mkγ  is needed to guarantee am ≻  ak. 

Firstly, assume that [γ-, γ+] ⊂  [0, *
lmγ ) and [γ-, γ+] ⊂  [0, *

mkγ ). There are two possible 

situations where *
lmγ  < *

mkγ  and *
lmγ  > *

mkγ . Without loss of generality, suppose that *
lmγ  

< *
mkγ . Then we have 

1

( ) ( )
1

( ) ( )
m l

l m

u a u a

u a u a

+ +

− −
− +

−

 < 
1

( ) ( )
1

( ) ( )
k m

m k

u a u a

u a u a

+ +

− −
− +
−

 and further  

u+(al)·u
-(ak)-u+(am)·u-(ak)-u+(al)·u

-(am) >  

u+(ak)·u
-(al)-u+(ak)·u

-(am)-u+(am)·u-(al).                                    (A.15) 

On the other hand, suppose that *
lmγ  < *

lkγ , which deduces that 
1

( ) ( )
1

( ) ( )
m l

l m

u a u a

u a u a

+ +

− −
− +

−

 < 

1

( ) ( )
1

( ) ( )
k l

l k

u a u a

u a u a

+ +

− −
− +
−

 and further 

u+(am)·u-(al)-u+(am)·u-(ak)+u+(al)·u
-(ak) > u+(ak)·u

-(al)-u+(ak)·u
-(am)+u+(al)·u

-(am). (A.16) 

The equivalence between Eqs. (A.15) and (A.16) results in the equivalence between *lmγ  < 

*
mkγ  and *

lmγ  < *
lkγ . From *

lmγ  < *
lkγ  it can be deduced that al ≻  ak. When *

lmγ  > *
mkγ , 
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the equivalence between *mkγ  < *
lmγ  and *

mkγ  < *
lkγ  can be similarly found to result in al 

≻  ak. 

Secondly, assume that [γ-, γ+] ⊂  [0, *
lmγ ) and *

mkγ  ∈ [γ-, γ+] with *
mkγ  - γ- > γ+ - *

mkγ , 

then one has *
mkγ  < *

lmγ  and its equivalent *
mkγ  < *

lkγ . From *
mkγ  < *

lkγ , it can be 

deduced that *
lkγ  ∈ [γ-, γ+] with *

lkγ  - γ- > γ+ - *
lkγ  or [γ-, γ+] ⊂  [0, *

lkγ ), which results 

in al ≻  ak. 

Thirdly, assume that *
lmγ  ∈ [γ-, γ+] with *

lmγ  - γ- > γ+ - *
lmγ  and [γ-, γ+] ⊂  [0, *

mkγ ). 

On this assumption, it is required that *
lmγ  < *

mkγ . Then the equivalent of *lmγ  < *
mkγ , i.e., 

*
lmγ  < *

lkγ  can deduce that *
lkγ  ∈ [γ-, γ+] with *

lkγ  - γ- > γ+ - *
lkγ  or [γ-, γ+] ⊂  [0, *

lkγ ) 

and further al ≻  ak. 

Fourthly, assume that *lmγ  ∈ [γ-, γ+] with *
lmγ  - γ- > γ+ - *

lmγ  and *
mkγ  ∈ [γ-, γ+] with 

*
mkγ  - γ- > γ+ - *

mkγ . Similar to the situation of [γ-, γ+] ⊂  [0, *
lmγ ) and [γ-, γ+] ⊂  [0, *

mkγ ), 

when *
lmγ  < *

mkγ  is assumed, its equivalent *lmγ  < *
lkγ  results in *

lkγ  ∈ [γ-, γ+] with *
lkγ  

- γ- > γ+ - *
lkγ  or [γ-, γ+] ⊂  [0, *

lkγ ) and further al ≻  ak. When *
mkγ  < *

lmγ  is assumed, 

its equivalent *
mkγ  < *

lkγ  can similarly result in al ≻  ak. 

From the above analyses, the conclusion in this theorem is verified.                 □ 
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