
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

MRQAR: A generic MapReduce framework to discover quantitative
association rules in big data problems

D. Martín1,a, M. Martínez-Ballesteros⁎,1,b, D. García-Gilc, J. Alcalá-Fdezc, F. Herrerac,d,
J.C. Riquelme-Santosb

a Department of Artificial Intelligence and Infrastructure of Informatics Systems, Technological University of Havana J.A Echeverría, La Habana, Cuba
bDepartment of Computer Science, University of Seville, Seville, Spain
c Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
d Faculty of Computing and Information Technology, King Abdulaziz University (KAU), Jeddah, Saudi Arabia

A R T I C L E I N F O

Keywords:
Quantitative association rules
Multiobjective evolutionary algorithms
Big Data
MapReduce
Spark

A B S T R A C T

Many algorithms have emerged to address the discovery of quantitative association rules from datasets in the last
years. However, this task is becoming a challenge because the processing power of most existing techniques is
not enough to handle the large amount of data generated nowadays. These vast amounts of data are known as
Big Data. A number of previous studies have been focused on mining boolean or nominal association rules from
Big Data problems, nevertheless, the data in real-world applications usually consist of quantitative values and
designing data mining algorithms able to extract quantitative association rules presents a challenge to workers in
this research field. In spite of the fact that we can find classical methods to discover boolean or nominal asso-
ciation rules in the most well-known repositories of Big Data algorithms, such repositories do not provide
methods to discover quantitative association rules. Indeed, no methodologies have been proposed in the lit-
erature without prior discretization in Big Data. Hence, this work proposes MRQAR, a new generic parallel
framework to discover quantitative association rules in large amounts of data, designed following the
MapReduce paradigm using Apache Spark. MRQAR performs an incremental learning able to run any sequential
quantitative association rule algorithm in Big Data problems without needing to redesign such algorithms. As a
case study, we have integrated the multiobjective evolutionary algorithm MOPNAR into MRQAR to validate the
generic MapReduce framework proposed in this work. The results obtained in the experimental study performed
on five Big Data problems prove the capability of MRQAR to obtain reduced set of high quality rules in rea-
sonable time.

1. Introduction

In data mining, the discovery of interesting relations in the data is a
frequent used technique known as association rules. Association rules
can be expressed as A ⟶ C, where A and C are items of couples at-
tribute-value and satisfy that ∩ = ∅A C . Many proposals can be found
in the literature to address the discovery of association rules in datasets
with numerical values, known as quantitative association rules (QARs).
Many of them are based on Evolutionary Algorithms (EA) due to the
good performance presented in problems with complex search spaces.

However, the rule-matching process is the most costly phase of
these algorithms in terms of execution time since need to process ex-
pensive fitness functions a high number of times. The evaluation of each

solution requires the processing of all records in the dataset.
Alternatively, other weakness usually presented is the memory con-
sumption. The problem is especially emphasized when these algorithms
have to handle large-scale datasets [1]. In general, the knowledge ex-
traction process becomes a difficult and complex task since in many
cases, the amount of generated data exceeds the processing capability
of conventional systems. The design of efficient algorithms able to
process and analyze this amount of data is becoming a big challenge to
researchers. One of the most used approaches is the MapReduce pro-
gramming model [2–4] that is a robust and effective computational
paradigm to process big datasets in distributed environments. This
programming model divides a problem into smaller and affordable
subproblems and combines partial solutions to obtain the final result.

https://doi.org/10.1016/j.knosys.2018.04.037
Received 27 September 2017; Received in revised form 27 April 2018; Accepted 28 April 2018

⁎ Corresponding author.

1 These authors contributed equally to this work.

E-mail addresses: dmartin@ceis.cujae.edu.cu (D. Martín), mariamartinez@us.es (M. Martínez-Ballesteros), djgarcia@decsai.ugr.es (D. García-Gil),
jalcala@decsai.ugr.es (J. Alcalá-Fdez), herrera@decsai.ugr.es (F. Herrera), riquelme@us.es (J.C. Riquelme-Santos).

Knowledge-Based Systems 153 (2018) 176–192

Available online 30 April 2018
0950-7051/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09507051
https://www.elsevier.com/locate/knosys
https://doi.org/10.1016/j.knosys.2018.04.037
https://doi.org/10.1016/j.knosys.2018.04.037
mailto:dmartin@ceis.cujae.edu.cu
mailto:mariamartinez@us.es
mailto:djgarcia@decsai.ugr.es
mailto:jalcala@decsai.ugr.es
mailto:herrera@decsai.ugr.es
mailto:riquelme@us.es
https://doi.org/10.1016/j.knosys.2018.04.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2018.04.037&domain=pdf

Several frameworks have emerged in the last years to tackle Big Data
[5,6]. One of them is the open source cluster computing framework
named Apache Spark [7,8] which is a fast and general engine for large-
scale data processing based on in-memory computation.

Several authors have focused on redesigning classical methods such
as Apriori or FP-Growth to discover boolean or nominal association
rules in massive data. Indeed, the Machine Learning library (MLlib) [9]
of Apache Spark provides a parallel version of the FP-Growth algo-
rithm. Nevertheless, such methods are only able to deal with boolean or
nominal values which require a previous discretization to be applied in
quantitative domains leading to information loss. Thus, it is necessary
to redesign the existing techniques to address the QAR discovery in
large scale datasets but this requires a complex, expensive and specia-
lised process for researchers. Our aim is to propose a general purpose
methodology able to apply any existing algorithm to find QAR avoiding
their adaptation or redesign to handle Big Data.

Hence, this work presents MRQAR, a new generic parallel frame-
work to discover quality QARs from Big Data problems using any non-
parallel algorithm to discover QAR. In particular, MRQAR is based on
the MapReduce paradigm and uses Apache Spark due to the good
performance presented handling large scale datasets. This proposal
presents an incremental learning scheme that discovers QARs by four
phases, three of which are MapReduce phases. The first MapReduce
phase obtains rules from different splits of data applying any algorithm
to discover association rules. The second MapReduce phase evaluates
these rules using all the splits of the entire input dataset. The third
phase (sequential) updates the nondominated solutions after being
evaluated. The fourth phase (third MapReduce) builds a new dataset by
the uncovered instances. The convergence property of the Maps in the
MRQAR framework depends on the type of algorithm used in the first
phase. Evolutionary algorithms usually provide good solutions. In
particular, the pareto-based algorithms are able to converge into a high
number of good solutions through the non-dominance and diversity
criteria. Note that MRQAR is a general framework and the learning
method of the attribute intervals of QAR depends on the type of the
algorithm used in the first phase. For instance, many existing algo-
rithms apply a domain partition technique to handle continuous vari-
ables that might give rise to information loss, however this issue is
independent of the framework proposed in this work.

As a case study to validate the performance of the proposed fra-
mework, we use the recent multiobjective EA (MOEA) named MOPNAR
[10] in the first phase of MRQAR due to the good behavior in the Pareto
convergence sequentially. Spark’s implementation of the MRQAR al-
gorithm including MOPNAR can be downloaded from the Spark’s
community repository2.

An experimental study has been conducted on five Big Data pro-
blems to asses the performance of the proposal and the quality of the
rules obtained. Furthermore, the proposal has been compared with a
parallel version of the well-known classical algorithm FP-Growth
named PFP [11] that follows a MapReduce scheme implemented in
Spark and is available in MLlib [9]. Finally, an statistical analysis has
been applied to compare the performance of MRQAR and PFP.

This work is organized as follows. Section 2 introduces the basic
concepts of QARs, Big Data, MapReduce programming paradigm and
Apache Spark, in addition to review several existing methods to dis-
cover association rules in Big Data. Section 3 details the proposed fra-
mework to obtain QARs from Big Data problems. Section 4 describes
the experimental setup, the algorithm used as case study named
MOPNAR and the configuration parameters for the methods analyzed.
Furthermore, that section shows the results obtained in the five Big
Data problems and provides a comparative with other Big Data ap-
proach. Finally, Section 5 summarizes the conclusions drawn from the
analysis conducted.

2. Preliminaries

2.1. Quantitative association rules

Association rules aim at discovering frequent set of related attri-
butes in the dataset that are represented by understable rules. Agrawal
et al. formally described the association rules for the first time in [12].
Let = …I i i i{ , , , }n1 2 be a set of n items or attributes, and

= …D tr tr tr{ , , , }N1 2 a set of N records in a dataset. Each record includes
a subset of items or attributes. A rule is expressed as A⇒C where A is
the antecedent and C is the consequent of the rule, where A, C⊆I and

∩ = ∅A C , A and C.
The association rules are named QARs in continuous domains. Let

= …F F F F{ , , , }n1 2 be a set of n attributes, with values in . Let X and Y
be two disjoint subsets of F, that is, X⊂ F, Y⊂ F, and ∩ = ∅X Y . A
QAR is a rule A⇒C that defines a relationship between the attributes
from the antecedent and the attributes from the consequent and each
attribute has an interval of membership values. The antecedent A is
composed of the attributes of X and the consequent C is composed of
the attributes of Y. A conjunction of multiple boolean expression
Fi∈ [v1, v2] (with v1, v2 ∈ ) composes A and C.

For instance, a QAR could be numerically expressed as Temperature
∈ [38, 42] ∧ Humidity ∈ [2, 25] ⟹ Tropospheric Ozone ∈ [0, 140],
where the antecedent is composed of the attributes Temperature and
Humidity and the consequent has the attribute Tropospheric Ozone.

The QARs obtained by any algorithm can be evaluated using dif-
ferent quality metrics with the aim at selecting the best rules. All these
measures are conceived to separately evaluate different properties of
the rules such as generality or reliability [13].

Many authors have used the support and confidence as quality and
optimization measures but these metrics do not cover some properties
of the rules. For instance, the consequent support is not involved in the
evaluation of the confidence, then this measure does not identify ne-
gatively dependent attributes. In the literature, we can find other
quality measures to evaluate different features of QARs [14].

Table 1 details the formula, properties evaluated by some of the
most popular quality measures and the interval values of these mea-
sures. The QARs obtained in the experimentation presented in this
paper are going to be evaluated using the described measures. The
number of instances of the dataset that contains the item A is re-
presented by |A|. N refers to the amount of records of the dataset.

Authors in [20] classify the QAR mining into several catagories
according to the type of computational method used and also discuss
the advantages and disadvantages of each category. The main cate-
gories identified by these authors are as follows: Partitioning-based
approaches in which the domain of the attributes is divided into disjoint
intervals [21,22]; Clustering-based approaches in which the intervals
are generated by meaningful and dense regions [23,24]; Statistical-
based approaches that define the intervals of QAR analyzing the data
distribution using statistical metrics [25]; Fuzzy-based approaches that
use linguistic terminologies to define partitions to represent the asso-
ciations [26,27]; Finally, EA-based approaches that have been ex-
tensively applied in the last years [28–30]. For instance, one of the most
common evolutionary approaches are based on MultiObjective Evolu-
tionary Algorithms (MOEAs) [31] where multiple conflicting objec-
tives, are optimized simultaneously. Instead of providing only one so-
lution as monoobjective approaches do, this kind of algorithms provides
the user an optimal set of non-dominated solutions (rules), named the
Pareto-optimal set, where each solution represents a rule with a dif-
ferent trade-off between the objectives optimized. In fact, different
types of MOEAs have been proposed in the literature to deal with the
discovery of QARs [32] such as the works proposed in [33,34] or the
approach based on MOEA/D-DE named MOPNAR [10]. This kind of
MOEAs addresses a multiobjective problem as N subproblems opti-
mized at the same time using an EA. A MOEA to discover rare and
interesting QAR was presented in [35]. Other EA-based approaches,2 https://spark-packages.org/package/djgarcia/MRQAR.

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

177

https://spark-packages.org/package/djgarcia/MRQAR

such as niching genetic algorithms, have been applied to discover QAR
[36]. Alternativelly, other authors have not based their proposals fol-
lowing general approaches as the aforementioned categories do. For
instance, the work presented in [37] defines syntactic constrains to
represent QAR by a metarule-guided approach.

2.2. Big Data, MapReduce programming model and Apache Spark

The process of knowledge extraction has become a big challenge to
data mining and machine learning algorithms due to the scalability
issues caused by the vast volume of data generated nowadays. Hence,
such algorithms need to be redesigned in order to be applied into real-
world problems. Thus, the emerging concept of Big Data comprises the
complex and large amounts of data that the classical techniques can not
process or analyzed [5].

MapReduce is a well-known programming model designed by Dean
and Ghemawat [3,4,38] to address Big Data problems. This computa-
tional paradigm was designed for easily writing reliable and fault-tol-
erant applications capable of handling vast amounts of data in-parallel
on large clusters. Generally, the MapReduce framework operates on
⟨key, value⟩ pairs working in two phases: Map and Reduce. In the Map
phase, the input data is processed generating intermediate results as the
input of the Reduce phase to produce the final output. Both Map and
Reduce phases process data structured in terms of ⟨key, value⟩ pairs.

Apache Hadoop is one of the most popular implementations of
MapReduce. This is an Open-source project overseen by the Apache
Software Foundation based on Java and created by Doug Cutting team
[39,40]. Hadoop has a distributed storage system named HDFS (Hadoop
Distributed File Systems).

Recently, other Big Data projects have emerged to deal with large-
scale datasets. For instance, the fast and general engine for large-scale
dataset processing named Spark [7,8] is a new alternative to Hadoop.
Spark overcomes the main issues of Hadoop [5] such as the intensive
disk usage, poor performance on iterative computing, insufficiency for
in-memory computation, low inter-communication capacity. Spark uses
a distributed data structure called Resilient Distributed Datasets (RDDs)
[41]. An RDD is a read-only and a fault-tolerant partitioned collection
of records that can be operated on in parallel. An RDD is able to load a
dataset in memory and read it multiple time in whereas Hadoop has to
load the dataset in each iteration. Spark makes use of the concept of

RDD to achieve faster and efficient MapReduce operations. RDDs pro-
vide both transformation and action operations. Transformations are
not evaluated when are defined and return a new RDD from an existing
one. Actions evaluate all the previous transformations and calculate a
new value.

Other remarkable Spark-related project at Apache is the machine
learning library named MLlib [9,42] which is composed by several
learning algorithms and statistic tasks such as classification, regression,
clustering, collaborative filtering, optimization and dimensionality re-
duction. Recently, this library has been divided into two different
packages, MLlib and ML, depending if they are built on top of RDDs or
DataFrames, respectively. Other projects developed on the top of the
Spark core are SparkSQL that provides SQL language support in the
Spark programs, Spark Streaming to analyze data streams, Spark
GraphX to process graphs in Spark.

2.3. Big data in association rule mining

In the last years, many researches have focused on how to deal with
the problem of association rule discovery in parallel and distributed
environments but they are only focused on adaptations of classical al-
gorithms that deal with nominal or boolean data, although the real-
world applications have quantitative data. Recently, the authors in [43]
provide a summary of the issues presented in Big Data analytics such as
information loss, high computational cost and useless rule generation.
Different methods to improve the speed up of the pattern mining al-
gorithms ranging from traditional methods and new trends in Big Data
such as MapReduce are analyzed in [44].

Authors in [45] summarize several improved techniques based on
the parallelization of the Apriori algorithm using Hadoop MapReduce
framework. This survey studies several techniques according to the goal
of the work, datasets and platform used. For instance, an improved
version reducing the number of scans of the dataset is proposed in [46].
An approach based on vertical dataset partitioning using a MapReduce
model is described in [47]. This algorithm performs better when the
number of instances increases but presents bad behavior when the
number of instances is low. Both Dist-Eclat and BigFIM algorithms
based on the MapReduce framework are presented in [48]. In parti-
cular, Dist-Eclat algorithm is an optimized implementation of the
classical Eclat algorithm [49] focused on the speed but only works if the

Table 1
Measures to assess the quality of QAR.

Metrics Formula Definition Values

Supp(A) |A|/N Frequency of A [0, 1]
Supp(A⟹B) |(A ∩ C)|/N Proportion of instances containing the rule [0, 1]
Conf(A⟹C) supp(A⟹C)/supp(A) Reliability of the rule [0, 1]
Lift(A⟹C) [15] supp(A⟹C)/(supp(A) · supp(C)) Interest of the rule [0, + ∞)

• Lift < 1: A and C are negatively dependent
• Lift = 1: A and C are independent
• Lift > 1: A and C are positively dependent

Conviction(A⟹C) [16] − − ⟹supp C conf A C(1 ())/(1 ()) Dependence between A and C (0, + ∞)
• Conv < 1: A and C are negatively dependent
• Conv = 1: A and C are independent
• Conv > 1: A and C are positively dependent

Certainty Factor(A⟹C) [17] • If conf(A⟹C) > sup(C): Gain normalized [–1, 1]
⟹ − −conf A C supp C supp C(() ())/(1 ()) • CF < 0: A and C are negatively dependent

• If conf(A⟹C) ≤ supp(C): • CF = 0: A and C are independent
⟹ −conf A C supp A supp C(() ())/ () • CF > 0: A and C are positively dependent

NetConf(A⟹C) [18] ⟹ − −supp A C supp A supp C supp A supp C(() () ())/(()(1 ()) Interest of the rule [–1, 1]
• NetConf < 0: A and C are negatively dependent
• NetConf = 0: A and C are independent
• NetConf > 0: A and C are positively dependent

YulesQ(A⟹C) [19] ⟹ ¬ ⟹ ¬ − ¬ ⟹ ⟹ ¬
⟹ ¬ ⟹ ¬ + ¬ ⟹ ⟹ ¬

supp A C supp A C supp A C supp A C
supp A C supp A C supp A C supp A C

(()·(()) (()·(())
(()·(()) (()·(())

Odds ratio [–1, 1]

• YulesQ < 0: A and C are negatively dependent
• YulesQ = 0: A and C are independent
• YulesQ > 0: A and C are positively dependent

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

178

data can be fitted into memory. BigFIM algorithm is an hybrid opti-
mization of Apriori [50] and Eclat [49] to be executed on truly massive
amounts of data. Note that the aforementioned algorithms have been
tested using datasets with a maximum number of instances below of 6.5
millions. Other authors have retrieved frequent itemsets from large
datasets instead of mining association rules such as the Input Split
Frequent Pattern Tree algorithm proposed in [51]. Lately, an efficient
implementation to mine maximally informative k-itemsets based on
joint entropy and following a MapReduce design is proposed in [52].
The SILVERBACK algorithm is presented in [53] that discover frequent
itemsets and association rules in activity logs of users in social datasets.
This algoritm includes probabilistic columnar infrastructure, bloom
filters, sampling techniques and pruning techniques based on the
principles of Apriori algorithm. Other examples based on classical al-
gorithms such as Apriori, FP-Growth or combination of them can be
found in [54,55].

Other authors have addressed the discovery of association rules in
Big Data following a Spark-based implementation. For instance, an
adaptation of the basic Apriori algorithm is proposed in [56]. Other
authors have proposed an efficient distributed algorithm named DFIMA
implemented using Spark to discover frequent itemsets in [57]. This
algorithm follows the Apriori concept reducing the number of candi-
dates by the use of a matrix-based pruning method. Recently, the al-
gorithm named HFIM has been proposed in [58] and also is im-
plemented using Spark. This work try to solve the limitations of the
Apriori algorithm in distributed environment following the concept of
vertical dataset. Finally, a parallel version of the well-known FP-Growth
algorithm [11] has been implemented in Spark available in MLlib [9]. It
can be noted that the aforementioned proposals are focused on binary
or discrete data although the domain of most real-world applications
are continuous.

After reviewing the existing literature, it can be drawn that most of
the existing techniques designed to address the discovery of association
rules in Big Data scenarios are based in classical algorithms such as
Apriori, FP-Growth or combination of them. Thus, these algorithms
only deal with binary or discrete values. Then, a data discretization
procedure is required before applying them in quantitative domains to
obtain rules. Finally, we would like to remark that we propose a fra-
mework that allows running any sequential QAR algorithm in Big Data
problems without designing a particular adaptation of a specific algo-
rithm, whereas most existing algorithms are adaptations of a specific
sequential association rule algorithm following the MapReduce para-
digm.

3. MRQAR: a multiobjective MapReduce design to mine QARs in
Big Data

This section describes the proposed framework MRQAR, a
MapReduce implementation that uses Apache Spark to discover effi-
ciently QARs in Big Data problems using other algorithm as rule ex-
traction model in each Map. As stated before, the rule-machine process
is the most costly phase in EAs, then, this new approach is devoted to
reduce the run-time costs focused on the number of instances of the
training dataset and memory consumptions without quality loss in the
results.

3.1. Scalable approach to mine QARs for Big Data: MRQAR

Current association rule algorithms need to be redesigned to handle
Big Data problems to perform an efficient evaluation of the objectives
and keep the quality of the rules obtained simultaneously. To accom-
plish that, we propose an incremental learning scheme that follows a
MapReduce design to discover QARs from different proportions of the
data.

As stated in Section 2.2, the MapReduce paradigm splits the training
dataset into a number of subsets of instances. The challenge is how to

discover quality association rules that represent the complete dataset
through subset of rules obtained in different splits of the dataset.

To fulfil this goal, the association rule algorithm is only executed in
a subset (Map), thus, the fitness function evaluates only a subset of
instances. The evolutionary process for each Map ends when a number
of evaluations is reached (Neval) and a set of QARs is returned (RuleSet).

Once all Maps are processed by the rule mining algorithm, the
RuleSet from each Map is collected. Then, the global quality of the QARs
of each RuleSet are evaluated using the entire dataset. To accomplish
that, antecedent support, consequent support and rule support are
partially calculated for each Map, and then they are aggregated to
obtain the global evaluation that allow us to calculate the quality
measures of the complete dataset. After that, all the QARs of each
RuleSet are used to update an external set of rules henceforth named
GlobalRulePool, that store the nondominated solutions found for the
entire dataset considering the quality measures previously calculated.
These quality measures will be the objective functions used by the se-
quential association rule algorithm. Subsequently, the redundant QARs
of the GlobalRulePool are removed.

Thereafter, the instances of the training dataset covered by the
QARs belonging to the GlobalRulePool are marked. A new dataset is
built only by the uncovered instances of the original dataset. This new
dataset is again splitted into subsets of instances and the association
rule algorithm is again executed for each of them. If the number of the
remaining uncovered instances is less than a minimum threshold
(trNotCover), the entire dataset is again used to process the new itera-
tion and build the new input splits.

The aforementioned process is repeated until a global number of
evaluations is reached (−Neval global). The global number of evaluations is
updated when all the subsets are processed for each iteration taking
into account the number of trials of the slowest sub-problem, that is, the
number of evaluations of the input split that requires more evaluations.
Furthermore, the number of trials spent to evaluate the QARs belonging
to each RuleSet in the entire dataset is also added.

An overview of the aforementioned incremental and parallel
learning scheme is depicted in the Fig. 1. A specific example with a toy
dataset to show the general process of our proposal step by step can be
observed in Fig. 2.

3.2. The MRQAR framework for Big Data: a MapReduce design

This section describes the MapReduce design details of the generic
scalable approach proposed in this work. Furthermore, the Spark pri-
mitives used for the implementation of the framework are also detailed
(Section 3.2.1). The learning scheme of MRQAR is composed by four
phases where three of them follow a MapReduce scheme:

• The first phase, that follows a MapReduce design, is devoted to run
an algorithm to obtain a set of QARs (RuleSet) for each subset in
which the input dataset is divided (Section 3.2.2).

• The second phase, that also follows a MapReduce scheme, performs
the support computation of the QARs obtained in the previous phase
considering all the instances of the dataset (Section 3.2.3). This
phase aims at evaluating the quality of the rules over the entire
dataset because it is necessary in the next phase. Note each RuleSet
of the first phase has been only evaluated using the instances of the
subset in which they have been trained. Therefore, in the second
phase is necessary to calculate the quality of the rules over the entire
dataset with the aim at selecting the best rules that present the best
performance in the original dataset with all the instances and not
only in the subset trained.

• The third phase sequentially updates a global rule set denominated
as GlobalRulePool that stores the non dominated solutions found in
the entire dataset. To accomplish that, the same measures used by
the sequential algorithm to evaluate the quality of the QARs are
calculated by the support obtained in the second phase

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

179

(Section 3.2.4).

• The fourth phase builds a new dataset composed of the uncovered
instances by the rules of GlobalRulePool following a MapReduce
scheme (Section 3.2.5).

These four phases are part of an iterative process that is repeated
while a minimum threshold of global evaluations (−Neval global) is not
reached. Fig. 1 depicts the general overview proposed method in which
the four phases performed in each iteration of the learning process can
be observed. Fig. 2 displays a running example to illustrate the steps of
each phase of MRQAR.

It is well-known that there are two issues to consider in Big Data:
redundancy and the consequences of data partitioning (inherent in a
MapReduce model). The first reward the second in many cases as au-
thors discussed in [59]. Data redundancy implies that the partitions
have enough instances to have a good representation of data in the
maps. However, it is true that there may be a lack of representation of
data on a map and therefore the following may occur:

• Some rules could not be discovered due to the breaking of concrete
niches with quality data that are broken between several maps. It is
the risk to assume in a MapReduce model. It is important to remark

that the framework of the MRQAR is designed to obtain rules in
datasets that are large enough that it is not possible to obtain rules
with a sequential algorithm due to their size or the high runtime
required.

• It can be discovered rules that seemed interesting in a map but they
could be not so important for the complete data set. It is necessary to
have a phase to detect which rules are not important and then not to
select them. In the particular case of MRQAR, MR Phase 2 evaluates
the rules in the whole dataset and then, the Sequential Phase 3 se-
lects the rules that have a good quality for the complete dataset.

The following sections describe the Spark primitives, in addition to
the design of the three MapReduce phases.

3.2.1. Spark primitives
Some basic Spark primitives from Spark API have been used to

implement the framework. These primitives offer much complex op-
erations by extending the MapReduce paradigm. The most relevant to
the algorithm are outlined as follows3:

Fig. 1. General scheme of MRQAR.

3 For a complete description of Sparks operations, please refer to Sparks API: http://
spark.apache.org/docs/latest/api/scala/index.html.

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

180

http://spark.apache.org/docs/latest/api/scala/index.html
http://spark.apache.org/docs/latest/api/scala/index.html

• mapPartitions: applies a transformation to each partition of a RDD.
Once the operation has been performed to each partition, the re-
sulting RDD is returned.

• reduce: reduces the elements of a RDD using the specified commu-
tative and associative binary operator.

• filter: return a new RDD containing only the elements that satisfy a
predicate.

3.2.2. MR Phase 1 - Running of an algorithm to mine QARs
A set of QARs (RuleSet) is obtained in this phase. This is a

MapReduce process where each Map task is devoted to execute an as-
sociation rule algorithm using the available data in the corresponding
partition (MR Phase 1 in the Fig. 1(b) as is illustrated in Fig. 3. It is
remarkable to specify that this section does not provide details about
the discovery process of the rules in each map or partition since it de-
pends on the association rule algorithm used. This MapReduce process
consists of three phases: initial, map y final.

The initial stage splits the input dataset into separate blocks that
are distributed by the processing nodes. Then, the map stage is applied
in which the algorithm of association rules is executed using the data
block of the partition of each Map process and a RuleSet is generated for
each one. Each execution ends when a given number of evaluations is
reached (−Neval partial). Each RuleSet has high quality measure values for
the Map partition in which was obtained. Due to the random split of the
dataset, the final stage combines the generated RuleSets since these

high quality values can be keep for other instances of the dataset. This
MapReduce process has not Reduce phase since the outputs of each Map
are directly combined. The aggregation of the results obtained by the
Map processes could also be accomplished by a Reduce phase but being
unnecessary would cause a higher runtime consumption.

The pseudocode of the map stage of the MR Phase 1 for running an
algorithm to mine QARs is presented in Algorithm 1. This process ob-
tains a list of QARs by means the algorithm executed using the instances
of each Map partition only.

3.2.3. MR Phase 2 - Computing the support of the QARs
This phase execute a new MapReduce process (MR Phase 2 in the

Fig. 1(b) that computes the rule support, the antecedent support and the
consequent support for each QARs of the obtained RuleSet in the pre-
vious phase. The computation of these three support measures allows
the calculation of all the metrics to evaluate the quality of the rules.
This evaluation phase is performed to quantify the global quality of the
obtained rules using the entire dataset since MR Phase 1 only computes
the quality of the rules using the instances of the training map partition
in which each set of rules has been obtained. This phase consists of four
stages: initial, map, combiner, reduce y final as can be observed in
Fig. 4.

The initial stage obtains all the QARs reported in the previous
phase. In the map stage, each Map process computes the support of the
QARs for each instance of its partition. In the reduce stage, each Reduce

Fig. 2. Example of the rule process extraction of MRQAR. Note that the objectives depend of the measures optimized by the sequential algorithm used in the first
phase of MRQAR.

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

181

process combines all the obtained supports for each rule to generate the
global support of each one in the original dataset. The final stage re-
turns all the QARs and the global support obtained. To reduce the
amount of information that is received in the reduce stage, a local re-
duce is executed at the end of eachmap stage considering only the ⟨key,
value⟩ pairs processed in the same split. This local reduce is known as
combiner stage, which computes the global support of the QARs for all
the instances of its partition.

The pseudocodes of themap and reduce stages of the MR Phase 2 to
compute the support of QARs are provided in Algorithms 2 and 3.
Algorithm 2 computes the support of rules obtained in the instance
represented by the pair ⟨key, value⟩ (Line 7: Algorithm 2). Note that
supA, supC, supR stand for support of the antecedent, consequent and
rule, respectively. When each Map has finished, Algorithm 3 is called to
accumulate the support of the antecedent (Line 4: Algorithm 3), support
of the consequent (Line 5: Algorithm 3) and support of the rule (Line 6:
Algorithm 3) of each rule represented by each instance and compute the
total support. Finally, the association rule list (RuleSet) is returned as
final output when Algorithm 3 finishes.

3.2.4. Sequential phase 3 - Update the GlobalRulePool
This phase updates the nondominated solutions that compose the

GlobalRulePool for all the instances of the entire dataset. Algorithm 4
provides the pseudocode of the third phase.

Each rule of RuleSet is checked if satisfies any minimum threshold in
the case of algorithms that requires minimum thresholds such as
minimum support or minimum confidence (Line 4: Algorithm 4).

This phase checks sequentially if each rule of RuleSet is better or
worse than each one that belongs to the GlobalRulePool according to the
concept of non-dominance. The non-dominance between two rules is
applied taking into account the objectives to optimize. In the study case
used in this work, we have used the same objectives optimized in MR
Phase 1. Lines 6 to 11 in Algorithm 4) shows when a new rule is added

or not to GlobalRulePool according to if a rule is dominated by the rules
from GlobalRulePool or dominates other rules from GlobalRulePool.

Finally, GlobalRulePool is updated removing redundant rules (Line
16: Algorithm 4).

3.2.5. MR Phase 4 - Building a new dataset with the uncovered instances
This phase executes a new MapReduce process (MR Phase 3 in the

Fig. 1(b) and builds a new dataset through the uncovered instances by
the QARs contained in GlobalRulePool. This phase consists of three
stages: initial, map and final as can be observed in Fig. 5. The initial
phase obtains independent blocks after splitting the input dataset that
are distributed through the processing nodes. In the map stage, each
Map process analyzes if each instance of its partition is covered by some
QAR of GlobalRulePool. The instances uncovered by any QAR of Glo-
balRulePool are returned. The final stage builds a new RDD that con-
tains the aggregation of the instances uncovered generated for each
Map process. If the number of instances of the new dataset does not
satisfied a minimum covered threshold (trNotCover), all the instances of
the original dataset are again used. This new dataset will be used as
input data in the phase described in Section 3.2.2. This MapReduce
phase does not have a Reduce phase since the outputs of each Map,
uncovered instances, are directly combined.

The map stage of the MR Phase 3 that builds a new dataset with the
uncovered instances by the rules obtained in GlobalRulePool is described
in Algorithm 5. If any rule of GlobalRulePool satisfies one instance, this
instance does not belong to the new dataset (Line 6–7: Algorithm 5).
The outputs of each Map are directly combined, therefore, the MR
Phase 3 does not have a Reduce phase.

Fig. 3. Flowchart of how the running of an algorithm to mine QARs is executed over the nonoverlapping subsets.

1: Input: data that represents the dataset, each row is an Array of values.
2: Output: The rules discovered by the QAR algorithm
3: RuleS et ←
4: map partitions instances ∈ data
5: {instances will contain all instances in each partition}
6: associationRules← algorithm.run(instances)
7: end map

Algorithm 1. Function of the MR Phase 1 of the MRQAR framework
that retrieves all the instances of the Map split and runs the asso-
ciation rule algorithm in the instances of the Map partition:

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

182

4. Experimental study

4.1. Experimental set-up

The main features of the big datasets used in the experimental study
are presented in this section. The analyzed algorithms and the config-
uration parameters used are also introduced. Finally, a description of
the hardware and software used in this study are provided.

4.1.1. Datasets
The following big datasets have been analyzed to validate the per-

formance of the proposed framework MRQAR:

• Susy dataset has been taken from UCI Machine Learning Repository
[60], where it was deposited by the authors of the work proposed in
[61]. Bache et al. specified that this dataset has been produced using
Monte Carlo simulations. It consists of 5,000,000 instances and 18
attributes. The first 8 features are kinematic properties measured by
the particle detectors in the accelerator. The last ten features are
functions of the first 8 features. The task is to distinguish between a
process where new supersymmetric particles are produced and a
background process with the same detectable particles but fewer
invisible particles and distinct kinematic features.

• Higgs dataset has been taken from UCI Machine Learning Repository

[60], where it was deposited by the authors of the work proposed in
[61]. Bache et al. specified that this dataset has been produced using
Monte Carlo simulations. It has 11,000,000 instances and 28 attri-
butes. The first 21 features are kinematic properties measured by the
particle detectors in the accelerator. The last seven features are
functions of the first 21 features. The task is to distinguish between a
signal process where new theoretical Higgs bosons are produced and
a background process with the identical decay products but distinct
kinematic features.

• Epsilon dataset has been taken from LIBSVM [62]. This dataset was
artificially created for the Pascal Large Scale Learning [63] in 2008.

• ECBDL14 dataset [64,65]. This dataset was used as a reference at
the ML competition of the Evolutionary Computation for Big Data
and Big Learning held on July 14, 2014, under the international
conference GECCO-2014. It consists of 631 characteristics (in-
cluding both numerical and categorical attributes) and 32 million
instances. It is a binary classification problem where the class dis-
tribution is highly imbalanced: 2% of positive instances. For this
work, we have used the complete dataset (ECBDL14 complete) and
furthermore, we have randomly selected a subset of 12 million in-
stances and 90 characteristics (ECBDL14 reduced).

The main features of the three big data problems are briefly de-
scribed in Table 2. In particular, the first column indicates the name of

Fig. 4. Flowchart of how the support of QARs is computed.

1: Input: RuleSet a set of rules discovered by the association rule algorithm
2: Output: (key, value) pair, where key indicates ruleId of each QAR of RuleSet evaluated in the instance corresponding to the

offset key and value contains the support of the antecedent (supA), support of the consequent (supC) and support of the rule
(supR) of each rule in such instance.

3: supports←
4: map partitions instances ∈ data
5: {instances will contain all instances in each partition}
6: for each Rule ∈ RuleS et do
7: {ruleId, {supA, supC, supR}} ← computeS upports(instances,Rule)
8: end for
9: end map

Algorithm 2. Function of the MR Phase 2 of the MRQAR framework that computes the support of each association rule:

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

183

the problems, the second column represents the number of attributes of
each attribute type (Real/Integer/Nominal) in the problems, the
column “Examples” shows the number of instances of each problem and
the column “Size” is the size of memory expressed in GB. Note that the
size of the datasets used is significant enough to undertake the study of
our proposal since most of the existing non-parallel algorithms are
unable to deal with these datasets or they have difficulties to obtain
good results.

4.1.2. Case study: MOPNAR algorithm
MOPNAR [10] is a recent MOEA that mines a reduced set of QARs

with low computational cost extending the MOEA/D-DE algorithm
[66]. This kind of MOEAs decomposes the multiobjective optimization
problem into N scalar optimization subproblems and uses an EA process
to optimize these subproblems simultaneously. As stated in previous
sections, the MR Phase 1 execute an algorithm to obtain association
rules in each map partition of the dataset used as training data. In the
experimentation performed, MOPNAR is applied as many times as the
number of partitions of the training data. Then, a different set of QARs
is obtained for each map partition as if they were independent datasets.
The main features of MOPNAR algorithm are detailed as follows:

• MOPNAR obtains interesting and comprehensible rules with a good
trade-off between the number of rules, support, and coverage of the
dataset. To accomplish that, this proposal maximizes the following
three objectives: comprehensibility, interestingness, and perfor-
mance.

• MOPNAR performs an evolutionary algorithm to learns the most
suitable intervals of the attributes belonging to the rules in a self-
adaptive way without performing a discretization process of the

variables domain of the problem so that the information loss is
avoided.

• A rule is coded as a array of genes that represent the attributes and
their intervals. Each gene represents an attribute that is composed of
4 parts as follows: the membership of the attribute in the rule, in-
terval positive or negative and the interval bounds of the attributes.

• MOPNAR also introduces two new components into the evolu-
tionary model: an external population (EP) and a method to restart
the population. On one hand, the EP keeps the nondominated so-
lutions discovered which are updated with the new rules generated
by the genetic operators after deleting the redundant rules. The
number of solutions of the EP is not bounded, which allows us to
obtain a larger number of rules of the Pareto front regardless of the
size of the population and reduce the size of the population, fol-
lowing a dataset independent approach. On the other hand, the
population is restarted when the number of new solutions obtained
in each generation does not satisfy a minimum threshold. This
process introduces diversity in the population and prevents the al-
gorithm from being trapped in local optimums. MOPNAR ends when
a maximum number of evaluations is satisfied.

A detailed explanation of the MOEA/D-DE scheme and MOPNAR
algorithm can be found in [10,66], respectively.

4.1.3. Algorithms and parameters considered for comparison
As stated Section 1, the performance of the proposed framework is

validated using the MOPNAR algorithm (see Section 4.1.2) as a case
study in the first phase of MRQAR. Henceforth, we denote as MRQAR-
MOPNAR to the proposed framework MRQAR using MOPNAR in the
first phase. Then, several experiments have been carried out to compare

1: Input: supports a (key, value) pair, where key is the id of a rule and value is the support of the antecedent (supA), support of
the consequent (supC) and support of the rule (supR) of such rule for each instance.

2: Output: (key, value) pair, where key is the id of each rule of RuleSet and value contains the global support of the antecedent,
consequent and the rule considering all the instances.

3: Rules← supports.reduce{(a, b) =>

4: a.supA+ = b.supA
5: a.supC+ = b.supC
6: a.supR+ = b.supR

7: }
Algorithm 3. Reduce phase for the MRQAR framework for computing the support of the model:

1: Input: (key, value) pair, where key is the id of each rule of RuleSet and value contains the global support of the antecedent,
consequent and the rule considering all the instances.

2: Output: GlobalRulePool the external set of rules that contains the non-dominated solutions found for the entire dataset.
3: for RuleRS ∈ RuleS et do
4: if RuleRS satisfies Minimum Thresholds then
5: for RuleGP ∈ GlobalRulePool do
6: if ruleRS dominates ruleGB then
7: remove ruleGB from GlobalRulePool
8: add ruleRS to GlobalRulePool
9: end if

10: if ruleRS and ruleGB are non-dominated solutions then
11: add ruleRS to GlobalRulePool
12: end if
13: end for
14: end if
15: end for
16: GlobalRulePool← removeRedundant(GlobalRulePool)

Algorithm 4. Function of the Sequential Phase 3 of the MRQAR framework that update the GlobalRulePool:

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

184

MOPNAR with respect to MRQAR-MOPNAR to analyze the behavior
and the inability of a sequential association rule algorithms to handle
big data problems when the proposed framework is not used.

The scalability analysis of MRQAR-MOPNAR was performed by
setting the amount of maps depending on the size of the problem. The
number of instances has been fixed for each map taking into account
previous works in which the methods for mining association rules
converge properly.

Notice that the computational power of the available hardware will
be used depending on the problem size. In a standard distributed model,
the number of map is determined by the number of nodes of the ma-
chine. Nevertheless, the MapReduce model is hardware independent.

On the other hand, we have also compared the results obtained by
MRQAR-MOPNAR with the PFP algorithm [11], which is implemented
in Spark [41], available in MLlib [9].

Table 3 provides the parameters used in the comparative study of
the algorithms. We have select the standard common parameters that
provide a good performance avoiding very specific values for the fra-
mework proposed. Moreover, the selection of the parameters for the
other algorithms has been carried out taking into account the con-
siderations of their authors.

4.1.4. Hardware and software used
The experiments have been executed in the research group’s cluster

composed of 16 nodes. Each one contains two Intel Xeon E5-2620 mi-
croprocessors with 2.00 GHz and 15 B cache. The nodes are connected
via a 40 Gb/s Infiniband network. All nodes have 64 GB of main

Fig. 5. Flowchart of how the new dataset is composed by the uncovered instances by GlobalRulePool.

1: Input: data that represents the dataset, each row is an Array of values.
2: Output: newData a new dataset with all uncovered instances.
3: newData← data. f ilter{instance =>
4: keep← TRUE
5: for Rule ∈ GlobalRulePool do
6: if instance is satisfied by Rule then
7: keep← FALS E
8: end if
9: end for

10: keep
11: }

Algorithm 5. Function of the MR Phase 4 of the MRQAR framework that builds a new dataset with the uncovered instances:

Table 2
Big Data problems used for the experiments.

Names Atributes R I N# (/ /) Examples Size(GB)

susy (18/0/1) 5,000,000 2
higgs (28/0/1) 11,000,000 6
epsilon (2000/0/0) 500,000 11
ECBDL14 (reduced) (18/72/0) 12,000,000 5.25
ECBDL14 (complete) (77/462/92) 34,890,838 62

Table 3
Parameters considered for the comparison.

Algorithms Parameters

MOPNAR Neval=100000, H=13, m=3, PopSize= + −
−N ,H m

m
1

1 T=10,
δ=0.9, ηr=2, γ=2, Pmut= 0.1, α = 5%

PFP minSup = 0.1, minConf = 0.5, 0.8
MRQAR-

MOPNAR
−Neval Global=100000, Neval=25000, H=9, trNotCover=2%,

m=3, PopSize= + −
−N ,H m

m
1

1 T=7, δ=0.9, ηr=2, γ=2, Pmut=
0.1, α = 5%

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

185

memory except the main node that have 96 GB. The operating system
used is Linux CentOS 6.9. Hadoop 2.6.0 (Cloudera CDH5.8.0) is run in
the cluster. The NameNode and ResourceManager are assigned to the
head node. DataNodes and NodeManager are configured in the re-
maining nodes. Moreover, the cluster is configured with Spark 2.1.1,
where the head node is configured as master and NameNode, and the
rest are workers and DataNodes.

4.2. Analysis of MOPNAR with respect to MRQAR-MOPNAR

In this subsection, we have been carried out several experiments to
illustrate the behavior of MOPNAR with respect to MRQAR-MOPNAR.
The experiments were performed using different subsets of the higgs
dataset.

Fig. 6 presents the number of examples of each subset, the number
of split or maps computed by MRQAR-MOPNAR for each version of the

Fig. 6. Runtime expended for MOPNAR and MRQAR-MOPNAR according to number of instances executed.

Table 4
Results of the measures for MOPNAR and MRQAR-MOPNAR over the higgs subsets.

Algorithm R# Support Confidence Lift Conviction CF Netconf YulesQ Attributes %Trans

higgs (100000 examples)
MOPNAR 62.60 0.39 0.84 3.89 ∞ 0.74 0.47 0.92 2.93 99.31
MRQAR-MOPNAR 66 0.52 0.94 2.08 ∞ 0.9 0.52 0.96 1.91 99.84

higgs (200000 examples)
MOPNAR 159.20 0.30 0.82 3.21 ∞ 0.75 0.52 0.91 2.71 97.49
MRQAR-MOPNAR 118 0.4 0.88 2.53 86.36 0.8 0.6 0.95 1.75 99.86

higgs (400000 examples)
MOPNAR 211.20 0.41 0.87 4.79 ∞ 0.80 0.50 0.94 2.64 96.12
MRQAR-MOPNAR 107 0.57 0.93 2.4 76.36 0.87 0.59 0.97 1.35 99.92

higgs (800000 examples)
MOPNAR 224.60 0.32 0.86 6.44 ∞ 0.74 0.53 0.91 3.11 99.44
MRQAR-MOPNAR 140 0.49 0.94 3.17 91.10 0.91 0.61 0.98 1.43 99.85

higgs (1600000 examples)
MOPNAR 575.80 0.54 0.92 2 ∞ 0.78 0.33 0.89 2.75 98.21
MRQAR-MOPNAR 178 0.53 0.96 3.87 79.94 0.93 0.61 0.99 1.49 99.91

Table 5
Analysis of the performance for MRQAR-MOPNAR depending on the number of maps on the susy, higgs, epsilon, ECBDL14 (reduced) and ECBDL14 (complete)
datasets.

Datasets Maps ExSplit R# Support Confidence Lift Conviction CF Netconf YulesQ Attributes %Trans

susy 25 200,000 469 0.45 0.98 3.5 2587.3 0.97 0.79 1 1.65 99.99
50 100,000 489 0.48 0.98 4.59 1601.8 0.97 0.81 1 1.41 99.99
75 66,666 440 0.48 0.98 7.99 2773.8 0.97 0.83 1 1.64 99.99
100 50,000 515 0.49 0.97 7.3 ∞ 0.96 0.84 1 1.45 99.99

higgs 50 220,000 401 0.61 0.96 2.88 144.24 0.93 0.57 0.99 1.48 99.95
100 110,000 510 0.57 0.97 1.87 73.78 0.95 0.61 0.99 1.53 99.87
150 73,333 383 0.55 0.98 2.44 96.19 0.95 0.61 0.99 1.85 99.99
200 55,000 403 0.56 0.96 2.96 68.39 0.94 0.61 0.99 1.53 99.99

epsilon 10 50,000 27 0.22 0.88 2.93 198.00 0.82 0.70 0.94 5.93 93.86
15 33,333 34 0.25 0.87 2.80 16.11 0.80 0.60 0.94 4.50 95.68
20 25,000 31 0.23 0.92 4.19 75.93 0.89 0.78 0.98 4.68 96.75
25 20,000 35 0.23 0.89 4.53 419.75 0.86 0.77 0.95 7.68 98.05

ECBDL14 reduced 60 200,000 132 0.34 0.93 5.96 ∞ 0.90 0.82 0.99 1.7 100
120 100,000 179 0.33 0.95 9.44 ∞ 0.92 0.84 0.99 1.78 100
180 66,666 173 0.35 0.95 6.96 ∞ 0.93 0.81 0.99 1.71 100
240 50,000 196 0.35 0.93 4.63 ∞ 0.90 0.81 0.99 1.74 100

ECBDL14 (complete) 800 43,613 19 0.42 0.91 2.37 6.34 0.81 0.70 0.96 1.20 99.99
960 36,345 16 0.36 0.89 2.43 6.79 0.79 0.63 0.95 1.41 99.88
1120 31,153 18 0.40 0.93 2.16 9.54 0.84 0.63 0.95 1.63 99.99
1280 27,258 14 0.41 0.89 2.31 6.13 0.78 0.68 0.96 1.40 99.95

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

186

dataset (“#Maps”) and the runtime expended by MOPNAR and
MRQAR-MOPNAR. The number of examples is the result of multiplying
a fixed dataset size by the number of maps specified in order to analyze
how the runtime is evolved according to an increasing number of ex-
amples and a fixed number of instances per map or partition. The
number of instances for each map should be selected considering a
problem size in which standard methods can converge properly. That is,
when the dimensionality curve allows us to address these problems in a
reasonable time and therefore the execution times in each MapReduce
phase are suitable. In particular, we have considered 25,000 examples
per split (map) for MRQAR-MOPNAR. The number of iterations of
MRQAR-MOPNAR can be calculated dividing the −Neval global parameter
by Neval parameter. Considering the parameters provided in Table 3, the

number of iterations of MRQAR-MOPNAR for all the experimental re-
sults presented in Fig. 6 is 100000/25000 = 4.

We can highlight how MOPNAR scales exponentially when the
number of examples increase. Notice that, MOPNAR was not able to
manage the subset with 3,200,000 examples. Moreover, the time dif-
ference between MRQAR-MOPNAR and MOPNAR is higher while the
size of the problem increase, being MRQAR-MOPNAR eighteen times
faster than MOPNAR with 1,600,000 examples.

Several measures that evaluate the rules according to different
quality properties have been considered to analyze the performance of
the MOPNAR and MRQAR-MOPNAR. These metrics solve the optimi-
zation problems of support and confidence measures as stated
Section 2.1 and guarantees the quality of the rules found. Note that the

Fig. 7. Average results of the support, confidence, CF, netconf and yulesQ measures when the number of maps increase with the susy, higgs, epsilon and ECBDL14
(reduced and complete) datasets for MRQAR-MOPNAR.

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

187

quality measures presented for MRQAR-MOPNAR have been calculated
for all the instances of the input dataset. Table 4 shows the average of
the results obtained by MOPNAR and MRQAR-MOPNAR over the sub-
sets of the higgs dataset that MOPNAR was able to be executed. The
number of QARs discovered is indicated in column R# ; the average
support, confidence, lift, CF, netconf and yules’Q values are presented
in columns Support, Confidence, Lift, Conviction, Certain Factor (CF),
Netconf and YulesQ, respectively. the average number of attributes that
belong to the rules is shown in column Attributes; and the last column
%Trans represents the percentage of instances that the discovered QARs
satisfy. The value 100 - trNotCover threshold could be a lower bound of
the percentage of instances of the dataset covered by the resulting
QARs. This fact can only happen in the iterations in which the per-
centage of instances not covered is less than trNotCover. In other case, it
cannot be ensured due to the −Neval Global parameter can be achieved
before the trNotCover parameter is reached, therefore, a higher value

−Neval Global could be needed.
The conclusions described below can be drawn from the analysis

performed in Table 4:
The rule sets discovered by MRQAR-MOPNAR and MOPNAR pre-

sent similar values for the quality measures, being better for MRQAR-
MOPNAR when the size of the problem increase. The framework pro-
posed is able to obtain a reduced set of quality QARs that cover more
than 99% of instances in all the datasets. These rules provide interesting
knowledge and different features of the problem. MRQAR-MOPNAR
mines smaller number of rules than MOPNAR without consequences in
the increasing of the average support (almost less than 0.5 in all da-
tasets).

4.3. Analysis of the MRQAR-MOPNAR behavior

This section presents a set of experiments to illustrate the behavior
of MRQAR-MOPNAR over the datasets considered in the study. Five
different values for the number of maps for each dataset have been used
to facilitate the comprehensibility of the performed analysis. The
number of maps selected is different between the datasets to process a
similar number of examples per split approximately.

The results obtained by MRQAR-MOPNAR are shown in Table 5,
this kind of table was described in Section 4.2, but in this case we have
added the number of maps (Maps) and the number of examples per split
(ExSplit). The best value obtain for each measure is highlighted in bold
for each big data problem. Fig. 7 shows the average results of the

support, confidence, CF, netconf and yulesQ measures for MRQAR-
MOPNAR when the number of maps increase for the susy, higgs, epsilon
and ECBDL14 reduced and complete datasets, respectively. Notice that
we have not showed the lift and conviction measures in the figure be-
cause their range is not bounded, which makes them difficult to re-
present with the rest of the measures. As can be observed in Table 5 and
Fig. 7, the interestingness measures start with high values that remain
almost unchanged when the method uses a larger number of maps.
MRQAR-MOPNAR obtains set of rules that cover different areas of the
problem, which allow us to achieve almost the 100% of covered in-
stances of the datasets for all the number of maps used.

On the other hand, we analyze the runtime expended by MRQAR-
MOPNAR using different number of maps for the datasets analyzed in
the experimental study. Table 6 shows the runtime expended in sec-
onds. Furthermore, the runtime is also presented using the hh:mm:ss
structure (where hh, mm and ss represent the hours, minutes and sec-
onds spent, respectively) by our proposal when the number of maps
increases. The best average runtime is highlighted in bold for each
dataset considered. Fig. 8 shows the relationship between the runtime
and the number of maps.

In a first glance, it can be observed that the runtime necessary to
execute the proposed approach is admissible. MRQAR-MOPNAR im-
proves its runtime as the number of mappers are enlarged, obtaining a
good speed gain for all the different number of mappers. However, this
speed gain is less impressive as the number of mappers used is higher.

Therefore, analyzing the MRQAR-MOPNAR behavior presented in
this section, we will use the maximum number of maps for all datasets
(100, 200, 25, 240 and 1280 maps for susy, higgs, epsilon and ECBLD14
reduced and complete datasets, respectively) in the following experi-
mental study due to our proposal tends to obtain a reduction on the
runtime and more precise results when a higher number of mappers are
used.

4.4. Comparison with PFP-Spark algorithm for big data problems

This section is devoted to compare the results obtained by MRQAR-
MOPNAR against another existing approaches that deal with Big Data
problems to mine association rules. Specifically, we have used a dis-
tributed adaptation of the well-known FP-Growth named PFP algorithm
implemented in Spark. The PFP algorithm presents a MapReduce ap-
proach to parallelize the FP-Growth algorithm [67]. This method only
finds frequent itemsets from datasets with binary or discrete values
then, several procedures have been carried to make this algorithm
comparable. In particular, we have used a procedure afterwards to
generate association rules and we have discretized the datasets using a
Spark implementation [68] of the Fayyad’s discretized [69] based on
Minimum Description Length Principle.

Table 7 shows the average of the results obtained by MRQAR-
MOPNAR and PFP over the datasets analyzed. Note that no results are
shown for epsilon and ECBDL14 (complete) datasets because FPF was
not able to work with these datasets due to scalability issues in spite of
using several parameter configuration settings. The structure of the
table was described in Section 4.2 but in this case we have also included
the runtime devoted in seconds by each method analyzed (Runtime(s))
and by the discretization method (Discretize(s)). The real attributes of
each dataset have been discretized into 25 intervals. The results
achieved by PFP using a minimum confidence threshold (MinConf) of
0.5 and 0.8, in addition to a minimum support thresholds (MinSup)
ranging from 0.2 to 0.4 are also presented. Note that PFP algorithm was
unable to be executed using a minimum support threshold of 0.2 for the
ECBDL14 (reduced) problem due to the huge amount of rules gener-
ated.

Several conclusions can be drawn after analyzing the reported re-
sults. MRQAR-MOPNAR overcomes the PFP algorithm in all the inter-
estingness measures considered. The coverage of the datasets achieved
for the rules obtained by MRQAR-MOPNAR for all the problems is

Table 6
Average runtime in seconds for MRQAR-MOPNAR depending on the number of
maps on the poker, susy and higgs datasets.

Datasets Maps second hh:mm:ss

susy 25 16,208 4:30:08
50 7962 2:12:42
75 6336 1:45:36
100 5256 1:27:36

higgs 50 27,009 7:30:09
100 15,702 4:21:42
150 11,478 3:11:18
200 10,160 2:49:20

epsilon 10 55,700 15:28:20
15 48,722 13:32:02
20 23,328 6:28:48
25 16,745 4:39:05

ECBDL14 reduced 60 30,043 8:20:43
120 17,320 4:48:40
180 13,508 3:45:08
240 12,112 3:21:52

ECBDL14 complete 800 69,613 19:20:13
960 45,234 12:33:54
1120 29,736 8:17:10
1280 29,830 8:15:36

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

188

almost 100%. Additionally, Certain Factor and YulesQ measures are al-
most 1, which is the highest possible value. Indeed, the conviction value
is ∞ for susy and ECBDL14 (reduced) problems which means perfect
implications.

In the case of susy problem any rule was obtained by PFP using the
configurations MinSup 0.3 and MinConf 0.8, in addition to MinSup 0.4.
For the remaining configurations, it can be observed that a very low
number of rules are obtained by PFP. This fact shows the inability of
this method of obtaining good quality rules for big data problems. The
quality measures obtained forMinSup 0.2 and 0.3 using MinConf 0.5 are
quite similar, although the number of rules and the percentage of in-
stances is higher for the first configuration. For higgs problem, despite
the fact that the percentage of instances, support and confidence values
are good values, PFP obtains values near 0 for Certain Factor, Netconf
and YulesQ measures that represent independence between antecedent

and consequent and denote the poor quality of the rules obtained. In
fact, the configuration MinSup 0.3 and MinConf 0.5 reports negative
values for that measures that means that antecedent and consequent are
independent. In contrast to these problems, PFP reports better results
for ECBDL14 (reduced) problem.

Finally, the runtime required for the PFP algorithm in all the studied
datasets is better than MRQAR-MOPNAR. However, that algorithm re-
quires a previous discretization process to deal with quantitative da-
tasets, so that the total time required for PFP is highly increased when
the discretization is considered. Note that the discretization runtime is
quite higher for susy and higgs problems in contrast to ECBDL14 (re-
duced) due to the huge amount of possible values that their real attri-
butes have. In conclusion, MRQAR-MOPNAR performs better than PFP
regardless of the data set used without prior discretization process nor
minimum thresholds of the measures to increase the quality of the rules

Fig. 8. The runtime (seconds) over the susy, higgs epsilon, ECBLD14 (reduced and complete) datasets for MRQAR-MOPNAR.

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

189

obtained.
We have applied a statistical analysis in order to assess whether

significant differences exist among the results obtained in MRQAR-
MOPNAR and PFP. We have considered the use of Bayesian tests due to
the few datasets used in the experimental analysis. The use of this type
of tests has experienced a great growth in the machine learning com-
munity in the last years due to the shortcomings of frequentist rea-
soning, and especially of the null hypothesis significance tests (NHST)
[70].

Regarding the datasets used in the statistical analysis, susy, higgs
and ECBDL14 (reduced) have been only considered since PFP was un-
able to return rules for datasets ECBDL14 (complete) and epsilon.

According to PFP, we have selected the configurations where the
measures of this algorithm have had better values. In particular,
MinSup. 0.2 and MinConf. 0.8 for susy and higgs datasets in addition to
MinSup. 0.3 and MinConf. 0.8 for ECBLD14 (reduced).

In order to compare the two algorithms statistically, we have con-
sidered multiple quality measures. We have selected confidence, lift,
certainty factor (CF), NetConf and YulesQ (see Table 1). Note that
conviction measure has not been used because MRQAR-MOPNAR ob-
tains infinity values in some datasets.

The mean values of these measures have been adopted to MeanS
because all of them are not in the same domain. MeanS takes values in
the domain [0,1]. The independence value for each measure is re-
presented by the worst value, which means that it does not provide new
knowledge to the user.

The MeanS for each measure is defined as:

• For the measures CF, NetConf and YulesQ, whose domain is [−1,1]:

=
⎧
⎨
⎩

≤

+

⎫
⎬
⎭

MeanS
meanValue

otherwise

0

0.5

meanValue

meanValue
2

2 (1)

• For the measure Lift, whose domain is [0, inf]:

=
⎧
⎨
⎩

− >

− ≤ ≤

⎫
⎬
⎭

MeanS
meanValue

meanValue

1 1

0.5 0 1
meanValue

meanValue

0.5

2 (2)

• MeanS of confidence measure has not been adopted since the do-
main is [0,1].

where meanValue is the mean value obtained for each measure in a
dataset.

In order to compare the results, we have used the De Campos’s test
[71] in which the dominance statement for two given algorithms A, B is
defined as D(BA) = [< , ... , > , <], where Di

BA() is < if B gets a score
less than A for the measure = …i m1, , . The aim of this test is to cal-
culate the probability of each of the 2m possible configurations. To do
that, this test initially considers a probability distribution that assigns
each configuration the same probability and then adjusts the prob-
abilities based on the algorithm’s results. The test results show that the
probability of MRQAR being better than PFP in all analyzed measures is
0.944.

From these results we can assure that MRQAR is better than PFP
with a high probability, presenting better results in all analyzed data-
sets. In addition, it is more scalable and capable of handling large da-
tasets at an appropriate computational cost.

5. Conclusions

A new incremental parallel and general framework named MRQAR
has been presented in this paper to discover QARs in Big Data problems.
Our proposal is designed following a MapReduce scheme using Apache
Spark, a well-known solution to face Big Data problems. MRQAR is a
general purpose framework that can execute any sequential association
rule algorithm to obtain quantitative association rules in Big Data,
obtaining the best rules in terms of quality for the entire dataset. This
proposal must be used when the standard algorithm to find QARs is not
able to be executed in big data scenarios, or it has difficulty to obtain
good results due to the size of the search space. As a particular case
study, the non-distributed MOPNAR algorithm is integrated within the

Table 7
Comparison of PFP with MRQAR-MOPNAR.

Algorithm MinSup. MinConf. R# Support Confidence Lift Conviction CF Netconf YulesQ Attributes %Trans Runtime(s) +
discretize(s)

susy
PFP 0.2 0.5 37 0.27 0.63 1.12 1.23 0.14 0.11 0.22 2.24 95.78 23+5627
PFP 0.2 0.8 2 0.26 0.84 1.38 2.43 0.59 0.33 0.67 2.5 62.7 20+ 5627
PFP 0.3 0.5 8 0.36 0.64 1.13 1.22 0.15 0.15 0.28 2 63.88 14+5627
PFP 0.3 0.8 0 0 0 0 0 0 0 0 0 0 16+5627
PFP 0.4 0.5 0 0 0 0 0 0 0 0 0 0 19+5627
PFP 0.4 0.8 0 0 0 0 0 0 0 0 0 0 15+5627
MRQAR-MOPNAR 515 0.49 0.97 7.30 ∞ 0.96 0.84 0.99 1.45 99.99 5256+0

higgs
PFP 0.2 0.5 33 0.28 0.67 1.01 1.01 0.01 0.01 0.01 2.21 95.72 61+8222
PFP 0.2 0.8 13 0.29 0.80 1 1 0 0 0 2.23 80.29 59+8222
PFP 0.3 0.5 9 0.39 0.74 0.99 0.98 –0.01 –0.01 –0.03 2 80.29 25+8222
PFP 0.3 0.8 6 0.37 0.80 1 1 0 0 0 2 80.29 17+8222
PFP 0.4 0.5 4 0.44 0.67 1 1 0 0 0 2 64.46 17+8222
PFP 0.4 0.8 2 0.44 0.8 1 1 0 0 0 2 64.46 22+ 8222
MRQAR-MOPNAR 403 0.56 0.96 2.96 68.39 0.94 0.61 0.99 1.53 99.99 10160+0

epsilon
MRQAR-MOPNAR 35 0.23 0.89 4.53 419.75 0.86 0.77 0.95 7.68 98.05 16745+0

ECBDL14 reduced
PFP 0.3 0.5 443 0.35 0.87 1.55 9.22 0.57 0.46 0.69 3.26 99.75 2471+107
PFP 0.3 0.8 336 0.35 0.92 1.59 9.22 0.62 0.48 0.70 3.42 99.75 2128+107
PFP 0.4 0.5 83 0.44 0.90 1.44 2.74 0.47 0.43 0.59 2.43 99.59 216+107
PFP 0.4 0.8 80 0.43 0.92 1.46 2.81 0.49 0.44 0.61 2.45 99.59 168+107
MRQAR-MOPNAR 196 0.35 0.93 4.63 ∞ 0.90 0.81 0.99 1.74 100 12112+0

ECBDL14 complete
MRQAR-MOPNAR 14 0.41 0.89 2.31 6.13 0.78 0.68 0.96 1.40 99.95 29,736+0

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

190

Map of the first phase of MRQAR named MRQAR-MOPNAR.
The results obtained show that our proposal using MOPNAR in the

first phase discovers reduced sets of high quality QARs from the Big
Data problems analyzed. Furthermore, the rules generated present a
high coverage of the datasets (more than 99% in most cases), providing
with interesting knowledge of the whole datasets to the user. The
runtime expended by our proposal is adequate in all datasets. When
comparing the results obtained with another algorithm to mine asso-
ciation rules from Big Data problems, it can be observed that MRQAR-
MOPNAR overcomes the PFP algorithm in terms of better values for
interesting measures and coverage of the dataset.

Acknowledgments

This work has been partially funded by the Ministry of Economy and
Competitiveness under the TIN2017-89517-P, TIN2014-55894-C2-1-R
and TIN2017-88209-C2-2-R projects.

References

[1] M. Martínez-Ballesteros, J. Bacardit, A. Troncoso, J. Riquelme, Enhancing the
scalability of a genetic algorithm to discover quantitative association rules in large-
scale datasets, Integr. Comput. Aided Eng. 22 (1) (2015) 21–39.

[2] A. Bechini, F. Marcelloni, A. Segatori, A MapReduce solution for associative clas-
sification of big data, Inf. Sci. (Ny) 332 (2016) 33–55.

[3] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters,
Commun. ACM 51 (1) (2008) 107–113.

[4] S. Ramírez-Gallego, A. Fernández, S. García, M. Chen, F. Herrera, Big data: tutorial
and guidelines on information and process fusion for analytics algorithms with
mapreduce, Inf. Fus. 42 (2018) 51–61.

[5] A. Fernández, S. del Río, V. López, A. Bawakid, M.J. del Jesus, J.M. Benítez,
F. Herrera, Big data with cloud computing: an insight on the computing environ-
ment, mapreduce, and programming frameworks, Wiley Interdiscip. Rev. Data
Mining Knowl. Disc. 4 (5) (2014) 380–409.

[6] C.P. Chen, C.-Y. Zhang, Data-intensive applications, challenges, techniques and
technologies: a survey on big data, Inf. Sci. (Ny) 275 (2014) 314–347.

[7] Apache Spark: lightning-fast cluster computing, 2017, [Online; consulted in July
2017] (http://spark.apache.org/).

[8] H. Karau, A. Konwinski, P. Wendell, M. Zaharia, Learning Spark: Lightning-Fast Big
Data Analytics, first, O’Reilly Media, Inc., 2015.

[9] MLlib website, 2017, [Online; consulted in July 2017] (https://spark.apache.org/
mllib/).

[10] D. Martín, A. Rosete, J. Alcalá-Fdez, F. Herrera, A new multiobjective evolutionary
algorithm for mining a reduced set of interesting positive and negative quantitative
association rules, IEEE Trans. Evol. Comput. 18 (1) (2014) 54–69.

[11] H. Li, Y. Wang, D. Zhang, M. Zhang, E. Chang, PFP: parallel FP-growth for query
recommendation, Proceedings of the ACM Conference on Recommender Systems,
RecSys ’08, ACM, 2008, pp. 107–114.

[12] R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items
in large databases, Proceedings of the ACM SIGMOD Inter. Conference on
Management of Data, (1993), pp. 207–216.

[13] L. Geng, H. Hamilton, Interestingness measures for data mining: a survey, ACM
Comput. Surv. 38 (3) (2006) 1–42.

[14] M. Martínez-Ballesteros, A. Troncoso, F. Martínez-Álvarez, J. Riquelme, Obtaining
optimal quality measures for quantitative association rules, Neurocomputing 176
(2016) 36–47.

[15] S. Brin, R. Motwani, C. Silverstein, Beyond market baskets: generalizing association
rules to correlations, Proceedings of the ACM SIGMOD, 26 (1997), pp. 265–276.

[16] S. Brin, R. Motwani, J.D. Ullman, S. Tsur, Dynamic itemset counting and implica-
tion rules for market basket data, Proceedings of the ACM SIGMOD, (1997), pp.
265–276.

[17] E. Shortliffe, B. Buchanan, A model of inexact reasoning in medicine, Math. Biosci.
23 (1975) 351–379.

[18] K.-I. Ahn, J.-Y. Kim., Efficient mining of frequent itemsets and a measure of interest
for association rule mining. J. Inform. Know. Manag. 3 (3) (2004) 245–257.

[19] P. Tan, V. Kumar, Interestingness measures for association patterns: a perspective,
Proceedings of the KDD-2000 workshop on post processing in machine learning and
data mining, (2000).

[20] D. Adhikary, S. Roy, Trends in quantitative association rule mining techniques,
Proceedings of the IEEE Second International Conference on Recent Trends in
Information Systems (ReTIS), (2015), pp. 126–131.

[21] T. Fukuda, Y. Morimoto, S. Morishita, T. Tokuyama, Mining optimized association
rules for numeric attributes, J. Comput. Syst. Sci. 58 (1) (1999) 1–12.

[22] R. Srikant, R. Agrawal, Mining quantitative association rules in large relational
tables, Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD ’96, ACM, New York, NY, USA, 1996, pp. 1–12.

[23] Y. Guo, J. Yang, Y. Huang, An effective algorithm for mining quantitative asso-
ciation rules based on high dimension cluster, Proceedings of the Fourth
International Conference on Wireless Communications, Networking and Mobile
Computing, (2008), pp. 1–4.

[24] J. Yang, Z. Feng, An effective algorithm for mining quantitative associations based
on subspace clustering, Proceedings of the International Conference on Networking
and Digital Society, 1 (2010), pp. 175–178.

[25] Y. Aumann, Y. Lindell, A statistical theory for quantitative association rules, J. Intel.
Inf. Syst. 20 (3) (2003) 255–283.

[26] H. Ishibuchi, Y. Nojima, Optimization of scalarizing functions through evolutionary
multiobjective optimization, Lect. Notes Comput. Sci. 4403 (2006) 51–65.

[27] H. Zheng, J. He, G. Huang, Y. Zhang, Optimized fuzzy association rule mining for
quantitative data, Proceedings of the IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), (2014), pp. 396–403.

[28] X. Yan, C. Zhang, S. Zhang, Genetic algorithm-based strategy for identifying asso-
ciation rules without specifying actual minimum support, Expert Syst. Appl. 36 (2)
(2009) 3066–3076.

[29] M. Martínez-Ballesteros, F. Martínez-Álvarez, A. Troncoso, J. Riquelme, Mining
quantitative association rules based on evolutionary computation and its applica-
tion to atmospheric pollution, Integr. Comput. Aided Eng. 17 (2010) 227–242.

[30] M. Martínez-Ballesteros, F. Martínez-Álvarez, A. Troncoso, J. Riquelme, An evolu-
tionary algorithm to discover quantitative association rules in multidimensional
time series, Soft Comput. 15 (10) (2011) 2065–2084.

[31] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach, IEEE Trans. Evolut. Comput. 3 (4) (1999)
257–271.

[32] S. Ventura, J. Luna, Multiobjective Approaches in Pattern Mining, Springer
International Publishing, Cham, pp. 119–139.

[33] D. Martín, A. Rosete, J. Alcalá-Fdez, F. Herrera, QAR-CIP-NSGA-II: a new multi-
objective evolutionary algorithm to mine quantitative association rules, Inform. Sci.
258 (2014) 1–28.

[34] M. Martínez-Ballesteros, A. Troncoso, F. Martínez-Álvarez, J.C. Riquelme,
Improving a multi-objective evolutionary algorithm to discover quantitative asso-
ciation rules, Knowl. Inf. Syst. 49 (2) (2016) 481–509.

[35] M. Almasi, M.S. Abadeh, Rare-pears: a new multi objective evolutionary algorithm
to mine rare and non-redundant quantitative association rules, Knowl.-Based Syst.
89 (2015) 366–384.

[36] D. Martín, J. Alcalá-Fdez, A. Rosete, F. Herrera, Nicgar: a niching genetic algorithm
to mine a diverse set of interesting quantitative association rules, Inf. Sci. (Ny) 355
(2016) 208–228.

[37] J. Li, X. Ye, Study on linked list-based algorithm for metarule-guided mining of
multidimensional quantitative association rules, Proceedings of the Third
International Conference on Natural Computation (ICNC 2007), 1 (2007), pp.
300–304.

[38] J. Dean, S. Ghemawat, Mapreduce: a flexible data processing tool, Commun. ACM
53 (1) (2010) 72–77.

[39] Apache hadoop, 2017, [Online; consulted in July 2017] (http://hadoop.apache.
org/).

[40] T. White, Hadoop: The Definitive Guide, First, O’Reilly Media, Inc., 2009.
[41] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin,

S. Shenker, I. Stoica, Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing, Proceedings of the Ninth USENIX Conference on
Networked Systems Design and Implementation, USENIX Association, 2012. 2–2

[42] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. Tsai, M. Amde, S. Owen, X. D., R. Xin, J. Franklin, R. Zadeh, M. Zaharia,
A. Talwalkar, MLLib: machine learning in apache spark, J. Mach. Learn. Res. 17
(34) (2016) 1–7.

[43] D. Adhikary, S. Roy, Issues in Quantitative Association Rule Mining: A Big Data
Perspective, Springer Singapore, Singapore, pp. 377–385.

[44] S. Ventura, J. Luna, Scalability in Pattern Mining, Springer International Publishing,
Cham, pp. 177–190.

[45] A. Saabith, E. Sundararajan, A. Bakar, Parallel implementation of apriori algorithms
on the hadoop-mapreduce platform–an evaluation of literature, J. Theor. Appl. Inf.
Technol. 85 (3) (2016) 321–351.

[46] F. Kovács, J. Illés, Frequent itemset mining on hadoop, Proceedings of the IEEE
Ninth International Conference on Computational Cybernetics (ICCC), (2013), pp.
241–245.

[47] .R.M. Hazarika M., Mapreduce based eclat algorithm for association rule mining in
datamining: mr_eclat, Int. J. Comput. Sci. Eng. 3 (1) (2014) 19–28.

[48] S. Moens, E. Aksehirli, B. Goethals, Frequent itemset mining for big data,
Proceedings of the IEEE International Conference on Big Data, (2013), pp. 111–118.

[49] M.J. Zaki, S. Parthasarathy, M. Ogihara, W. Li, New algorithms for fast discovery of
association rules, Proceedings of the Third International Conference on Knowledge
Discovery and Data mining (KDD’97), AAAI Press, 1997, pp. 283–286.

[50] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large data-
bases, Proceedings of the International Conference on Very Large Databases,
(1994), pp. 478–499.

[51] L. Greeshma, G. Pradeepini, Input split frequent pattern tree using mapreduce
paradigm in hadoop, J. Theor. Appl. Inf. Technol. 84 (2) (2016) 260–271.

[52] S. Salah, R. Akbarinia, F. Masseglia, A highly scalable parallel algorithm for
maximally informative k-itemset mining, Knowl. Inf. Syst. 50 (1) (2017) 1–26.

[53] X. Yusheng, C. Zhengzhang, D. Palsetia, G. Trajcevski, A. Agrawal, A. Choudhary,
Silverback+: scalable association mining via fast list intersection for columnar
social data, Knowl. Inf. Syst. 50 (3) (2017) 969–997.

[54] M. Lin, P. Lee, S. Hsueh, Apriori-based frequent itemset mining algorithms on
MapReduce, Proceedings of the Sixth International Conference on Ubiquitous
Inform. Management and Communication, ICUIMC ’12, ACM, 2012, pp. 1–8.

[55] L. Wang, L. Feng, J. Zhang, P. Liao, An efficient algorithm of frequent itemsets
mining based on mapreduce, J. Inform. Comput. Sci. 11 (8) (2014) 2809–2816.

[56] H. Qiu, R. Gu, C. Yuan, Y. Huang, Yafim: a parallel frequent itemset mining

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

191

http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0001
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0001
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0001
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0002
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0002
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0003
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0003
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0004
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0004
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0004
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0005
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0005
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0005
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0005
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0006
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0006
http://spark.apache.org/
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0007
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0007
https://spark.apache.org/mllib/
https://spark.apache.org/mllib/
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0008
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0008
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0008
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0009
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0009
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0009
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0010
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0010
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0010
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0011
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0011
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0012
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0012
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0012
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0013
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0013
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0014
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0014
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0014
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0015
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0015
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0016
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0016
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0017
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0017
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0017
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0018
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0018
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0018
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0019
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0019
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0020
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0020
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0020
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0021
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0021
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0021
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0021
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0022
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0022
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0022
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0023
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0023
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0024
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0024
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0025
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0025
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0025
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0026
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0026
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0026
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0027
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0027
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0027
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0028
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0028
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0028
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0029
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0029
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0029
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0030
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0030
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0030
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0031
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0031
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0031
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0032
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0032
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0032
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0033
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0033
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0033
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0034
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0034
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0034
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0034
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0035
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0035
http://hadoop.apache.org/
http://hadoop.apache.org/
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0036
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0037
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0037
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0037
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0037
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0038
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0038
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0038
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0038
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0039
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0039
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0039
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0040
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0040
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0040
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0041
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0041
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0042
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0042
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0043
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0043
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0043
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0044
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0044
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0044
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0045
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0045
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0046
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0046
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0047
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0047
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0047
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0048
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0048
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0048
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0049
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0049
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0050

algorithm with spark, Proceedings of the IEEE International Parallel Distributed
Processing Symposium Workshops, (2014), pp. 1664–1671.

[57] F. Zhang, M. Liu, F. Gui, W. Shen, A. Shami, Y. Ma, A distributed frequent itemset
mining algorithm using spark for big data analytics, Clust. Comput. 18 (4) (2015)
1493–1501.

[58] K.K. Sethi, D. Ramesh, Hfim: a spark-based hybrid frequent itemset mining algo-
rithm for big data processing, J. Supercomput. (2017) 1–17.

[59] H.V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J.M. Patel,
R. Ramakrishnan, C. Shahabi, Big data and its technical challenges, Commun. ACM
57 (7) (2014) 86–94.

[60] P. Baldi, P. Sadowski, D. Whiteson, Searching for exotic particles in high-energy
physics with deep learning, Nat. Commun. 5 (2014).

[61] K. Bache, M. Lichman, Uci machine learning repository, 2017, [Online; consulted in
July 2017] (http://archive.ics.uci.edu/ml).

[62] Epsilon in the libsvm website, 2016, [Online; consulted in December 2017] (http://
www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html#epsilon).

[63] Pascal large scale learning challenge, 2008, [Online; consulted in December 2017]
(http://largescale.ml.tu-berlin.de).

[64] Evolutionary computation for big data and big learning workshop. data mining
competition 2014: Self-deployment track., 2014, (http://cruncher.ncl.ac.uk/
bdcomp/).

[65] I. Triguero, S. del Ro, V. Lpez, J. Bacardit, J.M. Bentez, F. Herrera, Rosefw-rf: the
winner algorithm for the ecbdl14 big data competition: an extremely imbalanced
big data bioinformatics problem, Knowl. Based Sys.t 87 (Supplement C) (2015)
69–79. Computational Intelligence Applications for Data Science

[66] H. Li, Q. Zhang, Multiobjective optimization problems with complicated pareto sets,
MOEA/d and NSGA-II, IEEE Trans. Evol. Comput. 13 (2) (2009) 284–302.

[67] J. Han, J. Pei, Y. Yin, R. Mao, Mining frequent patterns without candidate gen-
eration: a frequent-pattern tree approach, Data Mining Know. Disc. 8 (1) (2004)
53–87.

[68] S. Ramírez-Gallego, S. García, H. Mourio-Talin, D. Martínez-Rego, V. Boln,
A. Alonso-Betanzos, J. Benitez, F. Herrera, Distributed entropy minimization dis-
cretizer for big data analysis under apache spark, Proceedings of the IEEE
BigDataSE Conference, (2015).

[69] U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous-valued attri-
butes for classification learning. Proceedings of the IJCAI, (1993), pp. 1022–1029.

[70] A. Benavoli, G. Corani, J. Demsar, M. Zaffalon, Time for a change: a tutorial for
comparing multiple classifiers through Bayesian analysis, J. Mach. Learn. Res. 18
(2017) 2653–2688.

[71] C.P. de Campos, A. Benavoli, Joint analysis of multiple algorithms and performance
measures, New Gen. Comput. 35 (1) (2017) 69–86.

D. Martín et al. Knowledge-Based Systems 153 (2018) 176–192

192

http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0050
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0050
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0051
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0051
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0051
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0052
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0052
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0053
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0053
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0053
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0054
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0054
http://archive.ics.uci.edu/ml
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html#epsilon
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html#epsilon
http://largescale.ml.tu-berlin.de
http://cruncher.ncl.ac.uk/bdcomp/
http://cruncher.ncl.ac.uk/bdcomp/
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0055
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0055
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0055
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0055
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0056
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0056
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0057
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0057
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0057
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0058
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0058
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0058
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0058
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0059
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0059
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0060
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0060
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0060
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0061
http://refhub.elsevier.com/S0950-7051(18)30207-7/sbref0061

	MRQAR: A generic MapReduce framework to discover quantitative association rules in big data problems
	Introduction
	Preliminaries
	Quantitative association rules
	Big Data, MapReduce programming model and Apache Spark
	Big data in association rule mining

	MRQAR: a multiobjective MapReduce design to mine QARs in Big Data
	Scalable approach to mine QARs for Big Data: MRQAR
	The MRQAR framework for Big Data: a MapReduce design
	Spark primitives
	MR Phase 1 - Running of an algorithm to mine QARs
	MR Phase 2 - Computing the support of the QARs
	Sequential phase 3 - Update the GlobalRulePool
	MR Phase 4 - Building a new dataset with the uncovered instances

	Experimental study
	Experimental set-up
	Datasets
	Case study: MOPNAR algorithm
	Algorithms and parameters considered for comparison
	Hardware and software used

	Analysis of MOPNAR with respect to MRQAR-MOPNAR
	Analysis of the MRQAR-MOPNAR behavior
	Comparison with PFP-Spark algorithm for big data problems

	Conclusions
	Acknowledgments
	References

