
 Elsevier Editorial System(tm) for Knowledge-

Based Systems

 Manuscript Draft

Manuscript Number: KNOSYS-D-17-02132R2

Title: Cloud Service Selection Using a Markov Chain and the Best-Worst

Method

Article Type: Full Length Article

Keywords: Cloud Service Selection; MCDM methods; Best Worst Method;

Markov chain

Corresponding Author: Mr. Mehdi Rajabi Asadabadi,

Corresponding Author's Institution: University of New South Wales

First Author: Falak Nawaz

Order of Authors: Falak Nawaz ; Mehdi Rajabi Asadabadi; Naeem Janjua;

Omar Hossain; Elizabeth Chang; Morteza saberi

Abstract: Due to the increasing number of cloud services, service

selection has become a challenging decision for many organisations. It is

even more complicated when cloud users change their preferences based on

the requirements and the level of satisfaction of the experienced

service. The purpose of this paper is to overcome this drawback and

develop a cloud broker architecture for cloud service selection by

finding a pattern of the changing priorities of User Preferences (UPs).

To do that, a Markov chain is employed to find the pattern. The pattern

is then connected to the Quality of Service (QoS) for the available

services. A recently proposed Multi Criteria Decision Making (MCDM)

method, Best Worst Method (BWM), is used to rank the services. We show

that the method outperforms the Analytic Hierarchy Process (AHP). The

proposed methodology provides a prioritized list of the services based on

the pattern of changing UPs. The methodology is validated through a case

study using real QoS performance data of Amazon Elastic Compute (Amazon

EC2) cloud services.

This paper is the first application of Best Worst Method in could service selection.

A Markov chain is employed to find a pattern of uncertain customer needs.

The method results in less consistency in comparison with other similar methods.

Highlights (for review)

Cloud Service Selection Using a Markov Chain and the

Best-Worst Method
Falak Nawaz1, Mehdi Rajabi Asadabadi1, Naeem Khalid Janjua2, Omar Khadeer Hussain1, Elizabeth Chang1,

Morteza Saberi1

1 School of Business, University of New South Wales (UNSW), Canberra, Australia
2 School of Science, Edith Cowan University (ECU), Perth, Australia

{falak.nawaz, mehdi.asadabadi}@student.adfa.edu.au, {o.hussain, e.chang, m.saberi}@adfa.edu.au, n.janjua@ecu.edu.au

Corresponding Author:

Mehdi Rajabi Asadabadi

rajabi689@yahoo.com

School of Business,

THE UNIVERSITY OF NEW SOUTH WALES

Australia

+61468570489

*Revised Manuscript (changes marked)
Click here to view linked References

http://ees.elsevier.com/knosys/viewRCResults.aspx?pdf=1&docID=21980&rev=2&fileID=344482&msid={633A1CB4-946F-4A63-9D1C-24A7C4285761}

Reviewers' comments:

Reviewer #1: The paper can be accepted, yet some minor issues need to be tackled:

Thank you very much for the comments.

1) The abstract begins with a too general sentence.

The first sentence has been revised, and now highlights the importance of cloud service selection.

2) Equations should be numbered consecutively and such expressions as "matrix" should not be used in

numbering.

Thank you very much for your comment. We have consecutively numbered the equation.

3) Section 3 should not contain sub-sections as some of them contain unclear titles and/or are too short.

Thank you very much for your comment. We have removed the subsections headings, and rephrased the text to

align with the new structure.

Reviewer #2: Most issues raised by reviewers were addressed.

Thank you very much for the comment.

However, experiments are still insufficient. For example, the MCMC algorithm used in the proposed method

can be replaced by more advanced algorithms. They should apply other MCMC algorithms to their system and

evaluate them.

Regarding the first part of your comment, the evaluation section has been updated, and so a new section has

been added.

Regarding the second part of your comment, Markov Chain Monte Carlo (MCMC) includes algorithms for

sampling from probability distributions. It is important to point out is that this research study does not include

any sampling from probability distributions. Rather, we have used the convergence attribute of Markov chains

in order to find the stable states for User Preferences (UPs). In order to bring reader’s attention to this point, we

have added an explanation in the discussion section.

We believe that adding more explanation/discussion (other than what we have already included about Markov

Chain Monte Carlo) is possible, but will be out of scope for this research study and will confuse the reader on

which specific problem this paper intends to address. The scope of the paper, stated in the paper, is to propose a

solution to the problem of changing UPs when selecting a cloud service. In order to address the issue, we have

used the convergence attribute of the Markov chain to ascertain that and combine it with a new MCDM method

for recommending cloud services.

Cloud Service Selection Using a Markov Chain and the

Best-Worst Method
Abstract

Due to the increasing number of cloud services, service selection has become a challenging decision for many

organisations. It is even more complicated when cloud users change their preferences based on the requirements

and the level of satisfaction of the experienced service. The purpose of this paper is to overcome this drawback

and develop a cloud broker architecture for cloud service selection by finding a pattern of the changing priorities

of User Preferences (UPs). To do that, a Markov chain is employed to find the pattern. The pattern is then

connected to the Quality of Service (QoS) for the available services. A recently proposed Multi Criteria

Decision Making (MCDM) method, Best Worst Method (BWM), is used to rank the services. We show that the

method outperforms the Analytic Hierarchy Process (AHP). The proposed methodology provides a prioritized

list of the services based on the pattern of changing UPs. The methodology is validated through a case study

using real QoS performance data of Amazon Elastic Compute (Amazon EC2) cloud services.

Keywords: Cloud Service Selection; MCDM methods; Best Worst Method; Markov chain

1 Introduction
Cloud computing is defined as a model that enables ubiquitous, convenient, and on-demand network access to a

shared pool of configurable computing resources. Such resources can be rapidly provisioned through

virtualization and released with minimal management effort [1]. Cloud computing has changed the perception of

how computational resources can be procured and provisioned with scalability and efficiency [2][3]. As a result,

cloud users are now able to focus on their core competencies and leave management of their computational

resources to the cloud providers.

As the number of cloud services is constantly growing, a user is exposed to many choices. Having such choices

leads to the challenge of selecting the right service from the right cloud provider at the right time [4]. A cloud

broker architecture (Figure 1) that takes into account the user requirements gives a ranked list of potential cloud

services is proposed in order to reduce the complexity of service selection for the cloud user. Equinix [5] is one

such example of a cloud broker architecture which has more than 500 registered cloud providers, each of which

provides different types of cloud services. Amazon provides more than 70 [6]. Various cloud service selection

algorithms have been employed in cloud broker-based recommendation engines. To the best of our knowledge

none of them takes into account the changing needs of the cloud user for best service recommendation.

Traditionally, cloud service selection is considered the process of finding the most suitable cloud service [7] by

matching the functional and Quality of Service (QoS) requirements of a user with the description of available

cloud services provided by different cloud providers [8]. Existing research [9]–[14] has typically focused on

what criteria are to be considered (e.g. performance, price) and the preferences of the user (e.g. which criteria

are important to the cloud user). Although different decision-making methods are then applied to the criteria and

user requirements to help cloud users to find a suitable cloud service, some uncertainties in the cloud

environment hinder the service users from relying on such methods [15]. One such uncertainty is that User

Preferences (UPs) are dependent on the user requirements, which dictate the user’s level of satisfaction with the

service. This level of satisfaction may change over a period of time during service consumption. None of the

approaches in current literature captures this information and uses it to improve the service recommendation for

future users. For example, when users are utilizing a cloud service, they may change their preferences based on

their experience with the service being used. The changed preferences can be collected from the users to

understand their satisfaction before and after using the recommended service. Then by grouping the users with

similar service requirements, their level of satisfaction can be analyzed to determine any pattern, as shown in a

previous study [16]. This would help in the recommendation and selection of the most appropriate cloud service

for other users having similar service requirements.

Cloud User

Cloud Broker

IaaS Provider / Cloud Provider

Figure 1. An overview of Cloud Brokerage Architecture

In this paper, we propose a cloud broker architecture for cloud service selection by taking into account the

changing UPs over time. We use a Markov chain to capture and track the changes in UPs and find transition

patterns in them. The identified patterns are then used for recommendation and selection of the suitable services.

Finally, Best Worst Method (BWM) [17] which is a Multi Criteria Decision Making (MCDM) method, is used

to rank the services. The main contributions of our work are as follows:

 By using a Markov chain, we capture and model the uncertainty in changes to find the transitioning

patterns within them.

 We use a Markov chain in conjunction with BWM to rank the services based on changing user

preferences.

 We evaluate our proposed model on real cloud services data. Results show our proposed method results

in greater consistency when compared to Analytic Hierarchy Process (AHP)-based approaches that are

currently used in cloud service selection.

This paper is organized as follows. In the next section, the related research on cloud service selection is

discussed. The framework for cloud service selection is proposed in section 3. In section 4, the implementation

of the proposed methodology is presented in algorithmic form. The approach is then validated using a case study

in section 5. Section 6 presents a discussion and the performance evaluation of the proposed methodology.

Finally, a conclusion is presented in section 7.

2 Related Work
In recent years, a number of research efforts have started solving the problem of cloud service selection. In this

section, we present an overview of some of these studies. Existing research is divided into QoS-based and non-

QoS-based service selection. QoS-based service selection approaches consider the QoS criteria for decision-

making. Table 1 provides the categorization of existing service selection methods used in the literature.

An approach for selecting cloud services was proposed by Rehman, Hussain and Hussain [12] in which they

argue that in order to make an informed decision, it is necessary to apply a cloud service selection methodology

that utilizes QoS history over different time periods. The proposed approach ranks all services using MCDM in

each time period and aggregates the results to determine the overall rank of all available options for cloud

service selection.

The variations in the historic QoS are considered by assigning weights using the logistic decay function. A

cloud service recommender system is employed by Han, Mehedi Hassan, Yoon, Lee and Huh [18] for the cloud

market that matches a specific user’s requirements with a suitable cloud service. The method, therefore, selects

the best combination of services from different cloud providers. The proposed system maintains a record of all

the available resources in the cloud market and uses this information to rank and calculate the QoS values of

services. Zeng, Zhao and Zeng [13] designed a cloud service selection algorithm using the maximized-gain and

minimized-cost approach. The algorithm first uses a service discoverer to find all available services and then

processes the cloud service user’s request. The maximized-gain and minimized-cost service selection algorithm

aggregates the gain and cost values by a weighted sum where weights represent the relative importance of

involved factors. Yu [19] presented a framework for personalized service recommendation in cloud that

implements a user-centric strategy to achieve personalized QoS assessment of cloud services. The proposed

framework uses a collaborative filtering technique for a community-based QoS assessment model.

Table 1. Categorization of existing approaches to service selection

 Multi-criteria Decision Making (MCDM) Optimization-based Methods

Focus MCDM-based methods focus on translating

decision-maker’s preferences into a set of

variables and then finds the best option from a

set of finite alternatives [20].

Optimization-based methods seek to find the

set of values for decision variables which

maximize or minimize the objective function

without violation of constraints [21].

Examples Techniques such as Analytic Hierarchy

Process (AHP) [22], Analytic Network

Process (ANP) [23], Multi-Attribute Utility

Theory (MAUT) [24] and outranking [25] fall

into this category.

Techniques such as Dynamic Programming

[26], Integer Linear Programming (ILP) [27],

Genetic Algorithm (GA) [28] and Stochastic

Programming [29] fall into this category.

Many existing approaches for QoS-based cloud service selection use the AHP technique to assign ranks to cloud

services. Garg, Versteeg and Buyya [7] proposed SMICloud, which is based on Service Measurement Index

(SMI) [30], for comparing and ranking cloud services on the basis of common characteristics defined as SMI

criteria. The proposed framework measures all the QoS attributes in SMI and then uses AHP to rank the cloud

services. Another approach for selecting cloud services was proposed by Godse and Mulik [11] in which they

applied AHP using QoS criteria such as functionality, architecture, usability, vendor reputation, and cost for

service selection. Sun, Ma, Zhang, Dong and Hussain [14] presented a fuzzy decision-making framework and

MCDM-based approach for cloud service selection. That approach was based on a fuzzy ontology that models

uncertain relationships between objects in databases for service matching, calculates the semantic similarity

between concepts using AHP, and then uses multi-criteria decision-making to rank cloud services.

Non-QoS-based approaches define and measure different attributes and metrics for cloud service selection. Li,

Yang, Kandula and Zhang [31] discussed the cloud service selection problem and identified the basic attributes

for each type of cloud service (such as IaaS, SaaS) that must be taken into consideration when comparing one

cloud service with another. Kang and Sim [32] developed a semantic-based cloud service search engine called

Cloudle using a cloud ontology. The proposed system maintains a record of all the services in a database. The

user’s search query is sent to an engine that performs similarity reasoning between the query and the concepts in

the database using cloud ontology. The output of the Cloudle search engine is an ordered list of cloud services

based on concept similarity, price and cost utility. A similar study for semantic web service ranking was

proposed in [33]. Wang, Cao and Xiang [34] proposed a dynamic cloud service selection using an adaptive

learning technique in multi-cloud computing. In their proposed approach, each cloud service broker manages

some clustered cloud services. The dynamic service selection (DCS) strategy, which consists of a set of dynamic

service selection algorithms, uses an adaptive learning mechanism that comprises the incentive, forgetting and

degenerate functions. The mechanism is formulated to dynamically optimize the cloud service selection and to

return the best service result.

Some of the non-QoS-based approaches also used AHP to rank the attributes and metrics for decision-making.

Nie, She and Chen [9] presented an evaluation system of cloud service selection using AHP that calculates the

weights of attributes for service evaluation. They also presented a number of qualitative models for decision

making in cloud service selection. Filepp, Schwartz, Ward, Kearney, Cheng, Young and Ghosheh [35] proposed

virtual machine (VM) image selection service for cloud computing. Their algorithm orders the image based on

conformance with specified user requirements and policies by best-fit and least-cost optimization.

Table 2. Comparison of Cloud service selection approaches

Authors Area Ranking Method QoS based

Nie et al. [9] Cloud service selection Evaluation index system using AHP No

Godse and Mulik [11] Cloud service selection SaaS selection using AHP No

Garg et al. [7] Cloud comparison and

ranking

QoS attributes and AHP based ranking Yes

Z. Rehman et al. [12] Cloud service selection Parallel MCDM approach based on QoS

history

Yes

Han et al. [18] Cloud service composition Selecting best service by matching user

requirements and QoS values from

multiple services

Yes

Li et al. [31] Cloud service composition Highlights the problems and identifies the

attributes for cloud comparison

No

Kang and Sim [32] Cloud search engine An ontology-based database and uses

concept similarity, price and cost utility

for ordering

No

Filepp et al. [35] VM image selection Image configuration repository and

minimum-cost maximum-gain approach

No

Zeng et al. [13] Cloud service selection Uses maximum-gain and minimum-cost

algorithm

Yes

Chen et al. [36] Cloud service selection Conflict detection and constraint

programming

-

Sun et al. [14] Cloud service selection Fuzzy ontology and MCDM Yes

Wang et al. [34] Cloud service selection Adaptive learning mechanism No

Ghosh et al. [37] Cloud service selection Risk assessment based

Lin et al. [38] Cloud service selection Risk assessment and cloud focus theory Yes

Gui et al. [10] Cloud brokering and

recommender

Cloud classification model for filtering

and categorization for cloud service

recommendation

-

Mouratidis et al. [39] Cloud service selection Security and privacy requirements-based

assessment method

-

Qi Yu [19] Cloud service recommender Collaborative filtering-based cloud

recommender

Yes

Liu et al. [40] Cloud service selection Multi-attribute group decision-making

(MAGDM) based

-

There are some other research studies which do not fall in the above two groups. An automatic conflict detection

between the user’s preferences and enterprise policies was proposed by Chen, Yan, Zhao, Lee and Singhal [36].

The proposed framework checks various conflicts that result from the violation of enterprise policies and

inconsistency in cloud service user’s requirements. The investigation is followed by the selection of an

appropriate service using the constraint programming that satisfies the user’s requirements and also complies

with enterprise policies. The proposed system aims to resolve the difficulties of cloud service selection with an

emphasis on the involvement of enterprise policies. Gui, Yang, Xia, Huang, Liu, Li, Yu, Sun, Zhou and Jin [10]

presented a service brokering and recommendation mechanism for selecting the best public cloud service at the

IaaS and PaaS level. The proposed framework consists of a hierarchical information model for integrating

heterogeneous cloud information from different providers and a corresponding cloud information collecting

mechanism. A cloud service classification model for categorizing and filtering cloud services and an application

requirement schema were presented. Liu, Chan and Ran [40] structured a multi-attribute group decision-making

(MAGDM) based scientific decision tool to help businesses to determine which cloud computing vendor would

be more suitable for their needs. The authors presented a subjective/objective integrated MAGDM technique for

decision making in cloud computing services that uses objective attributes such as cost as well as subjective

attributes such as TOE factors (Technology, Organization and Environment).

Some studies also focused on cloud service selection by considering factors such as security, privacy and risk

assessment for cloud users. Mouratidis, Islam, Kalloniatis and Gritzalis [39] designed a framework to support

the selection of cloud providers based on security and privacy requirements. That framework incorporates a

modeling language and provides a structured process that supports the elicitation of security and privacy

requirements and the selection of a cloud provider based on the satisfiability of the service provider. Ghosh,

Member and Ghosh [37] presented a framework to facilitate cloud service selection that calculates the risk

estimation based on trustworthiness and competence. Another work in risk assessment based cloud service

selection was carried out by Lin, Zeng, Yang, Wang, Lin and Lin [38]. The proposed method is based on cloud

theory and generates five property clouds by collecting the risk value and four risk indicators from each virtual

machine. The cloud backward generator integrated these five clouds into one based on a weight matrix.

Therefore, the risk prediction value is transferred to the risk level quantification, which is used for cloud service

selection.

In addition, there are studies that have developed decision-making models based on uncertainty in experts’

preferences. Liu, Dong, Chiclana, Cabrerizo, and Herrera-Viedma [41] develop a linear programming approach

structured in two stages to minimize the information deviation of the relations between decision makers’

preferences based on their confidence levels. Moral and Le [42] studied a group decision making problem. It

investigated the problem using a fuzzy approach to obtain experts’ preferences focusing on the convergence

speed of the consensus. They show that setting a number of rules can control such a speed in the decision

making process. Wu, Chiclana, Fujita and Herrera-Viedma [43] proposed a visual interactive framework to

facilitate reaching a consensus based on different preferences by various experts. A trust based recommendation

mechanism was then submitted to deal with inconsistencies in the expressed preferences. The mechanism finds

out whether an unknown expert can be trusted and, hence, the associated preferences should be taken into

account. Capuano, Chiclana, Fujita, Herrera-Viedma and Loia [44] proposed a model to consider the real

preference of an expert whom is influenced by the opinion of other experts. They assume that the expert is

unable to express preferences on some alternatives and employ a user friendly fuzzy ranking model to obtain the

preferences. Zhanga, Dong and Herrera-Viedma [45] deal with significant conflicts in experts’ preferences that

can cause serious issues in the decision making process. They employed a selection process to divide decision

makers into different clusters. Individual preference vectors are obtained, and a feedback adjustment process is

utilized to help decision makers adjust their preferences. We notice in a review of papers on decision-making

models, the insufficient studies undertaken taking into account a frequent and continuous change of preferences.

This study performs that through a combined application of a Markovian model and BWM.

There are other versions of Markov chains, the application of each requires its own assumptions. For instance,

applying a hidden Markov chain requires the assumption that there exist states of which we are not aware.

Considering such assumptions are not within the scope of this research, this paper is the first work introducing

Markov chains to cloud service selection. Therefore, we decided to use the general version of Markov chain

[46][47] which is applicable to trace changing priorities of users/customers and has recently been examined

[16].

To summarize, shown in Table 2 are a variety of approaches proposed in the literature several of which are

based on MCDM techniques that assist a user make a service selection decision in the cloud environment.

However, the issue of changing UPs has not been addressed in cloud service selection. In this paper, our aim is

to assist cloud users to make an informed decision under changing user preferences.

3 Proposed Methodology
The proposed methodology uses a Markov chain in conjunction with BWM in order to find the best service. The

Markov chain generates a pattern of the changing priorities of user preferences. This pattern is then used as the

input for BWM to find out the priorities of QoS criteria. The QoS priorities are then used to rank the services.

The method consists of the steps depicted in Figure 2.

Repeat for all UPs

Select one UP and find its
relation with all the QoS

criteria

Select the best and worst
QoS criteria with respect

to selected UP

Calculate optimal weights
for QoS criteria using

BWM

Apply Markov chain to
transition matrix and initial

UPs to get the pattern of
changing UPs

Start

Normalize QoS values for
the identified QoS criteria

Compute the final QoS
weights considering their

relations to UPs

Compute the final Service
ranks

QoS Repository

End

Get the required
transition matrix,

initial UPs and
QoS criteria

Figure 2. Flowchart showing the sequence of steps in the proposed approach

First, we need to obtain the initial UPs through service queries on the cloud broker [48]. These preferences,

however, cannot be considered stable as they may change as the UPs do [49]. The changes can be traced using a

Markov chain. Markov chains have previously been applied in other studies to predict a pattern of customer

needs [16]. The method is explained based on its previous applications, as follows.

The proposed MCDM method utilizes the Markov decision process. Markov chains are useful in capturing

discrete events over a period of time. In this case, a Markov chain finds a pattern of changing UPs. The next step

would be to utilize the captured information for cloud service selection. In cloud service selection, alternatives

are ranked against criteria and, therefore, we need to use a MCDM method. A recently proposed MCDM

method, BWM, is selected as it requires less pairwise comparisons and leads to greater consistency when

compared with similar methods such as AHP [17][50]. We apply a Markov chain, as a discrete time, stochastic

process, in combination with BWM to firstly find a pattern of UPs and then, considering the obtained pattern,

rank the alternatives. Given this, the Markov chain does not directly make the decision, instead, the power of the

Markov chain is leveraged to help BWM to connect the importance of these elements to cloud service

specifications and rank the alternatives.

Here, a Markov chain addresses the problem of UPs being discrete events and finds a pattern in them. Although

the Markov chain finds the pattern of UPs to be utilized instead of the initial preferences, this does not mean that

users may not change priorities. Every user may keep changing their priorities. However, if these changes are

traced in terms of the whole system including many other users for similar services, a pattern for the required

specifications can be observed. In such a pattern, there will be a certain number of users with each of the

preferences. For example, some users may change to low priority for a certain preference while other users may

change to high priority for the same preference. Those numbers are computable using the Markov chain as

follows.

Let us assume that the initial priority list of UPs is obtained through interviews and normalized in matrix as

shown in Matrix (1).

 (1)

Consider a time set, T = { }. There is always a likelihood of changing the preference from one UP to

another after a period of time. For example, at time , is greater than , which means more users prefer and

select (
 UP compared with (UP) as the most important requirement. At time , UPs may change and

 may not remain more than . The time interval depends on how regularly users utilize the service and this

varies for different service categories. Observing user behavior over time, we can see the proportion of users

who have UP1 as their most important need and so wish to stay with UP1 or shift to other UPs (e.g. UP2, UP3...).

Figure 3 is an example showing the transitions where there are four UPs (S1 to S4).

S1 S2

S4 S3

b11k b22k

C3kC4k

b12k

b21k C2kC1k

b13k

b
2

3k

Figure 3. Transitioning between states at k

th
 period

In the above figure, stands for the number of users that are with at period k (), and represents the

number of users that transition from to (changing from one UP to another as their priority). In order to

compute the transition matrix, we need to calculate the probability of transitioning from to at k
th

 period for

every UP. The probabilities are computed as follows. If there are users who prefer S1 at time k, and are

those who prefer to transition to S2, then the probability of this transition is computed as:

. More

generally, the probabilities are computed as follows.

 (2)

If, after a sequence of periods, a can be estimated for which the following condition exists, then the value of

 in the transition matrix is equal to (note that stands for a small value).

 (3)

In many cases, finding a that stays within the narrow interval of () for a large number of

successive periods may not be applicable. In such cases, different amounts for can instead be found and used

for a reasonable number of periods. To cope with such a situation, a number should be set by decision makers.

When the number of successive periods that stays in the interval and goes beyond the number, the transition

matrix is computed and will be in use until a new trend appears. Techniques and charts of statistical quality

control (SQC) can be utilized for the purpose of recognition of the trends, detection of the points of shifting ,

and monitoring probabilities in the transition matrix.

In summary, when the sequence is relatively close to , the value of is estimated by . Since the

transition matrix includes values presented by , we do not expect a considerable effect for minor changes.

In the case study presented in the paper, we use a threshold of 0.1. If the absolute variation of the probabilities in

the transition matrix divided by its order goes beyond 10 percent, recalculation of the transition matrix is

required.

The transition matrix is computed as follows.

 (4)

By frequent multiplication of the transpose of matrix by the transition matrix, P, a set of

 is obtained,

where i is the number of the multiplications.

 (5)

A generalized form of the formula is presented in (6):

 , (6)

 =

 when k (7)

Considering the inherent convergence of the stochastic matrices, we expect that the matrices become the same

after three to five times of multiplication. Since the adjusted priorities of UPs are independent of the initial state

[51], this method stands independent of the initial priorities of UPs. Thus, rather than the identification of the

users’ initial (instant) preferences, there should be a focus on forming a transitional matrix (explained above).

The limiting matrix of P can be found by raising P to a large power. In such a matrix, the arrays in each column

are consistent. Multiplying any normalized matrix by this limiting matrix leads to the same matrix regardless of

the initial matrix (provided that initial matrix is normalized). The columns of limiting matrix have the same

values. So, the values of a row of the matrix can be used as the pattern of UPs which is shown by
 .

In practice, each time that the probabilities are computed through interviews and feedback, the transition matrix

can be obtained and replaced. If the updated matrix does not change the sequence of alternatives, there is no

concern. If a change does occur, then the decision maker has to decide when to shift from the current cloud

provider to a new cloud provider, while taking into account other important factors such as obtained trust and

effort needed for new negotiations. After finding the pattern of UPs, the relationship between UPs and the QoS

criteria need to be computed through BWM.

The relationship between UPs and QoS criteria of available services can be identified through assigning

appropriate weights. Each QoS criterion is compared with respect to every UP, resulting in a matrix (as shown

in (9)) in which rows represent the UPs and columns represents the QoS criteria. The matrix, namely

is explained in this section.

The relationship of UPs and QoS criteria can be found by asking simple questions such as: ‘What is the relative

importance of the i
th

 QoS attribute when compared to the j
th

 QoS attribute with respect to the k
th

 UP?’ When

there are four QoS criteria such as: CPU, Memory, Input/Output (I/O), and Cost, while Performance is an UP,

then the following question could be asked: “What is the importance of CPU when compared to Cost

considering Performance?” With respect to each QoS criteria, they are compared with each UP in separate

tables. The calculated importance weights are used to calculate matrix . We use BWM [17] in the

proposed methodology in order to find the relationship between UPs and QoS criteria. The process to compute

the weights of the QoS criteria is described as follows:

1. Select an UP from {UP1, UP2, …, UPm} to find its relation with all the QoS criteria {Q1, Q2,…, Qn}.

2. Determine the best (e.g. most important) and the worst (e.g. least important) criteria with respect to the

selected UP. For example, CPU may be the best and Cost may be the worst criteria when considering

the selected UP: Performance.

3. Determine the preference of the best criterion over all other criteria using a number between 1 and 9

where 1 is the best preference and 9 is the least preference. The resulting Best-to-Others vector would

be AB = (aB1, aB2…,aBn) where aBj indicates the preference of the best criterion B over criterion j such

that aBB = 1. For the above example, the vector AB shows the preference of CPU over all the other

criteria considering UP Performance.

4. Determine the preference of all the criteria over the worst criterion using a number between 1 and 9.

The resulting Others-to-Worst vector would be AW = (a1W, a2W…, anW)
T
 where ajW indicates the

preference of the criterion j over the worst criterion W such that aWW =1. For this example, the vector

shows the preference of all the criteria over Cost considering Performance.

5. Finally, the optimal weights (w1, w2, …, wn) are found. The optimal weight for the criteria is the one

where for each pair of wB/wj and wj/wW, we have wB/wj = aBj and wj/wW = ajW. To satisfy these

conditions for all j, we should find a solution where the maximum absolute differences

 and

 for all j is minimized. Considering the non-negativity and sum condition for the weights,

the following problem is formulated.

 (8)

Here represents a measure of the consistency of comparison. The optimal weights (w1, w2, …, wn) are

obtained by solving the problem in (8) for the QoS criteria {q1, q2…, qn} with respect to the selected

UP.

An algorithm for computing optimal weights is described in the next section. A more elaborate example of the

calculation of optimal weights for three criteria by solving the above equations has previously been given by

Rezaei [17]. In the above, QoS criteria {Q1…Qn} are compared with respect to each UP. Each time, a set of

weights for {Q1…Qn} is computed, those weights build the rows of the (9) presented below.

 (9)

Now, a matrix of QoS priorities is found that reflects the final weights of the QoS criteria considering their

relationship with UPs. This matrix is determined by the product of the matrix containing the pattern of the

priorities of the UPs and relation of UPs with the QoS criteria.

WFQoS =
 × (10)

After that, the QoS criteria of the available services (options) are normalized. QoS values of all the services

form an evaluation matrix D, which has the following form, where Q represents the QoS criterion and OP

represents the service (option).

 (11): The evaluation matrix

Since each criterion has its own units and range of values, the matrix D is normalized using (12) to make the

QoS values of different criterion comparable.

 (12)

The normalized matrix is given by:

 (13)

The final ranking of the services is calculated using the product of the transposed matrix WFQoS and the

normalized evaluation matrix WOP-QOS.

WFOP = WOP-QoS × (WFQoS)
T
 (14)

The matrix WFOP contains the corresponding ranking for all the services with the highest value as the most

suitable one. In the next section, the applicability of the proposed method is applied to select the best cloud

service from a set of services.

4 Implementation
The proposed method of cloud service selection requires the transition matrix of changing UPs and the QoS

criteria of available services as input and then, after performing the relevant computations, returns the final

ranking of the services. As shown in Algorithm 1, the input and output parameters are defined first. The

algorithm then computes the limiting matrix of P (denoted as

) by repeatedly multiplying the transition

matrix with itself for n number of times (line 1-5). The value of n can be set by the user to adjust the number of

iterations. Generally, after 4 or 5 iterations, the values in the limiting matrix

 settle down and do not

change much after that. So, the values of the row of the matrix can be used as the pattern of UPs which is shown

by
 (line 6).

After this, the relations between UPs and QoS criteria) are found (line 7-9). Taking one UP at a time

and calling Algorithm 2 (BWM) to find the priorities of the UP with respect to all the QoS criteria does this. A

matrix of final QoS priorities is then computed by the product of the matrix containing the pattern of the

UPs’ priorities
 and relationship of UPs with the QoS criteria (line 10). Next, the QoS criteria of

the available options (matrix D) are normalized to make the QoS values of different criteria comparable as every

criterion has its own units and range of values (line 11-17). The normalized matrix is denoted as .

Finally, the ranking of the services) is calculated using the product of a transposed matrix and the

normalized evaluation matrix (line 18).

Algorithm 1. Main algorithm for cloud service selection with changing user preferences

Input: D = Averaged QoS values

 P = Transition matrix

W
(0)

UP = Initial user preferences

 UP = set of user preferences

 Q = set of QoS attributes

Output:

 WFOP = Final list of available service (options) rankings

1. initialize n;

2. initialize k=0;

3. while (k++ <= n)

4. W
(k)T

UP = W
(k-1)T

UP × P;

5. end while

6. W
*
UP = W

(k)T
UP;

7. foreach up ϵ UP do

8. WUP-QoS = BWM(up,Q);

9. end for

10. WFQoS = W
*
UP × WUP-QoS;

11. for i < n cols in D

12. for j < m rows in D

13. select from D;

14.

15. set in ;

16. end for

17. end for

18. WFOP = WOP-QoS × W
T

FQoS;

19. return WFOP;

In Algorithm 1, for every UP and a set of weights for the QoS criteria {Q1…Qn} is computed. This is used to

build the rows of the matrix. First of all, the consistency index table (Table 3) is loaded, which shows

the maximum value of (max) for any comparison aBj and ajW (where aBj is the preference of the best criterion

over the criterion j and ajW is the preference of criterion j over the worst criterion). The process of finding the

max has previously been described by Rezaei [17]. This gives an indication of how consistent the comparison

is. There are three possibilities:

1. A comparison is fully consistent when aBj × ajW = aBW, for all j, where aBW is the preference of the best

criterion over the worst criterion. In this case, the value of is 0 for all j.

2. A comparison is partially consistent when aBj × ajW is lower or higher than aBW for any j. In this case,

the value of for the comparison is anything between 0 and max .

3. A comparison is considered inconsistent when aBj and ajW have the maximum value (close to aBW) for

any j which will result in max .

Table 3. Consistency Index (CI) [41]

 1 2 3 4 5 6 7 8 9

max 0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23

Algorithm 2 allows decision maker to compute the weights when the comparisons are either fully consistent or

partially consistent. If the comparisons are inconsistent, it allows decision maker to re-adjust the comparisons.

For partially consistent, we propose using a threshold value between 0 and max that allows decision maker to

adjust the consistency according to the problem.

Algorithm 2. Best-Worst Method

BWM (up, Q)

1. CI = Consistency Index table;

2. choose best criterion aBB where aBB ϵ Q

3. choose worst criterion aWW ϵ Q

4. j = 1;

5. set x where x ϵ [1,9]

6. while (j ≤ count(Q))

7. do

8. set aBj = x where x ϵ [1,9];

9. set ajW = x where x ϵ [1,9];

10. while);

11. AB.add(aBj);

12. AW.add(ajW);

13. end while

14. for all j in Q

15. Form equation of the form where ϵ AB;

16. Form equation of the form where ϵ AW;

17. end for

18. Form equation ;

19. Compute for up (row) in matrix WUP-QoS by solving system of linear equations (e.g. using Gaussian

Elimination);

20. return WUP-QoS;

After initialization, algorithm allows decision maker to set that defines the preference of the best criterion

over worst. Ideally from set of {1…,9}, highest possible value for is 9 (line 5). All the comparisons with

respect to best criterion and the worst criterion are perform one by one in a while loop (line 6-13). If any

comparison is inconsistent, this loop asks the decision maker to re-adjust the comparison. Next, the comparisons

are used to form equations of the form as given (8) where weights become the variables and the comparison

becomes the co-efficient (line 14-18). For solving these equations, we propose using Gaussian Elimination

(Gauss-Jordan Elimination) method to compute the optimal weights (line 19). The result of this operation is the

optimal weights, which are set in matrix WUP-QoS for the corresponding row of up and returned to Algorithm 1.

5 Case Study
To validate our approach, a case study was undertaken on the dataset of Amazon EC2 IaaS cloud services. We

used the QoS monitoring data of four EC2 IaaS services that were collected by PRTG monitoring service

(https://prtg.paessler.com). The data consisted of the average of the hourly measurements of response time for

300-time periods of the four EC2 instances that includes CPU, Memory and I/O performance of the monitored

services. In addition to these, the fourth criterion price per hour (denoted as Cost) is also included for each

service as quoted by Amazon (www.amazon.com). In this case study, UPs are denoted Performance,

Availability, Reliability and Price. Table 4 shows the brief description and the criteria of the four available cloud

services.

Table 4. Available cloud services and average QoS criteria

Service Detail Instance Type CPU (ms) Memory (ms) I/O (ms) Cost ($/hr)

OP1 EC2 EU Small 2056.19 1455.72 1035.82 0.0885

OP2 EC2 EU Micro 80.77 81.94 260.42 0.0200

OP3 EC2 SA Micro 860.15 126.66 722.40 0.0270

OP4 EC2 US East Small 2200.70 532.28 4187.19 0.0650

As mentioned previously, UPs are likely to change over time. The transition matrix P is computed as given

below. From this, is easy to compute.

 (15)

Although we do not need to use the initial UPs, as explained in the methodology, to show that
 is

independent of the initial UPs, assume that the initial UPs’ priorities are obtained as below:

 (16)

Based on the above two matrices, the following matrices are calculated as

 (17)

 (18)

 (19)

 (20)

Now if the limiting transition matrix (Plimiting) is computed, as presented below, it is a matrix with equal values

in each column. Given that, any normalized matrix multiplied by it will be equal to
 , which is a

representation of the column values of Plimiting.

 (21)

Any normalized matrix multiplied by this matrix would result in matrix
 , presented in Matrix (22). The

changing UPs through the use of the transition matrix will settle into the following
 ,, regardless of the

initial UPs. This final matrix obtained from the application of a Markov chain is employed as the inputs to the

second part of the method.

 (22)

Now, with respect to each UP, QoS criteria are compared to each other. The calculated weights are used to

calculate matrix . The comparison is performed using the BWM approach. According to this approach,

for each UP, the best criterion is selected. Then, the weight is assigned to every criterion in comparison with the

best criteria. A similar process is performed for the worst criterion. The optimal weight is computed by solving

the (8) such that the ratios

 and

 are minimized for all criteria and should not exceed

 given in Table 3 for where the preference of the best criterion over the worst criterion. For

instance, the optimal weight for Memory in Table 5 satisfies these constraints. In this case, the ratios

|0.599/0.212 – 3| = 0.037 and |0.212/0.062 - 4| = 0.58 are clearly less than the for which is

(see Table 3). Moreover, algorithm 2 takes the best and worst preferences as input and returns the computed

optimal weights as given in Table 5. It represents the QoS comparison with respect to Performance UP.

Table 5. QoS comparisons with respect to Performance

Performance CPU Memory I/O Cost

Best (CPU) 1 3 5 9

Worst (Cost) 9 4 2 1

Optimal Weights 0.599 0.212 0.127 0.062

CI () = 0.040 CR = 0.008

Similarly, QoS criteria are compared with respect to Availability, Reliability and Price in Table 6, Table 7 and

Table 8 respectively and the optimal weights are presented in Matrix .

Table 6. QoS comparisons with respect to Availability

Availability CPU Memory I/O Cost

Best (Memory) 3 1 5 9

Worst (Cost) 3 9 2 1

Optimal Weights 0.202 0.609 0.127 0.062

CI () = 0.041 CR = 0.008

Table 7. QoS comparisons with respect to Reliability

Reliability CPU Memory I/O Cost

Best (I/O) 4 3 1 9

Worst (Cost) 2 3 8 1

Optimal Weights 0.142 0.209 0.577 0.072

CI () = 0.047 CR = 0.009

Table 8. QoS comparisons with respect to Price

Price CPU Memory I/O Cost

Best (Cost) 4 8 5 1

Worst (Memory) 3 1 2 9

Optimal Weights 0.067 0.129 0.202 0.602

CI () = 0.062 CR = 0.011

 (23)

Now, WFQoS is computed by multiplying the transpose of WUP ((22)) by WUP-QoS ((23)) as follows.

 (24)

This matrix, , consists of the final QoS weights, which will be used to compute the final ranking of the

services.

The QoS monitoring data of available cloud services (given in Table 4) is used to calculate matrix .

This data consists of the QoS criteria and their values averaged over 300 time periods for four different cloud

services. The evaluation matrix D corresponding QoS data of the available services and their criteria is given

below:

 (25)

 (26)

The evaluation matrix D is normalized to make the QoS values of different criteria comparable using the

formula:

. The normalized evaluation matrix is given by:

 (27)

After computing the above matrix, WFOP is computed by multiplying WOP-QoS ((27)) by the transpose of WFQoS (

(24)) as follows.

 (28)

Thus, based on QoS criteria of the available services and the relevant computations, it turns out that, taking the

feedback of previous users into account for this service category, the most appropriate service is for the user

as given in (28). The transition matrix in this case study transforms the user behaviour for most preferred criteria

from Performance to Reliability overtime. That means the UPs change from Performance to Reliability

overtime for services in this category.

6 Evaluation
In this section we assess the suitability of our proposed approach from two perspectives: pairwise comparisons

of the method and convergence of the method. This is performed through evaluating its performance against

existing approaches.

6.1 Pairwise comparison perspective

The proposed method in this study outperforms the AHP-based approaches, frequently used in cloud service

selection. Here, a comparison of the results of the applications of both BWM and AHP is submitted.

The number of comparisons: To compare the proposed approach against the existing approaches, we eliminate

the Markov chain. This is because the methods, previously applied, in the area of cloud service selection do not

consider the possibility of changes in UPs. Therefore, the problem set to an ordinary MCDM problem and the

consideration of changes in UPs handled through the Markov chain has been disregarded. Through this, the

method becomes comparable with the existing approaches. In other words, most existing research in cloud

service selection used AHP for pairwise comparison [7][9][11] while in our study, we employed BWM for

pairwise comparison, which is more efficient than AHP [17]. The main reason for this efficiency is that BWM is

a vector-based method in which only two vectors (for best and worst comparison) are required to make the

entire matrix. Hence it requires fewer comparisons compared with matrix-based MCDM methods such as AHP.

For BWM, only 2n-3 comparisons are needed while, for instance, AHP needed n(n-1)/2 comparisons (see

Figure 4).

Figure 4. Pairwise comparisons in BWM and AHP

0

10

20

30

40

50

0 2 4 6 8 10 12

N
u

m
b

e
r

o
f

cr
it

e
ri

a
(n

)

Number of pairwise comparisons

Pairwise comparisons

BWM AHP

The inconsistency issue: The inconsistency of MCDM methods is commonly measured using a ratio, namely

Consistency Ratio (CR). CR provides us with a measure of the reliability of the produced results. For the

purpose of evaluation with the existing MCDM methods (i.e. AHP), we conducted an experiment to calculate

and evaluate CR from both BWM and AHP. For this purpose, we performed 20 different comparisons to

determine weights in BWM as well as AHP for similar cases including the ones presented in case study. We

observed that 80% of the comparisons in BWM are consistent (i.e. CR< 0.1) compared with 60% in AHP as

shown in Figure 5. Moreover, for the remaining 20% of the comparisons in BWM, the CR was in the range of

0.1 and 0.2. This shows that the final weights obtained from BWM are considerably more reliable than AHP.

This is due to more consistent comparisons than AHP. In section 4, three different situations of comparison

consistency in BWM algorithm are described, namely fully consistent, partially consistent, and inconsistent. The

final weights derived using that algorithm are always consistent (including fully and partially consistent) and

given that, we can claim that BWM is more reliable than AHP and so provides greater consistency.

Figure 5. Consistency ratio in BWM and AHP

6.2 Convergence Perspective

Computing Convergence Speed of the Markov Chain: The convergence speed of the Markov chain contributes

to the efficiency level of the approach, which happens by reducing the number of matrix multiplications. In this

section probability state redistributions and the number of iterations from the initial state to the stabilizing state

of the Markov chain are visualised. Figure 3 shows the Markov chain that we used for our case study and

utilises the convergence properties of the model such as periodicity (which means that the chain should not get

trapped in cycles), and irreducibility (which means there is positive probability of visiting all other states).

Figure 6 shows the evolution of the state distributions over time from an initial distribution. It is clear from this

figure that state probabilities for this Markov chain stabilize at step eight. These stabilized probabilities are used

as the adjusted priorities of UPs. As explained previously, considering the inherent convergence of transition

matrices no matter what initial probability distributions we use, the adjusted UPs obtained using the transition

matrix are independent of the initial state [51].

80%

60%

20%

40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

BWM AHP

Consistency

CR <0.1 CR between 0.1 and 0.3

Figure 6. Markov Chain Convergence Steps

6.2 Discussion

There are many examples of applying Markov chains as statistical models to address real world problems.

Markov processes are the basis for Markov Chain Monte Carlo (MCMC) methods [57], such as Metropolis-

Hastings (MH) [58] and Gibbs sampler [59] algorithms. MCMC includes algorithms for sampling from

probability distributions. Monte Carlo methods [60] are a broad class of computational algorithms that rely on

repeated random sampling to obtain optimization, integration and generating draws for probability distributions.

Their essential idea is the use of randomness to solve problems. Markov chain enhances these algorithms for

generating random samples while exploring the state space in a smart way. MCMC algorithms are commonly

used for simulating random objects with specific probability distributions. In other words, these algorithms use

different strategies for generating samples (say x
(i)

) while exploring the state space (say X) using a Markov chain

mechanism. This mechanism is constructed so that the chain spends more time in the most important regions.

The convergence property of Markov chains plays a fundamental role in MCMC simulation. For any starting

probability distribution, the chain will converge to an invariant distribution, as long as the transition matrix

obeys the following properties: (i) irreducibility: for any state of the Markov chain, there is a positive

probability of visiting all other states, so that the transition graph is connected; (ii) aperiodicity: the chain should

not get trapped in cycles. MCMC samplers are irreducible and aperiodic Markov chains that have the target

distribution as the invariant distribution. In our proposed framework, we use the convergence property of

Markov chain to obtain adjusted and stabilized UPs to find suitable cloud services instead of using the initial

UPs, as the adjusted UPs are independent of the initial state.

Due to the significance of the cloud service selection problem, there have been numerous studies proposing

solutions [52][53]. This paper has focused on linking the service selection process to the user preferences so that

the best service is always selected based on the desires of the users. Given that, a user-oriented service selection

process has been developed. Applying such an approach motivates service providers to concentrate on satisfying

the cloud users at different time intervals, which is mutually beneficial. One of the challenges in cloud service

selection is that UPs are frequently changing, and such frequent changes prevent the establishment of a method

to select a particular service.

In comparison with previously published papers in the area of cloud service selection, this paper proposes a

selection approach in which a cloud user can find the best service under changing user preferences. The method

utilizes a Markov chain. A Markovian transition matrix is built based on historical data of changes in user

preferences. The transition matrix is capable of computing a pattern of UPs that is independent of instant UPs

and, hence, builds a robust model. Such a model does not fluctuate based on minor changes in a user’s desires.

The efficiency of a Markov chain in finding the solution to dynamic and real world problems is well established

[54]–[56]. Markov chains have previously been applied to the supplier selection problem [51], intrusion

detection systems [54] and activity recognition in smart homes [56]. Although Markov chains have been well

examined in a variety of research areas to address real word problems [46], the application of the method in

combination with MCDM methods has only recently been proposed [51]. In addition, Markov chains have not

previously been employed to address the cloud service selection problem and this study proposes its first

application.

There is a previous study on the supplier selection process that proposes a Markov chain in combination with

the Analytic Network Process (ANP) to trace changing customer needs for the supplier selection process [16]. In

comparison with that study, this work combines a Markov chain with a recent MCDM method for cloud service

selection. An approach to handle changing QoS data over a period of time to select a cloud service was

previously presented [12] but it did not discuss the service selection under changing user preferences.

BWM has advantages when compared with methods such as ANP. ANP is a well examined MCDM method that

is capable of the consideration of internal relations between the elements. ANP, however, requires too many

pairwise comparisons that can become confusing and time consuming. Therefore, in this study for the first time,

BWM is integrated with a Markov chain in order to address the service selection problem.

7 Conclusion
In summary, although different decision-making methods have been previously applied to help cloud users find

a suitable cloud service, some uncertainties such as unstable UPs in the cloud environment encourage further

studies. In this paper, we discussed the cloud service selection problem in an environment where the priorities of

users keep changing. We proposed a framework that finds a pattern of changing UPs using a Markov chain

independent of the initial user preferences. The pattern is then linked to QoS criteria of all available services to

find weights using the BWM method. The weights of criteria of all services are then used to determine the

overall rank of options for cloud service selection, along with the pattern of UPs. We validated the proposed

methodology employing a case study using the performance data EC2 cloud service. The results show that

utilizing the previous users’ experience and feedback produces more suitable service recommendation and

selection for future cloud use. The proposed approach is also more efficient than traditional MCDM approaches

such as ANP and AHP due to a lower number of comparisons determining the weights of the service criteria.

We recommend future studies examine the applicability of other methods in combination with BWM to address

the concerns of uncertainty in the decision process in cloud service selection.

References
[1] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” N. I. o. S. a. Technol. U.S. Dep.

Commer., 2011.

[2] B. Varghese and R. Buyya, “Next Generation Cloud Computing: New Trends and Research Directions,”

Futur. Gener. Comput. Syst., pp. 1–25, 2017.

[3] L. Wu and R. Buyya, “Service level agreement (SLA) in utility computing systems,” arXiv Prepr.

arXiv1010.2881, vol. abs/1010.2, p. 27, 2010.

[4] F. Nawaz, N. K. Janjua, O. K. Hussain, F. K. Hussain, E. Chang, and M. Saberi, “Event-driven

approach for predictive and proactive management of SLA violations in the Cloud of Things,” Futur.

Gener. Comput. Syst., vol. 84, pp. 78–97, Jul. 2018.

[5] “Equinix.” [Online]. Available: http://www.equinix.com/industries/cloud-providers/.

[6] D. Lin, A. C. Squicciarini, V. N. Dondapati, and S. Sundareswaran, “A Cloud Brokerage Architecture

for Efficient Cloud Service Selection,” IEEE Trans. Serv. Comput., vol. 1374, no. c, pp. 1–1, 2016.

[7] S. K. Garg, S. Versteeg, and R. Buyya, “SMICloud: A framework for comparing and ranking cloud

services,” Proc. - 2011 4th IEEE Int. Conf. Util. Cloud Comput. UCC 2011, no. Vm, pp. 210–218, 2011.

[8] S. Ding, Z. Wang, D. Wu, and D. L. Olson, “Utilizing customer satisfaction in ranking prediction for

personalized cloud service selection,” Decis. Support Syst., vol. 93, pp. 1–10, 2017.

[9] G. Nie, Q. She, and D. Chen, “Evaluation Index System of Cloud Service and the Purchase Decision-

Making Process Based on AHP,” in Proceedings of the 2011 International Conference on Informatics,

Cybernetics, and Computer Engineering (ICCE2011) November 19--20, 2011, Melbourne, Australia:

Volume 3: Computer Networks and Electronic Engineering, L. Jiang, Ed. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012, pp. 345–352.

[10] Z. Gui, C. Yang, J. Xia, Q. Huang, K. Liu, Z. Li, M. Yu, M. Sun, N. Zhou, and B. Jin, “A Service

Brokering and Recommendation Mechanism for Better Selecting Cloud Services,” PLoS ONE 9(8)

e105297, vol. 9, no. 8, 2014.

[11] M. Godse and S. Mulik, “An Approach for Selecting Software-as-a-Service (SaaS) Product,” in

Proceedings of the 2009 IEEE International Conference on Cloud Computing, 2009, pp. 155–158.

[12] Z. U. Rehman, O. K. Hussain, and F. K. Hussain, “Parallel cloud service selection and ranking based on

QoS history,” Int. J. Parallel Program., vol. 42, no. 5, pp. 820–852, 2014.

[13] W. Zeng, Y. Zhao, and J. Zeng, “Cloud Service and Service Selection Algorithm Research,” in

Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, 2009, pp.

1045–1048.

[14] L. Sun, J. Ma, Y. Zhang, H. Dong, and F. K. Hussain, “Cloud-FuSeR: Fuzzy ontology and MCDM

based cloud service selection,” Futur. Gener. Comput. Syst., vol. 57, pp. 42–55, 2016.

[15] Y. Chen, L. Jiang, J. Zhang, and X. Dong, “A Robust Service Selection Method Based on Uncertain

QoS,” vol. 2016, no. 2, 2016.

[16] M. R. Asadabadi, “A customer based supplier selection process that combines quality function

deployment, the analytic network process and a Markov chain,” Eur. J. Oper. Res., vol. 263, no. 3, pp.

1049–1062, 2017.

[17] J. Rezaei, “Best-worst multi-criteria decision-making method,” Omega, vol. 53, pp. 49–57, 2015.

[18] S.-M. Han, M. Mehedi Hassan, C.-W. Yoon, H.-W. Lee, and E.-N. Huh, “Efficient Service

Recommendation System for Cloud Computing Market,” in Grid and Distributed Computing:

International Conference, GDC 2009, Held as Part of the Future Generation Information Technology

Conferences, FGIT 2009, Jeju Island, Korea, December 10-12, 2009. Proceedings, D. Śl\kezak, T. Kim,

S. S. Yau, O. Gervasi, and B.-H. Kang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.

117–124.

[19] Q. Yu, “CloudRec: a framework for personalized service Recommendation in the Cloud,” Knowl. Inf.

Syst., vol. 43, no. 2, pp. 417–443, May 2015.

[20] L. Sun, H. Dong, F. K. Hussain, O. K. Hussain, and E. Chang, “Cloud service selection: State-of-the-art

and future research directions,” J. Netw. Comput. Appl., vol. 45, pp. 134–150, 2014.

[21] M. Moghaddam and J. Davis, “Service selection in web service composition: A comparative review of

existing approaches,” Web Serv. Found., 2014.

[22] L. F. de Oliveira Moura Santos, L. Osiro, and R. H. P. Lima, “A model based on 2-tuple fuzzy linguistic

representation and Analytic Hierarchy Process for supplier segmentation using qualitative and

quantitative criteria,” Expert Syst. Appl., vol. 79, pp. 53–64, 2017.

[23] S. Jharkharia and R. Shankar, “Selection of logistics service provider: An analytic network process

(ANP) approach,” Omega, vol. 35, no. 3, pp. 274–289, 2007.

[24] P. Ishizaka, A. and Nemery, “Multi-attribute utility theory, in Multi-Criteria Decision Analysis,”

Methods Software, John Wiley Sons Ltd, Chichester, UK., 2013.

[25] J. Wang, J. Wang, H. Zhang, and X. Chen, “Multi-criteria decision-making based on hesitant fuzzy

linguistic term sets: An outranking approach,” Knowledge-Based Syst., vol. 86, pp. 224–236, 2015.

[26] S. E. Bellman, R. E., & Dreyfus, Applied dynamic programming. Princeton university press, 2015.

[27] M. Bartlett and J. Cussens, “Integer Linear Programming for the Bayesian network structure learning

problem,” Artif. Intell., vol. 244, pp. 258–271, 2017.

[28] A. K. Das, S. Das, and A. Ghosh, “Ensemble feature selection using bi-objective genetic algorithm,”

Knowledge-Based Syst., vol. 123, pp. 116–127, 2017.

[29] K.-C. Huang, M.-J. Tsai, S.-J. Lu, and C.-H. Hung, “SLA-constrained service selection for minimizing

costs of providing composite cloud services under stochastic runtime performance,” Springerplus, vol.

5, no. 1, p. 294, Mar. 2016.

[30] The Cloud Service Measurement Initiative Consortium (CSMIC), “Service Measurement Index

Introducing the Service Measurement Index (SMI),” Http://Www.Cloudcommons.Com/About-Smi;

Accessed 2013-04-12, no. September, pp. 1–8, 2011.

[31] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Comparing Public Cloud Providers,” in

Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, 2010, pp. 1–14.

[32] J. Kang and K. M. Sim, “Cloudle: An Ontology-Enhanced Cloud Service Search Engine,” in Web

Information Systems Engineering -- WISE 2010 Workshops: WISE 2010 International Symposium WISS,

and International Workshops CISE, MBC, Hong Kong, China, December 12-14, 2010, Revised Selected

Papers, D. K. W. Chiu, L. Bellatreche, H. Sasaki, H. Leung, S.-C. Cheung, H. Hu, and J. Shao, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 416–427.

[33] F. Nawaz, K. Qadir, and H. F. Ahmad, “SEMREG-Pro: A semantic based registry for proactive web

service discovery using publish-subscribe model,” in Proceedings of the 4th International Conference

on Semantics, Knowledge, and Grid, SKG 2008, 2008, pp. 301–308.

[34] X. Wang, J. Cao, and Y. Xiang, “Dynamic cloud service selection using an adaptive learning

mechanism in multi-cloud computing,” J. Syst. Softw., vol. 100, pp. 195–210, 2015.

[35] R. Filepp, L. Shwartz, C. Ward, R. D. Kearney, K. Cheng, C. C. Young, and Y. Ghosheh, “Image

selection as a service for cloud computing environments,” in 2010 IEEE International Conference on

Service-Oriented Computing and Applications (SOCA), 2010, pp. 1–8.

[36] C. Chen, S. Yan, G. Zhao, B. S. Lee, and S. Singhal, “A Systematic Framework Enabling Automatic

Conflict Detection and Explanation in Cloud Service Selection for Enterprises,” in Proceedings of the

2012 IEEE Fifth International Conference on Cloud Computing, 2012, pp. 883–890.

[37] N. Ghosh, S. Member, and S. K. Ghosh, “SelCSP : A Framework to Facilitate Selection of Cloud

Service Providers,” IEEE Trans. CLOUD Comput., vol. 3, no. 1, pp. 66–79, 2015.

[38] F. Lin, W. Zeng, L. Yang, Y. Wang, S. Lin, and F. Lin, “Cloud computing system risk estimation and

service selection approach based on cloud focus theory,” Neural Comput. Appl., vol. 28, no. 7, pp.

1863–1876, 2017.

[39] H. Mouratidis, S. Islam, C. Kalloniatis, and S. Gritzalis, “A framework to support selection of cloud

providers based on security and privacy requirements,” J. Syst. Softw., vol. 86, no. 9, pp. 2276–2293,

2013.

[40] S. Liu, F. T. S. Chan, and W. Ran, “Decision making for the selection of cloud vendor: An improved

approach under group decision-making with integrated weights and objective/subjective attributes,”

Expert Syst. Appl., vol. 55, no. 2016, pp. 37–47, 2016.

[41] W. Liu, Y. Dong, F. Chiclana, F. J. Cabrerizo, and E. Herrera-Viedma, “Group decision-making based

on heterogeneous preference relations with self-confidence,” Fuzzy Optim. Decis. Mak., vol. 16, no. 4,

pp. 429–447, Dec. 2017.

[42] M. J. Moral and L. Le, “A Comparative Study on Consensus Measures in Group Decision Making,” Int.

J. Intell. Syst. Press. 2017., Press, no. 1, pp. 283–287, 2017.

[43] J. Wu, F. Chiclana, H. Fujita, and E. Herrera-Viedma, “A visual interaction consensus model for social

network group decision making with trust propagation,” Knowledge-Based Syst., vol. 122, no.

Supplement C, pp. 39–50, 2017.

[44] N. Capuano, F. Chiclana, H. Fujita, E. Herrera-Viedma, and V. Loia, “Fuzzy Group Decision Making

with Incomplete Information Guided by Social Influence,” IEEE Trans. Fuzzy Syst., vol. 6706, no. c,

2017.

[45] H. Zhanga, Y. Dong, and E. Herrera-Viedma, “Consensus building for the heterogeneous large-scale

GDM with the individual concerns and satisfactions,” IEEE Trans. Fuzzy Syst., vol. PP, no. 99, p. 1,

2017.

[46] Karlin, A first course in stochastic processes. Academic Press.

[47] S. P. Meyn and R. L. Tweedie, “Markov Chains and Stochastic Stability,” Springer-Verlag, p. 792,

1993.

[48] P. Zheng, X. Xu, and S. Q. Xie, “A weighted interval rough number based method to determine relative

importance ratings of customer requirements in QFD product planning,” J. Intell. Manuf., May 2016.

[49] J. O. Gutierrez-Garcia and K. M. Sim, “Agent-based cloud service composition,” Appl. Intell., vol. 38,

no. 3, pp. 436–464, 2013.

[50] J. Rezaei, “Best-worst multi-criteria decision-making method: Some properties and a linear model,”

Omega, vol. 64, no. Supplement C, pp. 126–130, 2016.

[51] M. R. Asadabadi, “A Markovian-QFD approach in addressing the changing priorities of the customer

needs,” Int. J. Qual. Reliab. Manag., vol. 33, no. 8, pp. 1062–1075, 2016.

[52] S. Deng, H. Wu, D. Hu, and J. Leon Zhao, “Service Selection for Composition with QoS Correlations,”

IEEE Trans. Serv. Comput., vol. 9, no. 2, pp. 291–303, Apr. 2016.

[53] C. Esposito, M. Ficco, F. Palmieri, and A. Castiglione, “Smart Cloud Storage Service Selection Based

on Fuzzy Logic, Theory of Evidence and Game Theory,” IEEE Trans. Comput., vol. 65, no. 8, pp.

2348–2362, Aug. 2016.

[54] W.-C. Lin, S.-W. Ke, and C.-F. Tsai, “CANN: An intrusion detection system based on combining

cluster centers and nearest neighbors,” Knowledge-Based Syst., vol. 78, pp. 13–21, 2015.

[55] R. Pourmoayed, L. R. Nielsen, and A. R. Kristensen, “A hierarchical Markov decision process modeling

feeding and marketing decisions of growing pigs,” Eur. J. Oper. Res., vol. 250, no. 3, pp. 925–938,

2016.

[56] K. S. Gayathri, K. S. Easwarakumar, and S. Elias, “Probabilistic ontology based activity recognition in

smart homes using Markov Logic Network,” Knowledge-Based Syst., vol. 121, pp. 173–184, 2017.

[57] U. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, D. Goldberg, J. Holland, F. Ionescu, V. Pupezescu, U. U.

Fayyad, G. Piatetsky-Shapiro, P. Smyth, O. M. Rokach, C. Hong, C. Functions, E. D. Michie, D. J.

Spiegelhalter, C. C. Taylor, M. Kubat, R. C. Holte, S. Matwin, D. Freitag, C. Andrieu, N. de Freitas, A.

Doucet, and M. I. Jordan, “An Introduction to MCMC for Machine Learning,” Mach. Learn., vol. 50,

no. 1, pp. 5–43, Jan. 2003.

[58] S. Chib and E. Greenberg, “Understanding the Metropolis-Hastings Algorithm,” Am. Stat., vol. 49, no.

4, pp. 327–335, 1995.

[59] W. R. Gilks and P. Wild, “Adaptive Rejection Sampling for Gibbs Sampling,” J. R. Stat. Soc. Ser. C

(Applied Stat., vol. 41, no. 2, pp. 337–348, 1992.

[60] S. Raychaudhuri, “Introduction to Monte Carlo simulation,” 2008 Winter Simul. Conf., pp. 91–100,

2008.

Reviewers' comments:

Reviewer #1: The paper can be accepted, yet some minor issues need to be tackled:

Thank you very much for the comments.

1) The abstract begins with a too general sentence.

The first sentence has been revised, and now highlights the importance of cloud service selection.

2) Equations should be numbered consecutively and such expressions as "matrix" should not be used in

numbering.

Thank you very much for your comment. We have consecutively numbered the equation.

3) Section 3 should not contain sub-sections as some of them contain unclear titles and/or are too short.

Thank you very much for your comment. We have removed the subsections headings, and rephrased the text to

align with the new structure.

Reviewer #2: Most issues raised by reviewers were addressed.

Thank you very much for the comment.

However, experiments are still insufficient. For example, the MCMC algorithm used in the proposed method

can be replaced by more advanced algorithms. They should apply other MCMC algorithms to their system and

evaluate them.

Regarding the first part of your comment, the evaluation section has been updated, and so a new section has

been added.

Regarding the second part of your comment, Markov Chain Monte Carlo (MCMC) includes algorithms for

sampling from probability distributions. It is important to point out is that this research study does not include

any sampling from probability distributions. Rather, we have used the convergence attribute of Markov chains

in order to find the stable states for User Preferences (UPs). In order to bring reader’s attention to this point, we

have added an explanation in the discussion section.

We believe that adding more explanation/discussion (other than what we have already included about Markov

Chain Monte Carlo) is possible, but will be out of scope for this research study and will confuse the reader on

which specific problem this paper intends to address. The scope of the paper, stated in the paper, is to propose a

solution to the problem of changing UPs when selecting a cloud service. In order to address the issue, we have

used the convergence attribute of the Markov chain to ascertain that and combine it with a new MCDM method

for recommending cloud services.

*Detailed Responses to Reviewers

Cloud Service Selection Using a Markov Chain and the

Best-Worst Method
Falak Nawaz1, Mehdi Rajabi Asadabadi1, Naeem Khalid Janjua2, Omar Khadeer Hussain1, Elizabeth Chang1,

Morteza Saberi1

1 School of Business, University of New South Wales (UNSW), Canberra, Australia
2 School of Science, Edith Cowan University (ECU), Perth, Australia

{falak.nawaz, mehdi.asadabadi}@student.adfa.edu.au, {o.hussain, e.chang, m.saberi}@adfa.edu.au, n.janjua@ecu.edu.au

Corresponding Author:

Mehdi Rajabi Asadabadi

rajabi689@yahoo.com

School of Business,

THE UNIVERSITY OF NEW SOUTH WALES

Australia

+61468570489

*Revised Manuscript (Clean Version)
Click here to view linked References

http://ees.elsevier.com/knosys/viewRCResults.aspx?pdf=1&docID=21980&rev=2&fileID=344484&msid={633A1CB4-946F-4A63-9D1C-24A7C4285761}

Cloud Service Selection Using a Markov Chain and the

Best-Worst Method
Abstract

Due to the increasing number of cloud services, service selection has become a challenging decision for many

organisations. It is even more complicated when cloud users change their preferences based on the requirements

and the level of satisfaction of the experienced service. The purpose of this paper is to overcome this drawback

and develop a cloud broker architecture for cloud service selection by finding a pattern of the changing priorities

of User Preferences (UPs). To do that, a Markov chain is employed to find the pattern. The pattern is then

connected to the Quality of Service (QoS) for the available services. A recently proposed Multi Criteria

Decision Making (MCDM) method, Best Worst Method (BWM), is used to rank the services. We show that the

method outperforms the Analytic Hierarchy Process (AHP). The proposed methodology provides a prioritized

list of the services based on the pattern of changing UPs. The methodology is validated through a case study

using real QoS performance data of Amazon Elastic Compute (Amazon EC2) cloud services.

Keywords: Cloud Service Selection; MCDM methods; Best Worst Method; Markov chain

1 Introduction
Cloud computing is defined as a model that enables ubiquitous, convenient, and on-demand network access to a

shared pool of configurable computing resources. Such resources can be rapidly provisioned through

virtualization and released with minimal management effort [1]. Cloud computing has changed the perception of

how computational resources can be procured and provisioned with scalability and efficiency [2][3]. As a result,

cloud users are now able to focus on their core competencies and leave management of their computational

resources to the cloud providers.

As the number of cloud services is constantly growing, a user is exposed to many choices. Having such choices

leads to the challenge of selecting the right service from the right cloud provider at the right time [4]. A cloud

broker architecture (Figure 1) that takes into account the user requirements gives a ranked list of potential cloud

services is proposed in order to reduce the complexity of service selection for the cloud user. Equinix [5] is one

such example of a cloud broker architecture which has more than 500 registered cloud providers, each of which

provides different types of cloud services. Amazon provides more than 70 [6]. Various cloud service selection

algorithms have been employed in cloud broker-based recommendation engines. To the best of our knowledge

none of them takes into account the changing needs of the cloud user for best service recommendation.

Traditionally, cloud service selection is considered the process of finding the most suitable cloud service [7] by

matching the functional and Quality of Service (QoS) requirements of a user with the description of available

cloud services provided by different cloud providers [8]. Existing research [9]–[14] has typically focused on

what criteria are to be considered (e.g. performance, price) and the preferences of the user (e.g. which criteria

are important to the cloud user). Although different decision-making methods are then applied to the criteria and

user requirements to help cloud users to find a suitable cloud service, some uncertainties in the cloud

environment hinder the service users from relying on such methods [15]. One such uncertainty is that User

Preferences (UPs) are dependent on the user requirements, which dictate the user’s level of satisfaction with the

service. This level of satisfaction may change over a period of time during service consumption. None of the

approaches in current literature captures this information and uses it to improve the service recommendation for

future users. For example, when users are utilizing a cloud service, they may change their preferences based on

their experience with the service being used. The changed preferences can be collected from the users to

understand their satisfaction before and after using the recommended service. Then by grouping the users with

similar service requirements, their level of satisfaction can be analyzed to determine any pattern, as shown in a

previous study [16]. This would help in the recommendation and selection of the most appropriate cloud service

for other users having similar service requirements.

Cloud User

Cloud Broker

IaaS Provider / Cloud Provider

Figure 1. An overview of Cloud Brokerage Architecture

In this paper, we propose a cloud broker architecture for cloud service selection by taking into account the

changing UPs over time. We use a Markov chain to capture and track the changes in UPs and find transition

patterns in them. The identified patterns are then used for recommendation and selection of the suitable services.

Finally, Best Worst Method (BWM) [17] which is a Multi Criteria Decision Making (MCDM) method, is used

to rank the services. The main contributions of our work are as follows:

 By using a Markov chain, we capture and model the uncertainty in changes to find the transitioning

patterns within them.

 We use a Markov chain in conjunction with BWM to rank the services based on changing user

preferences.

 We evaluate our proposed model on real cloud services data. Results show our proposed method results

in greater consistency when compared to Analytic Hierarchy Process (AHP)-based approaches that are

currently used in cloud service selection.

This paper is organized as follows. In the next section, the related research on cloud service selection is

discussed. The framework for cloud service selection is proposed in section 3. In section 4, the implementation

of the proposed methodology is presented in algorithmic form. The approach is then validated using a case study

in section 5. Section 6 presents a discussion and the performance evaluation of the proposed methodology.

Finally, a conclusion is presented in section 7.

2 Related Work
In recent years, a number of research efforts have started solving the problem of cloud service selection. In this

section, we present an overview of some of these studies. Existing research is divided into QoS-based and non-

QoS-based service selection. QoS-based service selection approaches consider the QoS criteria for decision-

making. Table 1 provides the categorization of existing service selection methods used in the literature.

An approach for selecting cloud services was proposed by Rehman, Hussain and Hussain [12] in which they

argue that in order to make an informed decision, it is necessary to apply a cloud service selection methodology

that utilizes QoS history over different time periods. The proposed approach ranks all services using MCDM in

each time period and aggregates the results to determine the overall rank of all available options for cloud

service selection.

The variations in the historic QoS are considered by assigning weights using the logistic decay function. A

cloud service recommender system is employed by Han, Mehedi Hassan, Yoon, Lee and Huh [18] for the cloud

market that matches a specific user’s requirements with a suitable cloud service. The method, therefore, selects

the best combination of services from different cloud providers. The proposed system maintains a record of all

the available resources in the cloud market and uses this information to rank and calculate the QoS values of

services. Zeng, Zhao and Zeng [13] designed a cloud service selection algorithm using the maximized-gain and

minimized-cost approach. The algorithm first uses a service discoverer to find all available services and then

processes the cloud service user’s request. The maximized-gain and minimized-cost service selection algorithm

aggregates the gain and cost values by a weighted sum where weights represent the relative importance of

involved factors. Yu [19] presented a framework for personalized service recommendation in cloud that

implements a user-centric strategy to achieve personalized QoS assessment of cloud services. The proposed

framework uses a collaborative filtering technique for a community-based QoS assessment model.

Table 1. Categorization of existing approaches to service selection

 Multi-criteria Decision Making (MCDM) Optimization-based Methods

Focus MCDM-based methods focus on translating

decision-maker’s preferences into a set of

variables and then finds the best option from a

set of finite alternatives [20].

Optimization-based methods seek to find the

set of values for decision variables which

maximize or minimize the objective function

without violation of constraints [21].

Examples Techniques such as Analytic Hierarchy

Process (AHP) [22], Analytic Network

Process (ANP) [23], Multi-Attribute Utility

Theory (MAUT) [24] and outranking [25] fall

into this category.

Techniques such as Dynamic Programming

[26], Integer Linear Programming (ILP) [27],

Genetic Algorithm (GA) [28] and Stochastic

Programming [29] fall into this category.

Many existing approaches for QoS-based cloud service selection use the AHP technique to assign ranks to cloud

services. Garg, Versteeg and Buyya [7] proposed SMICloud, which is based on Service Measurement Index

(SMI) [30], for comparing and ranking cloud services on the basis of common characteristics defined as SMI

criteria. The proposed framework measures all the QoS attributes in SMI and then uses AHP to rank the cloud

services. Another approach for selecting cloud services was proposed by Godse and Mulik [11] in which they

applied AHP using QoS criteria such as functionality, architecture, usability, vendor reputation, and cost for

service selection. Sun, Ma, Zhang, Dong and Hussain [14] presented a fuzzy decision-making framework and

MCDM-based approach for cloud service selection. That approach was based on a fuzzy ontology that models

uncertain relationships between objects in databases for service matching, calculates the semantic similarity

between concepts using AHP, and then uses multi-criteria decision-making to rank cloud services.

Non-QoS-based approaches define and measure different attributes and metrics for cloud service selection. Li,

Yang, Kandula and Zhang [31] discussed the cloud service selection problem and identified the basic attributes

for each type of cloud service (such as IaaS, SaaS) that must be taken into consideration when comparing one

cloud service with another. Kang and Sim [32] developed a semantic-based cloud service search engine called

Cloudle using a cloud ontology. The proposed system maintains a record of all the services in a database. The

user’s search query is sent to an engine that performs similarity reasoning between the query and the concepts in

the database using cloud ontology. The output of the Cloudle search engine is an ordered list of cloud services

based on concept similarity, price and cost utility. A similar study for semantic web service ranking was

proposed in [33]. Wang, Cao and Xiang [34] proposed a dynamic cloud service selection using an adaptive

learning technique in multi-cloud computing. In their proposed approach, each cloud service broker manages

some clustered cloud services. The dynamic service selection (DCS) strategy, which consists of a set of dynamic

service selection algorithms, uses an adaptive learning mechanism that comprises the incentive, forgetting and

degenerate functions. The mechanism is formulated to dynamically optimize the cloud service selection and to

return the best service result.

Some of the non-QoS-based approaches also used AHP to rank the attributes and metrics for decision-making.

Nie, She and Chen [9] presented an evaluation system of cloud service selection using AHP that calculates the

weights of attributes for service evaluation. They also presented a number of qualitative models for decision

making in cloud service selection. Filepp, Schwartz, Ward, Kearney, Cheng, Young and Ghosheh [35] proposed

virtual machine (VM) image selection service for cloud computing. Their algorithm orders the image based on

conformance with specified user requirements and policies by best-fit and least-cost optimization.

Table 2. Comparison of Cloud service selection approaches

Authors Area Ranking Method QoS based

Nie et al. [9] Cloud service selection Evaluation index system using AHP No

Godse and Mulik [11] Cloud service selection SaaS selection using AHP No

Garg et al. [7] Cloud comparison and

ranking

QoS attributes and AHP based ranking Yes

Z. Rehman et al. [12] Cloud service selection Parallel MCDM approach based on QoS

history

Yes

Han et al. [18] Cloud service composition Selecting best service by matching user

requirements and QoS values from

multiple services

Yes

Li et al. [31] Cloud service composition Highlights the problems and identifies the

attributes for cloud comparison

No

Kang and Sim [32] Cloud search engine An ontology-based database and uses

concept similarity, price and cost utility

for ordering

No

Filepp et al. [35] VM image selection Image configuration repository and

minimum-cost maximum-gain approach

No

Zeng et al. [13] Cloud service selection Uses maximum-gain and minimum-cost

algorithm

Yes

Chen et al. [36] Cloud service selection Conflict detection and constraint

programming

-

Sun et al. [14] Cloud service selection Fuzzy ontology and MCDM Yes

Wang et al. [34] Cloud service selection Adaptive learning mechanism No

Ghosh et al. [37] Cloud service selection Risk assessment based

Lin et al. [38] Cloud service selection Risk assessment and cloud focus theory Yes

Gui et al. [10] Cloud brokering and

recommender

Cloud classification model for filtering

and categorization for cloud service

recommendation

-

Mouratidis et al. [39] Cloud service selection Security and privacy requirements-based

assessment method

-

Qi Yu [19] Cloud service recommender Collaborative filtering-based cloud

recommender

Yes

Liu et al. [40] Cloud service selection Multi-attribute group decision-making

(MAGDM) based

-

There are some other research studies which do not fall in the above two groups. An automatic conflict detection

between the user’s preferences and enterprise policies was proposed by Chen, Yan, Zhao, Lee and Singhal [36].

The proposed framework checks various conflicts that result from the violation of enterprise policies and

inconsistency in cloud service user’s requirements. The investigation is followed by the selection of an

appropriate service using the constraint programming that satisfies the user’s requirements and also complies

with enterprise policies. The proposed system aims to resolve the difficulties of cloud service selection with an

emphasis on the involvement of enterprise policies. Gui, Yang, Xia, Huang, Liu, Li, Yu, Sun, Zhou and Jin [10]

presented a service brokering and recommendation mechanism for selecting the best public cloud service at the

IaaS and PaaS level. The proposed framework consists of a hierarchical information model for integrating

heterogeneous cloud information from different providers and a corresponding cloud information collecting

mechanism. A cloud service classification model for categorizing and filtering cloud services and an application

requirement schema were presented. Liu, Chan and Ran [40] structured a multi-attribute group decision-making

(MAGDM) based scientific decision tool to help businesses to determine which cloud computing vendor would

be more suitable for their needs. The authors presented a subjective/objective integrated MAGDM technique for

decision making in cloud computing services that uses objective attributes such as cost as well as subjective

attributes such as TOE factors (Technology, Organization and Environment).

Some studies also focused on cloud service selection by considering factors such as security, privacy and risk

assessment for cloud users. Mouratidis, Islam, Kalloniatis and Gritzalis [39] designed a framework to support

the selection of cloud providers based on security and privacy requirements. That framework incorporates a

modeling language and provides a structured process that supports the elicitation of security and privacy

requirements and the selection of a cloud provider based on the satisfiability of the service provider. Ghosh,

Member and Ghosh [37] presented a framework to facilitate cloud service selection that calculates the risk

estimation based on trustworthiness and competence. Another work in risk assessment based cloud service

selection was carried out by Lin, Zeng, Yang, Wang, Lin and Lin [38]. The proposed method is based on cloud

theory and generates five property clouds by collecting the risk value and four risk indicators from each virtual

machine. The cloud backward generator integrated these five clouds into one based on a weight matrix.

Therefore, the risk prediction value is transferred to the risk level quantification, which is used for cloud service

selection.

In addition, there are studies that have developed decision-making models based on uncertainty in experts’

preferences. Liu, Dong, Chiclana, Cabrerizo, and Herrera-Viedma [41] develop a linear programming approach

structured in two stages to minimize the information deviation of the relations between decision makers’

preferences based on their confidence levels. Moral and Le [42] studied a group decision making problem. It

investigated the problem using a fuzzy approach to obtain experts’ preferences focusing on the convergence

speed of the consensus. They show that setting a number of rules can control such a speed in the decision

making process. Wu, Chiclana, Fujita and Herrera-Viedma [43] proposed a visual interactive framework to

facilitate reaching a consensus based on different preferences by various experts. A trust based recommendation

mechanism was then submitted to deal with inconsistencies in the expressed preferences. The mechanism finds

out whether an unknown expert can be trusted and, hence, the associated preferences should be taken into

account. Capuano, Chiclana, Fujita, Herrera-Viedma and Loia [44] proposed a model to consider the real

preference of an expert whom is influenced by the opinion of other experts. They assume that the expert is

unable to express preferences on some alternatives and employ a user friendly fuzzy ranking model to obtain the

preferences. Zhanga, Dong and Herrera-Viedma [45] deal with significant conflicts in experts’ preferences that

can cause serious issues in the decision making process. They employed a selection process to divide decision

makers into different clusters. Individual preference vectors are obtained, and a feedback adjustment process is

utilized to help decision makers adjust their preferences. We notice in a review of papers on decision-making

models, the insufficient studies undertaken taking into account a frequent and continuous change of preferences.

This study performs that through a combined application of a Markovian model and BWM.

There are other versions of Markov chains, the application of each requires its own assumptions. For instance,

applying a hidden Markov chain requires the assumption that there exist states of which we are not aware.

Considering such assumptions are not within the scope of this research, this paper is the first work introducing

Markov chains to cloud service selection. Therefore, we decided to use the general version of Markov chain

[46][47] which is applicable to trace changing priorities of users/customers and has recently been examined

[16].

To summarize, shown in Table 2 are a variety of approaches proposed in the literature several of which are

based on MCDM techniques that assist a user make a service selection decision in the cloud environment.

However, the issue of changing UPs has not been addressed in cloud service selection. In this paper, our aim is

to assist cloud users to make an informed decision under changing user preferences.

3 Proposed Methodology
The proposed methodology uses a Markov chain in conjunction with BWM in order to find the best service. The

Markov chain generates a pattern of the changing priorities of user preferences. This pattern is then used as the

input for BWM to find out the priorities of QoS criteria. The QoS priorities are then used to rank the services.

The method consists of the steps depicted in Figure 2.

Repeat for all UPs

Select one UP and find its
relation with all the QoS

criteria

Select the best and worst
QoS criteria with respect

to selected UP

Calculate optimal weights
for QoS criteria using

BWM

Apply Markov chain to
transition matrix and initial

UPs to get the pattern of
changing UPs

Start

Normalize QoS values for
the identified QoS criteria

Compute the final QoS
weights considering their

relations to UPs

Compute the final Service
ranks

QoS Repository

End

Get the required
transition matrix,

initial UPs and
QoS criteria

Figure 2. Flowchart showing the sequence of steps in the proposed approach

First, we need to obtain the initial UPs through service queries on the cloud broker [48]. These preferences,

however, cannot be considered stable as they may change as the UPs do [49]. The changes can be traced using a

Markov chain. Markov chains have previously been applied in other studies to predict a pattern of customer

needs [16]. The method is explained based on its previous applications, as follows.

The proposed MCDM method utilizes the Markov decision process. Markov chains are useful in capturing

discrete events over a period of time. In this case, a Markov chain finds a pattern of changing UPs. The next step

would be to utilize the captured information for cloud service selection. In cloud service selection, alternatives

are ranked against criteria and, therefore, we need to use a MCDM method. A recently proposed MCDM

method, BWM, is selected as it requires less pairwise comparisons and leads to greater consistency when

compared with similar methods such as AHP [17][50]. We apply a Markov chain, as a discrete time, stochastic

process, in combination with BWM to firstly find a pattern of UPs and then, considering the obtained pattern,

rank the alternatives. Given this, the Markov chain does not directly make the decision, instead, the power of the

Markov chain is leveraged to help BWM to connect the importance of these elements to cloud service

specifications and rank the alternatives.

Here, a Markov chain addresses the problem of UPs being discrete events and finds a pattern in them. Although

the Markov chain finds the pattern of UPs to be utilized instead of the initial preferences, this does not mean that

users may not change priorities. Every user may keep changing their priorities. However, if these changes are

traced in terms of the whole system including many other users for similar services, a pattern for the required

specifications can be observed. In such a pattern, there will be a certain number of users with each of the

preferences. For example, some users may change to low priority for a certain preference while other users may

change to high priority for the same preference. Those numbers are computable using the Markov chain as

follows.

Let us assume that the initial priority list of UPs is obtained through interviews and normalized in matrix as

shown in Matrix (1).

 (1)

Consider a time set, T = { }. There is always a likelihood of changing the preference from one UP to

another after a period of time. For example, at time , is greater than , which means more users prefer and

select (
 UP compared with (UP) as the most important requirement. At time , UPs may change and

 may not remain more than . The time interval depends on how regularly users utilize the service and this

varies for different service categories. Observing user behavior over time, we can see the proportion of users

who have UP1 as their most important need and so wish to stay with UP1 or shift to other UPs (e.g. UP2, UP3...).

Figure 3 is an example showing the transitions where there are four UPs (S1 to S4).

S1 S2

S4 S3

b11k b22k

C3kC4k

b12k

b21k C2kC1k

b13k

b
2

3k

Figure 3. Transitioning between states at k

th
 period

In the above figure, stands for the number of users that are with at period k (), and represents the

number of users that transition from to (changing from one UP to another as their priority). In order to

compute the transition matrix, we need to calculate the probability of transitioning from to at k
th

 period for

every UP. The probabilities are computed as follows. If there are users who prefer S1 at time k, and are

those who prefer to transition to S2, then the probability of this transition is computed as:

. More

generally, the probabilities are computed as follows.

 (2)

If, after a sequence of periods, a can be estimated for which the following condition exists, then the value of

 in the transition matrix is equal to (note that stands for a small value).

 (3)

In many cases, finding a that stays within the narrow interval of () for a large number of

successive periods may not be applicable. In such cases, different amounts for can instead be found and used

for a reasonable number of periods. To cope with such a situation, a number should be set by decision makers.

When the number of successive periods that stays in the interval and goes beyond the number, the transition

matrix is computed and will be in use until a new trend appears. Techniques and charts of statistical quality

control (SQC) can be utilized for the purpose of recognition of the trends, detection of the points of shifting ,

and monitoring probabilities in the transition matrix.

In summary, when the sequence is relatively close to , the value of is estimated by . Since the

transition matrix includes values presented by , we do not expect a considerable effect for minor changes.

In the case study presented in the paper, we use a threshold of 0.1. If the absolute variation of the probabilities in

the transition matrix divided by its order goes beyond 10 percent, recalculation of the transition matrix is

required.

The transition matrix is computed as follows.

 (4)

By frequent multiplication of the transpose of matrix by the transition matrix, P, a set of

 is obtained,

where i is the number of the multiplications.

 (5)

A generalized form of the formula is presented in (6):

 , (6)

 =

 when k (7)

Considering the inherent convergence of the stochastic matrices, we expect that the matrices become the same

after three to five times of multiplication. Since the adjusted priorities of UPs are independent of the initial state

[51], this method stands independent of the initial priorities of UPs. Thus, rather than the identification of the

users’ initial (instant) preferences, there should be a focus on forming a transitional matrix (explained above).

The limiting matrix of P can be found by raising P to a large power. In such a matrix, the arrays in each column

are consistent. Multiplying any normalized matrix by this limiting matrix leads to the same matrix regardless of

the initial matrix (provided that initial matrix is normalized). The columns of limiting matrix have the same

values. So, the values of a row of the matrix can be used as the pattern of UPs which is shown by
 .

In practice, each time that the probabilities are computed through interviews and feedback, the transition matrix

can be obtained and replaced. If the updated matrix does not change the sequence of alternatives, there is no

concern. If a change does occur, then the decision maker has to decide when to shift from the current cloud

provider to a new cloud provider, while taking into account other important factors such as obtained trust and

effort needed for new negotiations. After finding the pattern of UPs, the relationship between UPs and the QoS

criteria need to be computed through BWM.

The relationship between UPs and QoS criteria of available services can be identified through assigning

appropriate weights. Each QoS criterion is compared with respect to every UP, resulting in a matrix (as shown

in (9)) in which rows represent the UPs and columns represents the QoS criteria. The matrix, namely

is explained in this section.

The relationship of UPs and QoS criteria can be found by asking simple questions such as: ‘What is the relative

importance of the i
th

 QoS attribute when compared to the j
th

 QoS attribute with respect to the k
th

 UP?’ When

there are four QoS criteria such as: CPU, Memory, Input/Output (I/O), and Cost, while Performance is an UP,

then the following question could be asked: “What is the importance of CPU when compared to Cost

considering Performance?” With respect to each QoS criteria, they are compared with each UP in separate

tables. The calculated importance weights are used to calculate matrix . We use BWM [17] in the

proposed methodology in order to find the relationship between UPs and QoS criteria. The process to compute

the weights of the QoS criteria is described as follows:

1. Select an UP from {UP1, UP2, …, UPm} to find its relation with all the QoS criteria {Q1, Q2,…, Qn}.

2. Determine the best (e.g. most important) and the worst (e.g. least important) criteria with respect to the

selected UP. For example, CPU may be the best and Cost may be the worst criteria when considering

the selected UP: Performance.

3. Determine the preference of the best criterion over all other criteria using a number between 1 and 9

where 1 is the best preference and 9 is the least preference. The resulting Best-to-Others vector would

be AB = (aB1, aB2…,aBn) where aBj indicates the preference of the best criterion B over criterion j such

that aBB = 1. For the above example, the vector AB shows the preference of CPU over all the other

criteria considering UP Performance.

4. Determine the preference of all the criteria over the worst criterion using a number between 1 and 9.

The resulting Others-to-Worst vector would be AW = (a1W, a2W…, anW)
T
 where ajW indicates the

preference of the criterion j over the worst criterion W such that aWW =1. For this example, the vector

shows the preference of all the criteria over Cost considering Performance.

5. Finally, the optimal weights (w1, w2, …, wn) are found. The optimal weight for the criteria is the one

where for each pair of wB/wj and wj/wW, we have wB/wj = aBj and wj/wW = ajW. To satisfy these

conditions for all j, we should find a solution where the maximum absolute differences

 and

 for all j is minimized. Considering the non-negativity and sum condition for the weights,

the following problem is formulated.

 (8)

Here represents a measure of the consistency of comparison. The optimal weights (w1, w2, …, wn) are

obtained by solving the problem in (8) for the QoS criteria {q1, q2…, qn} with respect to the selected

UP.

An algorithm for computing optimal weights is described in the next section. A more elaborate example of the

calculation of optimal weights for three criteria by solving the above equations has previously been given by

Rezaei [17]. In the above, QoS criteria {Q1…Qn} are compared with respect to each UP. Each time, a set of

weights for {Q1…Qn} is computed, those weights build the rows of the (9) presented below.

 (9)

Now, a matrix of QoS priorities is found that reflects the final weights of the QoS criteria considering their

relationship with UPs. This matrix is determined by the product of the matrix containing the pattern of the

priorities of the UPs and relation of UPs with the QoS criteria.

WFQoS =
 × (10)

After that, the QoS criteria of the available services (options) are normalized. QoS values of all the services

form an evaluation matrix D, which has the following form, where Q represents the QoS criterion and OP

represents the service (option).

 (11): The evaluation matrix

Since each criterion has its own units and range of values, the matrix D is normalized using (12) to make the

QoS values of different criterion comparable.

 (12)

The normalized matrix is given by:

 (13)

The final ranking of the services is calculated using the product of the transposed matrix WFQoS and the

normalized evaluation matrix WOP-QOS.

WFOP = WOP-QoS × (WFQoS)
T
 (14)

The matrix WFOP contains the corresponding ranking for all the services with the highest value as the most

suitable one. In the next section, the applicability of the proposed method is applied to select the best cloud

service from a set of services.

4 Implementation
The proposed method of cloud service selection requires the transition matrix of changing UPs and the QoS

criteria of available services as input and then, after performing the relevant computations, returns the final

ranking of the services. As shown in Algorithm 1, the input and output parameters are defined first. The

algorithm then computes the limiting matrix of P (denoted as

) by repeatedly multiplying the transition

matrix with itself for n number of times (line 1-5). The value of n can be set by the user to adjust the number of

iterations. Generally, after 4 or 5 iterations, the values in the limiting matrix

 settle down and do not

change much after that. So, the values of the row of the matrix can be used as the pattern of UPs which is shown

by
 (line 6).

After this, the relations between UPs and QoS criteria) are found (line 7-9). Taking one UP at a time

and calling Algorithm 2 (BWM) to find the priorities of the UP with respect to all the QoS criteria does this. A

matrix of final QoS priorities is then computed by the product of the matrix containing the pattern of the

UPs’ priorities
 and relationship of UPs with the QoS criteria (line 10). Next, the QoS criteria of

the available options (matrix D) are normalized to make the QoS values of different criteria comparable as every

criterion has its own units and range of values (line 11-17). The normalized matrix is denoted as .

Finally, the ranking of the services) is calculated using the product of a transposed matrix and the

normalized evaluation matrix (line 18).

Algorithm 1. Main algorithm for cloud service selection with changing user preferences

Input: D = Averaged QoS values

 P = Transition matrix

W
(0)

UP = Initial user preferences

 UP = set of user preferences

 Q = set of QoS attributes

Output:

 WFOP = Final list of available service (options) rankings

1. initialize n;

2. initialize k=0;

3. while (k++ <= n)

4. W
(k)T

UP = W
(k-1)T

UP × P;

5. end while

6. W
*
UP = W

(k)T
UP;

7. foreach up ϵ UP do

8. WUP-QoS = BWM(up,Q);

9. end for

10. WFQoS = W
*
UP × WUP-QoS;

11. for i < n cols in D

12. for j < m rows in D

13. select from D;

14.

15. set in ;

16. end for

17. end for

18. WFOP = WOP-QoS × W
T

FQoS;

19. return WFOP;

In Algorithm 1, for every UP and a set of weights for the QoS criteria {Q1…Qn} is computed. This is used to

build the rows of the matrix. First of all, the consistency index table (Table 3) is loaded, which shows

the maximum value of (max) for any comparison aBj and ajW (where aBj is the preference of the best criterion

over the criterion j and ajW is the preference of criterion j over the worst criterion). The process of finding the

max has previously been described by Rezaei [17]. This gives an indication of how consistent the comparison

is. There are three possibilities:

1. A comparison is fully consistent when aBj × ajW = aBW, for all j, where aBW is the preference of the best

criterion over the worst criterion. In this case, the value of is 0 for all j.

2. A comparison is partially consistent when aBj × ajW is lower or higher than aBW for any j. In this case,

the value of for the comparison is anything between 0 and max .

3. A comparison is considered inconsistent when aBj and ajW have the maximum value (close to aBW) for

any j which will result in max .

Table 3. Consistency Index (CI) [41]

 1 2 3 4 5 6 7 8 9

max 0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23

Algorithm 2 allows decision maker to compute the weights when the comparisons are either fully consistent or

partially consistent. If the comparisons are inconsistent, it allows decision maker to re-adjust the comparisons.

For partially consistent, we propose using a threshold value between 0 and max that allows decision maker to

adjust the consistency according to the problem.

Algorithm 2. Best-Worst Method

BWM (up, Q)

1. CI = Consistency Index table;

2. choose best criterion aBB where aBB ϵ Q

3. choose worst criterion aWW ϵ Q

4. j = 1;

5. set x where x ϵ [1,9]

6. while (j ≤ count(Q))

7. do

8. set aBj = x where x ϵ [1,9];

9. set ajW = x where x ϵ [1,9];

10. while);

11. AB.add(aBj);

12. AW.add(ajW);

13. end while

14. for all j in Q

15. Form equation of the form where ϵ AB;

16. Form equation of the form where ϵ AW;

17. end for

18. Form equation ;

19. Compute for up (row) in matrix WUP-QoS by solving system of linear equations (e.g. using Gaussian

Elimination);

20. return WUP-QoS;

After initialization, algorithm allows decision maker to set that defines the preference of the best criterion

over worst. Ideally from set of {1…,9}, highest possible value for is 9 (line 5). All the comparisons with

respect to best criterion and the worst criterion are perform one by one in a while loop (line 6-13). If any

comparison is inconsistent, this loop asks the decision maker to re-adjust the comparison. Next, the comparisons

are used to form equations of the form as given (8) where weights become the variables and the comparison

becomes the co-efficient (line 14-18). For solving these equations, we propose using Gaussian Elimination

(Gauss-Jordan Elimination) method to compute the optimal weights (line 19). The result of this operation is the

optimal weights, which are set in matrix WUP-QoS for the corresponding row of up and returned to Algorithm 1.

5 Case Study
To validate our approach, a case study was undertaken on the dataset of Amazon EC2 IaaS cloud services. We

used the QoS monitoring data of four EC2 IaaS services that were collected by PRTG monitoring service

(https://prtg.paessler.com). The data consisted of the average of the hourly measurements of response time for

300-time periods of the four EC2 instances that includes CPU, Memory and I/O performance of the monitored

services. In addition to these, the fourth criterion price per hour (denoted as Cost) is also included for each

service as quoted by Amazon (www.amazon.com). In this case study, UPs are denoted Performance,

Availability, Reliability and Price. Table 4 shows the brief description and the criteria of the four available cloud

services.

Table 4. Available cloud services and average QoS criteria

Service Detail Instance Type CPU (ms) Memory (ms) I/O (ms) Cost ($/hr)

OP1 EC2 EU Small 2056.19 1455.72 1035.82 0.0885

OP2 EC2 EU Micro 80.77 81.94 260.42 0.0200

OP3 EC2 SA Micro 860.15 126.66 722.40 0.0270

OP4 EC2 US East Small 2200.70 532.28 4187.19 0.0650

As mentioned previously, UPs are likely to change over time. The transition matrix P is computed as given

below. From this, is easy to compute.

 (15)

Although we do not need to use the initial UPs, as explained in the methodology, to show that
 is

independent of the initial UPs, assume that the initial UPs’ priorities are obtained as below:

 (16)

Based on the above two matrices, the following matrices are calculated as

 (17)

 (18)

 (19)

 (20)

Now if the limiting transition matrix (Plimiting) is computed, as presented below, it is a matrix with equal values

in each column. Given that, any normalized matrix multiplied by it will be equal to
 , which is a

representation of the column values of Plimiting.

 (21)

Any normalized matrix multiplied by this matrix would result in matrix
 , presented in Matrix (22). The

changing UPs through the use of the transition matrix will settle into the following
 ,, regardless of the

initial UPs. This final matrix obtained from the application of a Markov chain is employed as the inputs to the

second part of the method.

 (22)

Now, with respect to each UP, QoS criteria are compared to each other. The calculated weights are used to

calculate matrix . The comparison is performed using the BWM approach. According to this approach,

for each UP, the best criterion is selected. Then, the weight is assigned to every criterion in comparison with the

best criteria. A similar process is performed for the worst criterion. The optimal weight is computed by solving

the (8) such that the ratios

 and

 are minimized for all criteria and should not exceed

 given in Table 3 for where the preference of the best criterion over the worst criterion. For

instance, the optimal weight for Memory in Table 5 satisfies these constraints. In this case, the ratios

|0.599/0.212 – 3| = 0.037 and |0.212/0.062 - 4| = 0.58 are clearly less than the for which is

(see Table 3). Moreover, algorithm 2 takes the best and worst preferences as input and returns the computed

optimal weights as given in Table 5. It represents the QoS comparison with respect to Performance UP.

Table 5. QoS comparisons with respect to Performance

Performance CPU Memory I/O Cost

Best (CPU) 1 3 5 9

Worst (Cost) 9 4 2 1

Optimal Weights 0.599 0.212 0.127 0.062

CI () = 0.040 CR = 0.008

Similarly, QoS criteria are compared with respect to Availability, Reliability and Price in Table 6, Table 7 and

Table 8 respectively and the optimal weights are presented in Matrix .

Table 6. QoS comparisons with respect to Availability

Availability CPU Memory I/O Cost

Best (Memory) 3 1 5 9

Worst (Cost) 3 9 2 1

Optimal Weights 0.202 0.609 0.127 0.062

CI () = 0.041 CR = 0.008

Table 7. QoS comparisons with respect to Reliability

Reliability CPU Memory I/O Cost

Best (I/O) 4 3 1 9

Worst (Cost) 2 3 8 1

Optimal Weights 0.142 0.209 0.577 0.072

CI () = 0.047 CR = 0.009

Table 8. QoS comparisons with respect to Price

Price CPU Memory I/O Cost

Best (Cost) 4 8 5 1

Worst (Memory) 3 1 2 9

Optimal Weights 0.067 0.129 0.202 0.602

CI () = 0.062 CR = 0.011

 (23)

Now, WFQoS is computed by multiplying the transpose of WUP ((22)) by WUP-QoS ((23)) as follows.

 (24)

This matrix, , consists of the final QoS weights, which will be used to compute the final ranking of the

services.

The QoS monitoring data of available cloud services (given in Table 4) is used to calculate matrix .

This data consists of the QoS criteria and their values averaged over 300 time periods for four different cloud

services. The evaluation matrix D corresponding QoS data of the available services and their criteria is given

below:

 (25)

 (26)

The evaluation matrix D is normalized to make the QoS values of different criteria comparable using the

formula:

. The normalized evaluation matrix is given by:

 (27)

After computing the above matrix, WFOP is computed by multiplying WOP-QoS ((27)) by the transpose of WFQoS (

(24)) as follows.

 (28)

Thus, based on QoS criteria of the available services and the relevant computations, it turns out that, taking the

feedback of previous users into account for this service category, the most appropriate service is for the user

as given in (28). The transition matrix in this case study transforms the user behaviour for most preferred criteria

from Performance to Reliability overtime. That means the UPs change from Performance to Reliability

overtime for services in this category.

6 Evaluation
In this section we assess the suitability of our proposed approach from two perspectives: pairwise comparisons

of the method and convergence of the method. This is performed through evaluating its performance against

existing approaches.

6.1 Pairwise comparison perspective

The proposed method in this study outperforms the AHP-based approaches, frequently used in cloud service

selection. Here, a comparison of the results of the applications of both BWM and AHP is submitted.

The number of comparisons: To compare the proposed approach against the existing approaches, we eliminate

the Markov chain. This is because the methods, previously applied, in the area of cloud service selection do not

consider the possibility of changes in UPs. Therefore, the problem set to an ordinary MCDM problem and the

consideration of changes in UPs handled through the Markov chain has been disregarded. Through this, the

method becomes comparable with the existing approaches. In other words, most existing research in cloud

service selection used AHP for pairwise comparison [7][9][11] while in our study, we employed BWM for

pairwise comparison, which is more efficient than AHP [17]. The main reason for this efficiency is that BWM is

a vector-based method in which only two vectors (for best and worst comparison) are required to make the

entire matrix. Hence it requires fewer comparisons compared with matrix-based MCDM methods such as AHP.

For BWM, only 2n-3 comparisons are needed while, for instance, AHP needed n(n-1)/2 comparisons (see

Figure 4).

Figure 4. Pairwise comparisons in BWM and AHP

0

10

20

30

40

50

0 2 4 6 8 10 12

N
u

m
b

e
r

o
f

cr
it

e
ri

a
(n

)

Number of pairwise comparisons

Pairwise comparisons

BWM AHP

The inconsistency issue: The inconsistency of MCDM methods is commonly measured using a ratio, namely

Consistency Ratio (CR). CR provides us with a measure of the reliability of the produced results. For the

purpose of evaluation with the existing MCDM methods (i.e. AHP), we conducted an experiment to calculate

and evaluate CR from both BWM and AHP. For this purpose, we performed 20 different comparisons to

determine weights in BWM as well as AHP for similar cases including the ones presented in case study. We

observed that 80% of the comparisons in BWM are consistent (i.e. CR< 0.1) compared with 60% in AHP as

shown in Figure 5. Moreover, for the remaining 20% of the comparisons in BWM, the CR was in the range of

0.1 and 0.2. This shows that the final weights obtained from BWM are considerably more reliable than AHP.

This is due to more consistent comparisons than AHP. In section 4, three different situations of comparison

consistency in BWM algorithm are described, namely fully consistent, partially consistent, and inconsistent. The

final weights derived using that algorithm are always consistent (including fully and partially consistent) and

given that, we can claim that BWM is more reliable than AHP and so provides greater consistency.

Figure 5. Consistency ratio in BWM and AHP

6.2 Convergence Perspective

Computing Convergence Speed of the Markov Chain: The convergence speed of the Markov chain contributes

to the efficiency level of the approach, which happens by reducing the number of matrix multiplications. In this

section probability state redistributions and the number of iterations from the initial state to the stabilizing state

of the Markov chain are visualised. Figure 3 shows the Markov chain that we used for our case study and

utilises the convergence properties of the model such as periodicity (which means that the chain should not get

trapped in cycles), and irreducibility (which means there is positive probability of visiting all other states).

Figure 6 shows the evolution of the state distributions over time from an initial distribution. It is clear from this

figure that state probabilities for this Markov chain stabilize at step eight. These stabilized probabilities are used

as the adjusted priorities of UPs. As explained previously, considering the inherent convergence of transition

matrices no matter what initial probability distributions we use, the adjusted UPs obtained using the transition

matrix are independent of the initial state [51].

80%

60%

20%

40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

BWM AHP

Consistency

CR <0.1 CR between 0.1 and 0.3

Figure 6. Markov Chain Convergence Steps

6.2 Discussion

There are many examples of applying Markov chains as statistical models to address real world problems.

Markov processes are the basis for Markov Chain Monte Carlo (MCMC) methods [57], such as Metropolis-

Hastings (MH) [58] and Gibbs sampler [59] algorithms. MCMC includes algorithms for sampling from

probability distributions. Monte Carlo methods [60] are a broad class of computational algorithms that rely on

repeated random sampling to obtain optimization, integration and generating draws for probability distributions.

Their essential idea is the use of randomness to solve problems. Markov chain enhances these algorithms for

generating random samples while exploring the state space in a smart way. MCMC algorithms are commonly

used for simulating random objects with specific probability distributions. In other words, these algorithms use

different strategies for generating samples (say x
(i)

) while exploring the state space (say X) using a Markov chain

mechanism. This mechanism is constructed so that the chain spends more time in the most important regions.

The convergence property of Markov chains plays a fundamental role in MCMC simulation. For any starting

probability distribution, the chain will converge to an invariant distribution, as long as the transition matrix

obeys the following properties: (i) irreducibility: for any state of the Markov chain, there is a positive

probability of visiting all other states, so that the transition graph is connected; (ii) aperiodicity: the chain should

not get trapped in cycles. MCMC samplers are irreducible and aperiodic Markov chains that have the target

distribution as the invariant distribution. In our proposed framework, we use the convergence property of

Markov chain to obtain adjusted and stabilized UPs to find suitable cloud services instead of using the initial

UPs, as the adjusted UPs are independent of the initial state.

Due to the significance of the cloud service selection problem, there have been numerous studies proposing

solutions [52][53]. This paper has focused on linking the service selection process to the user preferences so that

the best service is always selected based on the desires of the users. Given that, a user-oriented service selection

process has been developed. Applying such an approach motivates service providers to concentrate on satisfying

the cloud users at different time intervals, which is mutually beneficial. One of the challenges in cloud service

selection is that UPs are frequently changing, and such frequent changes prevent the establishment of a method

to select a particular service.

In comparison with previously published papers in the area of cloud service selection, this paper proposes a

selection approach in which a cloud user can find the best service under changing user preferences. The method

utilizes a Markov chain. A Markovian transition matrix is built based on historical data of changes in user

preferences. The transition matrix is capable of computing a pattern of UPs that is independent of instant UPs

and, hence, builds a robust model. Such a model does not fluctuate based on minor changes in a user’s desires.

The efficiency of a Markov chain in finding the solution to dynamic and real world problems is well established

[54]–[56]. Markov chains have previously been applied to the supplier selection problem [51], intrusion

detection systems [54] and activity recognition in smart homes [56]. Although Markov chains have been well

examined in a variety of research areas to address real word problems [46], the application of the method in

combination with MCDM methods has only recently been proposed [51]. In addition, Markov chains have not

previously been employed to address the cloud service selection problem and this study proposes its first

application.

There is a previous study on the supplier selection process that proposes a Markov chain in combination with

the Analytic Network Process (ANP) to trace changing customer needs for the supplier selection process [16]. In

comparison with that study, this work combines a Markov chain with a recent MCDM method for cloud service

selection. An approach to handle changing QoS data over a period of time to select a cloud service was

previously presented [12] but it did not discuss the service selection under changing user preferences.

BWM has advantages when compared with methods such as ANP. ANP is a well examined MCDM method that

is capable of the consideration of internal relations between the elements. ANP, however, requires too many

pairwise comparisons that can become confusing and time consuming. Therefore, in this study for the first time,

BWM is integrated with a Markov chain in order to address the service selection problem.

7 Conclusion
In summary, although different decision-making methods have been previously applied to help cloud users find

a suitable cloud service, some uncertainties such as unstable UPs in the cloud environment encourage further

studies. In this paper, we discussed the cloud service selection problem in an environment where the priorities of

users keep changing. We proposed a framework that finds a pattern of changing UPs using a Markov chain

independent of the initial user preferences. The pattern is then linked to QoS criteria of all available services to

find weights using the BWM method. The weights of criteria of all services are then used to determine the

overall rank of options for cloud service selection, along with the pattern of UPs. We validated the proposed

methodology employing a case study using the performance data EC2 cloud service. The results show that

utilizing the previous users’ experience and feedback produces more suitable service recommendation and

selection for future cloud use. The proposed approach is also more efficient than traditional MCDM approaches

such as ANP and AHP due to a lower number of comparisons determining the weights of the service criteria.

We recommend future studies examine the applicability of other methods in combination with BWM to address

the concerns of uncertainty in the decision process in cloud service selection.

References
[1] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” N. I. o. S. a. Technol. U.S. Dep.

Commer., 2011.

[2] B. Varghese and R. Buyya, “Next Generation Cloud Computing: New Trends and Research Directions,”

Futur. Gener. Comput. Syst., pp. 1–25, 2017.

[3] L. Wu and R. Buyya, “Service level agreement (SLA) in utility computing systems,” arXiv Prepr.

arXiv1010.2881, vol. abs/1010.2, p. 27, 2010.

[4] F. Nawaz, N. K. Janjua, O. K. Hussain, F. K. Hussain, E. Chang, and M. Saberi, “Event-driven

approach for predictive and proactive management of SLA violations in the Cloud of Things,” Futur.

Gener. Comput. Syst., vol. 84, pp. 78–97, Jul. 2018.

[5] “Equinix.” [Online]. Available: http://www.equinix.com/industries/cloud-providers/.

[6] D. Lin, A. C. Squicciarini, V. N. Dondapati, and S. Sundareswaran, “A Cloud Brokerage Architecture

for Efficient Cloud Service Selection,” IEEE Trans. Serv. Comput., vol. 1374, no. c, pp. 1–1, 2016.

[7] S. K. Garg, S. Versteeg, and R. Buyya, “SMICloud: A framework for comparing and ranking cloud

services,” Proc. - 2011 4th IEEE Int. Conf. Util. Cloud Comput. UCC 2011, no. Vm, pp. 210–218, 2011.

[8] S. Ding, Z. Wang, D. Wu, and D. L. Olson, “Utilizing customer satisfaction in ranking prediction for

personalized cloud service selection,” Decis. Support Syst., vol. 93, pp. 1–10, 2017.

[9] G. Nie, Q. She, and D. Chen, “Evaluation Index System of Cloud Service and the Purchase Decision-

Making Process Based on AHP,” in Proceedings of the 2011 International Conference on Informatics,

Cybernetics, and Computer Engineering (ICCE2011) November 19--20, 2011, Melbourne, Australia:

Volume 3: Computer Networks and Electronic Engineering, L. Jiang, Ed. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012, pp. 345–352.

[10] Z. Gui, C. Yang, J. Xia, Q. Huang, K. Liu, Z. Li, M. Yu, M. Sun, N. Zhou, and B. Jin, “A Service

Brokering and Recommendation Mechanism for Better Selecting Cloud Services,” PLoS ONE 9(8)

e105297, vol. 9, no. 8, 2014.

[11] M. Godse and S. Mulik, “An Approach for Selecting Software-as-a-Service (SaaS) Product,” in

Proceedings of the 2009 IEEE International Conference on Cloud Computing, 2009, pp. 155–158.

[12] Z. U. Rehman, O. K. Hussain, and F. K. Hussain, “Parallel cloud service selection and ranking based on

QoS history,” Int. J. Parallel Program., vol. 42, no. 5, pp. 820–852, 2014.

[13] W. Zeng, Y. Zhao, and J. Zeng, “Cloud Service and Service Selection Algorithm Research,” in

Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, 2009, pp.

1045–1048.

[14] L. Sun, J. Ma, Y. Zhang, H. Dong, and F. K. Hussain, “Cloud-FuSeR: Fuzzy ontology and MCDM

based cloud service selection,” Futur. Gener. Comput. Syst., vol. 57, pp. 42–55, 2016.

[15] Y. Chen, L. Jiang, J. Zhang, and X. Dong, “A Robust Service Selection Method Based on Uncertain

QoS,” vol. 2016, no. 2, 2016.

[16] M. R. Asadabadi, “A customer based supplier selection process that combines quality function

deployment, the analytic network process and a Markov chain,” Eur. J. Oper. Res., vol. 263, no. 3, pp.

1049–1062, 2017.

[17] J. Rezaei, “Best-worst multi-criteria decision-making method,” Omega, vol. 53, pp. 49–57, 2015.

[18] S.-M. Han, M. Mehedi Hassan, C.-W. Yoon, H.-W. Lee, and E.-N. Huh, “Efficient Service

Recommendation System for Cloud Computing Market,” in Grid and Distributed Computing:

International Conference, GDC 2009, Held as Part of the Future Generation Information Technology

Conferences, FGIT 2009, Jeju Island, Korea, December 10-12, 2009. Proceedings, D. Śl\kezak, T. Kim,

S. S. Yau, O. Gervasi, and B.-H. Kang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.

117–124.

[19] Q. Yu, “CloudRec: a framework for personalized service Recommendation in the Cloud,” Knowl. Inf.

Syst., vol. 43, no. 2, pp. 417–443, May 2015.

[20] L. Sun, H. Dong, F. K. Hussain, O. K. Hussain, and E. Chang, “Cloud service selection: State-of-the-art

and future research directions,” J. Netw. Comput. Appl., vol. 45, pp. 134–150, 2014.

[21] M. Moghaddam and J. Davis, “Service selection in web service composition: A comparative review of

existing approaches,” Web Serv. Found., 2014.

[22] L. F. de Oliveira Moura Santos, L. Osiro, and R. H. P. Lima, “A model based on 2-tuple fuzzy linguistic

representation and Analytic Hierarchy Process for supplier segmentation using qualitative and

quantitative criteria,” Expert Syst. Appl., vol. 79, pp. 53–64, 2017.

[23] S. Jharkharia and R. Shankar, “Selection of logistics service provider: An analytic network process

(ANP) approach,” Omega, vol. 35, no. 3, pp. 274–289, 2007.

[24] P. Ishizaka, A. and Nemery, “Multi-attribute utility theory, in Multi-Criteria Decision Analysis,”

Methods Software, John Wiley Sons Ltd, Chichester, UK., 2013.

[25] J. Wang, J. Wang, H. Zhang, and X. Chen, “Multi-criteria decision-making based on hesitant fuzzy

linguistic term sets: An outranking approach,” Knowledge-Based Syst., vol. 86, pp. 224–236, 2015.

[26] S. E. Bellman, R. E., & Dreyfus, Applied dynamic programming. Princeton university press, 2015.

[27] M. Bartlett and J. Cussens, “Integer Linear Programming for the Bayesian network structure learning

problem,” Artif. Intell., vol. 244, pp. 258–271, 2017.

[28] A. K. Das, S. Das, and A. Ghosh, “Ensemble feature selection using bi-objective genetic algorithm,”

Knowledge-Based Syst., vol. 123, pp. 116–127, 2017.

[29] K.-C. Huang, M.-J. Tsai, S.-J. Lu, and C.-H. Hung, “SLA-constrained service selection for minimizing

costs of providing composite cloud services under stochastic runtime performance,” Springerplus, vol.

5, no. 1, p. 294, Mar. 2016.

[30] The Cloud Service Measurement Initiative Consortium (CSMIC), “Service Measurement Index

Introducing the Service Measurement Index (SMI),” Http://Www.Cloudcommons.Com/About-Smi;

Accessed 2013-04-12, no. September, pp. 1–8, 2011.

[31] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Comparing Public Cloud Providers,” in

Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, 2010, pp. 1–14.

[32] J. Kang and K. M. Sim, “Cloudle: An Ontology-Enhanced Cloud Service Search Engine,” in Web

Information Systems Engineering -- WISE 2010 Workshops: WISE 2010 International Symposium WISS,

and International Workshops CISE, MBC, Hong Kong, China, December 12-14, 2010, Revised Selected

Papers, D. K. W. Chiu, L. Bellatreche, H. Sasaki, H. Leung, S.-C. Cheung, H. Hu, and J. Shao, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 416–427.

[33] F. Nawaz, K. Qadir, and H. F. Ahmad, “SEMREG-Pro: A semantic based registry for proactive web

service discovery using publish-subscribe model,” in Proceedings of the 4th International Conference

on Semantics, Knowledge, and Grid, SKG 2008, 2008, pp. 301–308.

[34] X. Wang, J. Cao, and Y. Xiang, “Dynamic cloud service selection using an adaptive learning

mechanism in multi-cloud computing,” J. Syst. Softw., vol. 100, pp. 195–210, 2015.

[35] R. Filepp, L. Shwartz, C. Ward, R. D. Kearney, K. Cheng, C. C. Young, and Y. Ghosheh, “Image

selection as a service for cloud computing environments,” in 2010 IEEE International Conference on

Service-Oriented Computing and Applications (SOCA), 2010, pp. 1–8.

[36] C. Chen, S. Yan, G. Zhao, B. S. Lee, and S. Singhal, “A Systematic Framework Enabling Automatic

Conflict Detection and Explanation in Cloud Service Selection for Enterprises,” in Proceedings of the

2012 IEEE Fifth International Conference on Cloud Computing, 2012, pp. 883–890.

[37] N. Ghosh, S. Member, and S. K. Ghosh, “SelCSP : A Framework to Facilitate Selection of Cloud

Service Providers,” IEEE Trans. CLOUD Comput., vol. 3, no. 1, pp. 66–79, 2015.

[38] F. Lin, W. Zeng, L. Yang, Y. Wang, S. Lin, and F. Lin, “Cloud computing system risk estimation and

service selection approach based on cloud focus theory,” Neural Comput. Appl., vol. 28, no. 7, pp.

1863–1876, 2017.

[39] H. Mouratidis, S. Islam, C. Kalloniatis, and S. Gritzalis, “A framework to support selection of cloud

providers based on security and privacy requirements,” J. Syst. Softw., vol. 86, no. 9, pp. 2276–2293,

2013.

[40] S. Liu, F. T. S. Chan, and W. Ran, “Decision making for the selection of cloud vendor: An improved

approach under group decision-making with integrated weights and objective/subjective attributes,”

Expert Syst. Appl., vol. 55, no. 2016, pp. 37–47, 2016.

[41] W. Liu, Y. Dong, F. Chiclana, F. J. Cabrerizo, and E. Herrera-Viedma, “Group decision-making based

on heterogeneous preference relations with self-confidence,” Fuzzy Optim. Decis. Mak., vol. 16, no. 4,

pp. 429–447, Dec. 2017.

[42] M. J. Moral and L. Le, “A Comparative Study on Consensus Measures in Group Decision Making,” Int.

J. Intell. Syst. Press. 2017., Press, no. 1, pp. 283–287, 2017.

[43] J. Wu, F. Chiclana, H. Fujita, and E. Herrera-Viedma, “A visual interaction consensus model for social

network group decision making with trust propagation,” Knowledge-Based Syst., vol. 122, no.

Supplement C, pp. 39–50, 2017.

[44] N. Capuano, F. Chiclana, H. Fujita, E. Herrera-Viedma, and V. Loia, “Fuzzy Group Decision Making

with Incomplete Information Guided by Social Influence,” IEEE Trans. Fuzzy Syst., vol. 6706, no. c,

2017.

[45] H. Zhanga, Y. Dong, and E. Herrera-Viedma, “Consensus building for the heterogeneous large-scale

GDM with the individual concerns and satisfactions,” IEEE Trans. Fuzzy Syst., vol. PP, no. 99, p. 1,

2017.

[46] Karlin, A first course in stochastic processes. Academic Press.

[47] S. P. Meyn and R. L. Tweedie, “Markov Chains and Stochastic Stability,” Springer-Verlag, p. 792,

1993.

[48] P. Zheng, X. Xu, and S. Q. Xie, “A weighted interval rough number based method to determine relative

importance ratings of customer requirements in QFD product planning,” J. Intell. Manuf., May 2016.

[49] J. O. Gutierrez-Garcia and K. M. Sim, “Agent-based cloud service composition,” Appl. Intell., vol. 38,

no. 3, pp. 436–464, 2013.

[50] J. Rezaei, “Best-worst multi-criteria decision-making method: Some properties and a linear model,”

Omega, vol. 64, no. Supplement C, pp. 126–130, 2016.

[51] M. R. Asadabadi, “A Markovian-QFD approach in addressing the changing priorities of the customer

needs,” Int. J. Qual. Reliab. Manag., vol. 33, no. 8, pp. 1062–1075, 2016.

[52] S. Deng, H. Wu, D. Hu, and J. Leon Zhao, “Service Selection for Composition with QoS Correlations,”

IEEE Trans. Serv. Comput., vol. 9, no. 2, pp. 291–303, Apr. 2016.

[53] C. Esposito, M. Ficco, F. Palmieri, and A. Castiglione, “Smart Cloud Storage Service Selection Based

on Fuzzy Logic, Theory of Evidence and Game Theory,” IEEE Trans. Comput., vol. 65, no. 8, pp.

2348–2362, Aug. 2016.

[54] W.-C. Lin, S.-W. Ke, and C.-F. Tsai, “CANN: An intrusion detection system based on combining

cluster centers and nearest neighbors,” Knowledge-Based Syst., vol. 78, pp. 13–21, 2015.

[55] R. Pourmoayed, L. R. Nielsen, and A. R. Kristensen, “A hierarchical Markov decision process modeling

feeding and marketing decisions of growing pigs,” Eur. J. Oper. Res., vol. 250, no. 3, pp. 925–938,

2016.

[56] K. S. Gayathri, K. S. Easwarakumar, and S. Elias, “Probabilistic ontology based activity recognition in

smart homes using Markov Logic Network,” Knowledge-Based Syst., vol. 121, pp. 173–184, 2017.

[57] U. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, D. Goldberg, J. Holland, F. Ionescu, V. Pupezescu, U. U.

Fayyad, G. Piatetsky-Shapiro, P. Smyth, O. M. Rokach, C. Hong, C. Functions, E. D. Michie, D. J.

Spiegelhalter, C. C. Taylor, M. Kubat, R. C. Holte, S. Matwin, D. Freitag, C. Andrieu, N. de Freitas, A.

Doucet, and M. I. Jordan, “An Introduction to MCMC for Machine Learning,” Mach. Learn., vol. 50,

no. 1, pp. 5–43, Jan. 2003.

[58] S. Chib and E. Greenberg, “Understanding the Metropolis-Hastings Algorithm,” Am. Stat., vol. 49, no.

4, pp. 327–335, 1995.

[59] W. R. Gilks and P. Wild, “Adaptive Rejection Sampling for Gibbs Sampling,” J. R. Stat. Soc. Ser. C

(Applied Stat., vol. 41, no. 2, pp. 337–348, 1992.

[60] S. Raychaudhuri, “Introduction to Monte Carlo simulation,” 2008 Winter Simul. Conf., pp. 91–100,

2008.

Dear Editor,

The current submission deals with the uncertainty issue when selecting a cloud service.

We have received the second round of revisions and addressed the comments.

The contribution:

We have applied a Markov chain to find the pattern of uncertain (changing) customer needs. The pattern is then

used in combination with Best Worst Method (a recently proposed MCDM method) to find and select the best

service.

Looking forwards to hearing from you.

Regards,

Mehdi Rajabi Asadabadi

School of Business,

University of New South Wales

Canberra, Australia

Cover Letter

