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Abstract. 

In this research, we undertake intelligent skin cancer diagnosis based on dermoscopic images using a variant of 

the Particle Swarm Optimization (PSO) algorithm for feature optimization. Since the identification of the most 

significant discriminative characteristics of the benign and malignant skin lesions plays an important role in 

robust skin cancer detection, the proposed PSO algorithm is employed for feature optimization. It incorporates 

not only subswarms, local and global food and enemy signals, attraction and flee operations, and mutation-based 

local exploitation, but also diverse matrix representations to mitigate premature convergence of the original PSO 

algorithm. Specifically, two remote swarm leaders, which show similar fitness but low position proximity, are 

used to lead the subswarm-based search and to enable the exploration of more distinctive search regions. 

Modified velocity updating strategies are also proposed to enable the particles to follow multiple swarm leaders 

and avoid the local and global worst individuals, partially (i.e. in randomly selected sub-dimensions) and fully 

(in every dimension), with an attempt to search for global optima. Probability distribution and dynamic matrix 

representations are used to diversify the search process. Evaluated with multiple skin lesion and UCI databases 

and diverse unimodal and multimodal benchmark functions, the proposed PSO variant shows a superior 

performance over those of other advanced and classical search methods for identifying discriminative features 

that facilitate benign and malignant lesion classification as well as for solving diverse optimization problems 

with different landscapes. The Wilcoxon rank sum test is adopted to further ascertain superiority of the proposed 

algorithm over other methods statistically. 
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1. INTRODUCTION 

Melanoma is an aggressive type of skin cancer that can spread to other organs. Automatic and early diagnosis of 

melanoma is essential for administering effective treatment and increasing survival chances. Since medical skin 

cancer diagnosis employs the Asymmetry, Border, Colour, Diameter and Enlargement (ABCDE) guideline, the 

extraction and identification of such discriminative and significant morphological characteristics play a crucial 

role in attaining accurate diagnosis rates. However, it is still a challenging task for the retrieval of such 

distinguishing attributes, owing to the fine-grained variability in the appearance of benign and cancerous skin 

lesions [1]. 
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This research aims to deal with the above challenge by proposing an enhanced Particle Swarm Optimization 

(PSO) algorithm for discriminative feature selection in skin cancer diagnosis using dermoscopic images. The 

main motivations of this research are as follows. Evolutionary algorithms possess powerful search capabilities, 

and have been widely used for solving various feature selection challenges. Owing to the comparatively simple 

underlying concepts and relatively few user-defined parameters, PSO has been widely studied for feature 

selection tasks. Since PSO has a weak exploration capability, and its search process is likely to be trapped in 

local optima when dealing with multimodal or complex optimization problems, new PSO variants with superior 

explorative capabilities are required. Therefore, we propose an enhanced PSO model in this research. 

 

Specifically, our proposed PSO model incorporates the subswarm concept, food and enemy signals, attraction 

and flee operations, mutation-based local exploitation, and diverse matrix representations to mitigate premature 

convergence of the original PSO algorithm. It shows a great superiority over other methods for the identification 

of the most significant characteristics of benign and malignant lesion images to facilitate subsequent skin cancer 

classification. The proposed skin cancer detection system consists of five key stages, i.e. pre-processing, skin 

lesion segmentation, feature extraction, PSO-based feature selection and classification. The overall system 

architecture is illustrated in Figure 1. 

 

The key contributions of this research, which focus on PSO-based feature selection, are as follows. 

 The proposed PSO model first of all divides the original population into two subswarms. Then, two 

swarm leaders with competitive fitness scores but low position proximity are identified. Each leader 

leads one subswarm-based search for discriminative lesion feature selection. Since the subswarm-based 

search is more likely to explore distinctive search regions owing to the low position correlation 

between the two leaders, it reduces the probability of being trapped in local optima and increases the 

chances of finding the global optimum. 

 A number of attraction and enemy signals are used for velocity updating in each subswarm. The 

proposed PSO model enables each particle to follow the leader (i.e. food attraction) and avoid 

unpromising solutions (i.e. enemies) partially (i.e. in randomly selected sub-dimensions) as well as 

fully (i.e. in each dimension) to diversify the search process. Three random walks, i.e. Gaussian, 

Cauchy, and Levy distributions, are used to further enhance the best subswarm solution and to increase 

exploitation. A dynamic matrix representation of the swarm is also utilized during the search process to 

increase search diversity. The proposed algorithm shows great efficiency in optimal feature selection 

for melanoma classification, as well as solving unimodal and multimodal benchmark problems in 

comparison with other search methods. It is also among the top performers for skin cancer detection in 

comparison with related research studies reported in the literature. 

 

 
 

Figure 1 The system architecture for skin cancer detection 

 

The paper is organised as follows. Section 2 presents the related studies on skin cancer detection, enhanced PSO 

variants and diverse evolutionary algorithm-based feature selection techniques. Section 3 presents the proposed 

PSO model with mutation-based local exploitation as well as attraction and flee based global exploration. A 

detailed evaluation of the proposed algorithm and other classical methods using skin lesion data sets and other 



benchmark problems is presented in Section 4. Concluding remarks and suggestions for further research are 

provided in Section 5. 

2. RELATED WORK 

In this section, we discuss the related work on computerized skin cancer diagnosis, diverse variants of the PSO 

algorithm, and evolutionary algorithm-based feature selection methods. 

 

2.1 Skin Cancer Detection  
Ain et al. [2] proposed a skin cancer detection system using Genetic Programming (GP) based feature selection 

from dermoscopic images. Their work extracted both high-level domain specific features recommended by the 

dermatologists and low-level Local Binary Pattern (LBP) features. GP was used to identify the most significant 

features from the raw feature set to support subsequent benign and malignant cancer detection. Abuzaghleh et 

al. [3] proposed an intelligent system for early detection and prevention of malignant lesions such as melanoma. 

Their method consisted of a prevention component and a detection component. The former integrated a novel 

equation to identity the risk of skin burn and generated alerts when necessary, while the latter comprised several 

key stages for the classification of different lesion types, including noise removal, lesion segmentation, feature 

extraction and classification. Evaluated with the PH2 Dermoscopy image database from Pedro Hispano 

Hospital, the proposed method showed impressive performance for the classification of benign, atypical, and 

melanoma cases. Xie et al. [4] proposed a neural network ensemble classifier for melanoma classification using 

dermoscopy images. Their work first of all segmented the lesions using a self-generating neural network. The 

feature extraction process extracted border irregularities from both complete and incomplete lesions. The 

proposed meta-ensemble classifier combined three ensemble models with different network topologies and base 

model types. The first ensemble model was composed of a set of networks of the same type and structure, while 

the second and third ensemble models were built with different types of networks and networks with diverse 

topologies, respectively. Their work showed impressive performance when evaluated with two dermoscopy 

databases with images from xanthous and caucasian races. 

 

Esteva et al. [1] performed skin cancer classification using deep neural networks. Their work employed an end-

to-end convolutional neural network (CNN), where pixels and disease types were used as the training inputs. 

The CNN model was trained with a total of 129,450 clinical images with 2,032 different diseases. Evaluated 

against board-certified dermatologists on two binary classification tasks using clinical images, i.e., benign 

versus malignant (i.e. the deadliest cancer) and benign versus keratinocyte carcinomas (i.e. common cancers)), 

their CNN model achieved a comparable performance with those of dermatologists. Shimizu et al. [5] developed 

a digital diagnosis system for the classification of four skin lesion conditions including melanoma, nevus, basal 

cell carcinoma (BCC), and seborrheic keratosis (SK). In their work, lesions were categorized into two general 

categories, i.e. melanocytic skin lesions (MSLs) and nonmelanocytic skin lesions (NoMSLs). Melanoma and 

nevus belong to MSLs while BCC and SK belong to NoMSLs. The detection of NoMSLs has been rarely 

addressed in the literature, despite their high occurrences. Their work was therefore dedicated to the 

identification of both MSLs and NoMSLs. It extracted a total of 828 features representing colour, sub-region, 

and texture information. A layered classification method was used to conduct the four-class lesion classification. 

Their classification model firstly categorized MSL and NoMSL using a binary classifier. Another two binary 

classifiers were subsequently used to distinguish melanoma from nevus and BCC from SK, respectively. Tan et 

al. [6] developed an intelligent decision support system for melanoma detection. Their work consisted of several 

key stages and extracted a high-dimensional feature vector integrating shape, colour, and texture information 

owing to their high correlation with clinical characteristics associated with skin cancer identification. The 

Genetic Algorithm (GA) was subsequently used to identify the most contributing factors for diagnosis. The 

work showed performance improvements in comparison with those from other related work reported in the 

literature. Doukas et al. [7] conducted automatic skin lesion assessment based on cloud and smartphone 

platforms. Their work employed the Active Shape Model to extract texture, shape, and size features. A set of 

classifiers, including Neural Network (NN), Support Vector Machine (SVM), Decision Tree (DT), was used to 

conduct the classification of different lesion types such as melanoma, dysplastic and common (benign) nevus. 

There are also many other developments on automatic skin cancer diagnosis in the literature. As an example, 

Barata et al. [8] employed a probabilistic Correspondence LDA algorithm to extract medically inspired colour 

information for skin lesion classification using the EDRA database, whereas Glaister et al. [9] and Glaister et al. 

[10] proposed a multistage illumination modelling algorithm for illumination correction and a texture-based skin 

lesion segmentation model, respectively. 

 

2.2 PSO Variants 



Many PSO variants have been proposed to overcome premature convergence of the original PSO model. Lynn 

and Suganthan [11] proposed an ensemble of PSO algorithms. Their ensemble model utilized a pool of PSO 

variants including inertia weight PSO, comprehensive learning PSO (CLPSO), and distance-based locally 

informed PSO (LIPS). The method divided the swarm into two subpopulations, i.e. one large and one small 

subswarms. CLPSO was applied to the small subpopulation to maintain swarm diversity whereas a self-adaptive 

probabilistic selection scheme was used to identify the best PSO algorithm from the pool in each iteration using 

the large subswarm. In their method, if a PSO variant was able to achieve performance improvements within a 

fixed learning period, it was stored in a success memory, otherwise it was recorded in the failure memory. The 

PSO strategies with higher success rates were more likely to be selected to guide the search of the large 

subswarm. Gou et al. [12] developed a PSO variant based on individual difference evolution. Motivated by the 

social and psychological models, their work treated each particle as a virtual human, and proposed an emotional 

status fitness indicator for each particle. It not only determined a specific evolutionary mechanism for each 

particle based on its emotional status and current fitness, but also utilized a re-starting mechanism to increase 

swarm diversity. Optimal parameter settings were also explored in their work. Dash et al. [13] developed two 

hybrid evolutionary models, known as CSPSO and ICSPSO, respectively. The search strategies of PSO and 

Cuckoo Search (CS) were integrated to increase local exploitation and global exploration of the original PSO 

algorithm. Both proposed methods enabled each particle to conduct position updating using the original PSO 

mechanism. A new nest was then generated using the Levy flight operator in CS from the position vector of a 

current particle if this particle was ranked within the best 4% of the population. In ICSPSO, the mutation and 

crossover operations of Differential Evolution (DE) were integrated with CSPSO to further enhance the global 

best solution in each iteration. Both algorithms were used for the design of linear phase multi-band stop filters 

and the search of the desired impulse responses of the filters. 

 

Ouyang et al. [14] proposed another PSO variant, known as an improved global-best-guided PSO with learning 

operation (IGPSO), for solving engineering design optimization problems. In their work, the overall swarm was 

divided into three categories, i.e. current population, historical best population, and global best population. A 

specific search strategy was dedicated to each subpopulation. Besides using the original PSO operation to guide 

the search of the current population, a Gaussian distribution based local exploration mechanism was applied to 

the historical best subswarm to enable each personal best particle to learn from other more promising historical 

best particles independently. Stochastic learning and opposition based learning operations were also used to 

further enhance the global best solution and to overcome the local optima traps. IGPSO outperformed other PSO 

variants and classical search methods when evaluated using a total of 25 unimodal and multimodal benchmark 

optimization functions. Nasir et al. [15] proposed a PSO variant called the Dynamic Neighbourhood Learning 

Particle Swarm Optimizer (DNLPSO). It employed a neighbourhood-based learning strategy where the 

neighbourhood historical best information was used for velocity updating of the current particle. The 

neighbourhoods were also updated and reconstructed dynamically after a certain number of iterations to 

preserve swarm diversity. An Enhanced Leader PSO (ELPSO) was proposed by Jordehi [16]. A five-staged 

mutation mechanism was used to enhance the swarm leader and to overcome stagnation. On the other hand, an 

autonomous group PSO (AGPSO) model was developed by Mirjalili et al. [17]. Adaptively decreasing cognitive 

parameter and increasing social parameter were employed to balance between exploitation and exploration. 

Chen et al. [18] proposed a biogeography-based learning PSO (BLPSO) model to further enhance CLPSO. Both 

CLPSO and BLPSO performed velocity updating of each particle using the personal best solutions of different 

exemplar particles for different dimensions. In comparison with CLPSO where learning probability and 

tournament selection were used to generate exemplars for each particle, BLPSO employed the migration of 

biogeography-based optimization for exemplar generation. BLPSO achieved impressive performance for the 

evaluation of diverse challenging benchmark functions. 

 

2.3 PSO-based and Other Feature Selection Methods 
Diverse state-of-the-art PSO variants have been proposed in recent years for feature selection and 

dimensionality reduction. As an example, the original PSO model was employed for rough set-based feature 

selection in Wang et al. [19].  Their work outperformed GA-based and other deterministic rough set reduction 

methods. Overall, the attraction-based operation of the original PSO model was used in their work to guide 

rough set reduction. Comparatively, the proposed PSO model in this research incorporates not only attraction 

but also flee operations for discriminative feature selection. Zhang et al. [20] developed a binary Bare-bones 

PSO (BBPSO) algorithm for feature optimization. A reinforced memory mechanism was proposed to update the 

personal best solutions by avoiding gene degradation, while a uniform combination was used to increase swarm 

diversity. The 1-Nearest Neighbour classification model was employed to evaluate the classification 

performance of each particle. In their work, the original BBPSO operation, i.e. the Gaussian distribution based 

on personal and global best experiences, was utilized for position updating. Comparatively, the proposed PSO 

model in this research incorporates both good and poor signals to facilitate velocity updating and accelerate 

http://www.sciencedirect.com/science/article/pii/S1568494617300753


convergence. Zhang et al. [21] proposed a multi-objective PSO for cost-based feature optimization to retrieve a 

Pareto front of non-dominated solutions (i.e. feature subsets) with high classification accuracy and low 

computational cost. Specifically, their work incorporated a multi-objective PSO with hybrid mutation as well as 

the crowding distance, external archive, and Pareto dominance relations. Firstly, the crowding distance 

integrated with the Pareto dominated comparison was used to update the external archive. Then, a binary 

tournament strategy with the crowding distance was employed for the identification of the global best solution 

while a domination-based mechanism was utilized for personal best updating. In their work, the original PSO 

operation led by both personal and global best experiences was used to guide the search process. Both re-

initialization and jumping mutation operators were used to increase swarm diversity and improve the global 

search capability. Several UCI (University of California, Irvine) Machine Learning data sets were used for 

evaluation. Their model outperformed DE-based, NSGA-based and SPEA2-based multi-objective feature 

selection algorithms. As mentioned earlier, the velocity updating of each particle was conducted using the 

original PSO operation. Comparatively, in the proposed PSO model in this research, both the original PSO 

operation and an additional flee action are used for velocity updating.  

 

Mistry et al. [22] incorporated micro-GA with PSO for discriminative facial feature selection and facial 

expression recognition. Their model embedded a small-population secondary swarm, sub-dimension based 

search, and a velocity updating mechanism with the consideration of average personal best experiences and 

Gaussian distribution enhanced global best solutions to lead the search process and attain the global optimum 

solution. Evaluated using CK+ and MMI databases, their proposed model outperformed other PSO variants and 

classical search methods significantly. The work could also be further improved by incorporating hybrid search 

mechanisms such as adaptive chaotic attraction or evading actions to increase search diversity. Ahila et al. [23] 

integrated a discrete-valued PSO with a continuous-valued PSO for selection of the input feature subset and 

identification of the optimal number of hidden nodes for the extreme learning machine (ELM). Their improved 

ELM model showed an impressive performance for power system disturbances classification. Since the work 

mainly relies on the original PSO operation to guide the search process, it is more likely to be trapped in local 

optima. Moradi and Gholampour [24] integrated PSO with a local search mechanism for feature optimization. 

The local search operation took the feature correlation information into account to increase swarm diversity. 

This led to a higher probability of selecting less correlated features in comparison with more correlated ones. 

Specifically, two operators, i.e. ‘Add’ and ‘Delete’, were proposed for the above operations. The former was 

used to incorporate dissimilar features into the particle while the latter was employed to discard similar ones 

from a particle. A subset size determination scheme was also used for the identification of discriminative 

features. A total of 13 benchmark data sets were used for evaluation. In comparison with popular filter-based 

feature selection methods such as information gain and fisher score, and wrapper-based feature selection models 

such as PSO, Simulated Annealing (SA), GA and several PSO variants, their hybrid PSO model showed 

statistically better results. Sheikhpour et al. [25] employed the original PSO model for feature selection and 

kernel bandwidth determination in kernel density estimation (KDE) based classifiers for breast cancer diagnosis. 

Several UCI breast cancer data sets were used for evaluation. Their work outperformed the GA-KDE model in 

breast cancer diagnosis.  

 

Krisshna et al. [26] developed a Threshold-based binary PSO (ThBPSO) model for facial feature selection and 

face recognition. In ThBPSO, the original PSO model was performed multiple times (e.g. k times) to obtain 

multiple global best solutions. Subsequently, the significance of a feature was determined by the frequency that 

it was selected by the global best solutions. A threshold value (1≤ threshold ≤ k) was used as the criterion for the 

selection of a specific feature dimension. Evaluated with seven benchmark face recognition data sets, their work 

showed a competitive performance. Despite that ThBPSO conducted multiple runs of the original PSO model 

for retrieving the final optimal output, its search process purely relied on the original PSO operation, therefore 

having a high probability of premature convergence. Chang [27] proposed a PSO variant with multiple sub-

populations, denoted as MS-PSO, for solving multimodal optimization problems. Specifically, MS-PSO divided 

the original swarm into several sub-populations. In each subswarm, a modified PSO operation was used for 

velocity updating, where the subswarm leader was employed to replace the original global best solution to guide 

the search process. Evaluated with unimodal and multimodal artificial landscapes, MS-PSO showed an 

impressive performance in terms of finding the global minimum solution with a fast convergence speed. MS-

PSO was employed in [22] for facial feature selection and facial expression recognition. However when its 

attraction-based search process converges prematurely, there is no alternative strategy to overcome stagnation. 

A modified PSO model, which incorporated PSO with the GA and probability distributions, known as GM-PSO, 

was developed by Zhang et al. [28] for static and dynamic bodily expression feature optimization. After 

performing several rounds of the PSO operations, GM-PSO split the original swarm into two subswarms 

randomly. GA and Gaussain as well as Cauchy and Levy distributions were used to improve the subswarm 

leaders, respectively. Since GM-PSO depends on the original PSO operation to guide the search of the primary 



swarm, it is prone to local optimum traps. BBPSO variants (denoted as BBPSOV) were developed in 

Srisukkham et al. [29] for discriminative feature selection for leukaemia diagnosis using microscopic images. 

Two position updating strategies, i.e. a chaotic accelerated attraction action and an additional enemy avoidance 

operation, were proposed to increase search diversity of the original BBPSO model. The mean of local and 

global promising solutions and the mean of the personal and global worst experiences were used to lead the 

attraction and enemy avoidance actions, respectively. Their work showed impressive performance for the 

retrieval of distinctive nucleus and cytoplasm attributes for leukaemia diagnosis. As described earlier, since their 

search process was guided by the mean of good and poor signals respectively (as compared with multiple 

individual promising and weak signals with different weights in the proposed model in this research), their 

model shows less discriminative capabilities, and tends to select a larger set of features as compared with those 

of this research. Their BBPSO model also sometimes converges slower when solving complex optimization 

problems (e.g. mathematical artificial landscapes) in comparison with our proposed method and other search 

methods. 

 

Moreover, Shang et al. [30] conducted sentiment classification using a modified binary PSO (BPSO) model for 

feature selection. Known as F-BPSO, a mutation rate and a fitness proportionate selection strategy were 

employed for velocity updating and mitigating premature convergence of the original BPSO model. 

Specifically, F-BPSO divided a set of involved particles (i.e. the current particle, the personal best and global 

best solutions) into two groups based on their binary values (i.e. 0 or 1) of the d-th dimension. Then, the average 

fitness value of all particles in each group was calculated for the respective dimension. The group with a higher 

fitness value was used to set the position value of the d-th dimension. In this way, the position value of each 

particle was determined bit by bit. As a result, their model was able to focus more on each single feature 

dimension in comparison with other wrapper-based methods for feature selection. An enhanced F-BPSO model, 

known as FS-BPSO, was also proposed. In order to make the ‘voting’ mechanism of F-BPSO more robust, the 

previous set of particles was extended by adding the second personal best and the second global best solutions. 

Instead of using the average fitness value in fitness proportionate selection, the summation of all fitness values 

for each group was applied. Evaluated using two UCI benchmark data sets, FS-BPSO outperformed F-BPSO 

and BPSO significantly for feature optimization. A Genetic PSO (GPSO) model was proposed by Chen et al. 

[31] for feature selection in remotely sensed imagery object change detection. The genetic crossover operation 

was used to diversify the population in each iteration of GPSO. On the other hand, different meta-heuristic 

methods such as the firefly algorithm were employed for feature selection [32] and classifier ensemble reduction 

[33] with respect to classification and regression problems. 

 

Besides the abovementioned evolutionary algorithm-based feature selection methods, there are other non-

evolutionary algorithm-based feature selection methods proposed in the literature in recent years. Shang et al. 

[34] developed a subspace learning-based graph regularized feature selection method. Their model employed 

the graph theory to preserve the geometric structure information of the feature manifold. It also sustained the 

sparsity of the feature selection matrix by using an L2,1-norm sparse constraint. Their model outperformed 

several unsupervised discriminant feature selection methods based on 12 biological and digital image 

benchmark data sets. Shang et al. [35] proposed a self-representation-based dual-graph regularized feature 

selection clustering (DFSC) model. Unlike other clustering-based unsupervised feature selection methods, 

DFSC exploited the local geometrical structure of both the data space and feature space. Shang et al. [36] 

developed global discriminative-based nonnegative and spectral clustering models to preserve both the global 

geometrical and discriminative information of the data. Yang et al. [37] employed a Coupled Compressed 

Sensing inspired Sparse Spatial-Spectral Least Square SVM (CCS4-LSSVM) for hyperspectral image 

classification. CCS4-LSSVM was able to enhance the classification accuracy of the original Least Square SVM 

(LSSVM) and to minimize the influence of noisy pixels by integrating spectral and adaptively extracted spatial 

information. It outperformed Spatial-Spectral SVM and Spatial-Spectral LSSVM for the evaluation of several 

hyperspectral image data sets. 

 

The differences between some of the abovementioned PSO-based feature selection methods and this research 

are summarized in Table 1. 

 

Table 1 Summary of differences between related PSO-based feature selection methods and this research 

 
Studies Multiple leaders Subswarm 

division 

Modified 

attraction-based 

velocity 

updating 

Other velocity 

updating 

mechanisms 

Leader 

enhancement 

Other 

strategies 

Wang et al. [19] No No No (the original 

PSO operation is 

No No No 



used) 

Zhang et al. [20] No No No (the original 

BBPSO operation 

is utilized) 

No A reinforced 

memory 

mechanism is used 

to update the 
personal best 

solutions. 

A uniform 

combination is 

used to increase 

swarm 
diversity. 

Mistry et al. [22] No A small 
secondary 

swarm is 

used. 

Yes (the average 
personal best 

experience and 

Gaussian 
distribution 

enhanced global 

best solutions are 
used for velocity 

updating) 

No Gaussian 
distribution 

enhanced global 

best solutions 

Sub-dimension 
based search 

Ahila et al. [23] No No No (the original 
PSO operation is 

used) 

No No No 

Moradi and 
Gholampour [24] 

No No No (the original 
PSO operation is 

used) 

No No “Add” and 
“Delete” 

operators are 

used to improve 

the local search 

of each particle. 

Sheikhpour et al. 
[25] 

No No No (the original 
PSO operation is 

used) 

No No No 

Krisshna et al. 

[26] (ThBPSO) 

Yes (obtained by 

multi-runs of the 

original PSO 
model) 

No No (the original 

PSO operation is 

used) 

No No No 

Chang [27] (MS-

PSO) 

No Yes Yes (for each 

subswarm-based 
search, the 

subswarm leader 

is used to replace 
the original 

global best 

solution.) 

No No No 

Zhang et al. [28] 

(GM-PSO) 

No Yes No (the original 

PSO operation is 

used) 

No Yes (GA and 

probability 

distributions are 

used to enhance 

subswarm leaders 

respectively) 

No 

Srisukkham et al. 

[29] (BBPSOV) 

No No Yes (the search is 

guided by the 

average of the 
local and global 

optimal signals.) 

 

The mean of the 

local and global 

worst indicators 
is used to lead 

the evading 

action. 

No No 

Shang et al. [30] Besides the 

personal and 

global best 
solutions, the 

second personal 

best and the 
second global 

best solutions are 

considered. 

No Yes (the position 

value of each 

particle is 
determined bit by 

bit based on a 

fitness 
proportionate 

selection 

strategy.) 

No No No 

Nasir et al. [15] 

(DNLPSO) 

No No Yes (its own 

𝑝𝑏𝑒𝑠𝑡 or 𝑝𝑏𝑒𝑠𝑡 of 
other particles in 

the swarm is used 
for velocity 

updating.) 

No No No 

Chen et al. [31] 
(GPSO) 

No No No (the original 
PSO operation is 

used) 

No No The crossover 
operation is 

used to 

diversify the 
population in 

each iteration. 

Jordehi [16] 
(ELPSO) 

No No No (the original 
PSO operation is 

No A five-staged 
mutation 

No 



used) mechanism is used 

to enhance the 

swarm leader. 
Mirjalili et al. 

[17] (AGPSO) 

No No Yes (Adaptively 

decreasing 

cognitive 
parameter and 

increasing social 

parameter are 
used.) 

No No No 

This research Multiple optimal 

and unpromising 
signals are used 

to guide the 

search process. 

Yes Yes (for each 

subswarm-based 
search, the 

subswarm leader 

is used to replace 
the original 

global best 

solution. The 
updated PSO 

operation is 

conducted in not 
only each 

dimension, but 

also any 
randomly 

selected sub-
dimensions.) 

The search 

avoids personal 
and global worst 

experiences in 

every dimension 
and any 

randomly 

selected sub-
dimensions. 

Gaussian, Cauchy, 

and Levy 
distributions are 

used to further 

enhance the best 
subswarm 

solutions. 

A dynamic 

matrix 
representation 

of the swarm is 

also used. 

 

As indicated in Table 1, most of the related methods employ either the original PSO velocity updating operation 

[16, 19, 23-26, 28, 31] or the original BBPSO position updating action [20] to lead the search process. Mistry et 

al. [22], Nasir et al. [15], Mirjalili et al. [17] and Chang [27] employed modified velocity updating strategies of 

the original PSO model. The above original and modified search operations are led by personal best experiences 

and global best solutions. When such attraction driven search mechanisms stagnate or converge prematurely, 

there is no alternative mechanism to drive the search out of the local optima traps. In other words, there is no 

effective strategy to avoid poor solutions while moving towards the optimal ones. 

 

In order to deal with the abovementioned challenge, the proposed PSO model employs a two-tier strategy, i.e. an 

updated PSO operation and an additional flee action for velocity updating. In comparison with [29], the updated 

attraction-based PSO and additional flee operations in the proposed model are guided by multiple swarm leaders 

as well as the local and global worst individuals, respectively. Moreover, subswarm-based search, dynamic 

matrix representation, and enhancement of the subswarm leaders using probability distributions are adopted to 

improve search diversity and avoid stagnation. A summary of the distinctive aspects of our research is as 

follows. 

 

1. Two remote leaders with competitive fitness scores but low position proximity are identified to guide 

the subswarm-based search. Since the subswarm-based search is more likely to explore distinctive 

search regions owing to the low position correlation between the two leaders, it reduces the probability 

of being trapped in local optima and increases the probability of finding the global optimum solution. 

 

2. In comparison with the abovementioned studies, both the updated attraction-based PSO operation and 

the additional evading action are used for velocity updating in the proposed model. These attraction 

and flee operations are guided by a number of attraction and enemy signals, respectively. Moreover, 

different from [29], both operations are conducted in several randomly selected sub-dimensions as well 

as in every dimension, in order to improve search diversity and avoid local optima traps. 

 

3. Three random walks, i.e. Gaussian, Cauchy, and Levy distributions, are used to further enhance the 

subswarm leader and increase exploitation. A dynamic matrix representation of the swarm is also 

utilized during the search process to increase search diversity.  

 

In essence, the updated attraction-based PSO operation and the additional flee action work in a collaborative 

manner to avoid premature convergence and attain global optimality. When the modified PSO operation cannot 

find a fitter solution, the flee action is able to drive the search towards the optimal search space by avoiding 

unpromising regions. On the other hand, when the flee action stagnates, the updated PSO operation is capable of 

guiding the swarm particles to move towards promising regions by following both local and global optimal 

solutions. 



 

3. THE PROPOSED SKIN CANCER DETECTION SYSTEM 
We propose an intelligent system for benign and malignant skin lesion classification. The proposed system 

consists of five key stages, i.e. pre-processing, skin lesion segmentation, feature extraction, PSO-based feature 

optimization and classification. Each key stage, especially the feature selection process, is explained 

comprehensively, as follows.   

 

3.1 Feature Extraction 
First of all, pre-processing techniques are applied to lesion images for noise filtering, image segmentation, and 

grayscale conversion. Specifically, to remove ‘salt and pepper’ noise, median filtering is performed by 

diminishing the effects of thin hairs and air bubbles. A ground truth motivated image segmentation algorithm is 

used to separate the lesion from the skin. Subsequently, grayscale conversion transforms the original RGB 

images into grayscale. 

 

Several feature extraction methods are used to extract shape, colour, and texture features from the separated 

lesion regions. According to the ABCDE guideline for clinical skin cancer diagnosis, three categories of features 

play very important roles in distinguishing between benign and malignant lesions, namely (1) shape features 

such as asymmetry, border irregularity, and compactness; (2) colour features such as relative chromaticity, and 

differences in lightness and colour; (3) Gray Level Run Length Matrix (GLRLM) based texture features. As 

such, these shape, colour, and texture features are extracted in this research.  

 

Specifically, owing to the significance of asymmetry to benign/malignant lesion classification, an asymmetry 

index is generated by identifying the areas comprising the inner and outer of lesion. A border irregularity index 

is also produced to identify small irregularities in the edges. Other morphological features include compactness, 

radial variance, perimeter, solidity, roundness, extent, equivalent diameter, form factor and difference of left & 

right. Besides the abovementioned morphological features, the RGB colour space is employed for feature 

extraction. Colour features such as relative chromaticity and ratio of red, green and blue, and factors exhibited 

with respect to the lesion’s tone are extracted. The following colour features are also retrieved, i.e. variance, 

entropy, skewness, correlation, Principal Component Analysis (PCA) variance, mean of image darkness, 

variance of image darkness, mean & standard for both lesion and skin, and average colour of red, green and 

blue. Moreover, four orientations (0, 45, 90, and 135) of the GLRLM-based texture features are retrieved, 

whereby each level embeds 11 different emphases. These 11 statistics include Short Run Emphasis, Long Run 

Emphasis, Gray-Level Nonuniformity, Run Length Nonuniformity, Run Percentage, Low Gray-Level Run 

Emphasis, High Gray-Level Run Emphasis, Short Run Low Gray-Level Emphasis, Short Run High Gray-Level 

Emphasis, Long Run Low Gray-Level Emphasis, and Long Run High Gray-Level Emphasis. Two more texture 

features pertaining to Tamura Coarseness Indexes for both skin and lesion are also obtained. Overall, we extract 

a total of 146 features with 13 morphological, 87 colour, and 46 textural features for representing the lesion 

region.  

 

Since the features are not equally important for the identification of lesion types, we propose a PSO model for 

feature optimization and dimensionality reduction. The aim is to identify the most discriminative features and 

remove redundant ones. The proposed feature optimization algorithm is discussed in detail, as follows. 

 

3.2 The Proposed PSO Model for Feature Selection 
In this research, a new PSO model is proposed to identity the most significant distinguishing characteristics of 

benign and malignant skin lesions. It incorporates partial and full attraction and flee operations, mutation-based 

local exploitation, and diverse matrix representations to mitigate premature convergence of the original PSO 

model. To diversify the search process, the proposed model enables each particle to follow multiple swarm 

leaders and avoid local and global worst individuals partially as well as fully to search for the global optimum 

solution. The proposed algorithm shows great superiority of selecting features discriminatively and attaining the 

global optimum solution. The original and the proposed PSO models are explained in detail in the following 

sub-sections. 

 

3.2.1 The Original PSO Algorithm 
PSO [38] is one of the classical swarm intelligence-based algorithms. It employs personal and global best 

experiences of the swarm to guide the search process. The following equations are used for position and velocity 

updating of each particle. 

 

𝑣𝑖𝑑
𝑡+1 = 𝑤 ∗ 𝑣𝑖𝑑

𝑡 + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑖𝑑 − 𝑥𝑖𝑑
𝑡 ) + 𝑐2 ∗ 𝑟2  ∗ (𝑝𝑔𝑑 − 𝑥𝑖𝑑

𝑡 )                              (1) 

 



𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1                                                                       (2) 

 

where 𝑥𝑖𝑑
𝑡 and 𝑥𝑖𝑑

𝑡+1 represent the positions of the i-th particle during the t-th and t+1-th iterations in the d-th 

dimension, respectively while 𝑣𝑖𝑑
𝑡  and 𝑣𝑖𝑑

𝑡+1 denote the velocities of the i-th particle during the t-th and t+1-th 

iterations, respectively. w is an inertia weight that determines the influence of the previous velocity over 

iterations. The two acceleration constants are represented by 𝑐1 and 𝑐2, while 𝑟1 and 𝑟2 denote random vectors 

with each element within the range of [0, 1]. In addition, 𝑝𝑖𝑑  and 𝑝𝑔𝑑  represent the personal best experience, 

𝑝𝑏𝑒𝑠𝑡  and the global best experience, 𝑔𝑏𝑒𝑠𝑡  in the d-th dimension, respectively. PSO shows superior capabilities 

of dealing with diverse optimization problems. However, since its search process relies on a single global best 

solution, it is more likely to be trapped in local optima. 

 

3.2.2 The Proposed Search Strategies 
In this research, we propose a PSO variant with mutation-based local exploitation and attraction and evading 

driven global exploration along with the subswarm concept to mitigate the local optimum traps. The overall 

algorithm is illustrated in Algorithm 1. First of all, a swarm of 50 particles is initialized. Then, the particles are 

ranked based on their fitness scores. We archive the global best leader and three worst solutions in the best-

memory and worst-memory structures, respectively. A second swarm leader which has a competitive fitness but 

low correlation to the primary swarm leader is retrieved. The overall swarm is subsequently divided into two 

subpopulations. The two swarm leaders are used to lead the search process in each subswarm, respectively. 

 

In each subswarm, if an individual particle is one of the previously identified archived worst particles in the 

memory, the original velocity updating strategy of PSO is applied. In other words, it follows the subswarm 

leader fully for position updating in each dimension, as defined in Equation (1). Otherwise, the algorithm 

performs the following four mechanisms, and eventually uses the operation that leads to the most optimal 

solution to guide the search process, i.e., 

(1) each particle follows the leader fully in every dimension as defined in the original PSO algorithm; 

(2) it randomly selects some sub-dimensions and follows the leader partially in those dimensions; 

(3) it avoids personal and global worst experiences in every dimension; 

(4) it randomly selects some sub-dimensions and avoids personal and global worst individuals partially in those 

dimensions. 

 

These four search mechanisms increase diversification of the search process and enable the proposed PSO 

model to explore distinctive search regions and to reduce the likelihood of being trapped in local optima. During 

the search process, each particle performs each of the four mechanisms for position updating. Then, the best 

offspring stems from the four actions is employed for velocity updating. After the subswarm-based search 

process iterates for a number of iterations, a new subswarm leader is retrieved in each subpopulation. The new 

subswarm leader is further enhanced using three probability distributions, i.e. Gaussian, Cauchy, and Levy 

distributions. If the offspring solution generated by any of these random walk strategies has a better fitness score 

than that of the current parent subswarm leader, this promising offspring is used to replace the parent subswarm 

leader. Finally, the two subpopulations are merged, and the best solution among the two subswarm leaders is 

regarded as the new global best solution. Another set of three worst solutions is also retrieved and used to 

update the worst archive. 

 

However, if the second swarm leader, which possesses a promising fitness score but embeds a low correlation to 

the global best solution, cannot be retrieved at the beginning stage of the search process in a certain iteration, the 

search operations described above are conducted purely using the primary swarm, instead of two subswarms. 

 

Subsequently, the matrix representation of the swarm is dynamically adjusted to a new form by switching the 

rows and columns of the original matrix (e.g. changing a particle matrix representation from 5×29 to 29×5) and 

the overall search process is repeated using this new matrix representation. The algorithm iterates until the 

termination criteria are reached. 

 
 Algorithm 1: The Proposed PSO Algorithm 
1 Start 
2 Initialize a population  (e.g. 50 particles); 
3 Evaluate the population to identify the initial best leader, 𝑔𝑏𝑒𝑠𝑡; 
4 Archive the best leader, 𝑔𝑏𝑒𝑠𝑡 , in the best-memory; 

5 While (Stopping criterion is not satisfied)  

6 { 

7 For each particle 𝑥𝑖  in the population do  



8 { 

9    If (|fitness(𝑥𝑖) – fitness(𝑔𝑏𝑒𝑠𝑡)|<Threshold_fitness) && (correlation between 𝑥𝑖  and 𝑔𝑏𝑒𝑠𝑡 < 0)  
10      Select the candidate, 𝑥𝑖 , as the second leader; 

11 End If 

12  }End For 

13 Identify three worst solutions in the population and store them in the worst-memory; 

14 If (there are two leaders)  

15     {  

16        Randomly separate the population into two groups with each group led by one leader; //subswarm 1 led by 

𝑔𝑏𝑒𝑠𝑡  and subswarm 2 led by the second best 

17    While (!stagnation detected)  

18    {  For each group do 

19        { For each particle 𝑥𝑖  in the group do 

20           {  

21              If (𝑥𝑖 is one of the worst solutions in the worst-memory) 

22                      Follow the leader fully (i.e. in every dimension); 

23            Else If // 𝑥𝑖 ≠ leader or one of the worst solutions 

24                   { Run the following steps and use the strategy which leads to the best solution for position 

updating; 

25 1. Partially avoid the worst solutions by randomly selecting some sub-dimensions and 

moving away from the worst experiences in those sub-dimensions; 

26 2. Partially follow the leader by randomly selecting some sub-dimensions and following the 

leader in those sub-dimensions; 

27 3. Fully avoid the worst solutions in every dimension; 

28 4. Fully follow the leader in every dimension; 

29                       } End If 

30             Evaluate 𝑥𝑖 at the new position and update personal best of 𝑥𝑖;  
31         }End For   

32         Evaluate the particles in the subswarm and update the subswarm leader; 

33         Conduct long jumps of the current subswarm leader using Levy flights/Gaussian/Cauchy distributions; 

34         Update the current subswarm leader if any new solution developed by the long jumps has a better 

fitness; 

35           }End For 

36         Compare two subswarm leaders and store the best subswarm leader; 

37       } Until (stagnation detected, e.g. convergence to the same/similar fitness for 2-3 times); 

38       Combine the sub-swarms and update the best leader, 𝑔𝑏𝑒𝑠𝑡 , in the best-memory with the best subswarm 

leader; 

39     } 

40    Else //there is just one leader 

41        {  Conduct the single group optimization using the loop from lines 17-37; 

42         Update the best leader, 𝑔𝑏𝑒𝑠𝑡 , in the best-memory; 

43      } 

44 End If 

45 Use 𝑔𝑏𝑒𝑠𝑡 to replace the worst particle in the overall population; 

46      }Until (Stagnate 2 times) 

47 Change the matrix representation; 

48 While (Overall termination criteria are not achieved) 

49 {  

50    Repeat lines 5-47;  

51 } Until (the matrix has been changed 3 times and no more improvement can be found); 

52 Return the most optimal solution; 

53 End 

 

The following fitness function is used to evaluate each particle, which consists of two criteria, i.e. classification 

accuracy and the number of selected features. 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝑤𝑎 ∗ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑥𝑖 + 𝑤𝑓 ∗ (𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
−1                     (3) 

 
where 𝑤𝑎 and 𝑤𝑓 represent two pre-defined weights for classification performance and the number of selected 

features, respectively, with 𝑤𝑎 +𝑤𝑓 = 1. In this research, since we emphasize more on the classification 

performance, a higher weight is assigned to 𝑤𝑎 as compared with that of 𝑤𝑓 . Imbalanced class instances are 



observed in our experiments owing to the limitations of benign and malignant lesion cases. To deal with such 

imbalanced problems, the geometric mean (GM) is used as the performance indicator. This GM indicator is 

frequently used for the evaluation of imbalanced classification problems in machine learning [29, 39]. In this 

research, it is employed for fitness evaluation at the training stage, as well as calculation of the final 

classification results at the test stage. 

 

Moreover, for the fitness score calculation using Equation (3), we transform the continuous value of each 

element in each particle to a binary value (i.e. 0 or 1) to indicate the selection (i.e. ‘1’) or non-selection (i.e. ‘0’) 

of a feature dimension. Then, the resulting binary string representing the selected feature subset is utilized for 

fitness evaluation. The binary string obtained from the global best solution is regarded as the most optimal 

feature subset, and is subsequently used for evaluation using the test set. To obtain subtle movements and avoid 

premature convergence, a continuous value of each element is used for each particle during the search process, 

and it is converted into a binary value only for fitness evaluation. We describe each key proposed mechanism in 

detail, as follows. 

 

3.2.2.1 Selection of the Second Swarm Leader  
After initialization of the initial swarm, each particle is ranked based on its fitness score. The global best 

solution is identified. To diversify the search process and avoid stagnation, a second swarm leader with a 

comparable fitness score but a low position proximity to that of the global best solution is retrieved. The 

MATLAB function, 𝑐𝑜𝑟𝑟2, defined in Equation (4) is used to determine the correlation between two particles. 

The particle, which has a competitive fitness score but with the least correlation to the swarm leader, is selected 

as the second leader.  

 

𝑐𝑜𝑟𝑟2(𝐴, 𝐵) =
∑ ∑ (𝐴𝑚𝑛−𝐴̅)𝑛 (𝐵𝑚𝑛−𝐵̅)𝑚

√(∑ ∑ (𝐴𝑚𝑛−𝐴̅)
2)𝑛  𝑚 (∑ ∑ (𝐵𝑚𝑛−𝐵̅)

2
𝑛𝑚 )  

                                                     (4) 

 

where 𝑐𝑜𝑟𝑟2(𝐴, 𝐵) denotes the correlation between two particles, A and B, and 𝐴̅ = 𝑚𝑒𝑎𝑛2(𝐴) and 𝐵̅ =
𝑚𝑒𝑎𝑛2(𝐵) (provided by MATLAB) are used to compute the mean of the values in each matrix, respectively. m 

and n denote the row and column indexes of the particles. This 𝑐𝑜𝑟𝑟2 function returns a value in the range of [-

1, 1], with ‘1’ indicating the two particles are exactly the same and ‘-1’ indicating the two particles are 

distinctive entirely in positions. 

 

After identifying the global best solution and the second swarm leader, we divide the overall swarm into two 

subswarms. The search process of each subswarm is guided by each leader. Since the two leaders are remote in 

positions, i.e. a low correlation in position, it is more likely that they lead the subswarm-based search process to 

explore distinctive regions, in an attempt to avoid stagnation. 

 

3.2.2.2 Attraction and Evading Mechanisms  
The proposed PSO model employs diverse attraction and evading search strategies in the primary or subswarm-

based search to increase search diversity. Besides following the (sub)swarm leader fully in each dimension as in 

the original PSO algorithm for velocity updating, the proposed PSO model enables the particles to follow the 

leader in any randomly selected sub-dimensions to avoid stagnation. Specifically, the algorithm randomly 

selects some sub-dimensions, e.g. a row/column/diagonal, then each particle follows the leader in these sub-

dimensions using Equations (1) and (2). 

 

Besides the attraction action, the proposed PSO model avoids the local and global worst experiences partially 

and fully to diversify the search process. In each iteration, we employ the personal worst experience and the 

mean of three global worst solutions as the enemy signals. Similar to the attraction action, the model randomly 

selects a row/column/diagonal in the matrix. The evading mechanism defined in Equations (5)-(7) is 

subsequently used to enable the current particle to flee away from the personal and global less optimal 

experiences in each dimension or in randomly selected sub-dimensions. 

 

𝑣𝑖𝑑
𝑡+1 = 𝑤 ∗ 𝑣𝑖𝑑

𝑡 − 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑖𝑤 − 𝑥𝑖𝑑
𝑡 ) − 𝑐2 ∗ 𝑟2 ∗ (𝑝𝑔𝑤 − 𝑥𝑖𝑑

𝑡 )                                   (5) 

 

𝑝𝑔𝑤 = 
𝑤1+ 𝑤2+ 𝑤3

3
                                                                        (6) 

 

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1                                                                       (7) 

 



where 𝑝𝑖𝑤 indicates the personal worst experience, while 𝑝𝑔𝑤 denotes the mean solution of three global worst 

individuals, i.e. 𝑤1, 𝑤2, and 𝑤3, in each iteration. 

 

In the original PSO model, the search process is purely guided by the swarm leader. When the attraction driven 

search mechanism stagnates, this results in premature convergence of the original PSO model. On the contrary, 

the proposed evading action is complementary to the original attraction operation. In the proposed PSO 

algorithm, when the attraction mechanism guided by the subswarm leader becomes stagnant, the evading 

operation pushes the subswarm particles away from less optimal regions to overcome stagnation. 

 

In the proposed PSO model, the settings of the acceleration constants, 𝑐1and 𝑐2, and the inertia weight, 𝑤 for 

both the attraction and evading operations mainly inherit from those of the original PSO model. Nevertheless, 

further parameter tuning is conducted based on trial-and-error in our experiments. The detailed parameter 

settings of the proposed algorithm are provided in Section 4.1. 

 

3.2.2.3 Local Exploitation Using Probability Distributions 
Three continuous probability distributions, i.e. Gaussian, Cauchy and Levy, are used to further increase local 

exploitation of each subswarm leader. The following equation defines the exploitation mechanism. 

 

𝑔𝑏𝑒𝑠𝑡𝑑
′ = 𝑔𝑏𝑒𝑠𝑡𝑑 + (𝑋𝑑

𝑚𝑎𝑥 − 𝑋𝑑
𝑚𝑖𝑛) ∗ 𝛿                                                         (8) 

 

where 𝛿 represents either the Gaussian, Cauchy, or Levy distribution; 𝑋𝑑
𝑚𝑎𝑥 and 𝑋𝑑

𝑚𝑖𝑛 denote the upper and 

lower boundaries in the d
th

 dimension, respectively. We apply these three random walk distributions 

consecutively. If the offspring 𝑔𝑏𝑒𝑠𝑡
′  generated by any of the three distributions has a better fitness score than 

that of the current parent subswarm leader, 𝑔𝑏𝑒𝑠𝑡 , 𝑔𝑏𝑒𝑠𝑡
′  is used to replace 𝑔𝑏𝑒𝑠𝑡 . Otherwise, the subswarm leader 

remains intact. This search strategy increases exploitation of the search space, therefore, it is more likely to 

reach global optimality.  

 

Finally, the matrix representation of the overall swarm is dynamically adjusted and evolved to increase search 

diversity. The search processes discussed in Sections 3.2.2.1-3.2.2.3 are conducted again under the new matrix 

representation. In addition, during the search process, when the algorithm cannot identify a second swarm leader 

that has a similar fitness score but with the least in correlation to the swarm leader, the search processes 

presented in Section 3.2.2.2 are conducted using a primary swarm led by a single leader, instead of two 

subswarm leaders. The following parameter setting recommended by empirical studies in [22, 28] and further 

modified by our experimental fine-tuning is utilized in this research, i.e. inertia weight=0.99, acceleration 

constants 𝑐1=𝑐2=2.5, population=50, and maximum generation=500. 

 

4. EVALUATION 
To evaluate the proposed PSO variant, we implement several classical search methods for comparison, i.e., PSO 

[38], Bat Algorithm (BA) [40], Harmony Search (HS) [41], GA [42], Dragonfly Algorithm (DA) [43], Flower 

Pollination Algorithm (FPA) [44], Moth-Flame Optimization (MFO) [45], Artificial Bee Colony (ABC) [46], 

Cultural Algorithm (CA) [47], and BBPSO [48]. Several advanced PSO variants are implemented for 

comparison, including DNLPSO [15], ELPSO [16], AGPSO [17], ThBPSO [26], MS-PSO [27], GM-PSO [28], 

BBPSOV [29], and GPSO [31].  In addition, non-evolutionary algorithm-based feature selection methods such 

as ReliefF [49] and Minimum Redundancy and Maximum Relevance (mRMR) [50] are employed for 

comparison.  

 

This research employs three dermoscopic image databases, i.e. Dermofit Image Library [51], PH2 [52], and 

Dermnet [53]. The Dermofit Image Library [51] has a total of 1,300 skin lesion images from ten classes 

including melanomas, SK and BCC. We extract 127 benign and 76 melanoma images from this database for 

evaluation of the proposed PSO model. The PH2 database [52] has a total of 200 images with 80 common nevi 

(benign), 80 atypical nevi, and 40 melanoma cases. We employ 80 and 40 images for the benign and melanoma 

cases, respectively, from this database for evaluation. The Dermnet data set [53] has a total of 152 images with 

45 Clark Nevi (benign) and 107 malignant melanoma cases. We employ all the malignant images (i.e. 107) from 

this data set in our experimental studies. Therefore, a total of 207 benign (127 (Dermofit Image Library) + 80 

(PH2)) and 223 (76 (Dermofit Image Library) +40 (PH2) +107 (Dermnet)) malignant melanoma images 

extracted from the three databases are used in the experiments. Table 2 shows the detailed data set information 

for training and test purposes. 

 



As shown in Table 2, we utilize 302 (151 benign and 151 melanoma) and 128 (56 benign and 72 melanoma) 

images for training and test, respectively. The training set consists of 95(Dermofit Image Library)+56(PH2) 

benign images, and 53(Dermofit Image Library)+28(PH2)+70(Dermnet) malignant images. The test set is 

composed of 32(Dermofit Image Library)+24(PH2) benign images, and 23(Dermofit Image 

Library)+12(PH2)+37(Dermnet) malignant images. Two classifiers, i.e. the K-Nearest Neighbour (KNN) and 

SVM, are used for the skin lesion classification, owing to their popularity and stable performance in skin cancer 

and other classification tasks [6, 7]. 

 

Table 2 Training and test sets for melanoma classification 

Data set Benign Melanoma 

Dermofit Image Library 127 (95 training + 32 test) 76 (53 training + 23 test) 

PH2 80 (56 training + 24 test) 40 (28 training + 12 test) 

Dermnet - 107 (70 training + 37 test) 

 

Moreover, most of the images are presented in 8-bit RGB with various resolutions. As most images incorporate 

720 pixels to the greatest extent, additional images that do not fulfil this requirement are edited to fit the 

required size. For each image, the lesion is presented in the centre of the image with non-lesion skin observable 

at the corners of the image. Each algorithm is executed 30 runs in each experiment. The average GM scores over 

30 runs are computed for comparison.  

 

4.1 Parameter Settings 
Table 3 shows the parameter settings of the proposed PSO model and other search methods used in the 

experimental studies. The parameter setting of the proposed PSO model mainly inherits that of the original PSO 

model. Further parameter fine-tuning is conducted based on trial-and-error. As indicated in Table 3, an inertia 

weight of 0.99 is employed by the proposed PSO model to signify the impact of the previous velocity over 

iterations. Similar to those in the original PSO algorithm, large acceleration constants (𝑐1 = 𝑐2 = 2.5) are 

applied to accelerate convergence. The parameter settings of other search methods are used in accordance with 

recommendation in their original studies. 

 

Table 3 Parameter settings of each algorithm 

Algorithms Parameters 

PSO [38] maximum velocity=0.6, inertia weight=0.9, acceleration constants 𝑐1=𝑐2=2 

BA [40] loudness=0.5, pulse rate=0.5 

HS [41] bandwidth=0.2, harmony memory accepting rate=0.95, pitch-adjusting rate=0.3 

GA [42] crossover probability = 0.7, mutation probability = 0.3 

DA [43] separation factor=0.1, alignment factor=0.1, cohesion factor=0.7, food factor=1, enemy 

factor=1, and inertia weight=0.9 – m × ((0.9-0.4)/maxi_iterations), where m and 

maxi_iterations represent the current and maximum iteration numbers, respectively. 

FPA [44] switch/proximity probability=0.8 

MFO [45] Use adaptive parameter settings 

ABC [46] limit=0.6×dimension×population 

CA [47] probability of the knowledge source=0.35, number of accepted individuals=probability of the 

knowledge source × population 
BBPSO [48] No parameter setting required 

DNLPSO [15] 𝑐1=𝑐2=1.49445, refreshing gap=3, regrouping period=5, inertia weight=0.9 – (0.9 – 0.4) × (k – 

1)/(max_gen  – 1), where k and max_gen represent the current and and maximum iteration 

numbers, respectively. 

ELPSO [16] 𝑐1=𝑐2=2, standard deviation of Gaussian mutation = 1, scale parameter of Cauchy mutation = 

2, scale factor of DE-based mutation = 1.2, inertia weight=0.9 – (0.9 – 0.4) × (k – 1)/(max_gen  

– 1), where k and max_gen represent the current and and maximum iteration numbers, 

respectively. 

AGPSO [17] maximum velocity=0.6, inertia weight=0.9, adaptive decreasing 𝑐1and increasing 𝑐2 over 

generations 

ThBPSO [26] maximum velocity=0.6, inertia weight=0.9, acceleration constants 𝑐1=𝑐2=2 

MS-PSO [27] maximum velocity=0.6, inertia weight=0.9, acceleration constants 𝑐1=𝑐2=2 

GM-PSO [28] maximum velocity = 0.6, inertia weight = 0.5, acceleration constants 𝑐1=𝑐2=1.5, standard 

deviation of Gaussian distribution=1, scaling factor of Cauchy distribution = 2, crossover 

probability = 0.6, mutation probability = 0.05  

BBPSOV [29] Logistic map used as the search parameter 

GPSO [31] maximum velocity=0.6, inertia weight=0.9, acceleration constants 𝑐1=2.6, 𝑐2=1.5 

crossover probability = 0.7, mutation probability = 0.3 

Proposed PSO maximum velocity=0.6, inertia weight=0.99, acceleration constants 𝑐1=𝑐2=2.5 



 

4.2 Evaluation Using the Combined Skin Lesion Data Set 
First of all, we employ the combined skin lesion data set extracted from the above three databases to evaluate 

the proposed PSO algorithm. A training set of 302 images and a test set of 128 images are used. The proposed 

PSO model is compared with 10 classical search methods and 8 advanced PSO variants, as well as two non-

evolutionary algorithm-based feature selection methods, i.e., ReliefF and mRMR. 

 

Many popular well-known optimization packages (such as Black-Box Optimization Benchmarking [54]) have 

employed the number of function evaluations as the performance criterion. Therefore the number of function 

evaluations is also used as the criterion in this research for performance comparison. Specifically, to enable a 

fair comparison, we employ the following maximum number of function evaluations, i.e. population size (50) × 

maximum number of iterations (500), in all search methods. In other words, although there are multiple search 

strategies embedded in the proposed PSO model as well as other PSO variants, they all employ approximately 

the same number of function evaluations during the training stage, i.e. population size (50) × maximum number 

of iterations (500), as that of PSO and other classical methods. As an example, a comparatively smaller number 

of iterations (e.g. 100) is used in the proposed PSO model in comparison with that (e.g. 500) used by other 

classical methods during the feature selection process owing to the fact that the proposed model utilizes an 

additional number of function evaluations for both velocity updating and the enhancement of the subswarm 

leaders in each iteration. In this way, the proposed model uses approximately the same number of function 

evaluations, i.e. population size (50) × maximum number of iterations (500), as those of all classical search 

methods and advanced PSO variants including DNLPSO, BBPSOV, AGPSO, MS-PSO, and GPSO. Similarly, 

although ELPSO, GM-PSO and ThBPSO conduct additional numbers of function evaluations for swarm leader 

enhancement, the setting of population size (50) × maximum number of iterations (500) is also used as the 

maximum number of function evaluations in these PSO variants for discriminative feature selection. Such a test 

strategy is applied to all subsequent experiments to ensure a fair comparison. 

 

Table 4 shows the average classification performances over 30 runs for each method in combination with KNN 

and SVM classifiers for both 10-fold and hold-out validations. The minimum, maximum, standard deviation, 

and the mean GM scores over 30 runs are presented. The best result in each row is highlighted in bold. As 

indicated in Table 4, the best results are obtained when the SVM classifier is applied to each method. Integrated 

with SVM, the proposed PSO model achieves the highest average GM scores of 94.23% and 94.51% for the 

two-class skin lesion classification using 10-fold and hold-out validations, respectively. It outperforms 20 other 

algorithms consistently.  

 

Table 4 Average classification results of each algorithm over 30 runs for the combined skin lesion data set 

      Prop. PSO BA BBPSO DA FPA GA HS MFO PSO ABC CA 

K
N

N
 1

0
 F

o
ld

 Mean 0.9231 0.9009 0.9035 0.8992 0.8967 0.8861 0.8998 0.8968 0.8958 0.8980 0.9037 

Std 0.0146 0.0217 0.0226 0.0209 0.0212 0.0321 0.0162 0.0287 0.0221 0.0225 0.0238 

Min 0.8986 0.8525 0.8495 0.8508 0.8528 0.8266 0.8620 0.8385 0.8528 0.8598 0.8429 

Max 0.9434 0.9354 0.9532 0.9287 0.9401 0.9380 0.9348 0.9462 0.9368 0.9415 0.9521 

Rank Sum  + + + + + + + + + + 

H
o

ld
 O

u
t Mean 0.9262 0.9075 0.9099 0.9072 0.9038 0.8932 0.9076 0.9042 0.9021 0.9035 0.9085 

Std 0.0141 0.0187 0.0191 0.0193 0.0191 0.0283 0.0144 0.0266 0.0199 0.0207 0.0223 

Min 0.8979 0.8681 0.8716 0.8594 0.8681 0.8389 0.8805 0.8445 0.8627 0.8654 0.8468 

Max 0.9465 0.9373 0.9555 0.9346 0.9435 0.9346 0.9346 0.9465 0.9346 0.9435 0.9555 

Rank Sum  + + + + + + + + + + 

S
V

M
 1

0
 F

o
ld

 Mean 0.9423 0.9232 0.9208 0.9296 0.9270 0.8818 0.9161 0.9047 0.9235 0.9208 0.9268 

Std 0.0162 0.0206 0.0231 0.0198 0.0211 0.0337 0.0295 0.0286 0.0273 0.0169 0.0253 

Min 0.9158 0.8641 0.8614 0.8803 0.8894 0.8098 0.8536 0.8422 0.8539 0.8964 0.8589 

Max 0.9702 0.9626 0.9598 0.9577 0.9683 0.9342 0.9586 0.9563 0.9655 0.9532 0.9789 

Rank Sum  + + 0 + + + + + + + 

H
o
ld

 O
u

t Mean 0.9451 0.9284 0.9255 0.9348 0.9314 0.8875 0.9204 0.9102 0.9281 0.9244 0.9307 

Std 0.0146 0.0192 0.0230 0.0166 0.0181 0.0335 0.0281 0.0261 0.0243 0.0169 0.0227 

Min 0.9225 0.8716 0.8716 0.8955 0.8979 0.8027 0.8536 0.8506 0.8746 0.8979 0.8746 

Max 0.9698 0.9674 0.9582 0.9582 0.9698 0.9435 0.9605 0.9555 0.9765 0.9582 0.9791 

Rank Sum  + + + + + + + + + + 

 
      Prop. PSO DNLPSO ELPSO BBPSOV AGPSO GM-PSO MS-PSO GPSO ThBPSO ReliefF mRMR 

K
N

N
 1

0
 F

o
ld

 Mean 0.9231 0.8985 0.9018 0.9022 0.9009 0.9021 0.8959 0.9054 0.8846 0.9059 0.8791 

Std 0.0146 0.0251 0.0162 0.0154 0.0281 0.0180 0.0190 0.0152 0.0273 - - 

Min 0.8986 0.8431 0.8624 0.8720 0.8394 0.8704 0.8475 0.8772 0.8216 - - 

Max 0.9434 0.9296 0.9302 0.9334 0.9448 0.9314 0.9286 0.9415 0.9293 - - 

Rank Sum  + + + + + + + + + + 

H
o

ld
 O

u
t Mean 0.9262 0.9057 0.9078 0.9093 0.9068 0.9075 0.9017 0.9111 0.8917 0.9103 0.8853 

Std 0.0141 0.0219 0.0159 0.0141 0.0254 0.0164 0.0166 0.0134 0.0241 - - 

Min 0.8979 0.8561 0.8716 0.8768 0.8561 0.8836 0.8594 0.8853 0.8327 - - 

Max 0.9465 0.9373 0.9435 0.9346 0.9465 0.9346 0.9313 0.9435 0.9302 - - 

Rank Sum  + + + + + + + + + + 



S
V

M
 1

0
 F

o
ld

 Mean 0.9423 0.9208 0.9178 0.9114 0.9216 0.9210 0.9139 0.9169 0.8805 0.9395 0.8746 

Std 0.0162 0.0270 0.0233 0.0295 0.0232 0.0286 0.0303 0.0250 0.0395 - - 

Min 0.9158 0.8597 0.8659 0.8446 0.8742 0.8671 0.8232 0.8723 0.8023 - - 

Max 0.9702 0.9551 0.9493 0.9568 0.9598 0.9711 0.9655 0.9626 0.9521 - - 

Rank Sum  + + + + + + + + + + 

H
o
ld

 O
u

t Mean 0.9451 0.9253 0.9224 0.9163 0.9250 0.9246 0.9190 0.9224 0.8881 0.9435 0.8814 

Std 0.0146 0.0250 0.0229 0.0279 0.0219 0.0254 0.0264 0.0225 0.0363 - - 

Min 0.9225 0.8654 0.8716 0.8561 0.8790 0.8805 0.8561 0.8885 0.8259 - - 

Max 0.9698 0.9582 0.9555 0.9582 0.9645 0.9674 0.9674 0.9674 0.9582 - - 

Rank Sum  + + + + + + + + 0 + 

 

Table 5 The training computational cost and the average number of features selected by each optimization 

algorithm 

 
 Prop. PSO BA BBPSO DA FPA GA HS MFO PSO ABC CA 

Average no. of selected features 49.33 66.67 63.63 69.70 61.10 53.43 60.77 61.20 68.23 64.37 59.83 

Training cost (seconds) 4554.03 4420.33 4684.56 4429.17 4397.66 4278.71 4565.42 4766.10 4607.55 4612.62 4617.27 

 
 Prop. PSO DNLPSO ELPSO BBPSOV AGPSO GM-PSO MS-PSO GPSO ThBPSO 

Average no. of selected features 49.33 65.83 67.67 63.50 61.10 61.63 56.73 64.43 38.53 

Training cost (seconds) 4554.03 4552.60 4979.95 4674.78 4670.05 4657.17 4590.90 4750.04 4741.40 

 

 
Figure 2 Average convergence curve for each method over 30 runs in combination with the SVM classifier 

 

As indicated in Table 5, ThBPSO selects the smallest feature subset, i.e. 38.53 features on average over 30 runs. 

This is followed by our proposed model, with an average feature size of 49.33, while all other methods retrieve 

comparatively larger feature subsets. Although ThBPSO identifies the smallest feature subset based on the 

frequency of each feature recommended by multiple global best solutions, owing to the removal of some 

distinctive characteristics, ThBPSO obtains lower mean GM scores in comparison with those of the proposed 

model. In addition, we employ the corresponding top-ranked 60 salient features identified by ReliefF and 

mRMR respectively for performance comparison owing to their superior classification performances.  

 

In this experiment, the MATLAB parallel computing toolbox is used to increase the computational efficiency 

and reduce the time consumption of each feature selection task. A multicore workstation with 36 core Intel 

Xeon processors and 256GB RAM is used. We spread 30 experimental runs and the 10-fold cross validation 

into multiple treats. The feature selection training cost of each method is shown in Table 5. As illustrated in 

Table 5, the training cost of the proposed PSO model is comparable with (or slightly lower than) those of most 



classical methods and some advanced PSO variants under approximately the same number of function 

evaluations. 

 

To further indicate superiority of the proposed model, the statistical Wilcoxon rank sum test [55] is conducted. It 

is a non-parametric test that determines whether two distributions (i.e. solutions) have a statistically equal 

median. The rank sum test returns a p-value which indicates the rejection of the null hypothesis of an equal 

median, or otherwise, at the default 5% significance level. We further transform the p-value results into the 

statistical outcomes shown in Table 4. Specifically, the last row of each set of the results in Table 4 shows the 

statistical comparison results between the proposed model and other methods, where symbols such as ‘+’ and ‘-’ 

are used to indicate the proposed model is statistically significantly better or worse than the compared methods. 

Symbol ‘0’ is also used to indicate that the proposed model and other methods have the same result 

distributions. Results indicate that the proposed model is statistically significantly better than other methods in 

nearly all test cases. The exception is for DA and ReliefF, which show similar result distributions as those of the 

proposed PSO model when integrated with the SVM classifier under 10-fold and hold-out validations, 

respectively. 

 

Figure 2 illustrates the average convergence curve over 30 runs for each method in combination with the SVM 

classifier. The proposed PSO model outperforms other methods, and depicts the fastest convergence rate, which 

is followed by those of MFO and GM-PSO. 

 

To evaluate the efficiency of each search strategy in the proposed PSO model, the following four additional 

experiments are conducted by incrementally adding different employed mechanisms. The four tested 

components are as follows, i.e. (1) the subswarm-based search led by two remote leaders + the attraction 

operation by following the subswarm leader partially and fully, (2) the setting of (1) + the evading action by 

avoiding personal and global worst experiences partially and fully, (3) the setting of (2) + long jumps of each 

subswarm leader using Levy flights/Gaussian/Cauchy distributions, and (4) the setting of (3) + changing the 

matrix representation, i.e. the full version. Table 6 shows the average GM scores over 30 runs for each test 

component and the original PSO model under both 10-fold and hold-out validations.  

 

Table 6 Evaluation of different proposed mechanisms using the combined skin lesion data set 

 
   PSO (1) Subswarms +  

attraction 

(2) Subswarms +  

attraction + 

evading 

(3) Subswarms +  

attraction + evading + 

leader enhancement 

(4) Full 

version 

K
N

N
 1
0

 F
o

ld
 Mean 0.8958 0.9202 0.9215 0.9221 0.9231 

Std 0.0221 0.0128 0.0144 0.0159 0.0146 

Min 0.8528 0.8981 0.8983 0.8990 0.8986 

Max 0.9368 0.9421 0.9428 0.9431 0.9434 

H
o

ld
 O

u
t Mean 0.9021 0.9217 0.9257 0.9250 0.9262 

Std 0.0199 0.0118 0.0141 0.0142 0.0141 

Min 0.8627 0.8946 0.8965 0.8946 0.8979 

Max 0.9346 0.9435 0.9462 0.9455 0.9465 

S
V

M
 1
0

 F
o

ld
 Mean 0.9235 0.9350 0.9402 0.9411 0.9423 

Std 0.0273 0.0175 0.0167 0.0154 0.0162 

Min 0.8539 0.9091 0.9114 0.9159 0.9158 

Max 0.9655 0.9604 0.9683 0.9711 0.9702 

H
o

ld
 O

u
t Mean 0.9281 0.9386 0.9405 0.9422 0.9451 

Std 0.0243 0.0160 0.0160 0.0137 0.0146 

Min 0.8746 0.9164 0.9209 0.9255 0.9225 

Max 0.9765 0.9613 0.9689 0.9674 0.9698 

 

As illustrated in Table 6, the experiments using different proposed mechanisms in configurations 1-4 show 

performance improvements in comparison with that of the original PSO model. Each proposed mechanism is 

able to improve the performance incrementally, while the best mean GM results are achieved by the full version 

of the proposed algorithm in configuration 4. In short, the above experiments indicate the competence of each 

proposed strategy in improving the performance of the proposed PSO model.  

 

4.3 Evaluation Using the PH2 Skin Lesion Data Set 
For comparison with other related research studies on skin cancer detection, we conduct another evaluation 

dedicated to the PH2 data set. The PH2 database has a total of 200 images with 80 common nevi (benign), 80 

atypical nevi, and 40 melanoma cases. We conduct 3-class skin lesion classification in this experiment. For the 

hold-out validation, we use 70% and 30% of the images from each class for training and test, respectively. A 

total of 30 trials are performed for each feature selection algorithm. The KNN and SVM models are used as the 

underlying classifiers for evaluating the PH2 data set, owing to their popularity in related research studies [6, 

56]. The maximum number of function evaluations, i.e. population size (50) × maximum number of iterations 



(500), is applied to all the methods in this experiment. Table 7 shows the experimental and the statistical test 

results. The size of selected feature subsets for each method is presented in Table 8. 

 

As illustrated in Table 7, the empirical and statistical test results indicate the statistical superiority of the 

proposed model over other methods for the 3-class lesion classification for all test cases. Referring to Table 8, 

ThBPSO identifies a smaller average subset of features, i.e. 48.53, than that of our proposed model (i.e. an 

average subset of 50.23 features). However, the proposed model shows a better discriminative power with better 

mean GM scores. The computational cost of the proposed model is comparable with those of all other classical 

methods and advanced PSO variants. In this experiment, two sets of 60 top-ranked discriminative features 

identified by ReliefF and mRMR, respectively, are employed for comparison, owing to their impressive 

classification performances. 

 

Table 7 Average classification results of each algorithm over 30 runs using the PH2 data set 

      Prop. PSO BA BBPSO DA FPA GA HS MFO PSO ABC CA 

K
N

N
 1

0
 F

o
ld

 Mean 0.9416 0.8945 0.8863 0.8845 0.8870 0.9200 0.9100 0.9342 0.8843 0.9095 0.9050 

Std 0.0551 0.0619 0.0778 0.0712 0.0856 0.0684 0.0623 0.0598 0.0756 0.0574 0.0563 

Min 0.8000 0.7316 0.6808 0.7524 0.6633 0.7524 0.7414 0.8000 0.7101 0.7816 0.7500 

Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Rank Sum  + + + + + + + + + + 

H
o
ld

 O
u

t Mean 0.9604 0.9187 0.9161 0.9209 0.9247 0.9364 0.9277 0.9524 0.9217 0.9290 0.9256 

Std 0.0267 0.0378 0.0422 0.0418 0.0411 0.0426 0.0418 0.0305 0.0381 0.0336 0.0417 

Min 0.9057 0.8432 0.7906 0.8432 0.8539 0.8615 0.8432 0.8839 0.8323 0.8750 0.8101 

Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Rank Sum  + + + + + + + + + + 

S
V

M
 1

0
 F

o
ld

 Mean 0.9523 0.9111 0.9094 0.9166 0.9432 0.9221 0.9258 0.9316 0.9093 0.9238 0.9340 

Std 0.0534 0.0699 0.0630 0.0725 0.0462 0.0624 0.0707 0.0709 0.0709 0.0646 0.0629 

Min 0.8121 0.7121 0.7707 0.7121 0.8214 0.8000 0.7000 0.7000 0.7707 0.7414 0.7414 

Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Rank Sum  + + + + + + + + + + 

H
o

ld
 O

u
t Mean 0.9645 0.9456 0.9374 0.9417 0.9614 0.9485 0.9487 0.9562 0.9468 0.9574 0.9583 

Std 0.0316 0.0369 0.0358 0.0456 0.0263 0.0331 0.0376 0.0329 0.0386 0.0304 0.0358 

Min 0.8660 0.8478 0.8660 0.8292 0.8714 0.8660 0.8660 0.8660 0.8660 0.8660 0.8660 

Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Rank Sum  + + + + + + + + + + 

 

 
      Prop. PSO DNLPSO ELPSO BBPSOV AGPSO GM-PSO MS-PSO GPSO ThBPSO ReliefF mRMR 

K
N

N
 1

0
 F

o
ld

 Mean 0.9416 0.9057 0.9178 0.9255 0.9089 0.8991 0.8987 0.9123 0.8801 0.8998 0.8811 

Std 0.0551 0.0693 0.0738 0.0587 0.0796 0.0744 0.0687 0.0639 0.0303 - - 

Min 0.8000 0.7157 0.7157 0.7406 0.6678 0.7524 0.7571 0.7633 0.8103 - - 

Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 - - 

Rank Sum  + + + + + + + + + + 

H
o

ld
 O

u
t Mean 0.9604 0.9327 0.9400 0.9425 0.9361 0.9272 0.9356 0.9373 0.8869 0.9287 0.8920 

Std 0.0267 0.0408 0.0423 0.0370 0.0483 0.0399 0.0424 0.0383 0.0270 - - 

Min 0.9057 0.8323 0.8539 0.8229 0.7873 0.8432 0.8229 0.8539 0.8353 - - 

Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 - - 

Rank Sum  + + + + + + + + + + 

S
V

M
 1

0
 F

o
ld

 Mean 0.9523 0.9109 0.9266 0.9244 0.9219 0.9105 0.9196 0.9001 0.9004 0.9292 0.9001 

Std 0.0534 0.0833 0.0614 0.0702 0.0678 0.0627 0.0599 0.0804 0.0271 - - 

Min 0.8121 0.7414 0.7707 0.7524 0.7121 0.7707 0.7707 0.7121 0.8126 - - 

Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 - - 

Rank Sum  + + + + + + + + + + 

H
o
ld

 O
u

t Mean 0.9645 0.9378 0.9558 0.9519 0.9428 0.9414 0.9434 0.9387 0.9054 0.9481 0.9210 

Std 0.0316 0.0428 0.0331 0.0322 0.0378 0.0365 0.0404 0.0468 0.0264 - - 

Min 0.8660 0.8292 0.8660 0.8824 0.8292 0.8660 0.8660 0.8292 0.8561 - - 

Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 - - 

Rank Sum  + + + + + + + + + + 

 

Table 9 shows the comparison between our work and other related research reported in the literature for skin 

cancer detection using the PH2 data set. Since each work utilizes either different classification methods or 

different training and test data sets, Table 9 is an approximate indication of the performance comparison among 

different methods. According to Table 9, the proposed model is one of the top performers for the PH2 data set. 

The proposed attraction and evading strategies embedded in the subswarm-based search and dynamic matrix 

representations account for the superiority of the proposed PSO model. 

 
Table 8 The training computational cost and the average number of features selected by each optimization 

algorithm 

 Prop. PSO BA BBPSO DA FPA GA HS MFO PSO ABC CA 

Average no. of selected features 50.23 68.60 64.67 69.60 64.83 62.20 65.33 57.70 66.63 66.63 61.37 

Training cost (seconds) 3897.92 3808.29 3931.76 3806.97 3798.13 3782.29 3927.84 3900.98 3876.96 3897.18 3922.39 



 

 
 Prop. PSO DNLPSO ELPSO BBPSOV AGPSO GM-PSO MS-PSO GPSO ThBPSO 

Average no. of selected features 50.23 64.60 67.80 61.37 64.67 65.50 58.90 63.00 48.53 

Training cost (seconds) 3897.92 3855.17 3962.14 3875.86 3877.59 3874.13 3887.29 3940.21 4039.71 

 

 
Table 9 Performance comparison between the proposed system and related research using the PH2 data set 

Studies Methodology Classes Evaluation 

strategy 

Recognition rate 

(%) 

Abuzaghleh et al. [56] 2-D Fast Fourier Transform + 2-D Discrete Cosine Transform + 

KNN 

3 25% for testing 63.33 

Abuzaghleh et al. [3] 2-D Fast Fourier Transform + 2-D Discrete Cosine Transform + 

Complexity + Colour + Pigment Network + Lesion Shape, 

Orientation, Margin, Intensity Pattern + A Two-Level Classifier 

3 25% for testing 96.50 

Barata et al. [57] Lesion or Pigment Ratio Features + Boosting Algorithm 3 10-Fold 86.20 

Barata et al. [58] Colour Scale Invariant Feature Transform + Bag-of-Features 3 10-Fold 87.00 

Barata et al. [59] Colour Constancy + Bag-of-Features Framework + K-Means + 
SVM 

3 10-Fold 84.30 

Vasconcelos et al. [60] Colour Features + SVM 3 10-Fold 81.38 

Soumya et al. [61] Colour Correlogram + Segmentation based Fractal Texture 
Analysis + Bayes Classifier 

3 10-Fold 91.50 

Pennisi et al. [62] Artefact Removal, Skin Detection, Lesion Segmentation & 

Binary Mask + AdaBoost 

3 N/A 93.60 

This research Shape, Colour & GLRLM Features + Prop. PSO-based Feature 

Selection + SVM 

3 10-Fold & 

Hold-Out (30% 

for testing) 

95.23 (10-Fold) 

96.45 (Hold-Out) 

 

 

4.4 Evaluation Using the UCI Spambase Data Set 
 

The proposed PSO model is also applied to other large-scale problems for feature optimization. To evaluate the 

discriminative capabilities of the proposed model, the UCI spambase data set [63] is used for evaluation. The 

spambase data set has 4601 instances, 57 attributes, and 2 classes (spam or non-spam). All the instances are used 

in the experiment with 80%:20% as the training and test split. A total of 30 runs are performed for each method. 

The following experimental settings are used, i.e. dimension=57, population=20, and iteration=200. The 

maximum number of function evaluations, i.e. population size (20) × maximum number of iterations (200), is 

applied to all methods.  

 

Table 10 shows the detailed average GM scores over 30 runs for each method and the Wilcoxon rank sum test 

results, respectively. The empirical and statistical results in Table 10 indicate the statistical superiority of the 

proposed PSO model over all other methods, except for GM-PSO, which shows similar result distributions to 

those of the proposed PSO model when integrated with the KNN classifier. Moreover, two sets of 50 top-ranked 

salient features identified by ReliefF and mRMR, respectively, are employed for performance comparison 

owing to their competitive classification performances. 

 

As shown in Table 11, the proposed model selects a comparatively smaller set of features (i.e. 33.73) with 

comparable computational efficiency, than those of majority of PSO variants at the training stage. Although 

MS-PSO and ThBPSO retrieve the smallest feature subsets, i.e. 31.93 and 32.98 features, respectively, our 

proposed model yields a better trade-off between computational efficiency and discriminative capability. The 

empirical results indicate the superiority of the proposed PSO model over other methods for solving 

discriminative feature selection for this spambase data set. 

 

Table 10 Average classification results of each algorithm over 30 runs for the UCI spambase data set 

 
      Prop. PSO BA BBPSO DA FPA GA HS MFO PSO ABC CA 

K
N

N
 1

0
-f

o
ld

 

Mean 0.8982 0.8645 0.8799 0.8727 0.8724 0.8916 0.8801 0.8809 0.8757 0.8807 0.8762 

Std 0.0117 0.0120 0.0079 0.0116 0.0105 0.0067 0.0071 0.0067 0.0113 0.0078 0.0136 

Min 0.8580 0.8477 0.8575 0.8483 0.8496 0.8819 0.8649 0.8674 0.8540 0.8642 0.8397 

Max 0.9138 0.8898 0.8912 0.8901 0.9027 0.9039 0.8909 0.8925 0.8936 0.8928 0.8946 

Rank Sum  + + + + + + + + + + 

H
o

ld
-o

u
t Mean 0.8987 0.8652 0.8806 0.8734 0.8731 0.8922 0.8808 0.8817 0.8765 0.8816 0.8769 

Std 0.0117 0.0119 0.0080 0.0116 0.0104 0.0068 0.0070 0.0067 0.0113 0.0075 0.0135 

Min 0.8585 0.8489 0.8579 0.8496 0.8506 0.8821 0.8656 0.8678 0.8550 0.8652 0.8409 

Max 0.9144 0.8900 0.8921 0.8911 0.9031 0.9050 0.8913 0.8928 0.8940 0.8931 0.8951 

Rank Sum  + + + + + + + + + + 



S
V

M
 1

0
-f

o
ld

 

Mean 0.9031 0.8810 0.8930 0.8832 0.8883 0.8986 0.8966 0.9009 0.8911 0.9002 0.8887 

Std 0.0044 0.0158 0.0074 0.0118 0.0122 0.0075 0.0052 0.0030 0.0088 0.0045 0.0104 

Min 0.8959 0.8296 0.8773 0.8559 0.8537 0.8788 0.8832 0.8955 0.8697 0.8907 0.8631 

Max 0.9098 0.9085 0.9061 0.9041 0.9130 0.9160 0.9082 0.9110 0.9058 0.9103 0.9022 

Rank Sum  + + + + + + + + + + 

H
o
ld

-o
u

t Mean 0.9036 0.8817 0.8936 0.8838 0.8889 0.8991 0.8971 0.9014 0.8919 0.9008 0.8893 

Std 0.0044 0.0157 0.0072 0.0117 0.0120 0.0075 0.0052 0.0030 0.0088 0.0045 0.0104 

Min 0.8962 0.8308 0.8785 0.8569 0.8548 0.8793 0.8836 0.8962 0.8710 0.8911 0.8640 

Max 0.9102 0.9090 0.9067 0.9046 0.9138 0.9162 0.9083 0.9116 0.9062 0.9108 0.9025 

Rank Sum  + + + + + + + + + + 

 
       Prop. PSO DNLPSO ELPSO BBPSOV AGPSO GM-PSO MS-PSO GPSO ThBPSO ReliefF mRMR 

K
N

N
 1

0
-f

o
ld

 

Mean 0.8982 0.8711 0.8726 0.8817 0.8758 0.8820 0.8669 0.8767 0.8714 0.8507 0.8725 

Std 0.0117 0.0084 0.0091 0.0075 0.0100 0.0077 0.0122 0.0088 0.0119 - - 

Min 0.8580 0.8584 0.8566 0.8687 0.8473 0.8651 0.8393 0.8549 0.8506 - - 

Max 0.9138 0.8994 0.8925 0.9006 0.8954 0.8946 0.8907 0.8966 0.8951 - - 

Rank Sum  + + + + 0 + + + + + 

H
o
ld

-o
u

t 

Mean 0.8987 0.8718 0.8733 0.8824 0.8764 0.8827 0.8678 0.8774 0.8721 0.8515 0.8732 

Std 0.0117 0.0084 0.0090 0.0075 0.0099 0.0076 0.0121 0.0088 0.0118 - - 

Min 0.8585 0.8586 0.8579 0.8690 0.8480 0.8661 0.8406 0.8556 0.8512 - - 

Max 0.9144 0.9001 0.8930 0.9012 0.8959 0.8950 0.8913 0.8967 0.8963 - - 

Rank Sum  + + + + 0 + + + + + 

S
V

M
 1

0
-f

o
ld

 

Mean 0.9031 0.8850 0.8939 0.8976 0.8948 0.8989 0.8792 0.8919 0.8679 0.8864 0.8960 

Std 0.0044 0.0100 0.0071 0.0061 0.0068 0.0054 0.0095 0.0068 0.0159 - - 

Min 0.8959 0.8539 0.8760 0.8834 0.8773 0.8892 0.8588 0.8742 0.8211 - - 

Max 0.9098 0.9047 0.9060 0.9118 0.9069 0.9086 0.8943 0.9078 0.8918 - - 

Rank Sum  + + + + + + + + + + 

H
o
ld

-o
u

t 

Mean 0.9036 0.8856 0.8945 0.8982 0.8954 0.8995 0.8799 0.8925 0.8686 0.8871 0.8966 

Std 0.0044 0.0100 0.0071 0.0061 0.0067 0.0053 0.0093 0.0067 0.0158 - - 

Min 0.8962 0.8542 0.8765 0.8842 0.8779 0.8905 0.8602 0.8753 0.8221 - - 

Max 0.9102 0.9055 0.9066 0.9123 0.9075 0.9089 0.8945 0.9085 0.8924 - - 

Rank Sum  + + + + + + + + + + 

 

Table 11 The training computational cost and the average number of features selected by each optimization 

algorithm 

 Prop. PSO BA BBPSO DA FPA GA HS MFO PSO ABC CA 

Average no. of selected features 33.73 36.43 43.90 36.10 38.80 38.70 45.13 51.43 41.60 50.97 39.40 

Training cost (seconds) 6916.25 6891.09 7005.57 6811.01 6858.62 6793.35 6963.88 6995.37 6946.64 6947.75 6934.96 

 
 Prop. PSO DNLPSO ELPSO BBPSOV AGPSO GM-PSO MS-PSO GPSO ThBPSO 

Average no. of selected features 33.73 43.73 47.57 47.33 45.20 48.20 31.93 43.70 32.98 

Training cost (seconds) 6916.25 6947.66 7037.60 6899.99 6891.06 6957.73 6983.78 7026.52 7136.04 

 

 

4.5 Evaluation Using Benchmark Functions 
We evaluate the proposed PSO model using different optimization tasks, i.e. unimodal and multimodal 

benchmark functions, to further ascertain its efficiency. A set of eight standard benchmark functions is selected, 

owing to their multi-modalities and varied difficulties. They are summarized in Table 12. These benchmark 

functions have been widely used for evaluating swarm intelligence algorithms, e.g. in [33, 43, 45, and 64]. 

 

Table 12 Unimodal and multimodal benchmark functions 

 Function Definition Range Global 

minima 
F1 Dixon-Price 

𝑓(𝑥) =  (𝑥1 − 1)
2 +∑𝑖(2𝑥𝑖

2 − 𝑥𝑖−1)
2

𝑑

𝑖=2

 

[-10, 10] 0 

F2 Sphere 

𝑓(𝑥) =  ∑𝑥𝑖
2

𝑑

𝑖=1

 

[-5.12, 5.12] 0 

F3 Rotated Hyper-

Ellipsoid 𝑓(𝑥) =  ∑  ∑𝑥𝑗
2

𝑖

𝑗=1

𝑑

𝑖=1

 

[-65.536, 65.536] 0 

F4 Sum Squares 

𝑓(𝑥) =  ∑  𝑖𝑥𝑖
2

𝑑

𝑖=1

 

[-5.12, 5.12] 0 



F5 Sum of Different Powers 

𝑓(𝑥) =  ∑ |𝑥𝑖|
𝑖+1

𝑑

𝑖=1

 

[-1, 1] 0 

F6 Ackley 

𝑓(𝑥) = 20 + 𝑒 − 20 𝑒𝑥𝑝

(

 −0.2√
1

𝑑
∑𝑥𝑖

2

𝑑

𝑖=1
)

 

− exp(
1

𝑑
∑cos(2𝜋𝑥𝑖)

𝑑

𝑖=1

) 

[-32, 32] 0 

F7 Griewank 

𝑓(𝑥) =∑
𝑥𝑖
2

4000
− ∏cos (

𝑥𝑖

√𝑖
)

𝑑

𝑖=1

𝑑

𝑖=1

+ 1 

[-600, 600] 0 

F8 Powell 

𝑓(𝑥) =  ∑[(𝑥4𝑖−3 + 10𝑥4𝑖−2)
2

𝑑/4

𝑖=1

+ 5(𝑥4𝑖−1 − 𝑥4𝑖)
2

+ (𝑥4𝑖−2 − 2𝑥4𝑖−1)
4

+ 10(𝑥4𝑖−3 − 𝑥4𝑖)
4] 

[-4, 5] 0 

 

All benchmark functions can be grouped into two categories with respect to the number of local minima, i.e. 

unimodal and multimodal functions. F1-F5 and F6-F8 in Table 12 represent unimodal and multimodal test 

functions, respectively. The unimodal test functions have single global optimum (i.e. 0), whereas the multimodal 

test functions are characterised by multiple local minima. As indicated in [64], these unimodal and multimodal 

benchmark functions are challenging testbeds for evaluation of local exploitation and global exploration 

capabilities of search algorithms.  

 

4.5.1 Comparison with Other Search Methods 
We compare the proposed PSO model with other methods using the above mathematical landscapes. Except for 

ThBPSO which is dedicated to feature selection problems, all other PSO variants have been implemented for 

comparison. The following experimental settings are used, i.e. dimension=50, population size=50, and the 

maximum number of iterations=500. We apply the maximum number of function evaluations, i.e. population 

size (50) × the maximum number of iterations (500), in all search methods. Table 13 presents the evaluation and 

statistical test results for all benchmark functions. We employ the mean of the global minima over 30 runs for 

each algorithm as the main criterion for comparison, along with the minimum, maximum, and standard 

deviation results.    

 

As shown in Table 13, the proposed PSO model achieves better mean global minima over 30 runs than those of 

8 PSO variants and 10 classical methods for nearly all test functions, except for F6 (Ackley) where ELPSO 

obtains the best performance. The results indicate that the subswarm-based search with diverse attraction and 

flee mechanisms of the proposed PSO model leads to a highly efficient exploration capability of the search 

space, therefore reducing the probabilities of being trapped in local optima. 

 

The Wilcoxon rank sum test results are provided to indicate the significance of the proposed model. As shown 

in Table 13, the statistical test results indicate that our proposed model achieves statistically significant 

improvements over other methods, except for F6 where the proposed model, DNLPSO, GM-PSO and AGPSO 

have similar medians. ELPSO also outperforms the proposed model statistically for F6. In short, the 

experiments using different mathematical landscapes further ascertain efficiency of the proposed model. 

 

Table 13 Average evaluation results for all benchmark functions over 30 runs with d=50 

 
    Prop. PSO BA PSO DA HS FPA BBPSO MFO ABC CA GA 

F1 Dixon Mean 4.77E+00 6.71E+04 2.30E+06 6.48E+03 7.91E+01 3.22E+04 2.63E+05 2.84E+05 3.19E+06 4.96E+03 4.12E+05 

  Std 3.16E+00 5.39E+04 7.71E+05 6.75E+03 1.87E+01 1.27E+04 3.53E+05 3.90E+05 8.10E+05 4.51E+03 2.49E+05 

  Min 6.70E-01 2.89E+03 1.28E+06 9.39E+01 4.54E+01 1.24E+04 7.86E+01 8.59E+02 1.67E+06 5.91E+02 1.02E+05 

  Max 9.82E+00 2.29E+05 5.13E+06 2.42E+04 1.19E+02 6.55E+04 1.41E+06 1.57E+06 4.97E+06 1.86E+04 1.01E+06 

  Rank Sum  + + + + + + + + + + 

F2 Sphere Mean 5.21E-08 1.43E+01 1.47E+02 9.91E+00 3.91E-01 1.83E+01 2.35E+01 1.88E+01 1.54E+02 1.01E+00 4.14E+01 

 Std 1.03E-07 9.78E+00 2.59E+01 4.63E+00 4.28E-02 3.60E+00 2.57E+01 1.97E+01 2.35E+01 1.25E+00 1.29E+01 

 Min 9.30E-10 3.54E-01 8.46E+01 3.73E+00 3.09E-01 1.19E+01 1.29E-02 4.86E-01 1.06E+02 7.09E-02 2.31E+01 

 Max 3.22E-07 3.33E+01 1.80E+02 2.29E+01 4.61E-01 2.84E+01 1.05E+02 7.92E+01 1.94E+02 6.42E+00 8.40E+01 

 Rank Sum  + + + + + + + + + + 

F3 Rothyp Mean 1.88E-04 2.75E+05 6.03E+05 2.16E+04 1.68E+03 6.83E+04 1.21E+05 1.11E+05 5.05E+05 4.85E+03 2.40E+05 

  Std 3.94E-04 8.74E+04 1.29E+05 1.39E+04 4.51E+02 1.49E+04 1.13E+05 9.56E+04 7.24E+04 4.89E+03 4.88E+04 



  Min 3.84E-06 1.08E+05 3.96E+05 3.43E+03 7.65E+02 4.07E+04 4.46E+03 9.17E+03 3.88E+05 5.01E+02 1.53E+05 

  Max 1.74E-03 5.05E+05 8.79E+05 5.79E+04 2.73E+03 1.01E+05 3.48E+05 3.83E+05 6.54E+05 2.33E+04 3.87E+05 

  Rank Sum  + + + + + + + + + + 

F4 Sum2 Mean 4.78E-06 2.86E+03 1.48E+04 7.16E+02 1.52E+01 1.66E+03 2.32E+03 2.40E+03 1.18E+04 1.46E+02 4.09E+03 

 Std 8.15E-06 9.49E+02 3.97E+03 6.90E+02 2.16E+00 3.90E+02 1.53E+03 2.35E+03 1.62E+03 1.91E+02 1.25E+03 

 Min 1.41E-07 1.08E+03 7.65E+03 2.35E+01 1.21E+01 9.81E+02 3.02E+02 1.00E+02 8.60E+03 5.08E+00 2.44E+03 

 Max 3.11E-05 4.99E+03 2.47E+04 3.27E+03 2.27E+01 2.39E+03 5.71E+03 9.02E+03 1.43E+04 1.01E+03 7.34E+03 

 Rank Sum  + + + + + + + + + + 

F5 Sumpow Mean 3.28E-18 5.69E-08 3.43E-01 6.73E-06 4.78E-07 2.94E-04 7.92E-10 2.79E-06 7.59E-01 6.15E-05 2.39E-02 

  Std 1.01E-17 2.95E-08 2.60E-01 1.08E-05 6.68E-07 2.71E-04 3.68E-09 4.67E-06 3.00E-01 1.38E-04 2.15E-02 

  Min 1.20E-22 1.13E-08 2.36E-02 2.52E-17 1.08E-08 9.78E-06 1.27E-15 2.74E-08 1.87E-01 1.86E-07 2.92E-03 

  Max 5.33E-17 1.17E-07 9.53E-01 4.87E-05 3.45E-06 9.12E-04 2.01E-08 1.70E-05 1.50E+00 6.89E-04 8.04E-02 

  Rank Sum  + + + + + + + + + + 

F6 Ackley Mean 3.27E+00 1.57E+01 1.95E+01 1.01E+01 3.09E+01 1.38E+01 1.85E+01 1.85E+01 2.03E+01 1.10E+01 1.61E+01 

 Std 8.23E-01 9.40E-01 5.71E-01 2.03E+00 3.97E-01 9.09E-01 1.41E+00 1.60E+00 2.54E-01 2.36E+00 8.56E-01 

 Min 2.08E+00 1.37E+01 1.82E+01 5.58E+00 3.02E+01 1.18E+01 1.42E+01 1.31E+01 1.98E+01 5.46E+00 1.44E+01 

 Max 5.68E+00 1.74E+01 2.05E+01 1.38E+01 4.08E+01 1.53E+01 2.01E+01 1.97E+01 2.08E+01 1.74E+01 1.81E+01 

 Rank Sum  + + + + + + + + + + 

F7 Griewank Mean 1.78E-02 2.31E+02 5.28E+02 2.95E+01 3.06E+00 6.38E+01 7.27E+01 6.58E+01 5.59E+02 5.77E+00 2.56E+02 

  Std 2.43E-02 6.55E+01 9.93E+01 1.73E+01 4.47E-01 1.30E+01 8.93E+01 6.33E+01 7.47E+01 5.48E+00 7.11E+01 

  Min 1.14E-06 1.06E+02 3.09E+02 6.04E+00 2.08E+00 3.96E+01 1.04E+00 3.51E+00 3.73E+02 1.15E+00 1.45E+02 

  Max 8.50E-02 4.14E+02 6.91E+02 7.76E+01 3.78E+00 9.35E+01 3.62E+02 1.87E+02 7.23E+02 2.83E+01 4.39E+02 

  Rank Sum  + + + + + + + + + + 

F8 Powell Mean 5.79E-02 2.43E+02 1.40E+04 3.58E+02 2.25E+01 3.98E+02 2.67E+03 2.98E+03 1.56E+04 1.49E+02 2.35E+03 

 Std 4.07E-02 3.06E+02 4.03E+03 5.01E+02 8.61E+00 9.86E+01 1.97E+03 2.01E+03 3.57E+03 1.14E+02 1.10E+03 

 Min 1.85E-02 1.67E+01 6.44E+03 3.04E+01 8.69E+00 2.04E+02 1.79E+02 1.76E+02 1.10E+04 1.99E+01 1.02E+03 

 Max 1.76E-01 1.57E+03 2.24E+04 2.49E+03 4.77E+01 6.25E+02 6.93E+03 7.90E+03 2.35E+04 4.62E+02 6.55E+03 

  Rank Sum  + + + + + + + + + + 

 
    Prop. PSO DNLPSO ELPSO BBPSOV AGPSO GM-PSO MS-PSO GPSO 

F1 Dixon Mean 4.77E+00 1.68E+03 1.00E+01 6.20E+04 2.68E+01 1.42E+01 1.29E+05 2.32E+06 

  Std 3.16E+00 8.09E+03 0.00E+00 6.68E+04 2.49E+01 6.17E+00 3.74E+04 5.32E+05 

  Min 6.70E-01 6.82E-01 1.00E+01 3.45E+03 3.92E+00 6.54E+00 6.68E+04 1.57E+06 

  Max 9.82E+00 4.45E+04 1.00E+01 3.45E+05 1.01E+02 3.33E+01 2.01E+05 3.79E+06 

  Rank Sum  + + + + + + + 

F2 Sphere Mean 5.21E-08 1.89E+00 5.12E+00 1.77E+01 5.96E-03 1.10E-02 4.58E+01 1.72E+02 

 Std 1.03E-07 6.02E+00 1.81E-15 8.31E+00 5.45E-03 6.37E-03 7.69E+00 2.10E+01 

 Min 9.30E-10 5.18E-07 5.12E+00 5.80E+00 8.21E-04 1.28E-03 3.11E+01 1.27E+02 

 Max 3.22E-07 2.43E+01 5.12E+00 4.85E+01 2.36E-02 2.52E-02 6.19E+01 2.19E+02 

 Rank Sum  + + + + + + + 

F3 Rothyp Mean 1.88E-04 1.02E+04 6.55E+01 6.39E+04 3.18E+03 1.92E+01 1.66E+05 6.46E+05 

  Std 3.94E-04 2.84E+04 4.34E-14 3.74E+04 9.14E+03 1.25E+01 3.10E+04 1.15E+05 

  Min 3.84E-06 1.63E-03 6.55E+01 1.74E+04 1.81E+00 7.20E+00 1.22E+05 4.34E+05 

  Max 1.74E-03 1.30E+05 6.55E+01 1.78E+05 3.86E+04 5.50E+01 2.28E+05 8.94E+05 

  Rank Sum  + + + + + + + 

F4 Sum2 Mean 4.78E-06 4.03E+02 1.00E+01 1.61E+03 1.16E+02 9.42E-01 3.72E+03 1.56E+04 

 Std 8.15E-06 8.88E+02 0.00E+00 1.06E+03 2.19E+02 6.14E-01 7.13E+02 2.30E+03 

 Min 1.41E-07 1.60E-03 1.00E+01 4.81E+02 9.03E-02 1.69E-01 2.46E+03 1.07E+04 

 Max 3.11E-05 3.51E+03 1.00E+01 5.01E+03 9.00E+02 2.83E+00 4.86E+03 1.96E+04 

 Rank Sum  + + + + + + + 

F5 Sumpow Mean 3.28E-18 9.90E-08 3.42E-08 4.45E-06 3.34E-14 7.40E-16 8.49E-05 4.24E-01 

  Std 1.01E-17 3.18E-07 1.60E-07 7.78E-06 9.51E-14 2.86E-15 8.57E-05 3.32E-01 

  Min 1.20E-22 5.65E-37 9.17E-19 6.77E-10 1.37E-18 9.37E-21 4.08E-06 2.22E-02 

  Max 5.33E-17 1.58E-06 8.76E-07 3.00E-05 3.84E-13 1.55E-14 3.03E-04 1.28E+00 

  Rank Sum  + + + + + + + 

F6 Ackley Mean 3.27E+00 6.89E+00 2.37E+00 1.25E+01 5.84E+00 2.81E+00 1.54E+01 1.99E+01 

 Std 8.23E-01 2.74E+00 4.82E-01 1.95E+00 1.35E+00 5.00E-01 6.32E-01 2.73E-01 

 Min 2.08E+00 2.81E+00 1.32E+00 7.41E+00 3.46E+00 1.76E+00 1.40E+01 1.93E+01 

 Max 5.68E+00 1.44E+01 3.36E+00 1.55E+01 9.04E+00 3.62E+00 1.67E+01 2.05E+01 

 Rank Sum  0 - + 0 0 + + 

F7 Griewank Mean 1.78E-02 7.97E+00 2.11E+01 5.71E+01 6.51E-01 3.45E-01 1.51E+02 6.01E+02 

  Std 2.43E-02 2.38E+01 1.09E+02 2.52E+01 2.93E-01 1.31E-01 2.94E+01 6.90E+01 

  Min 1.14E-06 2.17E-02 7.88E-01 1.90E+01 1.22E-01 1.13E-01 9.05E+01 4.57E+02 

  Max 8.50E-02 1.30E+02 6.00E+02 1.21E+02 1.08E+00 6.02E-01 1.97E+02 7.76E+02 

  Rank Sum  + + + + + + + 

F8 Powell Mean 5.79E-02 2.57E+01 5.00E+00 7.78E+02 3.62E+01 6.65E-01 1.51E+03 1.21E+04 

 Std 4.07E-02 5.14E+01 0.00E+00 7.29E+02 5.09E+01 5.24E-01 3.87E+02 2.71E+03 

 Min 1.85E-02 6.14E-02 5.00E+00 9.35E+01 4.76E-01 5.15E-02 7.92E+02 7.87E+03 

 Max 1.76E-01 2.07E+02 5.00E+00 2.94E+03 1.79E+02 2.50E+00 2.32E+03 1.86E+04 

  Rank Sum  + + + + + + + 

 

 

5. CONCLUSIONS 

In this research, we have described skin lesion classification using PSO-based feature optimization. The 

proposed PSO model integrates diverse alternative velocity updating strategies in the subswarms to enable a 

wider exploration of the search space. Two remote swarm leaders have been employed to lead the subswarm-

based search to explore distinctive regions. Probability distributions and dynamic matrix representation have 

also been utilized to increase diversification. The proposed PSO model is capable of mitigating premature 

convergence of the original PSO model. Evaluated using several skin lesion and UCI data sets, the empirical 



results indicate that the proposed search mechanisms account for the superior capabilities of the proposed 

model. The statistical Wilcoxon rank sum test results further ascertain the efficiency of the proposed PSO model 

over 10 other classical search methods and 8 advanced PSO variants for solving discriminative feature selection 

and mathematical optimization problems with different landscapes. 

 

For further work, the proposed PSO model can be improved in several aspects. The acceleration constants 

currently are fixed throughout the search process. A strategy to adaptively decrease 𝑐1 and increase 𝑐2 learning 

parameters can be studied, which enables the search process to concentrate on the exploration of the search 

space in early iterations and converge towards the global optimum solution in subsequent iterations [17, 65]. 

Chaotic accelerated attraction and evading actions could also be considered. Currently, two subswarms are 

employed in the proposed model with an attempt to achieve the best trade-off between computational efficiency 

and swarm diversity. In this regard, we will incorporate diverse hybrid search operations in multiple (>2) 

subswarms to further evaluate the efficiency of the proposed model. Furthermore, we aim to use the proposed 

PSO model for other medical imaging tasks such as retinal disease and blood cancer detection using 

microscopic images. Deep and ensemble neural networks combined with clustering methods [66-70] will be 

employed to detect the arrival of any unseen new types of skin lesions. The optimal network topologies and 

hyper-parameters of such classification models will also be explored using the proposed PSO model. 
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