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a b s t r a c t 

This paper introduces a malware detection system for smartphones based on studying the dynamic be- 

havior of suspicious applications. The main goal is to prevent the installation of the malicious software 

on the victim systems. The approach focuses on identifying malware addressed against the Android plat- 

form. For that purpose, only the system calls performed during the boot process of the recently installed 

applications are studied. Thereby the amount of information to be considered is reduced, since only ac- 

tivities related with their initialization are taken into account. The proposal defines a pattern recognition 

system with three processing layers: monitoring, analysis and decision-making. First, in order to extract 

the sequences of system calls, the potentially compromised applications are executed on a safe and iso- 

lated environment. Then the analysis step generates the metrics required for decision-making. This level 

combines sequence alignment algorithms with bagging, which allow scoring the similarity between the 

extracted sequences considering their regions of greatest resemblance. At the decision-making stage, the 

Wilcoxon signed-rank test is implemented, which determines if the new software is labeled as legitimate 

or malicious. The proposal has been tested in different experiments that include an in-depth study of a 

particular use case, and the evaluation of its effectiveness when analyzing samples of well-known public 

datasets. Promising experimental results have been shown, hence demonstrating that the approach is a 

good complement to the strategies of the bibliography. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Over recent years a significant growth in the popularity of mo-

bile devices was observed, which was empowered by their large

capacity of connectivity, accessibility, and versatility. Consequently,

users increasingly rely on these technologies to perform activities

of special sensitivity, such as e-commerce, sharing assets or man-

agement of confidential information. This places smartphones di-

rectly in the line of fire for cyber criminals, as has been warned

by the European Network and Information Security Agency (ENISA)

[36] . This document does not simply estimate the increase of these

threats; it also alerts of their sophistication, which make them

difficult to be detected by the current defense schemes. In addi-

tion, it is also important to highlight the risk of the migration of

the classical attacks to the mobile platforms, where the adapta-

tion of malware is one of the most common practices. According

to the European Police Office (Europol), behind this laborious task,
∗ Corresponding author. 

E-mail addresses: jmaestre@ucm.es (J.M. Vidal), masotelo@ucm.es (M.A.S. 

Monge), javiergv@fdi.ucm.es (L.J.G. Villalba). 

p  

t  

d  

l  

https://doi.org/10.1016/j.knosys.2018.03.018 

0950-7051/© 2018 Elsevier B.V. All rights reserved. 
ften complex networks of organized crime are hidden [16] . The

ost widespread propagation strategies are distribution in appli-

ation stores, social engineering and exploitation of vulnerabilities

t communication protocols. On the other hand, there are several

tudies pointing that the Android operating system is the main tar-

et of the attackers. For example, in [8] it is indicated that 99% of

he malware for mobile devices is addressed against this platform.

iven the lack of effectiveness of the security methods conducted

y the different application markets, as well as the overconfidence

f many of the users when granting execution privileges (often fu-

led by lack of knowledge), criminals are able to propagate An-

roid malware rapidly and indiscriminately. 

To combat this threat, the research community has developed

ifferent proposals. In [55] many of them are deeply analyzed, and

he evolution of the malicious applications is studied. From this

aper it is possible to observe the main causes that led to the fail-

re of most of the current solutions, where the limitation of com-

utational resources is one of the most problematic. Consequently,

he detection systems tend to issue high false positive rates, have

ifficulties to operate in real time, incorporate vulnerabilities re-

ated with privacy, or penalize the quality of service of the pro-
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ected devices. This implies the necessity to propose novel solu-

ions that take into consideration the Android malware evolution

nd the limitations of this emerging monitoring scenario, which

re mostly related with data processing, memory and energy con-

umption. In order to contribute to mitigate these drawbacks, this

aper introduces a pattern recognition system for malware recog-

ition once downloaded from application stores. Its main goal is

o prevent the installation of the malicious software on the victim

ystem. To do this, downloaded applications are analyzed in a safe

nd isolated environment, prior to their deployment on real de-

ices. Unlike the other publications, this approach focuses on the

equences of actions involved in the boot process of the suspicious

rograms. Thus the amount of information to be monitored is con-

iderably reduced. Another important contribution is to adopt the

equence alignment methods provided by bioinformatics to assess

he similarity between applications. The sequences of the boot sys-

em calls are handled as strings of amino acids, in such a way that

heir alignment allows distinguishing regions of greatest similarity,

hich facilitates decision-making. To determine if the difference

etween the scores of two groups of test sequences is representa-

ive, the Wilcoxon signed-rank test is applied. If a significant differ-

nce between the analyzed applications with the set of sequences

ssociated to their legitimate execution is detected, then the pro-

ram is tagged as malicious. The reference dataset is constantly up-

ated by information voluntarily shared by legitimate users. The

ffectiveness of the proposal has been evaluated by testing the

pproach with malicious and legitimate samples from the collec-

ion Genome [68] , which nowadays are included into the Drebin

4] dataset. The major contributions of this paper are summarized 

s follows: 

• An In-depth review of the bibliography about malware detec-

tion on Android systems, where the evolution of malware and

the challenges it entails are studied. The latter considered the

different proposals for prevention, mitigation and detection in-

troduced by the research community. They were classified, and

their principal advantages/drawbacks were disclosed. 

• The dynamic detection of malware in mobile devices based

on analyzing boot sequences, which reduces the search space

at pattern recognition, and prevents the malicious application

from being installed on the victim system. Preliminary experi-

mentation demonstrated that this is an effective first line of de-

fense against Android malware, which is capable of accurately

recognizing specimens of different nature. 

• A novel pattern recognition system for detecting Android mal-

ware based on the study of dynamic behaviors of the analyzed

applications. For this purpose, several data processing steps

are defined, which combine different analytic methods, among

them global sequence alignment, statistical tests or Bootstrap

Aggregation. 

• The adoption of the global alignment paradigm provided by

bioinformatics for dynamic-based malware detection on mobile

devices. Note that in this context, the sequences which similar-

ity is assessed consist on actions performed by the suspicious

applications at their boot process. 

• Comprehensive experimentation that includes an in-depth

study of a particular use case aiming on aid the understand-

ing of the proposal, and the description of different evaluation

tests. The obtained results are discussed in detail and compared

with similar publications. 

It is important to highlight that the performed research has

ultidisciplinary nature, which mainly frames three research

elds: information security, pattern recognition and bioinformatics.

ecause of this, an extensive state of art has been reviewed. The

ost prominent topics required for the best understanding of our

ontributions were summarized and discussed in the first pages of
his paper, which is organized into eight sections. The first three

f them provide in-depth studies of the bibliography, which en-

ail the revision of the concepts and design paradigms required for

ssimilating the rest of the contents. In particular, Section 1 intro-

uces the problem to be solved, summarizes the contributions and

escribes the organization of the rest of the paper. Section 2 re-

iews the problem of malware for mobile devices, both from

he perspective of information security and aiming on applying

attern recognition and analytic techniques with detection pur-

oses. Given that the proposal adopts strategies from bioinformat-

cs based on sequence alignment, Section 3 describes them and

ighlights the advantages and disadvantages of each analytical ap-

roach. Section 4 formally enunciates the Needleman–Wunsch al-

orithm and the Wilcoxon signed-rank test. In Section 5 the scope

f the problem to be solved is stablished by defining design prin-

iples, assumptions and limitations. Based on this, the proposal

s described at each of its levels of information processing. On

he other hand, Section 6 introduces the evaluation methodol-

gy and the datasets considered throughout the experimentation;

ection 7 discusses the observed results; and Section 8 details the

onclusions and future lines of research. 

. Background 

.1. Malware against Android 

The current state of the malware against Android systems is

ooted in the evolution of the malicious software in mobile de-

ices. The first specimens, like Cabir (2004) or CommWarrior

2005), exploited vulnerabilities on these technologies in order to

ropagate through basic communication protocols, such as Multi-

edia Messaging Service (MMS) or Bluetooth [3] . Although they

ere relatively harmless, they could generate money losses related

o their propagation messages. This led the attackers to pretend

btaining economic benefit of the intrusions, prompting the ap-

earance of specimens such as RedBrowser (2005) or Yxes (2009),

hich leverage the premium-rate SMS services [11] . The latter

ould be the precursor of the botnets of mobile devices. The adap-

ation of well-known threats for personal computers to smart-

hones reaches an important landmark in Zitmo (2010), the mo-

ile version of the banking botnet Zeus [21] . By then Android al-

eady occupied a large market niche, which gave rise to the dis-

overy of new malware specific for this operative system. These

re the cases of Gemini (2010), DroidKungFu (2011) or Plankton

2011). They were distributed both from the official Android ap-

lication store (Google Play) and from unofficial third party stores

7] . In more recent years, the different organizations for cyber de-

ense warned of a significant growth of this kind of malicious soft-

are. Furthermore, new ways to profit these threats are emerg-

ng, such as those related with adware, riskware, spyware, etc. A

ood example is observed in the case of the ransomware. It is a

lass of malware focused on the extortion of the victims. The ran-

omware is capable of blocking some system functionalities and

sking for money (ransom) in exchange for their release. The first

iscovered ransomware for Android is FakeDetect (2013), a fam-

ly of malware that operates imitating antivirus software, and de-

ands a ransom for unlock the system assets [28] . Other exam-

les of ransomware are FakeAV (2013), CryptoLocker (2014), Koler

2014) or Locker (2015) [15] . 

The malware specific for Android, like any other application de-

eloped for this platform, is distributed compacted in the Applica-

ion PacKage file format (APK). The malicious APK files are mainly

istributed in official or third party stores, although there are other

ess frequent ways, such as social engineering (spear fishing, bait-

ng, etc.) or exploitation of vulnerabilities. Then they acquire the

apability of propagation via communication protocols (Bluetooth,
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Wi-Fi, NTC, etc.) and by different communication channels (email,

instant messaging, social networks, etc.). In order to reduce these

threats, the official markets require all applications to be digitally

signed and certified before they are installed. Therefore, through

hash functions the integrity of the packages is checked. They also

implement various intrusion detection methods, such as static and

dynamic analysis for the recognition of previously known threats

or anomalous contents. But even though a priori they seem a good

way to prevent distributing malware and legitimate applications

that were previously unpacked and poisoned by intruders, in prac-

tice they are not so effective. This is due to various reasons, em-

phasizing among them the emerging of new vulnerabilities and

that the certificates do not need to be signed by a certificate au-

thority or could be forged, as is discussed in [44] . On the other

hand, in order to evade such intrusion detection systems, attackers

are progressively resorting to obfuscation strategies. The problem

on these adversarial attacks is widely discussed in publications like

[35] , where it is shown that by mutations on the section of the An-

droid executable that contains the infection vector, it is possible to

deceive several detection engines. 

2.2. Related works 

In recent years different surveys about the state of the art on

security in smartphones have been published. Some of them pro-

pose a general overview, as is the case of [31,55] ; others deepen on

more specific topics, where the Android operating system is one of

the most frequent [17] . Finally, there are surveys focused on spe-

cific threats, such as [43] , which delve into the problem of mal-

ware. Throughout the bibliography, the limitation of the compu-

tational resources provided by the mobile devices has determined

how the monitored information is processed at the defensive pro-

cess. One way of committing to this task is to perform the analysis

on the devices themselves. This poses the advantage of not rely-

ing on external deployments of communications with collaborative

systems. In addition, the exploitation of vulnerabilities related with

privacy is more difficult [13] . But as stated in [7] , they also tend

to report more false positives, and they are particularly sensitive

against adversarial attacks [35] . This is because in order to prop-

erly operate, the most accurate methods require more memory,

processing power or battery consumption than they have, as dis-

cussed in [57] . As an alternative, several approaches delegate the

more complex analysis tasks to external services, even assuming

the risks that this practice entails. 

Another important aspect with significant relevance to the pre-

vious proposals is the decision of the features studied by the in-

trusion detection systems. This problem is not particularly repre-

sentative for approaches based on recognition of previously known

threats [18] . However, as outlined in [22] , when the detection is

based on identifying anomalous behaviors, it is crucial to ensure

the success of the extracted metrics. For this reason, it is under-

standable that a large amount of taxonomies considers these fea-

tures as the main distinction traits between the different anomaly-

based analysis methods [19] . On this basis, the proposals can be

distinguished into four great groups: analysis considering static

features, dynamic features, mixed features or metadata. 

2.2.1. Static analysis 

The analysis of static characteristics inspects the applications at

their execution time looking for malicious contents. For this pur-

pose different information is extracted, such as binary code, priv-

ileges requested, hardware resources or connectivity. A good ex-

ample of this approach is observed in [34] , where similar features

are studied at the exploration of the various application stores

searching for particular specimens. Statistic features are consid-

ered in [53,54] for identifying malware obfuscation methods. In
65] the source codes of applications at the Android Package Man-

ger Service (PMS) are analyzed. In [23] the privileges requested

y applications are analyzed for intrusion detection. Alternatively,

n [4] this distinction is made by querying the AndroidManifest.xml ,

here the hardware to be requested is indicated. In [56] the code

tructure is analyzed for identifying similarities between the dif-

erent malware samples. Thus, the relationship between specimens

f the same strain can be established, in this way allowing to de-

ermine their evolution. In [14] a detection method that enforces

arefully-chosen benign properties in trustworthy applications, but

ot in malware, is proposed. Another interesting approach is [51] ,

here a scalable detection engine for APK inspection is designed

ased on Multifeature Collaborative Decision Fusion (MCDF). In

60,66] contextual dependency graphs are applied for semantic

odeling of Android malware. Repacked malicious applications are

etected in [32] by payload mining. In general terms, static analy-

is poses the advantages of simplicity at data extraction stages and

fficiency. However, it is a method liable to be deceived by obfus-

ation schemes. Furthermore, due to its lack of ability when defin-

ng the behavior of the applications at runtime, it often does not

roperly deals with specimens hidden in repacked applications. 

.2.2. Dynamic analysis 

The analysis based on studying dynamic features aims on mon-

toring the protected system behavior looking for malicious activi-

ies. As referred in [19] , the most common features on the dynamic

nalysis are the sequences of system calls involved at the execution

f suspicious applications. A typical example of this approach is il-

ustrated in Crowdroid [6] , a local-based intrusion detection sys-

em that considers their frequency of occurrence. In other propos-

ls, such as [33] malicious repackaged applications are identified

y analyzing the thread-grained system call sequences. Another in-

eresting instance is MADAM [47] , which monitors dynamic fea-

ures belonging to different data processing levels. This group of

ontributions often carries out the extraction of the required data

n isolated and secured environments, which are commonly re-

erred as sandboxes. In this way it is possible to observe the modus

perandi of the attacks without compromising the protected sys-

em. In [49] a comprehensive state of the art about sandboxing is

resented. But it is worth mentioning that the dynamic analysis

lso considers other features. For example, in [67] the behavior of

he applications is modeled based on the permissions requested.

n addition, the effectiveness of studying metrics based on power

onsumption is discussed in [24] . In [50] an intrusion detection

ystem based on recognizing anomalous behaviors in the activities

f applications at communication networks is presented. Several

lassical pattern recognition methods applied to dynamic malware

ecognition are compared in [1,2] . Concluding, the analysis of dy-

amic features tends to be very accurate. However it needs to con-

ume a significant amount of computational resources, a situation

hat could be un-viable in some devices, hence requiring the avail-

bility of additional infrastructure. 

.2.3. Mixed analysis 

The more complex monitoring environments are usually more

usceptible to become compromised. Because of this, it is com-

on to combine both static and dynamic methods. This collab-

ration is referred as analysis based on mixed or hybrid data. A

ood example is illustrated in [63] , where the statistical analysis

f source code and AndroidManifest.xml is performed; in addition,

ifferent dynamic f eatures are taken into account, such as regis-

ers, system calls or network traffic. Another interesting publica-

ion is [45] , where the problem of the overload caused by dynamic

nalysis systems is reduced. With this purpose, a first study of

he source code of the analyzed applications is performed look-

ng for suspicious sentences. In [27] an intrusion detection system
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hat adapts the criminal profiling methodology to malware analy-

is is proposed. It is based on studying heterogeneous data, among

hem opcodes, metadata of the AndroidManifest.xml , digital certifi-

ates or the malicious behavioral patterns at runtime. Thereby, the

ynamic analysis is simplified by focusing only on the activities

rising from the labeled code, greatly reducing the amount of in-

ormation to be taken into account. In [26] the analysis of intents

nd permissions for collaborative malware detection are combined.

ummarizing, hybrid proposals equilibrate benefits and drawbacks

f the static and dynamic detectors, thus providing versatility in

he adaptation to the various use cases. 

.2.4. Metadata analysis 

The last group of publications is based on metadata analysis.

etadata is defined in [19] as the information of the applica-

ions known prior to their download from the various distribution

tores. It provides different features, such as the requirements in-

icated by authors, opinions, comments, reputation, languages or

eolocation. A good example of the study of metadata is illustrated

n [41] , where information related with the software requirements

isplayed in the application stores is applied. For this purpose

atural Language Processing (NLP) techniques are implemented to

dentify sentences that explain the need for a given permission in

n application specification. In [59] a greater variety of informa-

ion is taken into account. Depending on the platform, it includes

he description of the application, permissions, ratings, or informa-

ion about the developers. An study of how to conduct effective

ommunication of risks for mobile devices and their assessment

s detailed in [42] . The main advantage of the metadata analysis is

hat it is capable of malware recognition before downloaded. How-

ver, the success of these methods depends on information easily

anipulated by the attackers. This facilitates evasion and leads to

isclassifications. 

. Sequence alignment 

In nature, the crossover of individuals of the same species in-

olves the appearance of different genetic alterations, such as vari-

tions on genes ( substitutions ), incorporation of new genes and

hromosomes ( insertions ), or their omission ( elimination ). When

hese mutations pose advantages over other specimens on the

ame population, the individuals increase their survivability. This

s the base of the natural selection. The comparison of the ge-

etic similarities between the genotype of ancestors and offspring

s studied in-depth by bioinformatics. With this purpose, this area

rovides a great collection of strategies, which are able to pre-

rocess, model and measure the various genetic features. The se-

uence alignment methods are part of this set. They originally

etermined the degree of similarity between strings of elements

usually DNA, RNA or proteins), which usually correspond to nu-

leotides or amino acids, and are represented by symbols from

 finite alphabet �. A wide variety of sequence alignment algo-

ithms has been proposed over the past years. By taking the num-

er of sequences to be compared into account, they are divided

nto two methodologies: pairwise and multiple alignment. Pairwise

equence alignment methods are used to compare two query se-

uences. On the other hand, the multiple alignment extends the

airwise methods to analyze more than two sequences at a time,

ence entailing a significant increase in computational complexity.

ote that these strategies also vary depending on the characteris-

ics of the sample. Consequently, they require observing different

spects of the genotypes, such as their genes, structural features

r their phylogenetic trees. Given that in our approach, only the

airwise alignment is applied, hereinafter only this method will be

eferred. In particular, the effort s carried out adopt the general-

zation to the problem of find the length of the Longest Common
ubsequence (LCS) between two segments, according to the classi-

al solution published in [62] . Therein different operations on the

riginal sequences are performed, such as substitutions, insertions

nd elimination. They are achieved through the incorporation of

ew symbols into the chains, which are defined as gaps . The simi-

arity of each pair of sequences in these configurations is measured

y calculating the best distance between all their possible subse-

uences. 

A practical example of this process is shown in Fig. 1 (a) and (b).

n the first of them, two sequences are compared without align-

ent. Let the alphabet 
∑ = { A, C, T , G } where each symbol repre-

ents an amino acid: Adenine ( A ), Cytosine ( C ), Thymine ( T ) and

uanine ( G ). The sequence X is { ATAGCCTACGTTCAGC } and the se-

uence Y is { AATAGCATTGTGGC }. There are four matches { A }, { C }

nd { GT }. In Fig. 1 (b) the sequences are aligned by the insertion of

 pair of gaps . This leads to recognize a greater amount of matches,

n particular six: { A }, { A }, { A }, { T } and { GC }. Assuming a simple

euristic that adds +1 to the score when a new match is found,

nd that it does not include penalties, the score at the first exam-

le is 4 and the score after alignment is 6. 

The definition of appropriate scoring heuristics directly affects

he results, which typically consider the impact of matches, non-

atches and gaps . In bioinformatics they are also built consider-

ng the class of amino acids involved in matches and non-matches,

hich often required specialized knowledge-bases, as discussed in

30] . In addition, the location of gaps and the scoring heuristic usu-

lly depends directly on the alignment methods. These strategies

ave traditionally been based on the global, local or hybrid reallo-

ation of their elements, as described below. 

• Global alignment . This family of algorithms performs alignment

considering the complete sequences to be compared. The most

important method is well-known as Needleman–Wunsch and it

was proposed in [37] . It usually yields better results when the

sequences have almost equal length, as it provides an overview

of their global features 

• Local alignment . The algorithms based on local alignment aims

on finding the most similar regions within the sequences to

be compared. They are commonly implemented as variations of

the Smith–Waterman method proposed in [52] . It is based on

combining all the partial global alignment scores of the various

subsequences within the original data. Because of these charac-

teristics, the local alignment provides high effectiveness when

analyzing chains with different lengths. 

• Semi-global alignment . The hybridization between global and lo-

cal alignment often is referred as semi-global alignment. It is

usually performed by implementing slightly modifications on

the Smith-Waterman method; highlight among them not to ap-

ply penalizations at the beginning and the end of sequences.

They aim on comparing the similarity between complete se-

quences and subsequences. Because of this, they are usually

recommended for the comparison of chains with very different

lengths [40] . 

The sequence alignment algorithms were original implemented

y dynamic programming schemes. But to manage large amounts

f information, as is the case of the billions of nucleotides within

equences in nature, leads to their simplification by heuristic ap-

roaches, which reduces computational cost, but decreases accu-

acy. Most of these heuristic approaches are studied in [40] . Since

he analysis and comparison of sequences is a common problem

t different research fields, the sequence alignments has been fre-

uently used at very diverse use cases. For example, in [25] they

re invoked to extract out the representative patterns which de-

ote specific daily activities of a person from reference samples.

 very different use case is illustrated in [46] , where sequence

lignment is applied by web crawlers to detect and remove du-
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Fig. 1. Example of sequence alignment. 
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plicate documents without fetching their contents. Despite their

popularity, they are unusually considered in order to face the chal-

lenges on information security. In this case, they are focused on

recognizing actions performed by users of the protected systems.

A good example of their contribution is described in [10] , where

they are applied for detecting masquerade attacks. In particular,

the approach aligns sequences of system calls looking for imper-

sonations. In addition, the effectiveness on the implementation of

the different alignment algorithms is discussed. 

4. Methods 

This section formally describes two methods that play an es-

sential role in the rest of the paper: the global alignment approach

introduced by Needleman–Wunsch [37] and the Wilcoxon signed-

rank test [64] . The first is considered for assessing similarity be-

tween legitimate and malicious system call sequences, and the sec-

ond facilitates to determine when the differences between a sam-

ple and the legitimate behavior of an application are significant. 

4.1. Needleman–Wunsch algorithm 

The global alignment approach published by Needleman–

Wunsch [37] was introduced in Section 3 . This method originally

facilitated the comparison of two sequences of symbols by a dy-

namic programming approach, where a larger problem is divided

into smaller subproblems as follows: let the pair of sequences to

be aligned A and B , such as | A | = m, | B | = n, the matrix of their

similarity F has dimension m × n . Within F matrix, the value of

each cell F ( i, j ), 0 < i ≤ m and 0 < j ≤ n , is the score of the best align-

ment between sub-segments of the first i elements of A , and the

first j elements of B . Therefore F stores the best alignment between

the two chains, and F ( m, n ) contains the optimal alignment. The

matrix is recursively constructed from the following base cases: 

F (0 , j) = d × j (1)

F (i, 0) = d × i (2)

where d is the gap penalty. From this data it is possible to fill the

rest of the matrix. The value of each cell F ( i, j ) is determined by its

row, column, or diagonal, defined as the following expressions: 

F (i, j) = max { F (i − 1 , j) + d, F (i, j − 1) + d, F (i − 1 , j − 1) 

+ S(A i , B j ) } (3)

where S ( A i , B j ) indicates the similarity between the elements A i 

and B i . This value is often defined as a scoring matrix, which is the

heuristic implemented by the algorithm. The computational cost of

this process is �( n 2 ). This is one of the main reasons that led to

use heuristic approaches when analyzing large sequences. Once F

is completely filled, the ordering of the sequences and insertion

of gaps start in the position F ( m, n ). The matrix is traversed se-

lecting as next position the best value of F (i − 1 , j) , F (i, j − 1) and

F (i − 1 , j − 1) . Thus the optimal solution at each position ( i, j ) is

considered. If the chosen value is F (i − 1 , j) or (i, j − 1) , then A i is

aligned with a gap . But in the case of F (i − 1 , j − 1) , it is aligned

with B . 
i 
.2. Wilcoxon signed-rank test 

The Wilcoxon signed-rank test is a non-parametric test that op-

rates on vectors with paired elements and compares those with

he same index [64] . To this end it is assumed that the vectors

ontain n pairs of observations, each of them referred as ( x i , y i ),

 < i , ≤ n . Other assumptions are that data comes from the same

opulation, each pair is chosen randomly and independently, and

ata is measured at least on an ordinal scale (cannot be nominal).

he objective of the test is to determine that the values x i and y i 
re equivalent. Hence, the null hypothesis is that the median differ-

nce between pairs of scores is zero. The test statistic is W , which

s defined as the smaller of W + (sum of the positive ranks) and

 − (sum of the negative ranks). Bearing this in mind, when the

ull hypothesis is satisfied, it is expected to find similar numbers

f lower and higher ranks that are both positive and negative, so

 + is close to W + . In order to verify this assumption, each paired

ifference d i = x i − y i is calculated. Every d i is ranked ignoring the

ign (i.e. assign rank 1 to the smallest | d i |, rank 2 to the next, etc.).

hen they are tagged according to their sign. The sum of the ranks

ith positive differences W + and negative differences W − are cal-

ulated. With this, the statistic W is calculated according to the

ollowing expression: 

 = min { W + , W −} (4)

From the statistical W it is possible to calculate a p-value ( p )

hat indicates the estimated probability of rejecting the null hy-

othesis. In case of non-representative n (usually n < 20), p is di-

ectly calculated from the table that describes the W distribution of

ritical values as stated in [64] . If n is large enough, p is computed

rom P ( Z < z ) on the normal distribution table, were z is expressed

s follows: 

 = 

W −n (n +1) 
4 √ 

n (n +1)(2 n +1) 
2 

(5)

The test is passed if p < I , where I is the confidence interval de-

ned for the evaluation. This is interpreted as the difference be-

ween the populations is significant, and therefore it is not due to

andomness. 

. Malware recognition in Android 

In this section the main features of the proposed detection sys-

em are described. Because of the many challenges inherent in

alware recognition on mobile devices, prior to its development

t is important to stress those aspects that have led to define the

esign principles of the approach. In order to delimit the situations

o be taken into account, the following enumerates the various as-

umptions that have been considered. 

• Android is the most widespread operating system for mobile

devices, hence most of the malware for smartphones is directed

against this platform. The proposed intrusion detection system

assumes that the detection of a larger portion of malware on

this environment is possible. Thus, it is aimed on identifying

and preventing the execution of malicious software on such de-

vices. 
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Fig. 2. Architecture of the proposal. 
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• Given that an important part of Android malware is distributed

from application stores, this proposal assumes that its detection

once downloaded and before being installed on the victim sys-

tems is possible. 

• As mentioned in Section 2 , the execution of applications in an

isolated and secure environment before they perform changes

on the real system is possible. This proposal assumes that these

methods are effective. Furthermore, it lies on them for extract-

ing the information to be analyzed. 

• The accuracy of the dynamic analysis over other approaches is

emphasized in the bibliography. As an important part of those

publications, this proposal assumes that the dynamic analysis

of the sequences of system calls invoked by the monitored ap-

plications, is an effective measure for distinguishing malicious

contents. 

• Unlike many of the previous proposals, this approach assumes

that it is possible to recognize malware by studying sequences

of actions monitored at the boot process of the applications,

which implies taking into account their temporal relationships.

This assumption is the principal null hypothesis of our research.

• The proposal also assumes that even when launched on the

same device, it is difficult to find two equal boot action se-

quences of the same application. However, sequences from the

same application pose significant resemblance, situation that

allows distinguishing between legitimate applications and mod-

ifications that contain infection vectors. 

Bearing these assumptions in mind, the proposed malware de-

ection system performs dynamic analysis of the behavior of the

onitored applications once downloaded from application stores.

o this end, the system calls monitored at their boot process are

xtracted and analyzed when executed in a secure and isolated

andbox. Thus the amount of information to be considered is re-

uced, since only the system calls related with their initialization

re studied. Unlike similar approaches referred to in the bibliogra-

hy, the temporal relationships of these actions and the order they

re initiated are considered. In addition, by the implementation of

 sequence alignment algorithm is possible to identify the subse-

uences with greater similarity and determine their resemblance

o the behavior of the legitimate applications. Upon completion of

he analysis, only applications labeled as legitimate are allowed to

ake persistent changes on the mobile device. 

The proper functioning of the proposal is defined by two main

equirements. The first of them is to be able to accurately identify

ost of the analyzed threats. This also includes to report a low

mount of errors when inspecting legitimate applications, thus re-

ucing the penalization on the quality of experience of users. On

he other hand, the detection system must adapt to the protected

nvironment characteristics. This involves operating with good per-

ormance, and low consumption of computational resources. Pre-

isely because of the latter requirement, and taking into consider-

tion the limitations of mobile devices, an important part of the

nalysis tasks are carried out by external infrastructure, as it is

escribed in the following subsections. In general terms, these re-

uirements meet an important part of the needs of the intrusion

etection on smartphones. However there are other aspects that

ave been set aside, highlighting among them the fight against the

arious evasion strategies [35,61] , the interoperability with other

ecurity tools or the adaptation to the various data protection poli-

ies. They are obviously important to grant its deployment on het-

rogeneous use cases. But they also add much more complexity to

he problem to be solved, not being discussed for the better un-

erstanding of this first approach, but being a good aim for future

ork. The following describes the system architecture, monitoriza-

ion, analysis and decision-making. 
.1. Architecture 

The architecture of our proposal is distributed. This decision

mplies the addition of complexity to the design, but allows the

istribution of the computational resources at different data pro-

essing stages. Thus the tasks involving higher costs are performed

n dedicated servers, while on mobile devices only behavioral pat-

erns of applications downloaded by users are captured. Further-

ore the protected devices must provide access to communication

etworks; a minor inconvenience considering the enhancement of

erformance that analyzing data at dedicated servers provide, and

hat applications are usually downloaded from application markets.

s an alternative to the distributed scheme, the downloaded appli-

ations may provide information related to the characteristics of

heir execution as metadata. It should vary according to the fea-

ures of the device, such as the Android version or software de-

ice. In this way the smartphone is able complete the analysis by

tself, assuming that it meets all the memory, battery and process-

ng requirements. However the centralized approach has not been

mplemented in this work, being postponed to future research. 

The implemented architecture is summarized in Fig. 2 . Three

rocessing layers are defined: monitoring, analysis and decision-

aking. The monitoring stage is the only one that takes place at

he protected device. Detection and decision-making occur in a

edicated server. The proposal performs as follows: the suspicious

oftware reaches the protected device via application stores, and it

s installed and executed in an isolated and safe sandbox; there-

ore, it is not able to make changes to the device, but malware

ctivity can be drawn. At the first boot of the suspicious applica-

ions, the sequences of system calls are captured and transmitted

o the analysis stage. This information is preprocessed and aligned

ith sequences of actions observed at their legitimate executions,

hich were previously shared by trusted users of similar devices.

he resulting scores allow decision-making level to determine the

ature of the applications. Thus, if an application is labeled as a

otential threat, changes in the protected system are not made. 
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Fig. 3. Android boot sequence. 
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5.2. Monitoring and feature extraction 

At the monitoring stage, the mobile device captures in a sand-

box the system calls launched by the suspicious applications at

their boot processes. As in the previous works, the monitoring of

the executed applications is performed by the diagnostic tool strace

[6] , which is present in most of the GNU/Linux systems, such as

Android. This utility facilitates registering the system calls carried

out by a program or process by audition of the system call inter-

face, which allows communication between the kernel and the up-

per layers of the operating system. In order to study all the ac-

tivities of a particular program from initialization (including those

processes derived from it), the parent process (a.k.a Zygote) must

be monitored. Zygote is a daemon triggered by the Android init

process responsible for triggering all the application processes. In

Fig. 3 the Android boot sequence and the role of Zygote are sum-

marized. When an application launches Zygote, it creates the first

Dalvik virtual machine and calls its main method, which preloads

all necessary Java classes and resources, starts System Server and

opens a socket to listen for requests of the starting applications,

as described in [58] . The monitoring stage implements strace in

order to capture the sequences of system cells derived from zy-

gote, after the suspicious application is launched. Note that aiming

on reducing noise, the sandbox only executes the application to be

analyzed. 

On the other hand, and with the purpose of bypass the inher-

ent characteristics of the device, the consecutive repetitions of the

same actions (i.e. system calls) are simplified in one of them. This

further reduces the problems related with errors at the capture

tasks, which are usually triggered by redundant data appended

by the monitoring software. It should be taken into account that

the length of the boot sequence may vary, often observing around

20 0 0 system calls in small applications, and more than 50,0 0 0

in the most sophisticated. To simplify treatment, they are prepro-

cessed, so every type of action is associated with a symbol. Hence,

if the operating system offers a repertoire of l system calls, the

alphabet � that identifies every possible action has length l . Ide-

ally, the complete sequences are studied. However, it is possible

that because of computing limitations, only the first boot steps are

aligned. 

All captured sequences are transferred to a dedicated server,

where they are compared with legitimate executions shared by

other users. If the application is labeled as legitimate, the new se-

quences are candidates to be included into the knowledge-base, so
 p  
f it is verified that the applications are clean, their sequences may

e used as training samples to evaluate future executions. This pre-

ents the attacker compromising the detection system by poison-

ng the set of reference samples. 

.3. Analysis 

The main purpose of the analysis module is to generate the

etrics that allow deciding the nature of the suspicious software.

he basic components of these metrics are the scores obtained by

ligning the sequence of system calls related with the boot pro-

ess of the suspicious application, with sequences corresponding

ith the launch of the legitimate application on similar mobile de-

ices. The implemented sequence alignment algorithm is an adap-

ation of the global alignment method proposed by Needleman–

unsch [37] . It is a dynamic programming scheme which corre-

ate both sequences from a matrix F . The decision of implementing

eedleman–Wunsch has been addressed keeping in mind that be-

ause of computational issues, the maximum length of the mon-

tored sequences is defined. The captured activities often reach

uch amount, so the alignment algorithm usually operates at the

ase where both sequences exhibit the same dimension, situation

hat encourages the use of the global alignment paradigm. This

hoice is also supported by the fact that the sequences to be com-

ared contain patterns of similar priority. However, if future use

ases require to study large sequences, the adoption of heuristic

pproximations [40] or optimizations based on exploiting paral-

elism/concurrency [38] are suggested. But given their complexity,

nd aiming on facilitating the understanding of the performed re-

earch, the study of their adaptation and effectiveness when oper-

ting on similar problems is out of the scope of this paper. In gen-

ral terms, the analytic task distinguishes four main data process-

ng steps: calibration, sequence alignment, scoring and bootstrap

ggregation. The following subsections describe them in-depth and

rovide some illustrative examples. 

.3.1. Calibration 

Deciding the best sequence length is not a trivial problem,

hich often involves a trade-off between accuracy and computa-

ional cost. This must directly be tackled by the security opera-

ors, whom in addition to bear in mind the behavior of the sen-

or, should consider the characteristics of the use cases in which

he proposal is deployed, as well as the adopted risk management

olicies. But as it was demonstrated in the preliminary experimen-
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Fig. 4. Sequence length decision-making. 
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Fig. 5. Example of alignment with Needleman–Wunsch. 
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ation (see Section 6 ), there is a sequence length per reference

ataset that when growing, does not provide a significant accu-

acy enhancement, i.e. the resultant precision gain rate is lower

han certain threshold (by default 0.15). Consequently, at an initial

raining stage it is possible to find the average saturation length of

he set of reference samples, as well as the accuracy improvement

btained as it grows (see Fig. 4 ). With this purpose and starting

rom a minimum length (in the experiments, 500 actions), cross

alidation can be performed on different configurations. This pro-

ess shall be stopped when by increasing the sequence size no sig-

ificant results in terms of accuracy are observed. So, in addition

f calculating the saturation length, the training step provides the

ist of the different sizes evaluated and the accuracy enhancement

hey entail, in this way facilitating the decision to be made. As a

nal remark, it is worth to mention that at experimentation, the

aturation length did not entail computation restrictions, so it was

lways adopted. 

.3.2. Sequence alignment and scoring 

The implemented sequence alignment method is driven by the

lobal alignment approach proposed by Needleman–Wunsch [37] ,

hich was formaly described in Section 4 . It is based on build-

ng a F matrix with dimension n × m , where the value of each cell

s the score of the best alignment between sub-segments. Note

hat given that the maximum length of the boot sequences is l,

 has dimension l × l in the worst case. Hence if l is too large, lot

f memory for storage purposes is required. This potentially may

ecome a problem if the proposal is not implemented by a dis-

ributed architecture. Even in this case, it could be an issue, be-

ause the detection system needs to transmit a large amount of

nformation to the server-side, in this way consuming more net-

ork bandwidth contracted by the user. But the greater the length

f the sequences, the more information they provide, hence poten-

ially allowing more accurate analytics. Consequently, it is recom-

ended to select lengths as large as possible (optimally, saturation
engths), according to the computational limitations of the deploy-

ent environment. 

The alignment aims to match representative sets of system calls

n a tested block with similar groups in the sequence derived from

he suspicious application. It is a very similar situation to that dis-

ussed in [9] , so an important part of the guidelines that have led

o its resolution are taken into account. For example, gaps inserted

n the sequence to be analyzed are differently penalized than those

n the reference executions. In particular, gaps in the latter are

lightly more penalized, as it is considered less desirable to alter

he order of the execution of system calls in the reference sam-

les (whose legitimacy is known a priori) than the order of the

equence to be tested. On the other hands, matches increase the

core corresponding to the similarity between both sequences. As

s usual in the bibliography, in our proposal mismatches do not

nfluence the score. In related works this only occurs on certain

ontexts, and assuming particular knowledge-bases [30] , which is

ut of scope. With this in mind, in the analysis stage the following

coring function is considered: 

(A i , B j ) = 

{
1 if A i = B j 

0 if A i � = B j 
(6) 

here every single match scores +1 , mismatches do not penalize,

nd in addition to S ( A i , B j ), gaps are penalized non uniformly by

ssigning the value d = −2 if they are in the sequence to be eval-

ated, and d = −3 in the case of taking part of the reference sam-

les. Finally, it is important to characterize the set of reference se-

uences. The sequence to be tested gets a score from its alignment

ith each of the sequences within this collection, and at the end

f the analysis stage, a vector s of length n that summarizes all the

alculated scores is built. Therefore, the value of n depends on the

ize of the set of legitimate executions considered as reference. The

onfiguration of this set is relevant, and corresponds to the prob-

em of validating models common in the various machine learning

lgorithms. The set can be seen as the model of legitimate execu-

ion of the application. Because of this, it is easy to realize that

he more representative is the dataset, the more accurate analysis.

urthermore, the smaller is the set, the faster the algorithm. 

In Fig. 5 an example of F matrix built with the Needleman–

unsch method is shown. There two sequences are aligned:

 ABCDEBE } and { DEBFBCFDEE }. The alphabet is defined as 
∑ =

 A, B, C, D, E, F } where each symbol represents a different system

all: create_module ( A ), close ( B ), writev ( C ), waitid ( D ), execv ( E ), fal-

ocate ( F ) and getsockname ( G ). At the end of the algorithm the final

core is 1, as it is indicated at F ( m, n ). The best alignment is calcu-

ated traversing the matrix following the best score of F (i − 1 , j) ,

 (i, j − 1) and F (i − 1 , j − 1) , hence assuming that the current po-
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Fig. 6. Bootstrap aggregation when analyzing applications. 
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sition is F ( i, j ). By this way the sequence {− − A − BC − DE BE } is

the most similar to { DEBFBCFDEE }. From this figure, it can also

be clearly seen how the matrix was built. For example, corre-

sponding with the recursive expressions of the method, the posi-

tion F (1, 2) contains the best score of F (0 , 2) + d, F (1 , 1) + d and

F (0 , 1) + S(B i , D j ) . Given that gaps are penalized ( d = −8 ), the mis-

match between B and D is also punctuated ( S(B i , D j ) = −2 ) and the

related values on the matrix are F (0 , 1) = −8 , F (1 , 1) = −2 and

F (0 , 2) = −16 , then max {−10 , −10 , −24 } = −10 , concluding with

F (1 , 2) = −10 , as it is indicated in the appropriate cell. A more de-

tailed example based on real data is illustrated in the tables and

figures attached in the Annex. They display the appearance of a

real log of system calls considered during the experimentation (see

Fig. A.11 ), the first 120 actions registered when executing the legit-

imate application Monkey Jump 2 twice ( Tables A.2 and A.3 ), and

the results of executing Monkey Jump 2 when triggering the Gin-

Master malware infection vector ( Table A.4 ). The alphabet � con-

sidered for their alignment is summarized in Table A.5 , and the re-

sults of their alignment are detailed in Table A.6 . Assuming a scor-

ing system similar to Eq. (6) , it is observed that by global align-

ing the couple of legitimate samples a greater score is obtained

(84/136, normalized in 0.62) than that for comparing one of them

with the harmful execution (6 8/14 9, normalized in 0.46). 

5.3.3. Bootstrap aggregation 

In the implementation, the amount of executions taken as ref-

erence is predefined. It is assumed that the number of available

legitimate sequences is greater or equal to the set applied in the

analysis. Because of the construction of different reference sets, the

classifications could vary, situation that derives on irregular behav-

iors of the system. Fortunately, this is a problem widely discussed

by the machine learning community [29] . Among the various exist-

ing solutions, Bootstrapping Aggregation was implemented [5] . The

main goal of this method is to build m training datasets C i bagging

from a larger training set C , uniformly and with replacement. In

this way the system generates different datasets from the origi-

nal group of sequences of legitimate executions, and then it uses

each of them on a different instance of the sequence alignment

process. In particular, all the possible combinations of n legitimate

executions are considered. From these analytics, m scoring vectors

S i , 0 < i ≤ m are obtained. Then the results are pooled, and from

them the final classification provided by the detector is inferred

after decision-making. The aggregation of scores is performed by

arranging the elements of each S i from lowest to highest. The value

of every position j on the final vector is the average of the values

in j of each S i . Because of this, at the end each element on the fi-

nal scoring vector contains the average score of the partial results

in the same position. 

In Fig. 6 the management of the dataset of boot sequences gath-

ered when analyzing suspicious applications is summarized. When

a new request of analysis reaches the intrusion detection system

at server-side, the subsets considered from the instances of the de-

tector are bagged. Consequently, the different analytics are carried

out in concurrency. Each of them provides a particular scoring vec-

tor, thus representing the similarity of the tested sequence with

all the samples within the reference sets. Finally, the elements on

the scoring vectors are sorted. This information is pooled in a fi-

nal vector by calculating the average score of each position. In this

way the metric for the decision-making stage is generated. 

Note that the main drawback of bagging reference sets is that

computationally, involves a very expensive strategy, so it is not

suited for centralized architectures. Moreover, its scalability is lim-

ited, so if the database grows too much, the method would lack

efficiency. A common way to reduce this problem is by randomly

selecting the group of samples to be divided into the training sets.

But in order to avoid randomness, the number of samples for each
pplication in the database is fixed. This could affect the process

f upgrading C by adding the latest sequences tagged as legitimate

nd verified. To reduce this problem, the database is updated each

ime a new sequence is added, but replacing some of the older en-

ries. In this way it also preserves consistency. To keep update the

ata in the knowledge-base, the information reported by mobile

evices that request analytic tasks is taken into account. Therefore,

hey provide the new reference samples for future detection pro-

esses, which alternatively may be modified by experts or secu-

ity operators. This reduces the concept drift problem inherent in

on-stationary monitoring environments [12] , and adapts the de-

ensive deployment for being able to recognize the mutations and

volution of the various malware families [3] . But this solution also

aises challenges related to privacy, data protection and poison-

ng the knowledge-base for hindering malicious pattern recogni-

ion, that in order to facilitate the understanding of the performed

esearch are not discussed in-depth. 

.4. Decision-making and classification 

At decision-making stage, the suspicious applications are la-

eled as legitimate or malicious considering the information pro-

ided by the analysis module. In the first case, they are allowed to

ct on the protected environment, and their boot sequences may

e added to the dataset. But if they contain malware, the intrusion

etection system reports the incidences, and the potential threats

re blocked. In particular, the labeling step has as input, the vector

f scores obtained after aligning the sequence of system calls gath-

red by monitoring the Zygote process at the boot of the suspi-

ious applications, with the bootstrapped sets of references. Apart

rom this data, it also considers the vector of scores obtained after

ligning all the legitimate sequences with each of them. With all

his information the Wilcoxon signed-rank test is performed [64] ,

hich was formally described in Section 4 . The adoption of this

tatistical test is justified by two premises. First, it is not possi-

le to assume the distribution of the scoring vectors, which leads

o apply a non-parametric test. This reduces the search space, but

here are still many statistical evaluation schemes framed within

his family. Nevertheless, and unlike the other non-parametric tests
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such as the Mann–Whitney U -test), samples are not independent,

eading us to treat data pairs (analogue of dependent t -test for

aired samples), where the Wilcoxon signed-rank test is the best

olution. Note that the test aims on determining if the values x i 
nd y i are equivalent. In the proposed system, these coincide with

he elements j, i of the scoring vectors to be compared. 

The test is passed if p < I , where I is the confidence interval de-

ned for assessment purpose, and p is the resultant p -value that

ndicates the estimated probability of rejecting the null hypothesis.

ormally, this is interpreted as the difference between the popu-

ations is significant, and therefore it is not due to randomness.

onsequently, at the proposed strategy is considered that the se-

uence of system calls to be analyzed does not resemble the ex-

cutions of legitimate applications within the reference datasets,

ince the monitored observations were summarized at x i and the

egitimate booting sequences obtained those at y i . In the first case

he booting process is classified as anomalous , so a potential ma-

icious application is detected. On the contrary, it is classified as

egitimate . 

. Experimentation 

In the experimentation, the proposed system has been deployed

n different mobile devices with various versions of the Android

perating system. As no significant differences have been found

n terms of effectiveness, the device setting is not considered in

he group of sensitivity parameters of the tests. The experimenta-

ion has been conducted through a cloud computing server built

n Openstack [39] and an instantiated virtual web service running

buntu server 16.04-x64 with 8 CPU cores and 8GB of RAM. The

ommunication with the mobile devices was carried out through

EST (Representational State Transfer) web services written in

lask [20] . Note that the latter has been selected from among other

olutions for simplicity and efficiency, with REST being the pre-

ominant API model built on HTTP methods [48] , which also fa-

ilitates the accurate measurement of the CPU processing times

er request. At the performed test, only the initial subsequences

f the boot processes have been considered, which length has var-

ed between 50 0–250 0 actions. In the worst case, their compu-

ation delayed few seconds (usually milliseconds), being this the

eason why the impact of this feature has not been studied in-

epth. The analyzed collection of applications contains malicious

pecimens of the public dataset Genome [68] , nowadays included

nto the Drebin [4] dataset. The following 19 legitimate applica-

ions from Drebin were studied: Diner Dash 2, Jaro, Mash, Plumber,

ruits Matching, Scrambled Net, Solitaire, Tap and Furious, Robotic

pace Rock, Basketball shot, Monkey Jump 2, Whites out, Super touch

own, Tilt Mazes, Helix, DailyMoney, Sanity, Best Voice Changer and

-test . Their malicious versions contain specimens of the follow-

ng 9 malware families: DroidKungFu, Plankton, Geinimi, GinMas-

er, Cogos, jSMSHider, VdLoader, Gapev and Gamex . The monitoring

as distributed at different intervals throughout a time period of

 months. A total of 300 different boot sequences per application

ere considered (150 legitimate and 150 malicious, 3 per device)

ssuming variations in mobile devices and operative system. So the

omplete dataset contains 2850 executions of the legitimate appli-

ations and 2850 sequences of attacks. It is worth mentioning that

ll the data gathering tasks were performed at real mobile devices

wned by different users. The evaluation methodology involved to

tudy the behavior of the proposed strategy when analyzing both,

alicious and legitimate applications. In the first case, the intru-

ion detection system adopted the legitimate collection of samples

s reference set, and the malicious collection as test set. Then the

alware was dissected one by one, and the analytic results were

bserved. On the other hand, in order to measure the sensitivity

f the approach to report false positives, the legitimate samples
ere needed at both, reference and test sets. With the purpose

f further exploiting the dataset and avoiding collisions (i.e. occur-

ences of an identical sample within the reference and test sets,

n a particular configuration), the experimentation with only legit-

mate samples implemented a cross-validation scheme. The differ-

nt boot sequences related with the execution of each application

ere divided into three disjointed groups: A, B , and C . From them

hree different scoring vectors were generated ( V 1 , V 2 , V 3 ): 

• V 1 contains the scores obtained by aligning all the samples

within A and B . 

• V 2 contains the scores obtained by aligning all the samples

within A and C . 

• V 3 contains the scores obtained by aligning all the samples

within B and C . 

Summarizing, each vector contains the scores required when

nalyzing the remaining group. For example, to calculate the false

ositive rate when studying boot sequences within group C , the

coring vector V 1 is taken as reference. This is because it is built

rom legitimate samples within A and B , thus taking advantage of

he complete dataset. Note that in this case, it would not be hon-

st to analyze sequences within A , which already were considered

t calibration stage. The evaluation of the proposal is divided into

hree stages: 

1. In-depth study of a particular use case . The first test is an ex-

ample that aims on facilitating the comprehension of the pro-

posed method and the importance of the sequence preprocess-

ing tasks. During its progress, the application DailyMoney was

analyzed at both, legitimate and malicious executions. There-

fore, the results obtained by aligning the various boot se-

quences were studied, and the relationships between score vec-

tors were discussed. Although the study focused on a simple

application, the results were very similar to those of the others,

plainly illustrating the problem surrounding the data gathering

process. In addition, the advantages on information preprocess-

ing were proven. 

2. Variations on the confidence interval . At this experiment the ac-

curacy of the proposal in function of the rigor with which de-

cisions were made, is studied. All the samples were analyzed,

and effectiveness metrics were calculated for each adjustment

value. It is expected that the higher is the confidence interval,

the lower True Positive Rate (TPR) and False Positive Rate (FPR).

The confidence interval that minimizes precision errors was ap-

plied for the remainder of the experimentation. 

3. Variations on the length of the boot sequences . In this test the

behavior of the approach when modifying the length of the

boot sequences was measured. Its interest lies in the possibil-

ity that when dealing with short sequences, the boot activities

of the applications are not completely represented in the cap-

tures. This situation makes the detection tasks difficult, because

the payload of the threat could not be represented. In the oppo-

site scenario, if the sequences are too long they could include

redundant information, which also worsens the quality of the

decisions. At this experiment all the samples within the dataset

were analyzed, and effectiveness metrics were calculated and

discussed for each length. 

The proposed detection system behaves satisfactorily if the

ests demonstrate that the requirements extensively described in

ection 5 are met: accuracy when identifying threats, to report low

mount of detection errors when inspecting legitimate applications

nd to adaptat to the protected environment characteristics. 
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Fig. 7. Alignment scores in DailyMoney . 
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7. Results 

7.1. In-depth study of a particular use case 

For this experiment, a vector of reference scores was built con-

sidering 30 samples of executions of the application DailyMoney .

The length of their boot sequences was 2500 system calls, and the

confidence interval of the Wilcoxon signed-rank test was I = 0 . 001 .

In a first evaluation step, the data preprocessing capabilities pre-

viously described in Section 5 (i.e. reducing the consecutive rep-

etitions of system calls into one action) were not implemented.

The various alignments performed for the construction of the vec-

tor of reference scores are shown in Fig. 7 (a), where rows and

columns indicate the legitimate boot sequences of the reference

sample set, so each cell contains the score on each partial align-

ment. The scores are displayed according to the color chart which

is shown in the legend. On the other hand, in Fig. 7 (b) a similar

structure is shown, but this time the rows that indicate the boot

sequences of the same application include harmful payload. To the

naked eye it is possible to realize that the difference in scores

is fairly representative. Analytically, the average score in the first

structure approached 1248.9 while in the second was 1033.4. With

this scheme it was possible to successfully detect 100% of the in-

spected malicious samples. However, the accuracy obtained when

analyzing legitimate applications was not satisfactory enough; the
PR was close to 32%, thus hindering the deployment of the pro-

osal on real monitoring environments. 

Although the example is shown for a specific application, the

alse positive problem has persisted throughout the experimenta-

ion. It only has been reduced by data preprocessing as indicated

n Section 5 . In this way a large part of the observed noise is mit-

gated during the capture tasks. The method leads to discover im-

ortant differences between sequences from different devices. To

llustrate this, in Fig. 7 (c) the scores of the alignment of legitimate

equences (analogous to Fig. 7 (a)) are shown, and in Fig. 7 (d) the

alicious executions (similar to Fig. 7 (b)) are displayed, all of them

fter applying preprocessing. At first glance, it can be observed that

t the legitimate matrix of the latter case, the darker colors dom-

nate (and hence, the higher scores). In general terms, the scores

re higher, with less variation, and reached an average score of

431.6. In addition, for the harmful boot sequences the results were

lso lower, averaging 829.6. In this case the TPR approached 98%

nd FPR was close to 2%. Therefore their difference of means is

reater, which facilitates the decision-making orchestrated by the

ilcoxon test. 

On the other hand, the increases of the paired scores after or-

ering their mean values are shown in Fig. 8 (a). As can be seen

fter preprocessing the score vectors, they pose a more homoge-

eous distance, which less frequently may lead to labeling mis-

akes. But without preprocessing, a significant convergence region
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Fig. 8. Score vectors in DailyMoney . 
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ppeared. Its location has changed along the experimentation de-

ending on the application. Finally, in Fig. 8 (b) different vectors of

verage and sorted scores, related to the analysis of DailyMoney are

hown: the vector of reference scores built during training ( Legit-

mate Reference ), the vector of mean scores obtained by analyzing

nstances of the legitimate application once download from the ap-

lication store ( Legitimate Store ) and the vector of average scores

btained when analyzing compromised instances ( Malicious Store ).

here the similarity between the first two and their significant dis-

ance with the third vector is obvious. 

.2. Variations on the confidence interval 

At this test, the system accuracy has been measured by analyz-

ng its reactions to variations on the confidence interval in range

.0 02-0.0 0 0 0 0 04 and assuming a fixed sequence length of 10 0 0

ystem calls. In Fig. 9 (a) the resulting average hit rates are shown.

hen the confidence interval has lowest error tolerance (i.e. close

o cero), the TPR value is nethermost. In particular, at the displayed

ange the worst case implies approximate TPR of 80%. On the con-

rary, the higher is the error tolerance, the greater precision. The

ystem behaves with better accuracy when TPR is near 99.6%. 

On the other hand, in Fig. 9 (b) the relationship between false

ositives and the value of the confidence interval is shown. The

ower is the error tolerance, the better the result. So when the con-

dence interval is close to zero, the FPR approximates 4%. Analo-

ously, the higher is the error tolerance; the worst is the system

ehavior. The worse TPR observed is close to 17.19%. At this test,

he optimal balance between TPR and FPR was obtained when the

onfidence interval approached 0.03, where the TPR was 95.01%

nd the FPR was 10.03%. The obtained results are summarized in

ig. 9 (c), when they are displayed on the Receiver Operating Char-

cteristic (ROC) space. The obtained Area Under Curve (AUC) is

6.70%, which was calculated via trapezoidal estimation. 

.3. Variations on the length of the boot sequences 

With the aim of determining the impact of the sequence length

t the system accuracy, the range of 50–2500 system calls per boot

equence was analyzed. In Fig. 10 (a) the dependence of the ob-

ained precision to this parameter is described by the following

hree curves: the best hit rate per length ( Max TPR ), the average

ccuracy ( Average TPR ) and the worst cases ( Min TPR ). There, it can

e seen that the detection system requires monitoring a minimum

umber of actions in order to work properly. In particular, in Max

PR this occurs from 500 system calls, and the hit rate approached

00%. In the case of Average TPR it happens after 750 actions, with

5.37% accuracy. Finally, in Min TPR stability is observed from 1400
ystem calls, with 59.33% precision. Despite the fact that Min TPR

resented discouraging results, these occur very infrequently. In-

eed, the average difference between Max TPR and Average TPR is

ess representative (approximately 0.14427) than that observed be-

ween Average TPR and Min TPR (about 0.35785). In general terms,

he trend observed throughout the experiment has much to do

ith the sequence alignment algorithm and the distribution of the

alicious contents on the boot processes of the applications. The

ayload of the attack is not released until the beginning of the

asic functionality of the application, situation that affects the re-

uired amount of actions to be monitored in order to success. Only

n this case the local sequence alignment algorithm is capable of

dentifying regions of divergence between sequences, thus allow-

ng the presence of anomalies to be reported. 

Similarly, in Fig. 10 (b) the relationship between the false posi-

ive rate and the length of sequences is shown. Unlike the previ-

us experiment, from the outset regularity has been observed (ex-

ept for Max FPR ). Min FPR is stabilized before analyzing the first

00 system calls, with a false positive rate of 1.7%. Average FPR is

lso stabilized before the first 500 activities; however its false pos-

tive rate is close to 11.7%. Finally, Max FPR displays less regularity.

ts values vary continuously in an interval ranging from 24.44% to

7.61%. As in the previous test, Average FPR has greater similarity to

he optimal values, but in this case they are described by Min FPR ;

heir average difference was 0.1105. However their mean differ-

nce with Max FPR is considerably higher, approaching 0.2356. The

arly saturation of these curves is mainly due to the lack of diver-

ence regions within the monitored sequences, contrary to what

ccurs when they include malicious content. Therefore, differences

etween sequences are global and constant throughout the boot

rocess. They are mainly due to the noise caused by the context in

hich the applications are launched on the sandbox. Note that be-

ause there is not a significant trade-off between true positives and

alse positives related with the length of the monitored sequences,

he results of varying the reference sequence lengths were not an-

lyzed based on the ROC space. 

In Fig. 10 (c) the worst response times measured per length

ince the mobile devices transmit the system call sequences to the

edicated server, until the results of their analysis are received,

re summarized. Therefore, the time displayed on the graph is

he addition of the delays observed at feature extraction, analy-

is, decision-making and notification to the protected system. In

eneral terms they grow exponentially, being 0.45 s the worst reg-

stered delay when operating at saturation length. In the opposite,

hen the monitored sequences included 2500 actions, the worst

bserved delay was 1.67 s. Bearing in mind that the implemented

lobal alignment method potentially involves the greater computa-
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Fig. 9. Average variations on confidence interval 
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tional impact, i.e. �( n 2 ), it is reasonable to fit the measurements

to a polynomial curve of degree two. This has been accomplished

by assuming an error lower than 0.015, from which it is possible

to estimate the impact in terms of performance involved at pro-

cessing sequences of larger dimensions. According to this calcula-

tion, the inferred delay when length 50 0 0 is 7.25 s, when 25,0 0 0

is almost one minute, and when 50,0 0 0 approaches 11 min. This

demonstrated the feasibility of the proposal when properly cali-

brated, but it also indicates the high computational cost derived

from not applying filtering measures or reductions of the search

space, being the second a common drawback of the dynamic-based

analysis approaches in the bibliography. 

In view of the obtained results, it is possible to conclude that

both confidence interval and sequence length, have a direct impact

on the system sensitivity. Because of this, they must adjust to each

device at every use case. Once stabilized the detection capability

of the sensor (in this, case the saturation length was 20 0 0), the

average hit rate when studying applications with malicious content

was 98.61%, and the average false positive rate was 6.88%. The AUC

in ROC space was 96.2% 

7.4. Discussion and comparison 

Keeping the results obtained in mind, the following items are

highlighted: 

1. If the system is properly configured, the results in terms of ac-

curacy demonstrate high precision when dealing with malicious

applications (TPR = 0.9861), and the false positive rate is 6.88%. 

2. When preprocessing the score vectors, they pose a more ho-

mogeneous distance, which less frequently may lead to labeling

mistakes. 
3. The lower is the error tolerance of the approach (i.e. lower con-

fidence interval), the better the result in terms of identification

of malicious samples. But this penalizes the false positive rate. 

4. The length of the sequences should be large enough to reach

the saturation lenght. If it must be fixed because of computa-

tional limitations, the larger sequences, the greater true positive

rate. The false positive rate is independent of the length, and it

has much to do with the noise generated during the extraction

of the sequences. 

These statements demonstrate that by studying sequences of

ctions at the booting process of the applications, and hence taking

nto account their temporal relationship, it is possible to effectively

ecognize malware. The proposed pattern recognition method has

roven accuracy at this task. But it demonstrated sensitivity to the

djustment parameters and data preprocessing. On the other hand,

he comparison of the observed accuracy with the effectiveness of

he most precise publications in the bibliography, states that the

alware recognition capabilities of the approach are similar (see

able 1 ). This is a very important point considering that our pro-

osal requires less information, and that its search space is re-

uced to only consider boot actions of the applications. However,

he main disadvantage on the results is a trend to issue a higher

ate of false positives than the proposals that perform the analy-

is of the complete actions [18,55] , were the result ranges on 0.1–

4.8%. It is noteworthy to mention that our method does not com-

ete directly with these publications. This paper introduces a novel

rst line of defense based on analyzing only boot sequences, which

ose a different monitoring scenario, with a priori less likely to

ecognize malware. Therefore, it is perfectly able to complement

ther general-purpose schemes. On the other hand, it is important
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Fig. 10. Average variations on length. 

Table 1 

Comparison of results with previous publications. 

Proposal Method TPR (%) FPR (%) Accuracy (%) AUC (%) Dataset 

[4] Drebin 93 1 93.9 N/A Varios App. distribution markets, forums, security blogs and Genome 

[47] MADAM 96.9 0.2 N/A N/A Contagio Mobile, VirusShare and Genome 

[53] DroidSieve N/A N/A 98.12 N/A McAfee, Drebin, Genome and Marvin 

[58] Patronus N/A N/A 87 N/A Google Play, Contagio Mobile and Genome 

[66] DroidSIFT 93 5.15 N/A N/A McAfee and Genome 

[54] AlterDroid N/A N/A 97 N/A RAMP Competition and Genome 

[14] User-trigger dependences 97.9 2 N/A N/A Google Play, VirusShare and Genome 

[2] STEAM 97.6 14.8 N/A N/A VirusTotal, Google Play and Genome 

[42] Ranking Risks N/A 0.4 N/A 0.94 VirusTotal, Google Play and Genome 

[1] DroidAPIminer 97.8 2.2 99 N/A Google Play, McAfee and Genome 

[32] Payload Mining 75 N/A 90 N/A Genome 

[60] Dependence graphs 99.65 2.97 N/A N/A Google Play, VirusShare and Genome 

[26] PIndroid 98 0.2 99.8 N/A Drebin and Genome 

This proposal Boost sequences 98.61 6.88 95.8 96.20 Drebin and Genome 
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o highlight that in the bibliography, the evaluation methodology

as significantly varied. Table 1 compiles some of the most rele-

ant publications that mainly considered the Genome dataset in

heir evaluation. However, samples within Genome have been usu-

lly repacked or mixed with applications from other sources (both

egitimate and malicious instances), among them different distri-

ution markets (official and third-party), forums, blogs, competi-

ions or published by private information security organizations.

ecause of this, we have not found publications which evaluation

ere based on exactly the same dataset. 

On the other hand, the performance of the defensive deploy-

ent varied depending on the data processing stage. At monitor-

ng, the sandboxing capabilities provided by the Android operating

ystem have been exploited. Based on these technologies, the data

ollection time entailed a delay of few seconds, which depends on
he length of the action sequences and the resources available in

he protected device. But given that this drawback lies on hard-

are, implementation and Android version (where the sandboxing

trategy differs), and that it is common in every publication based

n dynamical analysis, it has not impact on the comparison of the

erformed contribution with similar approaches in the bibliogra-

hy. On the other hand, the transmission of information is driven

y an API REST that communicates the protected devices with a

edicated server, hence sending logs as that illustrated in Fig. A.11 .

he longest log files contained several KB (usually between 100 KB

nd 300 KB), so the transmission time delayed in the order of mil-

iseconds (note that this parameter may greatly vary depending on

he characteristics of the network, which is out of the scope of

his study). Finally, and as discussed in Section 5 , due that com-

lete sequences have not been considered, and that at Bootstrap
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Aggregation they are aligned in concurrency, the execution time of

the analytic tasks is of little significance (usually in the order of

milliseconds). Therefore, by adding all the aforementioned delays,

in the worst case the total time delay is a few seconds (normally,

in the order of milliseconds). It has mainly focused at the moni-

toring stage due to the interaction of the suspicious applications

with the Android sandbox, as is common in detection strategies

based on dynamic analysis. In addition, the communication with

the server and the sequence analysis stage seem to pose a slightly

cost in terms of Quality of Experience (QoE). 

From an empirical point of view, our experimentation allows us

to be optimistic about the effectiveness of the approach. On theo-

retical grounds, other interesting details should be taken into ac-

count. For instance, the introduced strategy inherits the character-

istics of the sequence alignment algorithms. Because of this, it is

capable of identifying high-level patterns within the alignment el-

ements [10] . This is a relatively unexplored field to address mal-

ware recognition on mobile devices, which fits very well with the

characteristics of the data that is usually studied. It also should

be borne in mind that in particular, this proposal takes advan-

tage of the global alignment methods, which usually yield better

results when it is supposed that the sequences should be almost

equal, thus providing an overview of the startup features. In re-

turn, the proposal is penalized in terms of resource consumption:

the Needleman–Wunsch method is implemented by dynamic pro-

gramming, so the memory of the system must store large data ar-

rays. The problem of limited resources is present throughout the

bibliography, and in our approach it is addressed in the same way

as in most of the related works: by performing tasks involving

higher costs on dedicated servers [6,57] . Hence no analytical tasks

are carried out in the device, but data extraction is performed. As

discussed in Section 5 , the protected devices must provide access

to the network; a minor inconvenience considering that the pro-

grams to be analyzed are downloaded from application stores, and

that the extracted information is preprocessed and aligned with

sequences of actions steadily updated by other trusted users, both

of them involving connectivity. 

8. Conclusions 

A novel intrusion detection system for malware recognition on

Android mobile devices has been proposed. Its main goal is to

prevent the installation of the malicious software on the victim

system once downloaded from application stores. To do this, the

boot sequences of system calls performed by the suspicious appli-

cations are studied in-deep. It involves an elaborate data process-

ing approach that includes the capture of system call sequences

in an isolated and secure environment, their analysis by sequence

alignment methods, and the decision of their nature by statisti-

cal hypothesis testing. The experimentation performed three dif-

ferent tests, where the analyzed samples of both, legitimate and

malicious applications, were provided by the datasets Genome and
rebin. The preliminary results demonstrated that to study boot

equences is a lightweight and efficient complement to the con-

entional dynamic analysis schemes, that poses an unused first

ine of defense. 

However, the experimentation also exposed sensitivity to

hanges in the major adjustment parameters (i.e. sequence length

nd confidence interval). In addition, a slightly trend towards the

mission of higher false positive rates is observed. This is not a

urprising fact, since the performed analysis comprised a smaller

mount of information (only system call sequences collected from

he booting activities of the monitored applications) than most of

he publications in the bibliography. Therefore, the proposed mal-

are detection system is limited to the set of specimens that trig-

er its infection vector when the application is first started. The

est approaches for tackling this drawback seem to be the im-

rovement of the information provided by the reference datasets,

nd to directly deepen into the analytic methods looking for effec-

iveness enhancement. The first may be achieved by implementing

dvanced data preprocessing techniques that allow sample weigh-

ng, in this way taking greater account of the actions that are

ost likely part of the intrusion processes. This also facilitates the

doption of less generalist scoring systems and makes it possi-

le to manage the discarding of the redundant actions that en-

ail a greater quantity of noise. On the other hand, the upgrades

n the analytic steps could be driven by exploiting concurrency

t the pattern recognition tasks. Thus, subsequences of the orig-

nal booting sequence may be studied in parallel, which are se-

ected when they contain suspicious elements (e.g. system calls re-

ated with memory modifications, privilege gain, searches for cer-

ain file extensions, etc.). Along with the article, different alterna-

ives for future research have been proposed, including, straight-

ning against adversarial attacks, the implementation of a central-

zed version of the approach, or the discussion about how to ob-

ain/share the information required by the analytic tasks, which

ay adapt reputation-based schemes, and raise solutions related

ith data protection. It is important to highlight that the main

ontributions of this paper are integrated into the RAMSES frame-

ork (H2020-FCT-2015/700326) for tracking the money flow of

nancially-motivated malware. In particular, the approach is part

f a solution for detecting malicious applications on mobile devices

mainly different ransomalware families) based on identifying se-

uences of actions related to asset encryption, hidden communica-

ion processes and fraudulent monetary operations. 
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Fig. A1. Example of log of system calls generated when monitoring Monkey Jump 2 . 

Appendix A. Examples of sequence alignment 
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Table A1 

Example (L1) of first 120 actions monitored when booting Monkey Jump 2 . 

No. Action No. Action No. Action No. Action 

1 futex 31 futex 61 set_thread_area 91 futex 

2 futex 32 futex 62 futex 92 futex 

3 futex 33 futex 63 mmap2 93 prctl 

4 select 34 futex 64 prctl 94 mmap2 

5 ioctl 35 futex 65 madvise 95 prctl 

6 recvmsg 36 futex 66 prctl 96 madvise 

7 ioctl 37 munmap 67 sigaltstack 97 prctl 

8 futex 38 sigaltstack 68 prctl 98 mmap2 

9 futex 39 munmap 69 prctl 99 prctl 

10 futex 40 sigprocmask 70 prctl 100 madvise 

11 futex 41 munmap 71 gettid 101 prctl 

12 futex 42 open 72 prctl 102 mprotect 

13 futex 43 getdents64 73 futex 103 prctl 

14 futex 44 getdents64 74 prctl 104 clone 

15 futex 45 close 75 futex 105 prctl 

16 sigaltstack 46 sigaction 76 futex 106 futex 

17 futex 47 mmap2 77 prctl 107 futex 

18 munmap 48 gettid 78 futex 108 prctl 

19 futex 49 madvise 79 futex 109 set_thread_area 

20 futex 50 getuid32 80 prctl 110 prctl 

21 futex 51 mmap2 81 futex 111 mmap2 

22 sigprocmask 52 open 82 futex 112 prctl 

23 futex 53 madvise 83 getpriority 113 madvise 

24 futex 54 write 84 setpriority 114 prctl 

25 munmap 55 mprotect 85 clock_gettime 115 sigaltstack 

26 sigaltstack 56 close 86 futex 116 prctl 

27 munmap 57 clone 87 prctl 117 prctl 

28 sigprocmask 58 prctl 88 prctl 118 prctl 

29 munmap 59 futex 89 futex 119 gettid 

30 munmap 60 prctl 90 clock_gettime 120 prctl 

Table A2 

Example (L2) of first 120 actions monitored when booting Monkey Jump 2 . 

No. Action No. Action No. Action No. Action 

1 select 31 sigprocmask 61 mmap2 91 prctl 

2 futex 32 futex 62 open 92 futex 

3 futex 33 munmap 63 madvise 93 prctl 

4 futex 34 futex 64 write 94 futex 

5 ioctl 35 futex 65 mmap2 95 prctl 

6 recvmsg 36 futex 66 close 96 futex 

7 ioctl 37 munmap 67 madvise 97 prctl 

8 futex 38 sigaltstack 68 prctl 98 futex 

9 futex 39 munmap 69 mprotect 99 prctl 

10 futex 40 sigprocmask 70 prctl 100 getpriority 

11 futex 41 munmap 71 clone 101 setpriority 

12 futex 42 futex 72 futex 102 clock_gettime 

13 futex 43 futex 73 prctl 103 futex 

14 futex 44 futex 74 set_thread_area 104 prctl 

15 futex 45 futex 75 prctl 105 futex 

16 sigaltstack 46 futex 76 mmap2 106 clock_gettime 

17 futex 47 futex 77 prctl 107 futex 

18 munmap 48 futex 78 madvise 108 futex 

19 futex 49 munmap 79 prctl 109 prctl 

20 sigprocmask 50 sigaltstack 80 sigaltstack 110 mmap2 

21 futex 51 munmap 81 prctl 111 prctl 

22 sigprocmask 52 sigprocmask 82 prctl 112 madvise 

23 futex 53 open 83 prctl 113 prctl 

24 munmap 54 getdents64 84 gettid 114 mmap2 

25 futex 55 getdents64 85 prctl 115 prctl 

26 futex 56 close 86 futex 116 madvise 

27 futex 57 sigaction 87 prctl 117 prctl 

28 munmap 58 fork 88 futex 118 mprotect 

29 sigaltstack 59 gettid 89 prctl 119 prctl 

30 munmap 60 getuid32 90 futex 120 clone 
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Table A3 

Example (M1) of first 120 actions monitored when booting Monkey Jump 2 (binded to GinMaster ). 

No. Action No. Action No. Action No. Action 

1 futex 31 munmap 61 mmap2 91 futex 

2 select 32 futex 62 close 92 mmap2 

3 futex 33 sigprocmask 63 madvise 93 prctl 

4 futex 34 futex 64 prctl 94 madvise 

5 ioctl 35 munmap 65 mprotect 95 prctl 

6 recvmsg 36 futex 66 prctl 96 mprotect 

7 ioctl 37 munmap 67 clone 97 prctl 

8 futex 38 open 68 prctl 98 clone 

9 futex 39 sigaltstack 69 futex 99 futex 

10 futex 40 getdents64 70 prctl 100 futex 

11 futex 41 munmap 71 prctl 101 set_thread_area 

12 futex 42 getdents64 72 prctl 102 futex 

13 futex 43 sigprocmask 73 prctl 103 mmap2 

14 futex 44 close 74 prctl 104 madvise 

15 futex 45 munmap 75 set_thread_area 105 sigaltstack 

16 sigaltstack 46 clock_gettime 76 prctl 106 prctl 

17 futex 47 clock_gettime 77 mmap2 107 prctl 

18 munmap 48 futex 78 prctl 108 gettid 

19 sigprocmask 49 open 79 madvise 109 prctl 

20 futex 50 getdents64 80 prctl 110 futex 

21 munmap 51 getdents64 81 sigaltstack 111 prctl 

22 futex 52 close 82 prctl 112 futex 

23 futex 53 sigaction 83 prctl 113 prctl 

24 futex 54 fork 84 prctl 114 futex 

25 futex 55 gettid 85 gettid 115 prctl 

26 futex 56 getuid32 86 prctl 116 futex 

27 munmap 57 mmap2 87 futex 117 prctl 

28 futex 58 open 88 futex 118 getpriority 

29 sigaltstack 59 madvise 89 futex 119 prctl 

30 futex 60 write 90 futex 120 setpriority 

Table A4 

Alphabet for building sequences related with the examples L1, L2, M1. 

Symbol Action Symbol Action Symbol Action 

A futex J getdents64 S prctl 

B select K close T set_thread_area 

C ioctl L sigaction U gettid 

D recvmsg M mmap2 V getpriority 

E munmap N madvise W setpriority 

F sigaltstack O write X clock_gettime 

G sigprocmask P mprotect Y fork 

H lock Q linkat Z getuid 

I open R clone – gap 

Table A5 

Example of global alignment considering booting sequences (L1, L2 and M1) from Monkey Jump 2 . 

ID Content Action sequences 

L1 Legitimate L1(001-060):AAABCDCAAAAAAAAEAFAEAAAGAAEFEGEEAAAAAAEFEGEHIIJKlHMNOJPQAQR 
L1(061-120):ALQMQFQQQSQAQAAQAAQAATUVAQQAVAAQLQMQLQMQOQPQAAQRQLQMQFQQQSQ 

L2 Legitimate L2(001-060):BAAACDCAAAAAAAAEAFAEAGAGAEAAAEFEGAEAAAEFEGEAAAAAAAEFEGHIIJK 
L2(061-120):WSZLHMNLPMQOQPAQRQLQMQFQQQSQAQAQAQAQAQTUVAQAVAAQLQMQLQMQOQJ 

M1 Malware M1(001-060):ABAACDCAAAAAAAAEAFAEGAEAAAAAEAFAEAGAEAEHFIEIGJEVVAHIIPKWSZL 
M1(061-120):HMNLJMQOQPQAQQQQQRQLQMQFQQQSQAAAAALQMQOQPAARALMFQQSQAQAQTQU 

A1 Align.(L1:L2) Match:84/136 Rate:0.62 Gaps:18 L1(001-060):AAABCDCAAAAAAAAEAFAEAAAG------------AAEFEGEEAAAAAAEFEGEHIIJ 
L2(001-060):BAAACDCAAAAAAAAEAFAEAGAGAEAAAEFEGAEAAAEFEGEAAAAAAAEFEG-HIIJ 
L1(061-120):K---lHMNOJPQ---AQRALQMQFQQQSQAQAAQAAQAATUVAQQAVAAQLQMQLQMQO 
L2(061-120):KWSZLHMNLPMQOQPAQRQLQMQFQQQSQAQAQAQAQAQTUVA-QAVAAQLQMQLQMQO 
L1(121-136):QPQAAQRQLQMQFQQQSQ 
L2(121-136):QJ---------------- 

A2 Align.(L1:M1) Match:6 8/14 9 Rate:0.45 Gaps:31 L1(001-060):AAABCDCAAAAAAAAEAFAEAAAGAAEFEGEEAAAAAAEF-----EGE----------- 
M1(001-060):ABAACDCAAAAAAAAEAFA---------EGAEAAAAAEAFAEAGAEAEHFIEIGJEVVA 
L1(061-120):HIIJK---lHMN----OJPQA----QRALQMQFQQQSQAQAAQAAQAATUVAQQAVAAQ 
M1(061-120):HIIPKWSZLHMNLJMQOQPQAQQQQQRQLQMQFQQQSQAAAA----------------- 
L1(121-149):LQMQLQMQOQPQAAQRQL---QMQFQQQSQ- 
M1(121-149):---ALQMQOQP--AARALMFQQSQAQAQTQU 
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